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Abstract

In this study, excited-state free energies and geometries were efficiently evaluated

using a linear-response time-dependent long-range corrected density-functional tight-

binding method integrated with the polarizable continuummodel (TD-LC-DFTB2/PCM).

Although the LC-DFTB method required the evaluation of the exchange-type term,

which was moderately computationally expensive, a single evaluation of the excited-

state gradient for a system consisting of more than 1000 atoms in a vacuum was com-

pleted within 30 minutes using one CPU core. Benchmark calculations were conducted

for 3-hydroxyflavone, which exhibits dual emission: the absorption and enol-form emis-

sion wavelengths calculated by TD-LC-DFTB2/PCM agreed well with those predicted

based on density functional theory using a long-range corrected functional; however,

there was a large error in the predicted keto-form emission wavelength. Further bench-

mark calculations for more than 20 molecules indicated that the conventional TD-

DFTB method underestimated the absorption and 0–0 transition energies compared

with those which were measured experimentally while the TD-LC-DFTB2 method sys-

tematically overestimated these metrics. Nevertheless, the agreement of the results of

the TD-LC-DFTB2 method with those obtained by the CAM-B3LYP method demon-

strates the potential of the TD-LC-DFTB2/PCM method. Moreover, changing the

range-separation parameter to 0.15 minimized this deviation.

INTRODUCTION

The development of large-scale quantum mechanical (QM) methods1 is one of the hottest

topics in computational chemistry. These methods can be used to evaluate large systems

and obtain large numbers of samples in molecular dynamics simulations. Standard single-

reference QM methods, such as Hartree–Fock and density functional theory (DFT), are much

more economical than electron correlation methods but are still rather time-consuming; thus,

it is difficult to evaluate large systems using these techniques. In the standard implementa-

tion of Hartree–Fock and DFT, the bottleneck is sometimes the evaluation of the two-electron
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integrals or, in DFT, exchange–correlation contributions. This bottleneck can be alleviated

by employing screening techniques2 but routine calculations for systems comprising more

than one thousand atoms is still prohibitively expensive without linear scaling techniques

unless significant computational resources are available.1 Modeling excited states is even

more computationally demanding; the linear-response time-dependent DFT (TD-DFT) for

systems consisting of only a few hundred atoms is already challenging.

QM methods can be drastically simplified by applying various approximations or em-

ploying fitted parameters, giving rise to semi-empirical QM methods. For instance, the

self-consistent charge density-functional tight-binding (DFTB) method3 was derived by in-

troducing tight-binding approximations and applying a Taylor expansion to the density fluc-

tuation of DFT. Depending on the order of the Taylor expansion, the conventional DFTB

method is sometimes referred to as DFTB23 and DFTB34 for second- and third-order ex-

pansions, respectively. As the derived expression contains multiple parameters, DFTB is

expected to be two or three orders of magnitude faster than DFT with comparable accuracy

when applied with generalized gradient approximation (GGA) functionals. DFTB was first

applied to calculate excited states in the framework of the linear-response time-dependent

approach (TD-DFTB) by Niehaus et al.5 More recently, an analytic derivative of TD-DFTB

using the Z-vector method6 was derived and implemented.7 As the TD-DFTB method is

very fast, it has been applied to systems consisting of more than one thousand atoms.8–12

However, it is widely known that the accuracy of TD-DFTB is rather limited, particularly

for charge-transfer excitations, as DFT with GGA functionals exhibits a similar difficulty.

As in many semi-empirical QM methods, DFTB had been missing exchange-type con-

tributions until very recently, when long-range corrected DFTB (namely, LC-DFTB) was

proposed by two research groups.13–15 LC-DFTB was first presented in a seminal work by

Niehaus et al.,13 which mainly proposed and formalized the method based on a Yukawa-

type exchange interaction of a homogeneous electron gas. LC-DFTB was first implemented,

including an extension to linear-response time-dependent calculations (lc-TD-DFTB; here
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referred to as TD-LC-DFTB), by Humeniuk et al. in 201514 and later implemented for

ground state calculations by Lutsker et al. in the same year.15 Different definitions for

the exchange-type contributions had been used in these two studies. In 2017, Humeniuk

et al., however, modified the formulation16 to use the difference density matrix, making it

similar to the other formulation although the two formulations split the inverse distance

differently (refs 13 and 15 employ an exponential function, whereas refs 14 and 16 use the

error function). In terms of the formulation, the major difference between LC-DFTB and

conventional DFTB is that the former involves exchange-type contributions. All previous

linear-response TD-LC-DFTB studies14,16–18 have reported that the prediction of excitation

energies is improved compared to that with the conventional TD-DFTB2, particularly for

charge-transfer excitations. However, few of these studies employed analytic geometrical

derivatives of TD-LC-DFTB.16

To evaluate the excited-state properties of molecules in solution, a QM method is com-

monly combined with an implicit solvent model because of the low computational cost and

reasonable accuracy of such models in describing solvent effects. Perhaps the most well-

known of these models is the polarizable continuum model (PCM),19 which was integrated

with DFTB, extended to TD-DFTB, and implemented in Gaussian by Barone et al.20 Later,

analytic derivatives of TD-DFTB with PCM, namely, TD-DFTB/PCM, were realized11 in

the General Atomic and Molecular Electronic Structure System, United States (GAMESS-

US).21 Very recently, LC-DFTB2 was implemented in the GAMESS-US package and com-

bined with the fragment molecular orbital method22 to carry out calculations for systems

as large as 9984 atoms. In all of the aforementioned TD-LC-DFTB studies, the calculations

were performed under the assumption of a vacuum; TD-LC-DFTB could not be applied to

study excited-state properties in solution unless explicit solvent molecules were added.

