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Abstract. Monoethylene glycol (MEG) regeneration plants often use pretreatment vessels to 
precipitate divalent cations, such as Fe2+, Ca2+, and Mg2+, in order to avoid or reduce fouling 
in downstream reboilers and heat exchangers. This pretreatment process operates under 
alkaline conditions and moderate temperatures (~ 80 °C) to accelerate the formation of low-
solubility divalent salts. The objective of the present research was to determine whether the 
pretreatment process could be minimized, without negatively impacts on the MEG 
regeneration process from to the formation of scale on the heater bundle in the presence of 
low concentrations of divalent cations in the rich MEG stream. Scale formation was analyzed 
under MEG regeneration process conditions using a dynamic scale loop (DSL) test and 
verification experiments were performed in a MEG regeneration and reclamation pilot plant, 
both with and without pretreatment conditions. The scaling tendencies of several rich MEG–
brine mixtures were evaluated at different pH pretreatment levels and dissolved CO2 
concentrations. An evaluation temperature of 180 °C was chosen to match the skin 
temperature of the reboiler heater bundle during the MEG regeneration process. The 
experiments of pH 7.24 showed high amounts of precipitation scale within the reboiler due 
to high remaining concentrations of mineral ions. In addition, small concentrations of calcium 
and magnesium ions led to the precipitation of calcite, dolomite, and magnesium hydroxide 
on the reboiler bundle and within associated filtered outputs even when a pretreatment vessel 
was present. These results were confirmed by the differential pressure build-up and Scanning 
Electron Microscopy analyses for each experimental condition. Another interesting finding 
is that pH increased within the reboiler due to CO2 gas boiling off at high operating 
temperatures, thus contributing to increased alkalinity levels, which in turn promoted scale 
formation. These results indicate that pretreatment should not be reduced, even with divalent 
ion concentrations as low as ~ 5 ppm TDS, due to the harsh conditions within the reboiler 
heater bundle. 

1. Introduction 
Natural gas transportation and production systems face significant operational concerns from the 
formation of scale, which can restrict or block flow and cause fouling issues [1, 2]. Chemical analyses 
and laboratory studies have shown that calcium carbonate, barium sulfate, and strontium sulfate are 
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the inorganic compounds most commonly found in oil and gas facilities [3, 4]; calcium carbonate is 
particularly abundant in deep saline wells [5-8]. Since calcium carbonate has low solubility, it forms 
large deposits within pipelines and industrial units [9-11]. Furthermore, its solubility is inversely 
proportional to temperature, which along with pH therefore has direct effects on the overall 
equilibrium of calcium carbonate precipitation [12, 13]. The previous publication reported general 
equilibrium reactions [14, 15], including CaCO3 formation within the carbonate system [5]; they are 
summarized as reactions 1–4. Carbonate equilibrium models thus present a challenge for the 
transportation of natural gas and condensate from offshore facilities. 
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Where CO2,gas is CO2 in the gas phase, and CO2,aq is the dissolved CO2 in the aqueous phase. KH, 
K1, K2, and Ksp are Henry’s law, first and second dissociation constants, and the equilibrium constant 
[5], respectively. 

In addition to this concern, long subsea transportation pipelines require minimal risks of hydrate 
formation. During the production of natural gas in deep water environments, there is a risk of gas 
hydrates forming in the pipelines [16, 17]. Gas hydrates are crystalline, ice-like solids made up of host 
molecules surrounded by water molecules [16]. Hydrate inhibitors are therefore used to ensure the 
flow of natural gas [16]. Monoethylene glycol (MEG) is among the most widely used gas hydrate 
inhibitors because it can be regenerated and/or reclaimed, thereby allowing it to be reused and 
minimizing operational costs [18, 19]. However, MEG and other gas hydrate inhibitors directly lower 
the saturation concentrations of inorganic salts, and therefore lead to an increased risk of scale 
formation [20-22]; it is therefore necessary to find an appropriate balance between the two. The 
saturation of calcium carbonate in the water/MEG system can be determined using the relationship 
between ion activity (calcium and carbonate) and the equilibrium constant, which can in turn indicate 
the influence of the MEG on the activity coefficient of ions (see Equation 5) [5]. 
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represent the effect of salt on activity coefficients. 

Several studies have also suggested that MEG concentrations affect the deposition of inorganic 
salts [20, 23]. For example, Flaten, Seiersten (24) observed that an increase in MEG concentration was 
accompanied by an increase of the calcium carbonate crystal formation induction time. They attributed 
this to the increase in viscosity (due to the increasing glycol concentration) inhibiting crystal formation. 
Two other studies found that, under gaseous treatment conditions, calcium carbonate crystals show a 
significant reduction in growth rates in experiments with more than 50 vol. % of MEG (rich MEG) 
[19, 25]. Other factors have been reported to have effects on the process of crystallization and growth 
rate of calcium carbonate crystals [15, 26, 27]. For example, changing the content of CO2 gas in saline-
glycolic solutions, especially during the regeneration process, can affect the deposition rate of mineral 
ions in the pretreatment and reboiler sections. 

