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Laminar Pattern of Projections
Indicates the Hierarchical
Organization of the Anterior
Cingulate-Temporal Lobe
Emotion System
Honami Sakata, Yuri Kim, Masafumi Nejime, Naho Konoike, Shigehiro Miyachi*
and Katsuki Nakamura*

Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan

The anterior cingulate cortex (ACC), surrounding the genu of the corpus callosum,
plays important roles in emotional processing and is functionally divided into the
dorsal, perigenual, and subgenual subregions (dACC, pgACC, and sgACC, respectively).
Previous studies have suggested that the pgACC and sgACC have distinctive roles
in the regulation of emotion. In order to elicit appropriate emotional responses, these
ACC regions require sensory information from the environment. Anatomically, the ACC
has rich connections with the temporal lobe, where the higher-order processing of
sensory information takes place. To clarify the organization of sensory inputs into the
ACC subregions, we injected neuronal tracers into the pgACC, sgACC, and dACC and
compared the afferent connections. Previously, we analyzed the afferent projections
from the amygdala and found a distinct pattern for the sgACC. In the present study,
the patterns of the afferent projections were analyzed in the temporal cortex, especially
the temporal pole (TP) and medial temporal areas. After tracers were injected into the
sgACC, we observed labeled neurons in the TP and the subiculum of the hippocampal
formation. The majority of the labeled cell bodies were found in the superficial layers of
the TP (“feedforward” type projections). The pgACC received afferent projections from
the TP, the entorhinal cortex (EC), and the parahippocampal cortex (PHC), but not from
the hippocampus. In each area, the labeled cells were mainly found in the deep layers
(“feedback” type projection). The pattern for the dACC was similar to that for the pgACC.
Previous studies suggested that the pgACC, but not the sgACC receive projections
from the dorsolateral prefrontal cortex (DLPFC). These data suggest that the sgACC
plays crucial roles for emotional responses based on sensory and mnemonic inputs from
the anterior temporal lobe, whereas the pgACC is more related to the cognitive control
of emotion.
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INTRODUCTION

The anterior cingulate cortex (ACC) has been implicated in
emotional processing and is divided into three subdivisions: the
subgenual (sgACC), pregenual (pgACC), and dorsal (dACC)
divisions (Drevets and Raichle, 1998; Bush et al., 2000; Ochsner
and Gross, 2005; Etkin et al., 2011; Caruana et al., 2018). Recent
studies have demonstrated that the pgACC and sgACC have
distinct roles in the regulation of emotion. Hyperactivity of the
sgACC has been observed in patients with depression (Drevets,
2000; Myers-Schulz and Koenigs, 2012), whereas pgACC activity
is associated with positive affect (Myers-Schulz and Koenigs,
2012) and effectiveness of antidepressants (Mayberg et al., 1997;
Godlewska et al., 2018). In non-human primates, inactivation of
the sgACC decreased experimentally-induced negative emotions,
and inactivation of the pgACC showed the opposite effects
(Wallis et al., 2017). Furthermore, overactivation of the sgACC,
but not the pgACC, blunted reward-elicited anticipatory and
motivational arousal (Alexander et al., 2019b). These findings
suggest that the pgACC and sgACC may regulate emotion
in a complementary manner. In rodents, the prelimbic (PL)
and infralimbic (IL) regions of the medial prefrontal cortex
respectively correspond to the pgACC and sgACC in humans.
However, previous studies have suggested that effects of PL
and IL activations in rodents have opposite effects to the
activation of the pgACC and sgACC in humans and non-human
primates (Vidal-Gonzalez et al., 2006; Baldi and Bucherelli,
2015; Alexander et al., 2019a). Roles of the rodent PL/IL
may be different from those of the pgACC and sgACC
in primates.

In order for these ACC regions to regulate emotional
response adequately, sensory information about the environment
is indispensable. Visual information is especially crucial for
humans and other primate species for both expression of
appropriate emotional responses and comprehension of others’
facial expressions. Recent studies have shown that the ACC
responds to emotional facial stimuli (Gotlib et al., 2005; Ito
et al., 2017). Recently, we have recorded neuronal activities
in the dACC and pgACC of monkeys, and found responses
to emotional visual stimuli in both areas (Konoike and
Nakamura, 2013). To date, neuroanatomical studies have
shown that the ACC receives strong cortical and subcortical
inputs from the anterior temporal lobe (Moran et al., 1987;
Vogt and Pandya, 1987; Amaral et al., 1992; Carmichael
and Price, 1995; Barbas et al., 1999; Ghashghaei and Barbas,
2002; Saleem et al., 2008; Morecraft et al., 2012; Joyce and
Barbas, 2018). Previously, we analyzed the organization of
afferent inputs from the amygdala (Kim et al., 2018) to
the pgACC, sgACC, and dACC and found that the sgACC
received rich inputs from the accessory basal and lateral
nuclei, in which neuronal responses selective for face and
those selective for negative stimuli were recorded (Leonard
et al., 1985; Nishijo et al., 1988; Boll et al., 2011). Besides
the amygdala, the temporal cortex, especially its anterior
and medial regions, is also crucial for the recognition of
faces and other complex visual stimuli (Perrett et al., 1982;
Kobatake and Tanaka, 1994; Nakamura et al., 1994; Browning

et al., 2010). Damage to the anterior temporal cortex causes
prosopagnosia (Nakamura and Kubota, 1996). The temporal
pole (TP) is also related to social and emotional functions
(Olson et al., 2007; Pehrs et al., 2017).

In the present study, we used the same animals that were
used in our previous work (Kim et al., 2018) to compare the
neuronal inputs to the three ACC regions from the anterior
temporal cortex, including the hippocampus. In addition to
the distribution pattern of the labeled neurons, the laminar
distribution in each area was also examined to determine the
hierarchical organization of these areas and the direction of the
flow of information.

MATERIALS AND METHODS

Animals
Seven Japanese macaques (Macaca fuscata) of both sexes
were used in this study. The experiments were conducted
according to the Guide for the Care and Use of Laboratory
Primates of the Primate Research Institute, Kyoto University
(2010). This study was approved by the Animal Welfare and
Animal Care Committee of the Primate Research Institute,
Kyoto University.

Tracer Injections
Detailed descriptions of the procedures used in this study are
provided elsewhere (Kim et al., 2018). Briefly, combinations
of 2–4 different retrograde tracers (0.2–0.6 µL each) were
pressure injected through a 5-µL microsyringe. The following
tracers were used: fluoro-ruby (10,000 molecular weight (MW);
Thermo Fisher Scientific Inc., Waltham, MA, USA), fluoro-
emerald (10,000 MW; Thermo Fisher Scientific Inc., Waltham,
MA, USA), lucifer yellow dextran (10,000 MW; Thermo Fisher
Scientific Inc., Waltham, MA, USA), and cholera toxin B subunit
(Sigma-Aldrich Corporation, St. Louis,MO,USA). Injection sites
were chosen based on magnetic resonance images taken prior to
the surgery (Table 1).