In this study, we develop a novel TD-LC-DFTB2/PCM approach based on the previous

implementation in GAMESS-US.22 In one of the initial implementations of the ground-state

LC-DFTB,15 it was reported that the computational cost of LC-DFTB was roughly ten
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times higher than that of the conventional DFTB; hence, an integral-screening technique

was utilized. In another implementation, the “active space” technique is utilized in the

computation of excited-state energies.16 Considering these approximations, the additional

cost associated with the evaluation of the exchange-type contribution in LC-DFTB prevents

its application to larger systems; thus, it is important to compute this term efficiently. Herein,

we assess the performance of three TD-DFTB models, namely TD-DFTB2,13 TD-DFTB3,23

and TD-LC-DFTB2, in terms of the absorption and 0–0 transition energies predicted for

selected molecules relative to those in the benchmark set by Jacquemin et al.24

METHODOLOGY

In this section, i and j denote occupied molecular orbitals (MOs), a and b denote virtual

MOs, and p, q, r, and s denote general MOs. µ, ν, κ, and λ represent the atomic orbitals

(AOs) in atoms A, B, C, andD, respectively. σ and τ represent the electron spins of different

atoms. δστ stands for the Kronecker delta, which is one when σ = τ and zero when σ ̸= τ .

Overview of LC-DFTB2/PCM

Following the formulation proposed by Lutsker et al.,15 the total energy of LC-DFTB2

(without PCM) can be written as follows:

E =
∑
µν

∑
σ

DµνσH
0
µν+

1

2

∑
AB

γAB∆QA∆QB+E
rep− 1

2

∑
µνκλ

∑
σ

(µκ|νλ)lr∆Dµνσ∆Dκλσ . (1)

If the last term is omitted, the apparent expression is equivalent to the conventional second-

order DFTB (DFTB2). The density matrix is defined as follows:

Dµνσ =
∑
i

fiσCµiσC
∗
νiσ , (2)
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where fiσ = 1 is the orbital occupation number of the ith MO in σ spin and Cµiσ is the

standard MO coefficient matrix. It is assumed that C = C∗ in this study. The zeroth-

order Hamiltonian, H0
µν , contains kinetic, nuclear–electron, electron–electron, and exchange–

correlation contributions from the reference (unperturbed) electron density and is computed

by interpolating the parameter (Slater–Koster) files. The function γAB, which depends

on the distance between two atoms (rAB) and their Hubbard values (which are related

to the chemical hardness25), describes the Coulombic and full-range exchange–correlation

contributions. It asymptotically converges to the inverse of the distance between the two

atoms when this distance is sufficiently long. The atom-resolved Mulliken charge, ∆QA, is

obtained as the difference between the atom-resolved Mulliken population, QA,

QA =
∑
µ∈A

∑
ν

∑
σ

DµνσSµν , (3)

where Sµν is the overlap matrix, and the number of valence electrons on the neutral atom A,

Q0
A (i.e., ∆QA = QA − Q0

A). E
rep is the sum of the repulsive potentials between all unique

pairs of atoms.

The last term in eq 1 is newly added to LC-DFTB. The difference density matrix, ∆Dµν ,

is defined as the difference between the standard density matrix (eq 2) and the reference

density matrix, D0
µν (i.e., ∆Dµν = Dµν −D0

µν). The reference density matrix is a diagonal

matrix containing the number of valence electrons of the free neutral atoms in each AO. The

four-index exchange-type integral, (µκ|νλ)lr, is defined as follows

(µκ|νλ)lr = 1

4
SµκSνλ

(
γlrAB + γlrAD + γlrCB + γlrCD

)
. (4)

The atom-resolved long-range function, γlrAB, is defined as in ref 15 and computed analytically.

In addition to depending on rAB and the Hubbard values of these atoms, γlrAB now additionally

depends on the range-separation parameter ω as in the long-range corrected DFT.

With PCM, the above energy is sometimes referred to as the internal energy of the solute.
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The total free energy of the solute–solvent system G can be expressed as

G = E +
1

2
Eint + Gcdr , (5)

where Eint represents the electrostatic interaction between the solute and solvent and Gcdr

represents the sum of the non-electrostatic cavitation, dispersion, and repulsive free energies.

Note that eq 5 is the free energy of the solute–solvent system. The half of Eint is spent to

polarize the dielectric medium when a molecule is inserted into a cavity. A more detailed

discussion may be found in ref 19. Within the DFTB/PCM employed in this study, Eint is

defined as follows:11

Eint = −
∑
A

∆QA

Nts∑
k

q̄k
rAk

, (6)

where q̄k is the induced surface charge of the kth tessera, Nts is the number of tesserae, and

rAk is the distance between atom A and tessera k (tesserae are discretized surface elements

of the solute–solvent interface). Induced charges or apparent surface charges are obtained

by solving the following matrix equation:

q̄ = −C̄−1v̄ , (7)

where C̄ is a matrix that depends on the positions of the tesserae and the PCM model that

is selected. In this study, conductor PCM26 is employed, and the prefactor of ε/(ε − 1),

where ε is the dielectric constant of the solvent, is included in C̄ for simplicity. v̄ is the

electrostatic potential on the kth tessera and, in the present implementation, is defined by

v̄k = −
∑
A

∆QA

rAk

. (8)

7



In LC-DFTB2/PCM, the Hamiltonian can be expressed as

Hµνσ = H0
µν +

∑
κλτ

{
(µν|κλ)− δστ (µκ|λν)lr +Gµν,κλ

}
∆Dκλτ , (9)

where the full-range two-electron integral and the PCM contribution20 in the AO represen-

tation are

(µν|κλ) = 1

4
SµνSκλ (γAB + γAD + γCB + γCD) (10)

and

Gµν,κλ = −1

4
SµνSκλ

Nts∑
kl

(
1

rAk

+
1

rBk

)(
C̄−1

)
kl

(
1

rCl

+
1

rDl

)
, (11)

respectively. Clearly, the LC-DFTB2 Hamiltonian in a vacuum can be obtained by omitting

the Gµν,κλ term.