During the MEG regeneration process, excess water is boiled off to achieve the desired lean MEG 
concentration (> 75%). During this process, the bulk temperature in the reboiler may be as high as 
130–150 °C [28, 29] and the reboiler heater element skin (wall) temperatures may be even higher, as 
the heating solution may be supplied to the unit at 177 °C [30]. If divalent cations are present within 
the rich MEG feed, these high temperatures may cause the precipitation of solid particles, resulting in 
either a fouling of the hot heat-exchanger surfaces or in solids suspended in the bulk liquid [30, 31]. 
This reduces heat transfer efficiency and may have adverse effects on the downstream system (e.g., 
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blockage of lean MEG filters). However, the extent of this impact is not well understood at present. 
Moreover, the behavior of different concentrations of divalent ions within the MEG solution is not yet 
known. Some plants have taken a conservative approach by targeting a low residual cation 
concentration (e.g., < 1 ppm) in the feed that leads to the reboiler. However, this can require the 
injection of large quantities of a base (e.g., KOH or NaOH) into the MEG pretreatment system, which 
is associated with high operating costs as well as health, environmental, and safety risks related to 
handling and transportation of large volumes of highly concentrated and harmful chemicals. 

Scale inhibitors are also commonly used to reduce crystallization during the production of oil and 
natural gas [8, 32, 33], but several studies have reported that MEG can reduce the performance of some 
scale inhibitors [34-36]. Laboratory tests are thus commonly performed to evaluate the degree of scale 
inhibition achieved by proposed scale inhibitors under conditions similar to those found in oil and 
natural gas fields. One of the most effective such laboratory tests uses the dynamic scale loop (DSL) 
method [33], which was adopted by the present study to investigate total dissolved solids at different 
concentrations and pH levels. 

Ultimately, the purpose of this study was to determine the influence of the low concentrations of 
divalent ions in the reboiler’s rich MEG feed solution. To this end, we evaluated the impact on reboiler 
performance of the different concentrations of divalent ions that remained after the MEG pretreatment 
process, in terms of fouling, scaling, or downstream effects, such as filter blocking or whether 
suspended solids were carried through. Considerable cost savings would be achieved if it can be 
demonstrated that a low divalent cation content does not have significant adverse effects on the 
downstream processes of the reboiler section. For plants without pretreatment facilities, this research 
can also provide a useful insight on the impact to the MEG regeneration process of the divalent cations 
that appear in the rich MEG feed (e.g., due to formation water breakthrough). 

2. Experimental Methodology 

2.1 Test Conditions 
The absolute pressure of the CO2 gas that reached the facility was set at 44 bar, while its partial pressure 
was 0.5, 1.0, 2.0, or 5.0 mol. To simulate the dissolved CO2 concentration in the pretreatment vessel 
and its subsequent conversion to bicarbonate and carbonate (Fig. 1), the concentrations of the 
carbonate species at specific CO2 concentrations, and their associated pHs, were calculated using 
carbonate–gas/brine/water equilibrium models [5, 14, 37, 38]. 

The carbonate species were introduced via their respective sodium salts. Calcium chloride 
dihydrate powder (Scharlau, reagent grade ACS, > 99 wt. %), magnesium chloride hexahydrate 
powder (Chem-Supply, reagent grade, > 99 wt. %), barium chloride powder (Chem-Supply, reagent 
grade, 99.7 wt. %), sodium hydrogen carbonate powder (Chem-Supply, reagent grade, 99.7 wt. %), 
and iron chloride powder (Chem-Supply, reagent grade, 99.9 wt. %) were used to prepare the brine 
solutions. MEG (Chem-Supply, reagent grade, > 99 wt. %), hydrochloric acid (Chem-Supply, reagent 
grade, 32 wt. %), and KOH (Chem-Supply, reagent grade, 99.9 wt. %) were used to prepare the MEG 
solutions. Ethanol (Chem-Supply, reagent grade, > 99 wt. %), ethylenediaminetetraacetic acid 
disodium salt dihydrate (EDTA) solution (Chem-Supply, reagent grade, 0.1 M), and citric acid powder 
(Rowe Scientific Pty Ltd, reagent grade, > 98 wt. %) were used for cleaning to remove residual 
precipitations. 
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Fig. 1. Relationship between pH of Solution and Dissociation Status of Carbonic Acid in 
aqueous solution [39]. 

Two rich MEG (61.4 wt. % MEG in water) compositions were tested: case 1, which was high in 
calcium; and case 2, which was high in magnesium. In addition, we applied the following 
pretreatments: a) no pretreatment (pH < 5.0), b) pretreatment to >> 10 ppm TDS at pH 7.24, c) 
pretreatment to > 10 ppm TDS (pH > 8.85) and d) pretreatment to > 5 ppm TDS (pH > 9.40). All test 
cases are presented in Tables 1 and 2. 