Histological Procedures
At 3–4 weeks after tracer injections, the animals were
deeply anesthetized with sodium pentobarbital (40 mg/kg)
and transcardially perfused with phosphate buffered saline
(PBS) and 10% formalin. Brains were immersed in PB
containing 30% sucrose, and 50-µm thick coronal sections
were cut serially. Every 8th section was immuno-histochemically
stained for each tracer by using the standard avidin-biotin-
peroxidase complexmethod. The sections weremounted on glass
slides, air-dried, counterstained with neutral red, and covered
with a coverslip.

The cortical areas were defined based on the cytoarchitecture
(Amaral et al., 1987; Vogt et al., 1987; Carmichael and Price,
1994, 1995; Kondo et al., 2003; Suzuki and Amaral, 2003; Saleem
et al., 2007; Morecraft et al., 2012; Kim et al., 2018). For
parcellation of the perirhinal and parahippocampal areas, we
mainly followed the definitions of Suzuki and Amaral (2003). TP
areas were defined according to Carmichael and Price (1995; see
also Moran et al., 1987).
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TABLE 1 | Number of labeled neurons in the temporal areas.

Case Tracer Leak Number of labeled neurons (%)

TPC EC PRC PHC H IT ST Total

sgACC
N549l-sg CTB (1%, 0.6 µl) no 724 (77%) 1 (0%) 0 (0%) 0 (0%) 173 (18%) 0 (0%) 42 (4%) 940 (100%)
M2303r-sg FE (10%, 0.3 µl) no 31 (15%) 5 (2%) 4 (2%) 11 (5%) 146 (70%) 1 (0%) 11 (5%) 209 (100%)
N549r-sg LYD (2%, 0.4 µl) str 132 (64%) 15 (7%) 4 (2%) 3 (1%) 45 (22%) 1 (0%) 5 (2%) 205 (100%)
M2307r-sg FE (10%, 0.3 µl) str 428 (43%) 60 (7%) 30 (3%) 67 (7%) 328 (33%) 3 (0%) 70 (7%) 986 (100%)
M2452r-sg FR (2%, 0.2 µl) str 152 (22%) 47 (7%) 21 (3%) 50 (7%) 386 (57%) 1 (0%) 22 (3%) 679 (100%)

pgACC
M2307r-pg FR (10%, 0.3 µl) no 81 (34%) 41 (17%) 2 (1%) 27 (11%) 2 (1%) 7 (3%) 75 (32%) 235 (100%)
M2303r-pgd LYD (10%, 0.3 µl) no 353 (35%) 168 (17%) 70 (7%) 296 (30%) 17 (2%) 16 (2%) 82 (8%) 1,002 (100%)
M2303r-pgv FR (10%, 0.3 µl) str 224 (18%) 182 (15%) 158 (13%) 265 (21%) 348 (28%) 27 (2%) 51 (4%) 1,255 (100%)
M2305r-pg FR (10%, 0.3 µl) str 419 (18%) 752 (33%) 656 (28%) 270 (12%) 157 (7%) 5 (0%) 48 (2%) 2,307 (100%)

dACC
N497r-d FE (10%, 0.3 µl) no 60 (65%) 9 (10%) 7 (8%) 1 (1%) 0 (0%) 0 (0%) 16 (17%) 93 (100%)
N509l-d CTB (1%, 0.5 µl) no 55 (15%) 99 (28%) 29 (8%) 14 (4%) 2 (1%) 2 (1%) 159 (44%) 360 (100%)
N549r-d FR (2%, 0.4 µ) no 55 (58%) 4 (4%) 4 (4%) 9 (10%) 0 (0%) 0 (0%) 22 (23%) 94 (100%)
N549l-d FE (10%, 0.4 µl) area 8B 223 (36%) 174 (28%) 71 (11%) 120 (19%) 1 (0%) 3 (0%) 31 (5%) 623 (100%)
M2452r-d FE (10%, 0.2 µl) str 90 (7%) 216 (18%) 720 (59%) 158 (13%) 36 (3%) 1 (0%) 5 (0%) 1,226 (100%)

IT, inferior temporal cortex; ST, superior temporal cortex including the dorsal bank of the superior temporal sulcus and the superior temporal gyrus.

Data Analysis
The number of labeled neurons in each area was counted in
every 16th section (800 µm apart). The areas subjected to the
present analysis were the TP agranular region (TPag), dorsal
dysgranular region (TPdgd), ventral dysgranular region (TPdgv),
granular region (TPg), entorhinal cortex (EC), perirhinal cortex
(PRC: areas 35 and 36), parahippocampal cortex (PHC: TH and
TF), and hippocampus (H: subiculum, CA1, CA2, CA3, and
dentate gyrus). In addition, the number of labeled neurons was
counted in the inferior temporal cortex (IT), including both the
inferior convexity and the inferior bank of the superior temporal
sulcus, and the superior temporal cortex (ST), including the
dorsal bank of the superior temporal sulcus and the superior
temporal gyrus. For all areas (except H), the percentage of the
neurons in the superficial (supragranular) layers, ‘‘superficial
ratio,’’ was calculated if there were 20 or more labeled neurons
in the area. For more detailed analysis of the TP, the superficial
ratio was calculated for TPa, TPdgd, TPdgv and TPag, in every
8th section.

RESULTS

Injection Sites and TP Architecture
Fourteen tracer injections were made in eight hemispheres
that targeted the sgACC, pgACC, or dACC. The three ACC
regions were defined based on location and cytoarchitecture.
The sgACC is the medial wall cortex below the genu of
the callosal body, corresponding to area 25. In Nissl stained
sections, this area has essentially three layers: (1) layer I: (2) a
lightly stained superficial layer (layers II–III); and (3) a deeply
stained deep layer (layers V–VI; Figure 1A). The pgACC is
the cortex anterior to the genu of the callosal body, including
both area 32 and the pregenual portion of area 24. Area
32 is an agranular cortex in which layer V has characteristic
horizontal striations (Figure 1B). Area 24b can be distinguished

by the vertical arrangement of layer V neurons. Caudal to
area 32 is area 24a, in which layers II and III are difficult
to be distinguished, and no vertical or horizontal striations
of the cells can be seen in layer V (Figure 1C). The dACC
is the cingulate gyrus above the callosal body at the same
anteroposterior level as the sgACC. It includes areas 24a and
24b, but actual injections sometimes spread into the adjacent
area, area 24c, which has no clear vertical striations like those
in 24b, but has aggregates of medium sized neurons in layer V
(Figure 1D). Photographs of the sections through the injection
sites are shown in Figure 2, and the approximate locations of the
injection sites are summarized in Figure 3. The actual injection
site in each case was in either the right or left hemisphere. In
seven cases (thin lines in Figure 3), the injection spread to the
mediodorsal edge of the caudate head (M2303r-pgv, M2305r-
pg, M2452r-d), to the medial most part of the ventral striatum
(N549r-sg, M2307r-sg, M2452r-sg), or leaked into the cortex
above the cingulate sulcus (area 8B, N549l-d). In other cases
(thick lines in Figure 3), the injection was mostly confined
to the target area. In N549l-sg and M2303r-sg (sgACC cases),
injections were largely confined to area 25 and slightly spread
into area 14. In M2303r-sg, the tracer was injected into the
deep layer and moderately spread to the superficial layers
(Figure 3). Tracers that were injected into the M2303r-pgd
(pgACC) spread caudally and encroached the dACC; however,
the pattern of the retrograde labeling was similar to that
of other pgACC cases. Among the dACC injections, the
injection site in N509l-d was clearly more caudal to those of
N497r-d and N549r-d.