By differentiating the total free energy with respect to a geometrical parameter x, its

first-order derivative for the ground state is obtained as follows:

dG
dx

=
∑
i

∑
σ

fiσ
∑
µν

CµiσCνiσ

[
∂H0

µν

∂x
− εiσ

∂Sµν

∂x

+
1

2

∂Sµν

∂x

{∑
C

(γAC + γBC)∆QC −
Nts∑
k

(
1

rAk

+
1

rBk

)
q̄k

}]

+
1

2

∑
AB

∂γAB

∂x
∆qA∆qB − 1

2

∑
µνκλ

∑
σ

∂ (µκ|νλ)lr

∂x
∆Dµνσ∆Dκλσ

+
∂Erep

∂x
−
∑
A

∆QA

Nts∑
k

q̄k
∂r−1

Ak

∂x
+

1

2
q̄T∂C̄

∂x
q̄+

∂Gcdr

∂x
, (12)

where εiσ is the eigenvalue of the ith MO. It should be noted that displacements of the

tesserae have to be included in the actual calculation and this contribution is implicitly

included in the ∂r−1
Ak/∂x term. The third term is newly added in LC-DFTB/PCM; the

computation of this term is discussed in the Supporting Information.

The excitation energies, Ω, and excitation and deexcitation vectors, X and Y, respec-
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tively, can be obtained by solving the following non-Hermitian equation:

A B

B A


X

Y

 = Ω

1 0

0 −1


X

Y

 , (13)

where the matrix elements of A and B are defined as

Aiaσ,jbτ = δijδabδστ (εaσ − εiσ) +Kiaσ,jbτ +Giaσ,jbτ (14)

and

Biaσ,jbτ = Kiaσ,bjτ +Giaσ,bjτ . (15)

The coupling matrix, Kiaσ,jbτ , for singlet–singlet excitation is defined by

Kpqσ,rsτ = (pqσ|rsτ)− δστ (prσ|qsτ)lr (16)

For singlet–triplet excitation, the first term in eq 16 is replaced with spin constant matrix

elements.5,23 In eq 16, eqs 10 and 4 are transformed to an MO representation. For instance,

(pqσ|rsτ) =
∑
µνρσ

CµpσCνqσCκrτCλsτ (µν|κλ) . (17)

The PCM contribution Giaσ,jbτ is given by

Gpqσ,rsτ = −
∑
A

Qpqσ
A

Nts∑
k

q̄rsτk

rAk

, (18)

where q̄rsτk is the induced charge obtained by solving eq 7 with the potentials on the tesserae:

v̄rsτk = −
∑
A

Qrsτ
A

rAk

, (19)
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where

Qrsτ
A =

1

2

∑
µ∈A

∑
ν

(CµrτCνsτ + CµsτCνrτ )Sµν . (20)

In practice, Giaσ,jbτ is not constructed or stored; instead, the matrix–vector product is taken

as follows:

∑
jbτ

Giaσ,jbτbjbτ =
∑
µνκλ

∑
τ

CµiσCνaσGµν,κλ

(∑
jb

CκjτCλbτbjbτ

)

=
∑
µνκλ

∑
τ

CµiσCνaσGµν,κλD
′
κλτ , (21)

where bjbτ is the trial vector and D′
κλτ is a density-like matrix. Here, D′

κλτ is calculated as

described previously by:27

D′
µντ =

∑
jb

CµjτCνbτbjbτ , (22)

which is not necessarily symmetric.

Analytic gradient for TD-LC-DFTB2/PCM

Analytic derivatives of TD-LC-DFTB2 were first developed and implemented in 2017 by

Humeniuk et al.16 They were derived by applying the Z-vector method in a similar way

to those described in previous studies,6,28 which is common in TD-DFT. As the necessary

expressions are already given in ref 16, the details are not presented here; however, some

expressions must be reviewed to prepare for the integration of TD-LC-DFTB2 with PCM.

Analytic derivatives of TD-DFT/PCM were previously described in refs 29 and 30.

Because the excitation energy within TD-DFTB is not stationary with respect to any

changes in Cµi, the response contributions must be evaluated to compute the first-order

derivatives analytically. Instead of solving a large number (3×Nat, where Nat is the number

of atoms in the system) of coupled-perturbed equations, the Z-vector method6 is usually
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employed so only one linear matrix equation must be solved:

∑
jbτ

(A+B)iaσ,jbτ Zjbτ = −Riaσ , (23)

where

Riaσ =
∑
b

{
(X+Y)ibσH

+
abσ[(X+Y)] + (X−Y)ibσH

−
abσ[(X−Y)]

}
−
∑
j

{
(X+Y)jaσH

+
jiσ[(X+Y)] + (X−Y)jaσH

−
jiσ[(X−Y)]

}
+H+

iaσ[T] . (24)

The unrelaxed difference density matrix T is defined elsewhere;28,31 for an arbitrary vector

or matrix V,

H+
pqσ[V] =

∑
rsτ

(Kpqσ,rsτ +Gpqσ,rsτ +Kpqσ,srτ +Gpqσ,srτ )Vrsτ

=
∑
rsτ

(
2 (pqσ|rsτ)− δστ

{
(prσ|qsτ)lr + (psσ|qrτ)lr

}
+ 2Gpqσ,rsτ

)
Vrsτ

(25)

and

H−
pqσ[V] =

∑
rsτ

(Kpqσ,rsτ −Kpqσ,srτ )Vrsτ

= −
∑
rsτ

δστ

{
(prσ|qsτ)lr − (psσ|qrτ)lr

}
Vrsτ . (26)

In the previous TD-DFTB/PCM implementation,11 H−
pqσ[V] was always zero because long-

range corrections were not yet introduced. Compared with the TD-LC-DFTB2 in a vac-

uum,16 an additional evaluation of the Gpqσ,rsτ in H+
pqσ[V] term is required for the combina-

tion with PCM.
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Once the Z-vector equation has been solved self-consistently, the relaxed one-particle

difference density matrix (P = T + Z) and a Lagrange multiplier vector (W; the energy-

weighted difference density matrix) can be constructed according to the definitions in refs

28 and 31. After transforming the vectors defined in the MO representation to those in the