For each test involving a pretreatment step, we adjusted pH by adding varying quantities of KOH 
to achieve the initial desired pH. The removal of water from a rich MEG solution at a high temperature 
results in pH increases, since the remaining dissolved CO2 also boils off during the process, thereby 
decreasing the concentration of dissolved carbonic acid (Fig. 2). In turn, this pH increase also increases 
the alkalinity of the aqueous glycolic system due to the accumulation of carbonate and bicarbonate 
ions [28, 40]. Since pH thus changes during the distillation process due to CO2 removal, we adjusted 
the pH of the starting anion lean MEG solution to the value determined experimentally during lab-
scale distillation (typically > 11.5) at each respective CO2 concentration. For the experiments not 
involving a pretreatment, we used the pH of the initial rich MEG (typically 4.6) because any increase 
of pH during the regeneration process was found to be negligible.  

 

Fig. 2. pH change in carbonate systems at different temperatures [41]. 

All pH measurements were recalibrated by using the Sandengen, Kaasa (42) model due to the influence 
of  MEG on the liquid junction potential, refer to Equation 6, where wG is the weight fraction of MEG.  
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Using this method, we determined that the pH correction factor was 0.24 for 61.4 wt. % MEG solutions 
and 0.49 for 90 wt. % MEG solutions. The corrected pH values are presented in Table 1 and Table 2. 

To evaluate the scaling tendency of each rich MEG solution (Table 1 and 2), we converted the divalent 
ion concentrations to their corresponding 90 wt. % lean MEG concentrations. This simulated the 
removal of excess water that occurs during the distillation process. We also checked the prepared 
concentration of lean MEG solution using the Al Helal, Soames (43) models, to ensure that the MEG 
concentration after water boil-off was within the suggested concentration range. 

Table 1. The Remaining Divalent Ions Compositions in 61.4 wt. % rich MEG Solution for different 
Pretreatment (Case- 1) 

Ions Species 
No Pretreatment With Pretreatment 

pH <5.0 pH 7.24 pH > 8.85 
High TDS TDS~10 TDS~5 
0.5 mole% CO2 

pH at Rich Tank
 5.0 7.24 9.57 9.90 

Ca2+, ppm 58.73 42.97 0.72 0.52 

Fe2+, ppm 14.65 0.16 0.0 0.0 

Mg2+, ppm 14.71 14.70 7.55 3.33 

Ba2+, ppm 14.71 14.70 1.84 1.10 

Tk
*, mmol/kg 0 1.634 3.298 3.518 

TDS, ppm 102.81 72.55 10.12 4.96 

1.0 mole% CO2 

pH at Rich Tank
 4.91 7.24 9.23 9.56 

Ca2+, ppm 58.73 18.88 0.87 0.48 

Fe2+, ppm 14.65 0.07 0.0 0.0 

Mg2+, ppm 14.71 14.70 6.03 3.44 

Ba2+, ppm 14.71 14.70 2.98 0.95 

Tk, mmol/kg 0 3.367 8.134 8.401 

TDS, ppm 102.81 48.36 9.88 4.87 

2.0 mole% CO2 

pH at Rich Tank
 4.80 7.24 8.85 9.40 

Ca2+, ppm 58.76 14.70 0.59 0.48 

Fe2+, ppm 14.65 0.04 0.0 0.0 

Mg2+, ppm 14.71 14.70 6.74 2.89 

Ba2+, ppm 14.71 14.70 2.63 1.52 

Tk, mmol/kg 0 6.216 17.453 18.287 

TDS, ppm 102.81 40.62 9.96 4.89 

5.0 mole% CO2 

pH at Rich Tank
 4.70 7.24 8.85 9.40 

Ca2+, ppm 58.80 6.43 0.45 0.39 

Fe2+, ppm 14.65 0.02 0.0 0.0 

Mg2+, ppm 14.72 14.70 8.11 3.72 

Ba2+, ppm 14.72 14.70 1.32 0.87 

Tk, mmol/kg 0 11.862 44.521 46.488 
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Ions Species 
No Pretreatment With Pretreatment 

pH <5.0 pH 7.24 pH > 8.85 
High TDS TDS~10 TDS~5 

TDS, ppm 102.91 35.85 9.87 4.99 

* Tk is Total alkalinity 

Table 2. The Remaining Divalent Ions Compositions in 61.4 wt. % rich MEG Solution for different 
Pretreatment (Case- 2) 