The TP was divided into four subdivisions: a granular region
(TPg), dorsal and ventral dysgranular regions (TPdgd and
TPdgv), and an agranular region (TPag; Figure 4).

Projections to the sgACC
Neuronal tracers were injected into the sgACC in five cases
(Figures 2, 3). In two cases (N549l-sg and M2303r-sg), the
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FIGURE 1 | Photomicrographs of the anterior cingulate cortex (ACC) regions. Subgenual ACC (sgACC) corresponds to area 25 (A). Pregenual ACC (pgACC)
includes area 32 (B) and the pregenual portion of area 24 (C). Dorsal ACC (dACC) is the supragenual portion of area 24 above sgACC (D).

injection was well confined to the sgACC. In these cases, a
large majority of the labeled neurons were found in the TP
and the subiculum (Table 1, Figures 5, 6). In case N549l-
sg, 77% and 15% of the labeled neurons were found in the
TP and subiculum, respectively. Among the TP areas, the
TPag accommodated about half of the labeled cells. Another
region of dense labeling was observed in the TPg. In M2303r-
sg, the distribution pattern was essentially the same as in
N549l-sg; however, more neurons were labeled in the subiculum

than in the TP. A small number of labeled neurons were
scattered in the EC, PRC, and PHC (Table 1). Essentially
no neuronal labeling was observed in the IT (including area
TE) in either of these animals, and a small number of
labeled neurons was scattered in the ST. In the TP of both
animals, more than two thirds of the labeled neurons were
found in the superficial layers (layers II and III; Figure 7
left, Table 2). For more detailed analysis of the laminar
distribution in the TP, the superficial ratio was calculated
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FIGURE 2 | Photographs of the brain sections through the center of injection.

in each subdivision of the TP (Table 3). The ratio was
over 80% in the TPg, whereas it was around 50% in other
subdivisions. In the three other cases, the tracers diffused

laterally into the medial portion of the ventral striatum.
Nevertheless, the distribution pattern of neuronal labeling in
the medial temporal/temporal pole region was similar to those
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FIGURE 3 | Tracer injection sites shown from the medial view of the brain.
Actual injections were in either the left or right hemispheres. The sgACC,
pgACC, and dACC injection sites are delineated in magenta, orange, and
cyan, respectively. Thick lines indicate the injections that were confined to the
targeted area, whereas the thin lines indicate the injections that spread to the
neighboring structures (i.e., the striatum).

of the first two cases: the majority of the labeled neurons
were found in the TP and in the subiculum. In N549r-sg
and M2307r-sg, more than half (56% and 62%, respectively)
of the labeled TP neurons were located in the superficial
layers. Conversely, in M2452r-sg, only 32% were located in the
superficial layers.

Projections to the pgACC
Tracers were injected into the pgACC in four cases (Figures 2, 3).
In two cases (M2307r-pg and M2303r-pgd), the injections were
largely confined to the targeted cortex, but we also observed slight
spreading of the tracers into the white matter. In these cases
(M2307r-pg and M2303r-pgd), many labeled neurons (34% and
35%, respectively) were found in the TP (Table 1, Figures 6, 8).
Additionally, in M2307r-pg, 32% of labeled neurons were found
in the ST (area Ts3). In both monkeys, an appreciable number of
neurons were labeled in the EC and PHC, but very few neurons
were labeled in the subiculum or other regions in the H. In
contrast to sgACC injections, labeled TP neurons were mainly
observed in the deep layers following pgACC injections (layers V
and VI; Figure 7 right, Table 2). The superficial ratio was low
in all the TP subdivisions (Table 3). In the EC and PHC, like
in the TP, a large majority of the labeled neurons was in the
deep layers. In the other cases (M2303r-pgv andM2305r-pg), the
tracers spread medially into the medial caudate nucleus and a
small number of striatal neurons was labeled. Caudoventrally, the
tracer also spread to the cortex, ventral to the genu of the callosal
body, especially in M2303r-pgv. In these cases, more neurons

FIGURE 4 | Nissl-stained sections of the four temporal pole (TP) regions. Scale bar: 500 µm. TPdgd, dorsal dysgranular region of the TP; TPag, agranular region of
the TP; TPdgv, ventral dysgranular region of the TP; TPg, granular region of the TP.
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FIGURE 5 | Distribution of the labeled neurons in the TP and hippocampal formation after injections into the sgACC in two cases (N549l-sg and M2303r-sg). The
sections through the TP are arranged from anterior to posterior (A–C and E–G). (D,H) Sections through the hippocampus. Broken lines indicate the internal granular
layer or border between layer III and layer V. DG, dentate gyrus; S (b, u), subiculum (body and uncal portion); TP (ag, dgd, dgv, g), temporal pole cortex (agranular,
dorsal dysgranular, ventral dysgranular, and guranular subdivision).

were labeled in the superficial layers of the PRC than those
in M2307r-pg and M2303r-pgd (Tables 1, 2). Furthermore, in
M2303r-pgv, many labeled neurons were found in the H. The ST
contained only a small number of labeled neurons in both cases.

Projections to the dACC
Tracers were injected into the dACC in five cases (Figures 2, 3).
In three of these cases (N497r-d, N509l-d, and N549r-d),
the injections were well confined to the cingulate cortex.
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FIGURE 6 | The number of retrogradely labeled neurons in each area within
the temporal cortex. The graphs show the results of the cases in which the
tracer injection was well confined to the targeted area (see “Results” section).
EC, entorhinal cortex; H, hippocampus; IT, inferior temporal cortex; PHC,
parahippocampal cortex; PRC, perirhinal cortex; ST, superior temporal
cortex; TP, temporal pole.

Among these three cases, the injection site in N509l-d was
apparently more caudal compared to those in the other two
cases (Figures 2, 3). N497r-d and N549r-d showed very similar
patterns of temporal labeling: the majority of the neuronal
labeling occurred in the TP, mainly in the TPag and TPg

FIGURE 7 | Photomicrographs of the TP (TPag) in cases N549l-sg (left) and
M2303r-pgd (right). The areas including labeled neurons are enlarged. Scale
bar: 500 µm.

(Figures 8, 9, Table 1). In addition, about 20% of the labeled
neurons were found in the ST (area TPO). In N509l-d, more
neurons were labeled in the ST (area TPO) and EC than in
the TP. In all three cases, the labeled neurons were mostly
located in the deep layers of the TP and medial temporal areas
(Tables 2, 3), whereas the labeling of the superficial layers
dominated in the ST. Virtually no neurons were labeled in
the H, including the subiculum. In N549l-d, the tracer leaked
into area 8B, above the cingulate sulcus. In this case, the
labeled neurons were more evenly distributed in the TP and
medial temporal areas, except for the H. In M2452r-d, the
tracer leaked ventromedially and labeled some neurons in the
dorsomedial caudate. The majority of the labeled neurons were
found in the PRC, and 81% of them were observed in the
superficial layers.