AO representation (as in eq 22), the first-order derivative of the excitation energy can be

determined as follows:

dΩ

dx
=
∑
µνσ

∂H0
µν

∂x
Pµνσ −

∑
µνσ

∂Sµν

∂x
Wµνσ +

∑
µνσκλτ

∂ (µν|κλ)
∂x

Γµνσ,κλτ

+
∑

µνσκλτ

∂ (µν|κλ)lr

∂x
Γ ex
µνσ,κλτ +

∑
µνσκλτ

∂Gµν,κλ

∂x
Γµνσ,κλτ , (27)

where the two-particle difference density matrix has been divided into two contributions:

that of the Coulomb-type integrals,

Γµνσ,κλτ = PµνσDκλτ + (X+Y)µνσ (X+Y)κλτ (28)

and that of the exchange-type integrals,

Γ ex
µνσ,κλτ = −δστ

2

(
PµκσDνλτ + PµλDνκτ

+ (X+Y)µκσ (X+Y)νλτ + (X+Y)µκσ (X+Y)λντ

+(X−Y)µκσ (X−Y)νλτ − (X−Y)µκσ (X−Y)λντ

)
. (29)

The explicit PCM contribution (i.e., the last term in eq 27, is identical to that presented

in eq 25 in ref 11 and comes from only the two-particle difference density matrix for Coulomb-

type integrals ((X−Y) contributions are not involved in in the explicit PCM contribution).
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Implementation of TD-LC-DFTB2

TD-LC-DFTB2/PCM was implemented in GAMESS-US21 on top of the previous implemen-

tation of LC-DFTB2.22 In this implementation, it is possible to employ the Tamm–Dancoff

approximation32 by neglecting the deexcitation vector, Y. In TD-LC-DFTB2/PCM, if the

numerical gradients are computed carefully, the differences between the analytic and numer-

ical gradients in the excited states are on the order of 10−7 hartree/bohr.

As stated previously, calculating the exchange contribution incurs a high computational

cost. One solution is to employ a Schwarz-like screening as in ref 15; however, this approach

may require the threshold to be chosen carefully or the overhead associated with the screening

process can be heavy. In particular, the efficiency of the algorithm depends heavily on the

shape of the molecule. For example, if the system is linear, the overlap and density matrices

are very sparse so the screening approach reduces the number of matrix elements that are

evaluated significantly; in contrast, if the system is condensed and/or three-dimensional, this

effect may not be significant. When the system is charged, ∆Dµν tends to be less sparse.

Hence, in the present implementation in GAMESS-US, the direct computation approach

that was adopted in ref 14 was employed.

The derivation of working equations is rather lengthy and technical, so mathematical

expressions are given in the Supporting Information. The expressions herein show that

the entire exchange-type contribution to the gradient in LC-DFTB2 can be computed with

O (N3
AO) complexity, where NAO is the number of AOs. These expressions also imply that

it is possible for large systems to benefit from sparse matrix multiplications.

COMPUTATIONAL DETAILS

In the following calculations, the MIO,3,33,34 3OB,35–37 and OB2(base)38 parameter sets were

employed for the DFTB2, DFTB3, and LC-DFTB2 calculations, respectively. In the LC-

DFTB2 calculation, the range-separation parameter ω must be specified. In principle, this
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parameter is intrinsic to the OB2 parameter set. Therefore, ω = 0.30, as specified in ref 38,

is used for all calculations unless otherwise noted. There are other two variants of the OB2

parameter set: shift and split. These two sets are developed mainly to balance the nitrogen’s

sp2 and sp3 hybridization.38 Preliminary calculations for pyridine indicate that the difference

of the first excitation energy is no more than 0.03 eV, so the different parameter set should

not affect the result significantly. Most of the computational setup, such as the convergence

criteria and PCM-related parameters, was the same as that in ref 11; however, in contrast,

no dispersion corrections were included in the following calculations unless otherwise noted.

Second-order geometrical derivatives were computed by a finite difference method using

analytic first-order geometrical derivatives with a step size of 5.0× 10−3 a.u.

First, the computational efficiency of (TD-)DFTB2 and (TD-)LC-DFTB2 using one

CPU core (Xeon E5-1650 v3) was benchmarked with a series of trans-polyacetylene chains

(C50nH50n+2; n = 4, 5, . . . , 10); smaller chains (n = 1, 2, and 3) were excluded because the

computation time was negligibly short for these molecules. Only the CPU times are pre-

sented as the wall-clock time was almost identical to the CPU times since the CPU utilization

was always above 99% for these molecules. The ten lowest excitation energies were computed

during the excited-state calculations. The analytic gradient at the first singlet excited state

(S1) was also computed.

Next, the accuracy of the implemented method was benchmarked with a molecule that

exhibits dual emission, 3-hydroxyflavone (3HF), as in a previous study.11 The computational

setup was identical to that in the previous study. In the present study, the corrected linear-

response (cLR) solvation model39 was employed to evaluate the absorption and emission

energies. The absorption energy can be directly determined from the excitation energy

using the linear-response (LR) solvation approach, which is widely employed in excited-

state calculations in a solution phase. Alternatively, it can be determined as the difference

between the free energies of the excited and ground states using the cLR and state-specific

(SS)40 approaches; consequently, the free energies of the excited states must be defined and
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computed using the cLR and SS approaches such that they are comparable with the ground

state, which necessitates the computation of the relaxed density in the excited state (P)

by solving the Z-vector equation. The cLR and SS approaches differ in the self-consistency

of the reaction field.39 A similar procedure can be applied to compute the emission energy.

The necessary equations were derived and implemented based on ref 39. The absorption

and emission energies were computed with the non-equilibrium cLR solvation model, but

the geometry optimizations were performed with the equilibrium LR solvation model as

usual.