Ions Species 
No Pretreatment With Pretreatment 

pH <5.0 pH 7.24 pH > 8.85 
High TDS TDS~10 TDS~5 
0.5 mole% CO2 

pH at Rich Tank
 5.0 7.24 9.57 9.90 

Ca2+, ppm 14.68 14.68 0.52 0.47 

Fe2+, ppm 14.68 0.14 0.0 0.0 

Mg2+, ppm 58.83 58.82 8.21 3.50 

Ba2+, ppm 14.71 14.71 1.09 0.92 

Tk, mmol/kg 0 1.832 4.255 4.538 

TDS, ppm 102.81 88.34 9.82 4.89 

1.0 mole% CO2 

pH at Rich Tank
 4.91 7.24 9.23 9.56 

Ca2+, ppm 14.69 14.68 0.40 0.37 

Fe2+, ppm 14.65 0.07 0.0 0.0 

Mg2+, ppm 58.84 58.81 8.86 4.11 

Ba2+, ppm 14.71 14.70 2.98 0.57 

Tk, mmol/kg 0 3.594 8.88 9.338 

TDS, ppm 102.88 88.27 9.90 5.05 

2.0 mole% CO2 

pH at Rich Tank
 4.80 7.24 8.85 9.40 

Ca2+, ppm 14.69 11.41 0.33 0.32 

Fe2+, ppm 14.65 0.04 0.0 0.0 

Mg2+, ppm 58.85 58.81 9.11 4.34 

Ba2+, ppm 14.71 14.70 0.42 0.37 

Tk, mmol/kg 0 6.372 18.083 18.921 

TDS, ppm 102.91 84.97 9.87 5.04 

5.0 mole% CO2 

pH at Rich Tank
 4.70 7.24 8.85 9.40 

Ca2+, ppm 14.70 6.17 0.44 0.33 

Fe2+, ppm 14.65 0.02 0.0 0.0 

Mg2+, ppm 58.89 58.82 8.14 4.16 

Ba2+, ppm 14.72 14.70 1.30 0.41 

Tk, mmol/kg 0 12.289 45.524 47.280 

TDS, ppm 102.98 79.72 9.89 4.89 
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Ions Species 
No Pretreatment With Pretreatment 

pH <5.0 pH 7.24 pH > 8.85 
High TDS TDS~10 TDS~5 

* Tk is Total alkalinity 

2.2 Dynamic Scale Loop 
DSL is commonly used to test scale formation under controlled temperature, pressure, and flow rate 
conditions [44, 45]. Our experimental set-up is illustrated in Fig. 3. Separate solutions containing the 
required cations and anions were mixed and then subjected to a temperature of 180 °C (to replicate 
reboiler skin temperature) at atmospheric pressure. The formation of scale within the capillary tubing 
was monitored by measuring the differential pressure build-up across the capillary tube. A carbon steel 
disk (Fig. 3) was also installed after the capillary tubing chamber was heated to evaluate the formation 
of scale crystals on a carbon steel surface. Following each experiment, we analyzed the scale formation 
on the carbon steel disk using Scanning Electron Microscopy (SEM) to determine the morphology of 
the deposits. 

 

Fig. 3. DSL configuration and in-line carbon steel disk holder. 

2.3 Pilot Plant Distillation 
Next, we verified the experimental results generated from the DSL tests. An MEG regeneration pilot 
plant (Fig. 4) was used to investigate scale formation tendencies within the reboiler and heating bundle 
by applying two pretreatment conditions: at TDS >> 10 ppm (pH 7.24), and at TDS ~10 (pH 8.85), 
both with 5.0 mol % CO2 (Table 1). The reboiler was continually fed with the rich MEG solution 
(61.4 wt. %) to re-concentrate the solution in the reboiler to 90 wt. % (i.e., lean MEG). Prior to starting 
these tests, the rich MEG tank was sparged with 100% CO2 gas to reach saturation. During the 
operation of the MEG pilot plant, the CO2 gas that was boiled off in the distillation process was 
compensated for by sparging CO2 gas into the feed blender to ensure that the rich MEG tank solution 
remained at constant saturation in each cycle. The reboiler was operated at 145 °C to achieve lean 
MEG (90 wt. %). A carbon steel sample was also installed in-line between the reboiler and lean MEG 
tank to assess the scaling tendency on carbon steel. A ten-micron filter was then installed to evaluate 
its ability to filtrate the lean MEG and remove suspended solids prior to being recycled to the lean 
MEG tank. 
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Fig. 4. MEG pilot plant configuration. 

3. Results and Discussion 

3.1 Alkalinity Measurements: Cases 1 and 2 before and After DSL Testing 
The total alkalinity in aqueous glycolic solutions plays an important role in controlling the rate of scale 
precipitation in both pretreatment vessels and reboilers [37, 46]. As shown in Fig. 1, the number of 
carbonate and bicarbonate ions can be controlled by adjusting the pH value in the aqueous system. In 
addition, the total alkalinity can be increased by increasing the dissolved CO2 mole% under alkaline 
conditions (Fig. 2). Carbonate ions often react with sparingly soluble ions (e.g., Fe2+, Ca2+, Mg2+) when 
appropriate conditions prevail [23]. As shown in Table 1 and Table 2, in pretreatment trials with pH 
7.24 at 0.5 mol % CO2, Ferrous carbonate (FeCO3) tended to be consumed faster than other divalent 
ions. This was due to the Fe2+ ions’ greater ability to precipitate at low carbonate concentrations than 
other divalent ions. These results are in line with Navabzadeh Esmaeely, Choi (47) findings, which 
reported that the formation of FeCO3 was more rapid in solutions containing low concentrations of 
calcium ions (10 and 100 ppm) than in solutions containing high calcium ion concentrations 
(> 100 ppm). 