Interconnections Between the pgACC
and sgACC
As we and other groups have previously reported, there were
direct connections between the pgACC and sgACC (Vogt and
Pandya, 1987; Barbas, 1988; Barbas et al., 1999; Joyce and Barbas,
2018; Kim et al., 2018). On the other hand, interconnections
between the dACC and sgACC and between the dACC and
pgACC were sparse. In the current study, we examined the
laminar organization of projections between the pgACC and
sgACC. After the tracers were injected into the pgACC, a
large majority of the labeled sgACC neurons were observed in
the deep layers (45 out of 54 and 48 out of 49 neurons for
M2307r-pg and M2303r-pgd, respectively; Figure 10). Following
sgACC injections, more labeled neurons were found in the
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TABLE 2 | Ratios of labeled neurons in the superficial layers.

Case Leak Superficial ratio

TPC EC PRC PHC IT ST

SgACC
N549l-sg no 67% 90%
M2303r-sg no 68%
N549r-sg str 56%
M2307r-sg str 62% 0% 40% 45% 67% 81%
M2452r-sg str 32% 2% 38% 4% 27%
pgACC
M2307r-pg no 22% 0% 4% 75%
M2303r-pgd no 18% 1% 20% 16% 55%
M2303r-pgv str 21% 5% 56% 26% 96% 88%
M2305r-pg str 31% 6% 79% 5% 50%
dACC
N497r-d no 5% 75%
N509l-d no 9% 0% 21% 76%
N549r-d no 13% 59%
N549l-d area 8B 6% 1% 3% 0% 13%
M2452r-d str 12% 17% 81% 22%

The superficial ratio was calculated if there were 20 or more neurons in each area.

TABLE 3 | Superficial ratios in subregions of the TP.

Case Superficial ratio

TPag TPdgd TPdgv TPg

sgACC
N549l-sg 58% 50% 47% 81%
M2303r-sg 54% (86%) - (91%)

pgACC
M2307r-pg 9% - (0%) 32%
M2303r-pgd 7% 34% (19%) 38%

dACC
N497r-d 0% (15%) (0%) 17%
N509l-d 2% - - -
N549r-d 6% (12%) - -

Parenthesis indicates the total number of labeled neurons in the area was 10–19. “-”
indicates the total number was less than 10. The ratio was calculated only for the cases
with well-confined injection in the target region.

superficial layers of the pgACC (186 out of 233) in one monkey
(N549l-sg), and labeled neurons were equally distributed in both
the superficial and deep layers in another monkey (superficial:
29 out of 62, M2303r-sg).

DISCUSSION

To elucidate how sensory information is sent from the temporal
cortex to the ACC, we injected neuronal tracers into the three
ACC regions and examined the patterns of retrograde labeling
in the temporal cortex, including the hippocampus. Previous
neurotracing studies have demonstrated that the ACC receives
strong inputs from the anterior and medial temporal cortex
(Vogt and Pandya, 1987; Barbas, 1988; Carmichael and Price,
1995; Barbas et al., 1999; Saleem et al., 2008; Morecraft et al.,
2012; Joyce and Barbas, 2018). To clarify the differences in the
input pattern between the three subregions, we compared the
distribution of the labeled neurons in the TP and the medial
temporal areas between the three injection sites in detail. We
especially focused on the differences between the sgACC and

pgACC because these areas have been associated with emotion
regulation in recent studies (Mayberg et al., 1997; Drevets,
2000; Myers-Schulz and Koenigs, 2012; Wallis et al., 2017;
Godlewska et al., 2018).

In addition to the number of the labeled neurons in different
areas, the laminar distribution was examined in each area.
The laminar origin of the cortico-cortical projection was
originally examined in the visual system. Extensive studies
have revealed the basic patterns related to the hierarchical
organization of the cortical areas: the feedforward (from
‘‘lower’’ areas to ‘‘higher’’ areas) projections originate in
the superficial layers, whereas the feedback (from ‘‘higher’’
areas to ‘‘lower’’ areas) projections originate in the deep
layers (Rockland and Pandya, 1979; Felleman and Van Essen,
1991). This scheme can be applied to cortical connections,
including connections between the frontal and parietal
cortices (Felleman and Van Essen, 1991; Webster et al.,
1994; Rempel-Clower and Barbas, 2000; Dum and Strick,
2005). In the present study, the laminar origin of the afferent
projections from the temporal areas, as well as that of the
interconnections within the ACC, indicated that there is
a hierarchical organization in the neuronal connections
of the ACC.

For injections in all the three ACC regions, many neurons
were labeled in the TP areas, especially in the TPag and TPg.
Interestingly, after injections into the sgACC, the majority of
the labeled TP neurons were located in the superficial layers
(Figures 9, 11). In contrast, the majority of the labeled TP
neurons were observed in the deep layers after injections
into the pgACC or dACC. Our results indicated that TP
projections to the sgACC and pgACC/dACC were feedforward
and feedback, respectively. The TP is considered to be the
highest area in the ‘‘ventral stream’’ of the visual and auditory
modarities (Webster et al., 1991; Muñoz-López et al., 2015).
For the visual modarity, TP neurons respond to complex visual
stimuli, including faces (Nakamura et al., 1994; Nakamura
and Kubota, 1996). Neuroimaging studies have demonstrated
that the pgACC and sgACC were activated by observation of
facial expressions (Blair et al., 1999; Gotlib et al., 2005). Ito
et al. (2017) reported that the pgACC activity was correlated
with the negativity bias when the subject judged whether
the presented faces were happy or sad. Moreover, A recent
electrophysiological study from our laboratory revealed that
monkey ACC neurons responded to faces and other emotionally
significant visual stimuli (Konoike and Nakamura, 2013). The
sgACC may extract emotional significance from the highly
processed sensory signals in the TP. On the other hand, the
TP sends ‘‘feedback’’ type projections to the pgACC and dACC,
suggesting that the influence of TP activity on these ACC regions
is modulatory.

We also observed labeled neurons in the anterior subiculum,
especially in the uncal region, after tracers were injected into
the sgACC. In contrast, no/very few neurons were labeled in the
hippocampal formation, including the subiculum, after tracers
were injected into the pgACC or dACC (Barbas and Blatt, 1995).
Previous studies have reported that terminal labeling was
observed in the sgACC after injection of an anterograde tracer
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FIGURE 8 | Distribution of the labeled neurons in the TP and medial temporal cortex after injections into the pgACC (cases M2303r-pgd and M2307r-pg).
(A–C,F,G) Sections through the TP. (D,E,H,I) Sections through the medial temporal cortex. 35, area 35 of perirhinal cortex; AMY, amygdala; EC, entorhinal cortex;
H, hippocampus; lv, lateral ventricle; TE, area TE; TF, area TF; TH, area TH. Other conventions are as shown in Figure 4.