Finally, to further evaluate the performance of TD-LC-DFTB2/PCM, benchmark calcu-

lations were performed using TD-DFTB2, TD-DFTB3, and TD-LC-DFTB2 combined with

the cLR-PCM approach for the molecular set proposed in ref 24. Since the experimental

data listed in ref 24 was obtained in a solution phase, it is important to properly con-

sider the solvent effects. The 0–0 transition energies within non-equilibrium cLR-PCM were

computed following the procedure outlined in ref 24; the initial geometries were also taken

from this source. Because of the limited availability of DFTB (Slater–Koster) parameters,

35 molecules could be calculated by TD-DFTB2 and TD-DFTB3 and 25 molecules could

be calculated by TD-LC-DFTB2. The statistical comparisons between methods were done

based on the latter 25 molecules (or 24 for the comparisons of calculated 0–0 transition

energies). The threshold for the geometry convergence was raised to 10−5 hartree/bohr for

a few cases. The calculated absorptions and 0–0 transition energies are summarized in the

Supporting Information (Tables S1 and S2).

RESULTS AND DISCUSSION

Computation Time

First, the computational efficiencies of the proposed method and the conventional DFTB2

were evaluated in terms of CPU time as shown in Figure 1. A default of 60 initial tesserae
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per atom was employed in this subsection although this number was increased to 240 for the

other calculations in this study.

400 600 800 1000

100

101

103

102

C
P

U
 T

im
e

 (
s
)

Number of Atoms

Total
SCF
Excitation Energy
Gradient

400 600 800 1000

100

101

103

102

Number of Atoms

(A) TD-LC-DFTB2(/PCM) (B) TD-DFTB2(/PCM)

Figure 1: Computation times for (A) TD-LC-DFTB2(/PCM) and (B) TD-DFTB2(/PCM).
The total computation time (black square) is broken down into those of the ground-state
SCF (red diamond), excitation energy (blue square), and gradient (green triangle) calcula-
tion steps. The filled and hollow marks correspond to the times without and with PCM,
respectively.

In a vacuum, the observed scalings of the ground-state SCF calculations with LC-DFTB2

and DFTB2 were 2.86 and 2.84 (O (N2.86
AO ) and O (N2.84

AO )) , respectively. For the largest sys-

tem (n = 10; 1002 atoms using 2502 basis functions), LC-DFTB2 and DFTB2 took 113.39

and 81.49 s, respectively. Both calculations converged after 13 SCF cycles. However, while

the diagonalization of the Hamiltonian matrix took approximately 75 s in both calculations,

it took longer to construct the Hamiltonian matrix in LC-DFTB2 (32.5 s) than in DFTB2

(0.3 s); this difference was mainly attributed to the evaluation of the exchange-type contribu-

tion in LC-DFTB2 (eq S1 in the Supporting Information). Nevertheless, the diagonalization

was more time-consuming than the construction of the Hamiltonian matrix in LC-DFTB2.

Comparing the CPU times for the largest system, LC-DFTB2 was only 1.4 times more

computationally expensive than the conventional DFTB; this computational cost is small

compared to that associated with the integral screening technique, which has been reported

to increase the computation time by an order of magnitude.15 In reality, the efficiency of
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algorithms using thresholds depends strongly on the system to be considered, the implemen-

tation, and the chosen thresholds. For the present example, a threshold algorithm worked

very well because the overlap and density matrices for linear polyacetylene tend to be very

sparse. For the largest system, the evaluation of the exchange-type contribution was ten

times faster (2.5 s) than the algorithm implemented in this study (32.5 s) with a moderately

tight threshold of ε = 9 (see ref 15 for details). Therefore, the 1.4 times increase in the

computation time for LC-DFTB2 can be taken as an upper bound. The computation times

increased with PCM: LC-DFTB2/PCM and DFTB2/PCM took 128.59 and 99.90 s, respec-

tively. The PCM-related steps (in particular, eq 7) took approximately 2.1 s per SCF cycle;

thus, adding PCM contributions was slightly computationally less expensive than adding

exchange contributions. For polar systems, however, solving eq 7 may take slightly longer.11

Next, the scalings of the excitation energy calculations in a vacuum with TD-LC-DFTB2

and TD-DFTB2 were determined as O (N3.11
AO ) and O (N3.06

AO ), respectively, and the CPU

times for obtaining the ten lowest excitation energies were 1587.45 and 301.99 s, respec-

tively. Even though LC-DFTB2 was five times more computationally expensive according

to this metric, the normalized computation times (obtained by dividing the CPU times by

the respective numbers of the trial vectors employed until convergence) for TD-LC-DFTB2

and TD-DFTB2 were 6.78 and 2.46 s, respectively; this indicates that, practically, TD-

LC-DFTB2 was 2.76 times more computationally expensive than TD-DFTB2. The major

computationally demanding step was the matrix multiplication: DGEMM is called four

times per trial vector in the conventional TD-DFTB2 but ten times in TD-LC-DFTB2 (al-

though the dimension is different). Thus, the matrix multiplication in TD-LC-DFTB2 is

theoretically 2.5 times more computationally expensive than TD-DFTB2, which is roughly

consistent with the observed relative computational cost. With PCM, the CPU time for

the largest system was 3448.11 s with TD-LC-DFTB2, which is twice as long as the corre-

sponding calculation time in a vacuum. Further, comparing this time with the normalized

CPU time per trial vector (11.27 s) implies that PCM increased the computational cost by
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1.7 times. A previous study reported the additional cost due to PCM to be only 10% for

the largest system.11 However, after improving the computational efficiency of solving the

TD-DFTB equation (eq 13), solving eq 7 is now relatively time-consuming.

Finally, the scalings of the gradient calculation (including solving the Z-vector equation)

with TD-LC-DFTB2 and TD-DFTB2 were O (N2.96
AO ) and O (N3.12

AO ), respectively, in a vac-

uum and 67.60 and 16.99 s, respectively, for the largest system. Solving the Z-vector equation

was 1.5–2.0 times more computationally expensive than computing the actual gradient con-

tributions. In both cases, the Z-vector equation converged after three cycles. DGEMM was

called several more times in the computation of the gradient contributions in TD-LC-DFTB2

than in TD-DFTB2 (see eq S11 in the Supporting Information) and, as a result, the compu-

tation time with TD-LC-DFTB2 was approximately four times longer than that with. For

the largest system with PCM, this difference corresponds to an additional computation time

of 35 s.