When the pH of our experiment increased to > 8.85 at a constant CO2 mol fraction, the precipitation 
of divalent compounds became greater. Similar responses were observed when the CO2 mol fraction 
increased from 1.0 to 5.0 moles %. 

3.2 Scale Analysis 
Theoretically, the pH 7.24 pretreatment level was expected to produce the worst results due to its 
higher concentrations of remaining divalent ions in its feed stream in comparison to the pH > 8.85 
pretreatment trials (Table 1 and Table 2): the remaining high concentrations of divalent ions in the 
reboiler could precipitate after the CO2 gas was boiled off, due to the significant increase in the 
bicarbonate and carbonate ion concentrations [48]. In contrast, we expected the pH > 8.85 pretreatment 
to be less risky because of the high pre-precipitation of divalent ions in its pretreatment process, which 
could potentially contribute to lower depositions in the reboiler [49]. 

We performed experimental DSL trials using the rich MEG compositions (Table 1 and 2) to confirm 
these hypotheses; Table 3 and 4 summarize the results. These tables show the tendency of blockage 
and semi blockage inside the capillary tubing which has occurred only within a pH of 7.24 for cases 1 
and 2. Furthermore, they show that the calcium ion concentrations played a crucial factor to precipitate 
more scale layers inside the capillary tubing when abundance amounts of carbonate ions are available, 
specifically at CO2 mole fraction below 2.0%. High CO2 mole fraction (5.0 mole %) does not show 
blockage or semi blockage within capillary tubing due to low Calcium ions concentration in the feed 
stream, but it can be seen that a thin scale layer has been precipitated over the carbon steel sample. 
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The tendencies of the solutions to form scale are indicated by a) complete blockage of the capillary 
tube and scale formation on the in-line sample (red), b) formation of scale on in-line sample (orange), 
c) partially blockage of the capillary tube and scale formation on the in-line sample (yellow), and d), 
no scale formation (green), respectively. 

Table 3.  Summary of Lab-Scale DSL Results at High TDS, ppm 

CO2 mole % 

No Pretreatment With Pretreatment 
pH 5.0 pH 7.24* 

Ca2+     Ca2+     

C
as

e 
- 

1 0.5 58.73    • 42.97  •   
1.0 58.73    • 18.88 •    
2.0 58.76    • 14.70 •    
5.0 58.80    • 6.43   •  

C
as

e 
- 

2 0.5 14.68    • 14.68  •   
1.0 14.69    • 14.68 •    
2.0 14.69    • 11.41 •    
5.0 14.70    • 6.17   •  

Table 4.  Summary of Lab-Scale DSL Results at low TDS (10 to 5 ppm)  

CO2 mole % 

With Pretreatment 
pH >8.85* 

Ca2+     Ca2+     

C
as

e 
- 

1 0.5 0.72   •  0.52   •  
1.0 0.87   •  0.48   •  
2.0 0.59   •  0.48   •  
5.0 0.45   •  0.39   •  

C
as

e 
- 

2 0.5 0.52   •  9.66   •  
1.0 0.40   •  9.32   •  
2.0 0.33   •  9.15   •  
5.0 0.44   •  9.15   •  

 
 Complete blockage of the capillary tube and scale formation on the in-line sample  
 Partially blockage of the capillary tube due to low initial Ca2+  concentrations 
 Formation of scale on the in-line sample at very low Calcium ion concentrations 
 No scale formation  
* The tests were re-adjusted to pH > 11.4 to match the re-boiler pH 

3.2.1 DSL Method 
With no pretreatment (pH < 5.0), no scale formation was observed. With the pH 7.24 pretreatment, 
scale formation was primarily observed for cases 1 and 2, with complete blockage of the capillary tube 
achieved at 2.0 mol CO2 and 1.0 mol CO2, and semi-blockage at 0.5 mol CO2, as illustrated in Fig. 
5,Fig. 6, 7 by a sharp increase in the pressure across the capillary tube. The feeding concentrations of 
the Ca2+ divalent ions were the highest of all the other evaluated cases at 2.0, 1.0, and 0.5 mole % CO2. 
In contrast, lowered concentrations of divalent ions injected from the rich MEG tank reduced blockage 
(Table 3). As a result, the high remaining concentration of divalent ions ultimately facilitated the 
significant growth of calcium carbonate scale within the capillary tube, leading to increasing 
differential pressure build-up across the capillary coil. 