into the body of the subiculum (Rosene and Van Hoesen,
1977; Aggleton et al., 2015). However, the present retrograde
tracing results revealed that the sgACC received more inputs

from the uncal region of the subiculum than from the body
of the subiculum. A similar pattern of subicular labeling was
reported for area 14, an area adjacent to the sgACC (Barbas
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FIGURE 9 | Distribution of the labeled neurons in the TP (A,B,E,F) and other temporal cortical areas (C,D,G,H) after injections into the dACC (cases N497r-d and
N509l-d). The conventions are the same as shown in Figures 4, 5.

and Blatt, 1995; Carmichael and Price, 1995). The subiculum
is a major output station of the hippocampal formation
and sends unidirectional projections to the prefrontal cortex
(Rosene and Van Hoesen, 1977; Squire and Zola-Morgan, 1991).
After tracers were injected into the sgACC, few neurons were

labeled in the medial temporal cortex, including the EC, PRC,
and the PHC. In contrast, many neurons were labeled in the
EC and PHC after tracers were injected into the pgACC. After
injections into the dACC, an appreciable degree of labeling
was found in the EC and PRC; however, there were substantial
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FIGURE 10 | Distribution of the labeled neurons in the pgACC after tracer injection into sgACC (N549l-sg and M2303r-sg), and in the sgACC after injection into
pgACC (M2307r-pg and M2303r-pgd). Inset: photomicrographs of the pgACC of N549l-sg (left) and the sgACC of M2303r-pgd (right). Labeled neurons are
scattered in the supragranular layers in the former case and in the deep layers in the latter case. Scale bar: 1 mm.

inter-individual differences. In N509l-d, much more neurons
were labeled in these areas than in N497r-d and N549r-d.
The ST (area TPO) of N509l-d also contained more labeled
neurons than in N497r-d and N549r-d. These differences may
be because the injection site in N509l-d was more caudal
than in the other cases. Labeled cell bodies in the medial
temporal areas were mostly observed in the deep layers of the
pgACC and dACC, suggesting that the medial temporal-to-ACC
projection is of the ‘‘feedback’’ type. The EC, PHC, and PR
are known to relay inputs from the sensory and association
cortices to the hippocampal formation (Rosene and Van Hoesen,
1977; Squire and Zola-Morgan, 1991). Although previous
retrograde and anterograde tracing studies have demonstrated
that the EC, PRC, and PHC receive substantial inputs from

the pgACC and dACC, these regions receive few inputs from
the sgACC (Insausti et al., 1987; Suzuki and Amaral, 1994;
Chiba et al., 2001). The present results, together with these
previous findings, suggest that the hippocampus receives inputs
from the pgACC and dACC (via the medial temporal cortex)
and sends outputs to the sgACC. The hippocampus, together
with the adjacent medial temporal cortices, is considered to
be a center for episodic memory (Squire and Zola-Morgan,
1991). Recent studies have emphasized its role in the memory
of relations of multiple objects or objects in a scene rather
than its role in the memory of isolated single objects (Alvarado
et al., 2002; Lavenex et al., 2006; Browning et al., 2010). This
information is important for proper emotional responses in
specific situations.
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FIGURE 11 | Ratios of labeled neurons in the superficial layers of the TP
after tracers were injected into the dACC, pgACC, and sgACC. The graphs
show only the results of the cases in which the tracer injection was well
confined to the targeted area (see “Results” section).

FIGURE 12 | A schematic diagram showing the hierarchical organization of
the emotional system, including the pgACC and the sgACC, based on the
present and previous studies. DLPFC, dorsolateral prefrontal cortex; EC,
entorhinal cortex; H, hippocampus; pgACC, pregenual ACC; sgACC,
subgenual ACC; TP, temporal pole.

Conversely, previous studies have shown that the pgACC, but
not the sgACC, has a reciprocal connection with the dorsolateral
prefrontal cortex (DLPFC; Petrides and Pandya, 1999; Morecraft
et al., 2012; Joyce and Barbas, 2018; Kim et al., 2018). Thus,
the pgACC receives cognitive information from the DLPFC,
whereas the sgACC receives sensory and mnemonic information
from the temporal lobe. Regarding the interconnections within

the ACC, the sgACC sends ‘‘feedback’’ projections to the
pgACC, whereas the pgACC sends ‘‘feedforward’’ or ‘‘lateral’’
projections to the sgACC. The pgACC may supply the sgACC
with cognitive information from the DLPFC through direct and
indirect projections.

After dACC injections, the pattern of retrograde labeling was
similar to that following injections into the pgACC; however,
unlike the pgACC, many neurons were labeled in the dorsal
bank of the superior temporal sulcus (area TPO), where
facial expression-related neuronal activities have been previously
recorded (Hasselmo et al., 1989). Therefore, this projection may
be related to the emotional responses to others’ facial expressions.
However, further studies are needed to clarify its specific roles.
The input pattern was obviously different between N509l-d and
the two other dACC cases (N497r-d and N549r-d). The injection
site in N509l-d was more caudal than those in the other cases.
Possibly the injection site in N509l-d is the ‘‘real’’ dACC, and
those in the other cases may be at the transitional region between
the dACC and the pgACC.

Although both the sgACC and pgACC are heavily connected
within the limbic and autonomic regions of the brain (Kunishio
and Haber, 1994; Freedman et al., 2000; Chiba et al., 2001)
and are crucial in emotional regulation, the two areas seem to
have contrasting roles in emotion regulation (Vidal-Gonzalez
et al., 2006; Myers-Schulz and Koenigs, 2012; Wallis et al.,
2017; Alexander et al., 2019b). The present study provides the
anatomical basis for the differential roles of the sgACC and
pgACC: the sgACC is more related to the emotion induction
based on the sensory/mnemonic inputs from the TP and
hippocampus, whereas the pgACC is more related to cognitive
control of emotion depending on the DLPFC (Figure 12).

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The experiments were conducted according to the Guide for the
Care and Use of Laboratory Primates of the Primate Research
Institute, Kyoto University (2010). This study was approved by
the Animal Welfare and Animal Care Committee of the Primate
Research Institute, Kyoto University.

AUTHOR CONTRIBUTIONS

HS and YK contributed to data collection and analysis. MN
contributed to data analysis and assisted in the preparation of the
manuscript. NK contributed to data interpretation and assisted
in the preparation of the manuscript. SM contributed to the
design of this study, data collection, analysis, and interpretation,
and wrote the initial draft of the manuscript. KN contributed
to conception and design of this study and also contributed to
data interpretation. All authors approved the final version of the
manuscript and agree to be accountable for all aspects of the work

Frontiers in Neuroanatomy | www.frontiersin.org 13 July 2019 | Volume 13 | Article 74

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Sakata et al. Temporal to ACC in Monkey

in ensuring that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and resolved.

FUNDING

This study was supported by Ministry of Education, Culture,
Sports, Science and Technology (MEXT) KAKENHI,

Grant-in-Aid for Scientific Research (A), Grant Number
JP24240060 (KN).

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.jp) for English
language editing.