In summary, the LC-DFTB2 calculation for the ground states is approximately 1.4 times

more computationally expensive than the conventional DFTB2 with the present implemen-

tation. The computation time for the excitation energies depends on the number of matrix–

vector products needed to solve the TD-DFTB equation; however if the number of products

is roughly the same with both methods, TD-LC-DFTB2 should be approximately 2.5 times

more computationally expensive than the conventional DFTB2. Further, the observed scal-

ing is cubic, as expected. Again, no screening thresholds or restriction of the active space

were employed in the implemented algorithm. One potential approach to improve the effi-

ciency is to precompute the transition Mulliken population (eq 20) as described in refs 14

and 17; however, this requires a large amount of memory for large molecules.

The memory allocated for the TD-LC-DFTB2 calculation for the largest system was 29

GB. Most of the memory was used for storing trial vectors when solving the TD-DFTB

equation. These vectors are stored in replicated memory, so the total memory requirement

linearly increases with respect to the number of CPU cores. It is therefore challenging to
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perform parallel calculations for very large systems at present. The memory requirement for

TD-LC-DFTB2 for the largest system was 246 MB larger than that for the corresponding

TD-DFTB2 calculation, which is the actual additional memory that was allocated for TD-

LC-DFTB2.

Excited State Intra-Molecular Proton Transfer

3HF absorbs light at a wavelength of 345 nm in ethanol41 in its ground state (S0) and emits at

wavelengths of 402 or 533 nm in its first excited state (S1), depending on the position of the

proton that is easily transferred at S1. In a previous study, both TD-DFTB2 and TD-DFTB3

significantly underestimated all of these excitation and emission energies.11 This is a typical

consequence of lack of long-range corrections. As TD-DFT calculations without long-range

corrections similarly underestimate excitation and emission energies, it would be interesting

to apply TD-LC-DFTB2 with cLR-PCM to the same system. The optimized geometries for

TD-DFTB2, TD-DFTB3, and B3LYP/6-31G(d,p) reported in a previous study were used

here.

First, the transition structures at S0 and S1 were located. Interestingly, LC-DFTB2 at S0

significantly overestimated the free energy in the transition state (20.11 kcal/mol) relative to

the enol form, compared to the corresponding B3LYP/6-31G(d,p) energy (12.17 kcal/mol).

Although D3(BJ)42,43 dispersion corrections could be introduced, as in the parametrization,38

the relative free energy estimated by LC-DFTB2-D3(BJ) was 20.09 kcal/mol so the effect

of the dispersion correction is very small. At S1, a similar tendency was observed: the

free energy in the transition state (5.13 kcal/mol) relative to the enol form significantly

deviated from the B3LYP result (1.79 kcal/mol). These observations are not surprising as

it has already been reported that LC-DFTB2 is not the most accurate DFTB method for

describing potential energy barriers.38

The absorption and emission energies that were calculated using the cLR-PCM approach

are summarized in Table 1 and those obtained using the standard LR-PCM (most of which

19



were reported in a previous study11) are shown in parentheses. The excitation and emission

energies of the enol form that were estimated by TD-LC-DFTB2 were close to those estimated

by TD-LC-BLYP/aug-cc-pVDZ. However, it should be noted that both TD-LC-DFTB2

and TD-LC-BLYP/aug-cc-pVDZ provided overestimates compared with the experimentally

determined values. Further, the emission energy of the keto form was still significantly

underestimated by TD-LC-DFTB2. A similar calculation using the shift and split variants

of the OB2 parameter set indicated that the difference of this emission energy was negligibly

small: less than 0.01 eV. Notably, the results from B3LYP/6-31G(d,p) with the cLR approach

agreed most closely with the experimentally measured values; the largest deviation was only

0.03 eV. Overall, the impact of cLR on the absorption energy estimation was rather small; the

difference between LR and cLR was less than 0.1 eV. However, cLR had a larger impact, up

to 0.2 eV, on the emission energy estimation. Moreover, the use of the cLR-PCM approach

was beneficial with GGA (PBE and BLYP) and hybrid (B3LYP) functionals; however, it

increased the deviation when LC-BLYP was employed.

Table 1: Calculated and Experimental41 Absorption and Emission Energies (in
eV). The values outside and inside the parentheses were computed with the
cLR-PCM and LR-PCM approaches, respectively.

Method Absorption Emission (enol) Emission (keto)
DFTB2 2.99 (3.02) 2.31 (2.46) 1.34 (1.46)
DFTB3 3.04 (3.04) 2.49 (2.52) 2.00 (1.90)
LC-DFTB2 3.98 (3.92) 3.32 (3.17) 2.04 (1.96)
B3LYP/6-31G(d,p) 3.60 (3.52) 3.11 (2.97) 2.36 (2.17)
B3LYP/aug-cc-pVDZa 3.50 (3.44) 3.06 (2.89) 2.38 (2.20)
PBE/aug-cc-pVDZa 3.10 (3.07) 2.76 (2.62) 2.18 (2.04)
BLYP/aug-cc-pVDZa 3.10 (3.06) 2.75 (2.61) 2.17 (2.03)
LC-BLYP/aug-cc-pVDZa 3.93 (3.86) 3.40 (3.19) 2.52 (2.34)
Experiment 3.59 3.08 2.33

a Geometries were optimized at B3LYP/6-31G(d,p)
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Benchmark Calculations

Finally, benchmark calculations were performed with the TD-DFTB methods that have been

implemented in GAMESS-US so far (namely, TD-DFTB2, TD-DFTB3, and the proposed

TD-LC-DFTB2) for a set of molecules collected by Jacquemin et al.24 The calculated ab-

sorption and 0–0 transition energies are summarized in the Supporting Information (Tables

S1 and S2); these values are compared with the experimentally derived values in Figure 2.