We were also interested to observe that the differential pressure build-up fluctuated between 0.5 bar 
and 2.2 bar, leading to a semi-blocked capillary (Fig. 6 and 7). This was because the accumulated scale 
formation inside the capillary coil led to the acceleration of the blockage of the capillary coil, resulting 
in a pressure increase. The pressure build-up on the blocked area then caused a breakdown in the 
formed deposit layers, indicating that the amount of formed scale was insufficient to block the flow 
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through the capillary coil. However, over the long term, this issue could lead to the accumulation of 
several scale layers, thereby creating a full blockage. 

In addition, with the 7.24 pH pretreatment, scale was formed on the in-line carbon steel samples, 
which were exposed to solutions containing 5.0 mol % CO2. We expected greater scale formation with 
the pH > 8.85 pretreatment; however, for cases 1 and 2 at 5.0 mol % CO2 content, we observed no 
differential pressure build-up (complete or partial blockage) due to the low concentrations of calcium 
ions that were fed to the DSL capillary coil (Tables 1 and 2). These low calcium ion concentrations 
were caused by the pretreatment process. Nonetheless, a thin layer of scale still formed on the surface 
of carbon steel disk, confirming the tendency for scale deposition on hot surfaces and pipelines, which 
can affect the long-term performance of hot surfaces. 

Similar results were observed with the ~10 and ~5 ppm TDS pretreatment conditions. The 
formation of scale on the in-line carbon steel sample was observed in cases 1 and 2 for all CO2 
concentrations, but no tube blockage occurred (see Fig. 8 and Fig. 9). These results indicate that, at 
both pretreatment levels, the formation of scale on carbon steel surfaces at 180 °C (i.e., the reboiler 
bundle temperature) is likely. However, due to the low initial concentrations of calcium ions that were 
fed to the DSL system, the rate of solid formation within the capillary tube was insufficient to cause 
blockage under the continuous flow conditions present in the tube. 

We also sought to investigate the amorphous dispersion of scale formation that caused the blockage 
and non-blockage behaviors. SEM analysis conducted on the carbon steel samples primarily indicated 
the formation of different calcium carbonate polymorphs, including calcite, vaterite, and aragonite. 
Where significant levels of magnesium were present, the formation of dolomite (a combination of 
calcium, magnesium, and carbonate) also occurred. The SEM images of the carbon steel in-line 
samples are presented in Fig. 9 and highlight the different types of scale; these were confirmed using 
Energy-Dispersive Spectroscopy (EDS). They indicate that CaCO3 is aragonite amorphous at high 
temperatures and high MEG concentrations; this is in line with previously published conclusions [23, 
50]. 

Another interesting result was the presence of a high concentration of Mg2+ ions (Table 2), which 
could affect the MEG pilot plant flow assurance, particularly in highly alkaline conditions. This was 
because of the fact that at pH values higher than 10, the Mg2+ ions tended to interact with the hydroxide 
ions in the reboiler, forming gel-like Magnesium hydroxide (Mg(OH)2), which can accumulate on the 
surface of filters and prevent flow. These results are discussed in greater detail in section 3.2.2.4. 

 

Fig. 5. Differential pressure drop over the capillary tube for case- 1 and case- 2 after pH adjustment to 
7.24 (Complete blockage). 
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Fig. 6. Differential pressure drop over the capillary tube for case- 1 of CO2 0.5 mole % after pH 
adjustment to 7.24 (Semi-blockage). 

 
 

Fig. 7. Differential pressure drop over the capillary tube for case- 2 of CO2 0.5 mole % after pH 
adjustment at 7.24 (Semi-blockage) 

 

Fig. 8. Differential pressure drop over the capillary tube for case- 1 and case- 2 of some of the 
remaining red indicator trials after pH adjustment. 
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SEM analysis Case – 1, (DSL test) In-Line Sample 0.5% CO2 pretreatment pH of 7.24  

 

 

 
Complete blockage 

SEM analysis Case – 1, (DSL test) In-Line Sample 2.0% CO2 pretreatment pH of 7.24 

 

 

 
Complete blockage 

SEM analysis Case – 2, (DSL test) In-Line Sample 0.5% CO2 pretreatment 10 ppm 

 

 

 
Semi-blockage 

Fig. 9. Scale formation on carbon steel sample during select DSL trials 

3.2.2 MEG Pilot Plant Distillation 
To verify the scale formation within the reboiler, two additional case 1 tests (pH 7.24 pretreatment and 
TDS ~ 10 ppm pretreatment) were conducted in a MEG regeneration pilot plant to confirm the results 
generated by the DSL experiments. 