REFERENCES

Aggleton, J. P., Wright, N. F., Rosene, D. L., and Saunders, R. C. (2015).
Complementary patterns of direct amygdala and hippocampal projections
to the macaque prefrontal cortex. Cereb. Cortex 25, 4351–4373.
doi: 10.1093/cercor/bhv019

Alexander, L., Clarke, H. F., and Roberts, A. C. (2019a). A focus on the functions
of area 25. Brain Sci. 9:E129. doi: 10.3390/brainsci9060129

Alexander, L., Gaskin, P. L. R., Sawiak, S. J., Fryer, T. D., Hong, Y. T.,
Cockcroft, G. J., et al. (2019b). Fractionating blunted reward processing
characteristic of anhedonia by over-activating primate subgenual anterior
cingulate cortex.Neuron 101, 307.e6–320.e6. doi: 10.1016/j.neuron.2018.11.021

Alvarado, M. C., Wright, A. A., and Bachevalier, J. (2002). Object and spatial
relational memory in adult rhesus monkeys is impaired by neonatal lesions of
the hippocampal formation but not the amygdaloid complex.Hippocampus 12,
421–433. doi: 10.1002/hipo.1115

Amaral, D. G., Insausti, R., and Cowan, W. M. (1987). The entorhinal cortex of
the monkey: I. Cytoarchitectonic organization. J. Comp. Neurol. 264, 326–355.
doi: 10.1002/cne.902640305

Amaral, D. G., Price, J. L., Pitkanen, A., and Carmichael, S. T. (1992). ‘‘Anatomical
organization of the primate amygdaloid complex,’’ in The Amygdala:
Neurobiological Aspects of Emotion, Memory and Mental Dysfunction,
ed. J. P. Aggleton (New York, NY: Wiley-Liss Inc.), 1–66.

Baldi, E., and Bucherelli, C. (2015). Brain sites involved in fear memory
reconsolidation and extinction of rodents. Neurosci. Biobehav. Rev. 53,
160–190. doi: 10.1016/j.neubiorev.2015.04.003

Barbas, H. (1988). Anatomic organization of basoventral and mediodorsal visual
recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276,
313–342. doi: 10.1002/cne.902760302

Barbas, H., and Blatt, G. J. (1995). Topographically specific hippocampal
projections target functionally distinct prefrontal areas in the rhesus monkey.
Hippocampus 5, 511–533. doi: 10.1002/hipo.450050604

Barbas, H., Ghashghaei, H., Dombrowski, S. M., and Rempel-Clower, N. L. (1999).
Medial prefrontal cortices are unified by common connections with superior
temporal cortices and distinguished by input from memory-related areas in
the rhesus monkey. J. Comp. Neurol. 410, 343–367. doi: 10.1002/(sici)1096-
9861(19990802)410:3<343::aid-cne1>3.0.co;2-1

Blair, R. J., Morris, J. S., Frith, C. D., Perrett, D. I., and Dolan, R. J. (1999).
Dissociable neural responses to facial expressions of sadness and anger. Brain
122, 883–893. doi: 10.1093/brain/122.5.883

Boll, S., Gamer, M., Kalisch, R., and Büchel, C. (2011). Processing of facial
expressions and their significance for the observer in subregions of the
human amygdala. Neuroimage 56, 299–306. doi: 10.1016/j.neuroimage.2011.
02.021

Browning, P. G., Gaffan, D., Croxson, P. L., and Baxter, M. G. (2010). Severe
scene learning impairment, but intact recognition memory, after cholinergic
depletion of inferotemporal cortex followed by fornix transection. Cereb.
Cortex 20, 282–293. doi: 10.1093/cercor/bhp097

Bush, G., Luu, P., and Posner, M. I. (2000). Cognitive and emotional influences
in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222. doi: 10.1016/s1364-
6613(00)01483-2

Carmichael, S. T., and Price, J. L. (1994). Architectonic subdivision of the orbital
and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol. 346,
366–402. doi: 10.1002/cne.903460305

Carmichael, S. T., and Price, J. L. (1995). Limbic connections of the orbital and
medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641.
doi: 10.1002/cne.903630408

Caruana, F., Gerbella, M., Avanzini, P., Gozzo, F., Pelliccia, V., Mai, R., et al.
(2018). Motor and emotional behaviours elicited by electrical stimulation
of the human cingulate cortex. Brain 141, 3035–3051. doi: 10.1093/brain/
awy219

Chiba, T., Kayahara, T., and Nakano, K. (2001). Efferent projections of
infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese
monkey, Macaca fuscata. Brain Res. 888, 83–101. doi: 10.1016/s0006-8993(00)
03013-4

Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biol. Psychiatry
48, 813–829. doi: 10.1016/s0006-3223(00)01020-9

Drevets, W. C., and Raichle, M. E. (1998). Reciprocal suppression of
regional cerebral blood during emotional versus higher cognitive processes:
implications for interactions between emotion and cognition. Cogn. Emot. 12,
353–385. doi: 10.1080/026999398379646

Dum, R. P., and Strick, P. L. (2005). Frontal lobe inputs to the digit representations
of the motor areas on the lateral surface of the hemisphere. J. Neurosci. 25,
1375–1386. doi: 10.1523/jneurosci.3902-04.2005

Etkin, A., Egner, T., and Kalisch, R. (2011). Emotional processing in anterior
cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93.
doi: 10.1016/j.tics.2010.11.004

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing
in the primate cerebral cortex. Cereb. Cortex 1, 1–47. doi: 10.1093/cercor/1.1.1

Freedman, L. J., Insel, T. R., and Smith, Y. (2000). Subcortical projections of area
25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188.
doi: 10.1002/(sici)1096-9861(20000529)421:2<172::aid-cne4>3.0.co;2-8

Ghashghaei, H. T., and Barbas, H. (2002). Pathways for emotion: interactions
of prefrontal and anterior temporal pathways in the amygdala of the
rhesus monkey. Neuroscience 115, 1261–1279. doi: 10.1016/s0306-4522(02)
00446-3

Godlewska, B. R., Browning, M., Norbury, R., Igoumenou, A., Cowen, P. J.,
and Harmer, C. J. (2018). Predicting treatment response in depression: the
role of anterior cingulate cortex. Int. J. Neuropsychopharmacol. 21, 988–996.
doi: 10.1093/ijnp/pyy069

Gotlib, I. H., Sivers, H., Gabrieli, J. D., Whitfield-Gabrieli, S., Goldin, P.,
Minor, K. L., et al. (2005). Subgenual anterior cingulate activation to
valenced emotional stimuli in major depression. Neuroreport 16, 1731–1734.
doi: 10.1097/01.wnr.0000183901.70030.82

Hasselmo, M. E., Rolls, E. T., and Baylis, G. C. (1989). The role of expression
and identity in the face-selective responses of neurons in the temporal visual
cortex of the monkey. Behav. Brain Res. 32, 203–218. doi: 10.1016/s0166-
4328(89)80054-3

Insausti, R., Amaral, D. G., and Cowan,W.M. (1987). The entorhinal cortex of the
monkey: II. Cortical afferents. J. Comp. Neurol. 264, 356–395. doi: 10.1002/cne.
902640306

Ito, T., Yokokawa, K., Yahata, N., Isato, A., Suhara, T., and Yamada, M. (2017).
Neural basis of negativity bias in the perception of ambiguous facial expression.
Sci. Rep. 7:420. doi: 10.1038/s41598-017-00502-3