Although the absorption and 0–0 transition energies were computed for 35 and 25 molecules

using TD-DFTB2/3 and LC-DFTB2, respectively, only the latter 25 energies were employed

in the comparison below. In addition, it was not possible to locate a S1 minimum of XVII

(see ref 24) with TD-DFTB3 because there was significant mixing between the excitation

vectors in the neighboring states; thus, this molecule was excluded in the comparison of 0–0

transition energies. Therefore, 25 of the absorption energies and 24 of the 0–0 transition en-

ergies are plotted in the figure. Furthermore, some optimized geometries in the excited states

were identified as transition states (TSs) or even second-order saddle points by vibrational

frequency analyzes; while such errors may seem to be unreasonable, a similar phenomenon

often occurs with TD-DFT.28

Figure 2 (A) shows that TD-LC-DFTB2 overestimated the absorption energies signifi-

cantly: all of the predicted energies were greater than the corresponding experimental values

by at least 0.25 eV Further, the root-mean-square deviation (RMSD) for the 25 molecules

was 0.621 eV. TD-DFTB2 and TD-DFTB3 provided better predictions than TD-LC-DFTB2,

with RMSDs of 0.384 and 0.386 eV, respectively, for the same 25 molecules. The slope of

the line fitted to the estimates obtained by TD-LC-DFTB2 plotted against the experimental

values was 0.89, which is closer to 1.00 than those of the other DFTB models (0.80 and 0.78

with TD-DFTB2 and TD-DFTB3, respectively), as summarized in Table 2. However, the

intercept of the line that fitted the TD-LC-DFTB2 estimates was as high as 0.91 eV, while

those with TD-DFTB2 and TD-DFTB3 were 0.35 and 0.40 eV, respectively; this indicates

that the overestimation of the absorption energy with TD-LC-DFTB2 was rather system-
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Figure 2: Comparison of experimentally measured and computed (A) absorption energies
for 25 molecules and (B) 0–0 transition energies for 24 molecules.
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atic. In addition, the R2 values of the TD-DFTB2, TD-DFTB3, and TD-LC-DFTB2 data

were 0.84, 0.86, and 0.90, respectively; thus, the TD-LC-DFTB2 were more closely correlated

with the experimental values in comparison to the other methods despite the overestimation.

The trend of the predicted 0–0 transition energies (Figure 2 (B)) was similar to that of the

absorption energies: TD-LC-DFTB2 overestimated the values but the equation fitted to the

data had a slope that was closer to 1.00 than those fitted to the results obtained by the other

methods. There is not large difference in the R2 values.

Table 2: RMSD (in eV), fitted linear equations (FLE)a, and R2 values of the
absorption energies of 25 molecules and 0–0 transition energies of 24 molecules
that were obtained by TD-DFTB2, TD-DFTB3, and TD-LC-DFTB2 compared
with the experimental and the CAM-B3LYP results.24

TD-DFTB2 TD-DFTB3 TD-LC-DFTB
Reference = Experiment

Absorption RMSD 0.384 0.386 0.621
FLE y = 0.80x+ 0.35 y = 0.78x+ 0.40 y = 0.89x+ 0.91
R2 0.84 0.86 0.90

0–0 Transition RMSD 0.416 0.437 0.522
FLE y = 0.83x+ 0.16 y = 0.81x+ 0.20 y = 0.90x+ 0.74
R2 0.84 0.84 0.84

Reference = CAM-B3LYP
Absorption RMSD 0.643 0.657 0.250

FLE y = 0.93x− 0.39 y = 0.90x− 0.29 y = 1.01x+ 0.17
R2 0.94 0.95 0.96

0–0 Transition RMSD 0.637 0.660 0.261
FLE y = 0.94x− 0.42 y = 0.91x− 0.35 y = 1.06x− 0.00
R2 0.85 0.84 0.92

a The fitting linear equation is represented in the form y = ax+ b, where x is the
“Reference” (either experimentally measured energies or those predicted by CAM-B3LYP)

and y is the energies computed with TD-DFTB2, TD-DFTB3, or TD-LC-DFTB2.

It should be noted that some of the optimized structures at the excited states are not

the minimum structures; even second-order saddle-point structures can be found in some

instances. For example, the optimized geometry of XXXIII (C16H19N2) was identified

as a TS with TD-DFTB2 and TD-DFTB3. The dihedral angle ψ (see Figure 3 (A)) of

each of these TSs was nearly 0◦. Moreover, the structures were very similar to the optimized
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minimum structures predicted by TD-LC-DFTB2 and CAM-B3LYP/6-31G+(d).24 The true

minimum of XXXIII on the S1 potential energy surface was found at ψ ≈ 90◦ using TD-

DFTB2 and TD-DFTB3. However, upon inspecting the molecular orbitals and transition

vectors, the character of the excitation is a charge-transfer HOMO–LUMO (highest occupied

and lowest unoccupied MO) excitation (Figures 3 (B) and (C)) and the resulting equilibrium

LR-PCM excitation energies at the minimum were only 0.87 and 0.88 eV with TD-DFTB2

and TD-DFTB3, respectively. The HOMO and LUMO are mostly orthogonal and, therefore,

the oscillator strength is trivially small (< 10−5). Interestingly, although the excitation

energies computed with the equilibrium LR-PCM approach at the minima were positive, the

emission energies computed with the non-equilibrium cLR were -1.14 and -1.10 eV, which

implies that the excited state after relaxation is more stable than the initial ground state;

this is unusual. The cLR free energy at the Kth excited state is computed by39

GK = GGS + ΩGSRF
K +

1

2

∑
µνσκλτ

PK
µνσGµν,κλP

K
κλτ (30)

where GGS is the free energy in the ground state, ΩGSRF
K is the excitation energy in the

ground-state reaction field (calculated without Giaσ,jbτ using eqs 14 and 15), and PK is the

relaxed one-particle difference density matrix for the Kth excited state. The second and

third terms are usually positive and negative, respectively, and, in the present case, the

value of ΩGSRF
K is so small that the addition of the third term results in a negative emission

energy. Exacerbating this issue, non-local (i.e., charge-transfer type) excitation has a greater

contribution of the third term than local excitation because the reorganization of the solvent

tends to be relatively significant. Although the negative transition energy is unphysical,

it can be largely attributed to the fact that the minimum structure is obtained with the

equilibrium LR-PCM approach; it may also be an artifact of DFTB without long-range

corrections. Adding long-range corrections (i.e., TD-LC-DFTB2) is a practical solution for

charge-transfer-type excitation and, indeed, TD-LC-DFTB2 does not exhibit any issues for
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this molecule. However, it also predicted a non-minimum structure for another molecule

(XXXV); thus, the problem remains case dependent.