3.2.2.1 Case 1: Pretreatment pH 7.24 at 5.0 mol CO2 
To maintain a pH of 7.24 within the rich MEG product, we continuously injected it with KOH to 
neutralize the incoming acidic CO2–rich MEG mixture. The neutralized mixture was then pumped into 
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the reboiler of the distillation column to re-concentrate the rich MEG solution into lean MEG. 
Consistent with our lab distillation test results, we noted a significant increase in the pH readings in 
the reboiler section when the rich MEG solution was concentrated and reached 90 wt. % MEG (Fig. 
10). We furthermore observed that the reboiler temperature caused the water content to be partially 
boiled off, including CO2 gas, which affected the carbonate dissociation equilibria (reactions 1 and 2). 
The removal of CO2 gas therefore concentrated the hydroxide and carbonate ions in the reboiler, 
promoting the formation of scale. 

 

Fig. 10. Effect of CO2 removal and hydroxide concentration on system pH. 

3.2.2.2 Formation of Scale within the Re-boiler System 
After continually operating the MEG pilot plant for three inventory turnovers (cycles), significant scale 
formation in the reboiler was observed. As is shown in Fig. 11, scale accumulated along the inner wall 
of the reboiler. The in-line carbon steel disk also demonstrated strong scaling (Fig. 12). Fig. 12 also 
shows the similarity of the scale structures that formed in both the DSL and MEG pilot plant 
experiments. SEM analysis of the rough surface of the carbon steel disk indicated different CaCO3 
polymorph structures, including calcite, aragonite, and vaterite. The results of the pilot plant were thus 
again consistent with the DSL results. Furthermore, as can be observed from Fig. 12, the geometrical 
structure of the polymorph structures formed using both methods indicated to scaling issues. 

The scale formation on the carbon steel disk highlights the high probability of scale formation along 
tubing lines and carbon steel reboiler bundles at high temperatures. However, a minimal amount of 
scale was observed along the reboiler’s heating bundle. This can be attributed to the heating bundle’s 
stainless steel material, which has a low surface roughness compared to typical industrial bundles 
manufactured from carbon steel. Overall, however, we concluded that a pH 7.24 pretreatment is not 
recommended due to its high probability of scale formation, which would require excessive reboiler 
cleanings to prevent the loss of heat transfer efficiency and tube blockage. 

 

Fig. 11. Scale formation on Re-boiler wall. 
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5.0 mole % CO2 pH 7.24 Pretreatment In-Line Sample 
MEG Pilot Plant Carbon Steel 

 

 
 
 

 

5.0 mole% CO2 TDS 10ppm Pretreatment In-Line Sample 
MEG Pilot Plant Carbon Steel 

 

 
 
 

 

5.0 mole% CO2 pH 7.24 Pretreatment Sample 
DSL Test Carbon Steel 

 

 
 

 
 

5.0 mole% CO2 TDS 10 ppm Pretreatment Sample 
DSL Test Carbon Steel 
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Fig. 12. Scale formation on carbon steel sample of selected MEG pilot plant trials of case - 1. 

3.2.2.3 Case 1: Pretreatment TDS ~ 10 ppm at 5.0 mol CO2 
The entire regeneration system (including the reboiler walls and bundle, the in-line carbon steel 
sample, and the stainless steel level sensor submerged in the liquid) exhibited significant scale 
formation when using the ~ 10 ppm pretreatment divalent salt concentrations at 5.0 mol CO2. A high 
pH (8.85) was maintained within the rich MEG tank to simulate the pretreatment and facilitate the 
conversion of bicarbonate to carbonate, which, once formed within the reboiler, ultimately promoted 
the formation of carbonate scale; this was also consistent with the DSL results. In addition, the rise in 
pH within the reboiler produced a lean MEG with a pH in excess of 11.5, thus increasing the potential 
for scale formation. SEM analysis indicated the formation of primarily calcium and magnesium 
carbonate scale, including calcite, vaterite, and dolomite; this was confirmed by EDS and X-ray 
diffraction tests for some samples. Fig. 13 and 14 illustrate the formation of scale within the reboiler 
and highlight the formation of a scale layer on the glass wall as well as a thick coat of white scale on 
the heating bundle. The scale formed on the walls of the reboiler was of an extremely fine nature, 
indicating primarily dolomite formation. In contrast, we judged that the scale formed on the heating 
bundle consisted primarily of calcium carbonate (white color and ease of removal using citric acid). 

 

Fig. 13. Formation of scale upon re-boiler wall. 
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Fig. 14. Formation of scale on re-boiler bundle and pump head. 

3.2.2.4 Microfilters Before and After the Reboiler Process 
Our findings also highlight the ability of magnesium ions to precipitate under highly alkaline 
conditions. The solutions containing brine were passed through the DSL mixing coil using a 2 �m 
filter, which was used to protect the capillary tubing from impurities (Fig. 3). We found that a gel-like 
slurry started to accumulate on the surface of the micro-filter. A similar result was observed for a MEG 
pilot plant filter, as shown in Fig. 15. We analyzed the gel-like slurry using EDS and found it to be 
Mg(OH)2, likely formed by the high alkalinity within the reboiler [51, 52]. The slurry increased the 
viscosity of the MEG-brine solution since a 50 wt. % Mg(OH)2 slurry has an approximate viscosity of 
400 cp [53]. Furthermore, increased viscosity influences scaling formation behavior on hot surfaces 
during shut-down and cool-down [17], and the diffusivity of CO2 also drops with increasing viscosity 
[27]. The presence of Mg(OH)2 thus changes the physio-chemical properties of water-glycol solutions. 
However, several studies have reported that the solubility of Mg(OH)2 in water is very low and that it 
continues to decrease with increasing temperatures [51, 53]. These effects, particularly within a 
reboiler, would likely influence a MEG pilot plant operation. 