Joyce, M. K. P., and Barbas, H. (2018). Cortical connections position primate
area 25 as a keystone for interoception, emotion, and memory. J. Neurosci. 38,
1677–1698. doi: 10.1523/JNEUROSCI.2363-17.2017

Kim, Y., Sakata, H., Nejime, M., Konoike, N., Miyachi, S., and Nakamura, K.
(2018). Afferent connections of the dorsal, perigenual, and subgenual anterior
cingulate cortices of the monkey: amygdalar inputs and intrinsic connections.
Neurosci. Lett. 681, 93–99. doi: 10.1016/j.neulet.2018.05.028

Kobatake, E., and Tanaka, K. (1994). Neuronal selectivities to complex object
features in the ventral visual pathway of the macaque cerebral cortex.
J. Neurophysiol. 71, 856–867. doi: 10.1152/jn.1994.71.3.856

Frontiers in Neuroanatomy | www.frontiersin.org 14 July 2019 | Volume 13 | Article 74

http://www.editage.jp
https://doi.org/10.1093/cercor/bhv019
https://doi.org/10.3390/brainsci9060129
https://doi.org/10.1016/j.neuron.2018.11.021
https://doi.org/10.1002/hipo.1115
https://doi.org/10.1002/cne.902640305
https://doi.org/10.1016/j.neubiorev.2015.04.003
https://doi.org/10.1002/cne.902760302
https://doi.org/10.1002/hipo.450050604
https://doi.org/10.1002/(sici)1096-9861(19990802)410:3<343::aid-cne1>3.0.co;2-1
https://doi.org/10.1002/(sici)1096-9861(19990802)410:3<343::aid-cne1>3.0.co;2-1
https://doi.org/10.1093/brain/122.5.883
https://doi.org/10.1016/j.neuroimage.2011.02.021
https://doi.org/10.1016/j.neuroimage.2011.02.021
https://doi.org/10.1093/cercor/bhp097
https://doi.org/10.1016/s1364-6613(00)01483-2
https://doi.org/10.1016/s1364-6613(00)01483-2
https://doi.org/10.1002/cne.903460305
https://doi.org/10.1002/cne.903630408
https://doi.org/10.1093/brain/awy219
https://doi.org/10.1093/brain/awy219
https://doi.org/10.1016/s0006-8993(00)03013-4
https://doi.org/10.1016/s0006-8993(00)03013-4
https://doi.org/10.1016/s0006-3223(00)01020-9
https://doi.org/10.1080/026999398379646
https://doi.org/10.1523/jneurosci.3902-04.2005
https://doi.org/10.1016/j.tics.2010.11.004
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1002/(sici)1096-9861(20000529)421:2<172::aid-cne4>3.0.co;2-8
https://doi.org/10.1016/s0306-4522(02)00446-3
https://doi.org/10.1016/s0306-4522(02)00446-3
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1097/01.wnr.0000183901.70030.82
https://doi.org/10.1016/s0166-4328(89)80054-3
https://doi.org/10.1016/s0166-4328(89)80054-3
https://doi.org/10.1002/cne.902640306
https://doi.org/10.1002/cne.902640306
https://doi.org/10.1038/s41598-017-00502-3
https://doi.org/10.1523/JNEUROSCI.2363-17.2017
https://doi.org/10.1016/j.neulet.2018.05.028
https://doi.org/10.1152/jn.1994.71.3.856
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Sakata et al. Temporal to ACC in Monkey

Kondo, H., Saleem, K. S., and Price, J. L. (2003). Differential connections of the
temporal pole with the orbital and medial prefrontal networks in macaque
monkeys. J. Comp. Neurol. 465, 499–523. doi: 10.1002/cne.10842

Konoike, N., and Nakamura, K. (2013). ‘‘Neuronal responses to faces in the
anterior cingulate cortex of monkeys,’’ in 43rd Annual Meeting of the Society
for Neuroscience. San Diego, CA: Academic Press.

Kunishio, K., and Haber, S. N. (1994). Primate cingulostriatal projection: limbic
striatal versus sensorimotor striatal input. J. Comp. Neurol. 350, 337–356.
doi: 10.1002/cne.903500302

Lavenex, P. B., Amaral, D. G., and Lavenex, P. (2006). Hippocampal lesion
prevents spatial relational learning in adult macaque monkeys. J. Neurosci. 26,
4546–4558. doi: 10.1523/JNEUROSCI.5412-05.2006

Leonard, C. M., Rolls, E. T., Wilson, F. A., and Baylis, G. C. (1985). Neurons in the
amygdala of the monkey with responses selective for faces. Behav. Brain Res.
15, 159–176. doi: 10.1016/0166-4328(85)90062-2

Mayberg, H. S., Brannan, S. K., Mahurin, R. K., Jerabek, P. A., Brickman, J. S.,
Tekell, J. L., et al. (1997). Cingulate function in depression: a potential predictor
of treatment response. Neuroreport 8, 1057–1061. doi: 10.1097/00001756-
199703030-00048

Moran, M. A., Mufson, E. J., and Mesulam, M. M. (1987). Neural inputs into
the temporopolar cortex of the rhesus monkey. J. Comp. Neurol. 256, 88–103.
doi: 10.1002/cne.902560108

Morecraft, R. J., Stilwell-Morecraft, K. S., Cipolloni, P. B., Ge, J., McNeal, D. W.,
and Pandya, D. N. (2012). Cytoarchitecture and cortical connections of
the anterior cingulate and adjacent somatomotor fields in the rhesus
monkey. Brain Res. Bull. 87, 457–497. doi: 10.1016/j.brainresbull.2011.
12.005

Muñoz-López, M., Insausti, R., Mohedano-Moriano, A., Mishkin, M., and
Saunders, R. C. (2015). Anatomical pathways for auditory memory II:
information from rostral superior temporal gyrus to dorsolateral temporal pole
and medial temporal cortex. Front. Neurosci. 9:158. doi: 10.3389/fnins.2015.
00158

Myers-Schulz, B., and Koenigs, M. (2012). Functional anatomy of ventromedial
prefrontal cortex: implications for mood and anxiety disorders.Mol. Psychiatry
17, 132–141. doi: 10.1038/mp.2011.88

Nakamura, K., and Kubota, K. (1996). The primate temporal pole: its putative
role in object recognition and memory. Behav. Brain Res. 77, 53–77.
doi: 10.1016/0166-4328(95)00227-8

Nakamura, K.,Matsumoto, K.,Mikami, A., and Kubota, K. (1994). Visual response
properties of single neurons in the temporal pole of behaving monkeys.
J. Neurophysiol. 71, 1206–1221. doi: 10.1152/jn.1994.71.3.1206

Nishijo, H., Ono, T., and Nishino, H. (1988). Single neuron responses in
amygdala of alert monkey during complex sensory stimulation with affective
significance. J. Neurosci. 8, 3570–3583. doi: 10.1523/JNEUROSCI.08-10-03
570.1988

Ochsner, K. N., and Gross, J. J. (2005). The cognitive control of emotion. Trends
Cogn. Sci. 9, 242–249. doi: 10.1016/j.tics.2005.03.010

Olson, I. R., Plotzker, A., and Ezzyat, Y. (2007). The enigmatic temporal pole: a
review of findings on social and emotional processing. Brain 130, 1718–1731.
doi: 10.1093/brain/awm052

Pehrs, C., Zaki, J., Schlochtermeier, L. H., Jacobs, A. M., Kuchinke, L.,
and Koelsch, S. (2017). The temporal pole top-down modulates the
ventral visual stream during social cognition. Cereb. Cortex 27, 777–792.
doi: 10.1093/cercor/bhv226

Perrett, D. I., Rolls, E. T., and Caan, W. (1982). Visual neurones responsive
to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342.
doi: 10.1007/bf00239352

Petrides, M., and Pandya, D. N. (1999). Dorsolateral prefrontal cortex:
comparative cytoarchitectonic analysis in the human and the macaque brain
and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036.
doi: 10.1046/j.1460-9568.1999.00518.x

Rempel-Clower, N. L., and Barbas, H. (2000). The laminar pattern of connections
between prefrontal and anterior temporal cortices in the Rhesus monkey
is related to cortical structure and function. Cereb. Cortex 10, 851–865.
doi: 10.1093/cercor/10.9.851

Rockland, K. S., and Pandya, D. N. (1979). Laminar origins and terminations of
cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179,
3–20. doi: 10.1016/0006-8993(79)90485-2

Rosene, D. L., and Van Hoesen, G. W. (1977). Hippocampal efferents reach
widespread areas of cerebral cortex and amygdala in the rhesusmonkey. Science
198, 315–317. doi: 10.1126/science.410102

Saleem, K. S., Kondo, H., and Price, J. L. (2008). Complementary circuits
connecting the orbital and medial prefrontal networks with the temporal,
insular, and opercular cortex in the macaque monkey. J. Comp. Neurol. 506,
659–693. doi: 10.1002/cne.21577

Saleem, K. S., Price, J. L., and Hashikawa, T. (2007). Cytoarchitectonic and
chemoarchitectonic subdivisions of the perirhinal and parahippocampal
cortices in macaque monkeys. J. Comp. Neurol. 500, 973–1006. doi: 10.1002/
cne.21141

Squire, L. R., and Zola-Morgan, S. (1991). The medial temporal lobe memory
system. Science 253, 1380–1386. doi: 10.1126/science.1896849

Suzuki, W. A., and Amaral, D. G. (1994). Perirhinal and parahippocampal cortices
of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533.
doi: 10.1002/cne.903500402

Suzuki, W. A., and Amaral, D. G. (2003). Perirhinal and parahippocampal
cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic
organization. J. Comp. Neurol. 463, 67–91. doi: 10.1002/cne.
10744

Vidal-Gonzalez, I., Vidal-Gonzalez, B., Rauch, S. L., and Quirk, G. J. (2006).
Microstimulation reveals opposing influences of prelimbic and infralimbic
cortex on the expression of conditioned fear. Learn. Mem. 13, 728–733.
doi: 10.1101/lm.306106

Vogt, B. A., and Pandya, D. N. (1987). Cingulate cortex of the rhesus monkey:
II. Cortical afferents. J. Comp. Neurol. 262, 271–289. doi: 10.1002/cne.
902620208

Vogt, B. A., Pandya, D. N., and Rosene, D. L. (1987). Cingulate cortex of the
rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol.
262, 256–270. doi: 10.1002/cne.902620207

Wallis, C. U., Cardinal, R. N., Alexander, L., Roberts, A. C., and
Clarke, H. F. (2017). Opposing roles of primate areas 25 and 32 and
their putative rodent homologs in the regulation of negative emotion.
Proc. Natl. Acad. Sci. U S A 114, E4075–E4084. doi: 10.1073/pnas.16201
15114

Webster, M. J., Bachevalier, J., and Ungerleider, L. G. (1994). Connections of
inferior temporal areas TEO and TEwith parietal and frontal cortex inmacaque
monkeys. Cereb. Cortex 4, 470–483. doi: 10.1093/cercor/4.5.470

Webster, M. J., Ungerleider, L. G., and Bachevalier, J. (1991). Connections
of inferior temporal areas TE and TEO with medial temporal-lobe
structures in infant and adult monkeys. J. Neurosci. 11, 1095–1116.
doi: 10.1523/JNEUROSCI.11-04-01095.1991

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Sakata, Kim, Nejime, Konoike,Miyachi andNakamura. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroanatomy | www.frontiersin.org 15 July 2019 | Volume 13 | Article 74

https://doi.org/10.1002/cne.10842
https://doi.org/10.1002/cne.903500302
https://doi.org/10.1523/JNEUROSCI.5412-05.2006
https://doi.org/10.1016/0166-4328(85)90062-2
https://doi.org/10.1097/00001756-199703030-00048
https://doi.org/10.1097/00001756-199703030-00048
https://doi.org/10.1002/cne.902560108
https://doi.org/10.1016/j.brainresbull.2011.12.005
https://doi.org/10.1016/j.brainresbull.2011.12.005
https://doi.org/10.3389/fnins.2015.00158
https://doi.org/10.3389/fnins.2015.00158
https://doi.org/10.1038/mp.2011.88
https://doi.org/10.1016/0166-4328(95)00227-8
https://doi.org/10.1152/jn.1994.71.3.1206
https://doi.org/10.1523/JNEUROSCI.08-10-03570.1988
https://doi.org/10.1523/JNEUROSCI.08-10-03570.1988
https://doi.org/10.1016/j.tics.2005.03.010
https://doi.org/10.1093/brain/awm052
https://doi.org/10.1093/cercor/bhv226
https://doi.org/10.1007/bf00239352
https://doi.org/10.1046/j.1460-9568.1999.00518.x
https://doi.org/10.1093/cercor/10.9.851
https://doi.org/10.1016/0006-8993(79)90485-2
https://doi.org/10.1126/science.410102
https://doi.org/10.1002/cne.21577
https://doi.org/10.1002/cne.21141
https://doi.org/10.1002/cne.21141
https://doi.org/10.1126/science.1896849
https://doi.org/10.1002/cne.903500402
https://doi.org/10.1002/cne.10744
https://doi.org/10.1002/cne.10744
https://doi.org/10.1101/lm.306106
https://doi.org/10.1002/cne.902620208
https://doi.org/10.1002/cne.902620208
https://doi.org/10.1002/cne.902620207
https://doi.org/10.1073/pnas.1620115114
https://doi.org/10.1073/pnas.1620115114
https://doi.org/10.1093/cercor/4.5.470
https://doi.org/10.1523/JNEUROSCI.11-04-01095.1991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

	Laminar Pattern of Projections Indicates the Hierarchical Organization of the Anterior Cingulate-Temporal Lobe Emotion System
	INTRODUCTION
	MATERIALS AND METHODS
	Animals
	Tracer Injections
	Histological Procedures
	Data Analysis

	RESULTS
	Injection Sites and TP Architecture
	Projections to the sgACC
	Projections to the pgACC
	Projections to the dACC
	Interconnections Between the pgACC and sgACC

	DISCUSSION
	DATA AVAILABILITY
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