   
Filter after the commencement  

of operation 
Filter before the commencement  

of operation 

Fig. 15. Mg(OH)2 material formed on the micro-filter surface of the MEG pilot plant. 

3.3 Proposed Scale Cleaning 

3.3.1 pH 7.24 Pretreatment at High Divalent Ion Concentrations 
Following the formation of scale within the reboiler, a 5.0 wt. % citric acid solution was used to 
remove residual scale from both the wall of the round flask and the carbon steel samples. The citric 
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acid solution easily removed the majority of the scale from the walls and bottom of the carbon steel 
samples (using a squeeze-bottle application). To ensure that all scale had been removed from the 
samples, the citric acid solution was then boiled and the carbon steel samples were re-washed using 
distilled water. However, some scale still remained, primarily on the top surface of the carbon steel 
samples. A variety of solvents were used to try and remove the remaining scale, including 
10 wt. % citric acid, 1 wt. % HCl, ethanol, and acetate, but all were unsuccessful. Ultimately, to 
completely remove the scale from the carbon steel we had to physically remove it, much as we did 
with the scale from the lab-scale distillation testing. It thus became apparent that using the pH 7.24 
pretreatment resulted in the formation of scale that is extremely difficult to remove; this treatment 
should therefore be avoided in the field to prevent the need for excessive cleaning and reductions in 
reboiler efficiency. 

3.3.2 pH > 8.85 Pretreatment at Low Divalent Concentrations 
The initial cleaning of the reboiler was conducted with a 5 wt. % citric acid solution. The carbon steel 
sample was immersed in 5 wt. % citric acid and allowed to soak for approximately six hours before 
being drained and subsequently cleaned with distilled water and ethanol. The initial cleaning with 
citric acid failed to remove all of the calcium carbonate scale from the carbon steel sample.  

To remove the remaining scale, we applied a solution of 5 wt. % citric acid and 2 wt. % EDTA. 
EDTA and citric acid act as chelating agents, directly reacting with heavy metal ions to form 
complexes and thus allowing their removal [54, 55]. To facilitate the removal of calcium and 
magnesium with EDTA, the pH of the cleaning solution was increased to approximately 9–10 [54]. 
The high pH allowed the EDTA to readily dissolve in water and facilitated the reaction between the 
EDTA ions and the calcium and magnesium. The high pH also has the advantage of preventing the 
corrosion of carbon steel surfaces. We found that the EDTA was capable of removing a significant 
portion of the scale left on the carbon steel after approximately two hours of soaking time. However, 
some scale still remained on the top surface of the carbon steel. We recommend its complete removal 
using high-pressurized water. 
The combination of EDTA followed by high-pressurized water cleaning procedure is recommended if 
heavy calcium and magnesium scaling occur within the reboiler along both the reboiler bundle and the 
walls. If the scale consists primarily of calcium carbonate, cleaning with 5.0 wt. % citric acid is 
sufficient.  

4. Conclusions 
Our results will allow MEG regeneration plant operators to evaluate reboiler units under harsh 
conditions to prevent the occurrence of worst-case scenarios during field operations. Our primary 
findings indicate that low concentrations of divalent ions have a high likelihood of forming scale inside 
conveyer tubing and reboiler bundles even when using a pretreatment process in a MEG regeneration 
plant. The pretreatment vessel thus cannot be minimized without harming the MEG regeneration 
process. 
The following conclusions can be drawn from these results: 

1. The primary scaling product identified for the rich MEG solution (cases 1 and 2) was calcium 
carbonate in the form of calcite, vaterite, and dolomite. 

2. In both cases 1 and 2, complete blockage of the capillary coil occurred during the DSL tests at a 
pretreatment pH of 7.24 at 1.0 and 2.0 mol CO2, while partial blockage occurred at 0.5 mol CO2. 

3. The formation of calcium carbonate scale primarily occurred inside the DSL capillary tube at 
divalent cation concentrations of 10 and 5 ppm at 5.0 mol CO2, without any significant pressure 
build-up. 

4. The DSL results were consistent with those from the MEG regeneration pilot plant. 
5. The higher the concentration of CO3

2- at the beginning of the experiment, the more likely the 
blocking of the capillary tubing. 

6. Operating in highly alkaline conditions with a high concentration of magnesium ions led to the 
precipitation of magnesium hydroxide, which precipitated within the in-line filters and on hot 
surfaces. 
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