CH
3

CH
3

N

NH
3
C

+

ψ

(A)

(B) HOMO (-5.00 eV)

(C) LUMO (-4.13 eV)

Figure 3: (A) Structure of XXXIII and the (B) HOMO and (C) LUMO for the optimized
minimum structure on S1 calculated with DFTB2. The values in parentheses are the eigen-
values (orbital energies) of the HOMO and LUMO.

Comparison with CAM-B3LYP Results

Previous benchmark studies with TD-LC-DFTB2 used CAM-B3LYP14 and CC317 as ref-

erences; in contrast, experimentally obtained values were used in the previous evaluations.

However, in Figure 4, the TD-(LC-)DFTB results (absorption and 0–0 transition energies)

obtained by all three methods are further compared with the CAM-B3LYP results reported

in ref 24. Interestingly, the absorption and 0–0 transition energies estimated by TD-LC-

DFTB2 had RMSDs of 0.250 and 0.261 eV, respectively (see Table 2) when compared with

the corresponding CAM-B3LYP results. The slope and intercept of the fitted equations for

TD-LC-DFTB2 were closer to 1.00 and 0.00, respectively, than those of the results obtained

with other methods; the R2 value of these results was also high. Hence, although TD-LC-
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DFTB2 systematically overestimated the absorption and 0–0 transition energies with respect

to the experimentally measured values, they agreed quite well with the CAM-B3LYP results.

Considering that DFTB is an approximation of the DFT, DFTB is not expected to be su-

perior to DFT in principle but may offer better results depending on the methods employed

during parametrization. The fact that TD-LC-DFTB2 agrees more closely with the CAM-

B3LYP results than with the experimentally measured values implies that TD-LC-DFTB2

is an acceptable approximation of the DFT, although a different functional seems to be

employed in the derivation of LC-DFTB2 and, possibly, during the parametrization.15

These benchmark results imply that TD-LC-DFTB2 can be utilized as a cost-effective

approximation of CAM-B3LYP. For instance, the calculation of the absorption energy for a

molecule consisting of 22 atoms (C12H10; I) with CAM-B3LYP/6-31+G(d)/cLR-PCM and

LC-DFTB2/cLR-PCM took 58.0 m and 5.6 s, respectively, using one CPU core (Xeon E5-

1620 v3). This result implies that LC-DFTB2 is at least two orders of magnitude faster

than CAM-B3LYP. It should be kept in mind that TD-LC-DFTB2 often provides higher

estimates than CAM-B3LYP; in this benchmark, of the 25 molecules tested, TD-LC-DFTB2

provided higher estimates for 23 of the absorption energies and 21 of the 0–0 transition

energies. CAM-B3LYP is also prone to overestimating the absorption and 0–0 transition

energies with respect to the experimental values,24 so those obtained with TD-LC-DFTB2

may be expected to provide even larger overestimation (possibly by 0.5 or 0.6 eV).

Tuning the Range-Separation Parameter

Considering the clear overestimation by LC-DFTB2 but noting its good correlation with

long-range corrected DFT, it may be possible to “tune” the range-separation parameter,

ω. Decreasing ω value decreases the mixing of the exchange-type contribution, leading to

lower transition energies. In principle, the electronic and repulsive parameters have to be

parametrized from scratch for each ω because ω is intrinsic to the reference DFT calculation;

however, this is rather tedious in practice. Nevertheless, it would be beneficial to investigate
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Figure 4: Correlation between the (A) absorption energies for 25 molecules and (B) 0–0
transition energies for 24 molecules calculated with CAM-B3LYP and TD-(LC-)DFTB. The
CAM-B3LYP energies were taken from ref 24.
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the possible impact of modifying ω in a posteriori manner on the computed properties.

Here, in addition to the default ω = 0.30, the same calculations (including the geometry

optimizations) were repeated using six lower ω values: 0.25, 0.20, 0.15, 0.10, 0.05, and 0.00.

Table 3 summarizes the computed RMSDs for the absorption and 0–0 transition energies

calculated by TD-LC-DFTB2 compared with the experimental and CAM-B3LYP results.

The calculated energies (Tables S3 and S4) and the fitted linear equations and R2 values

(Table S5) are provided in the Supporting Information. These results indicate that ω =

0.15 yields the smallest RMSDs (0.134 and 0.172 eV for the absorption and 0–0 transition

energies, respectively) for comparison between the TD-LC-DFTB2 and CAM-B3LYP results.

However, it should be noted that a lower ω value is akin to predicting the transition structures

in the excited state, as noted in Table S4, particularly when the excitation is attributed to

a charge-transfer-type excitation. When comparing the TD-LC-DFTB2 results with the

experiment results, ω = 0.05 yielded the smallest error; however, the deviation was still as

large as 0.373 and 0.295 eV for the absorption and 0–0 transition energies, respectively.

Table 3: RMSDs (in eV) of the TD-LC-DFTB2 absorption (abs) and 0–0 tran-
sition energies calculated using different ω values when compared with the ex-
perimental and CAM-B3LYP results.

Reference
Experiment CAM-B3LYP

ω abs 0–0 abs 0–0
0.30 0.621 0.522 0.250 0.261
0.25 0.569 0.454 0.202 0.205
0.20 0.496 0.403 0.150 0.178
0.15 0.453 0.344 0.134 0.172
0.10 0.403 0.309 0.154 0.202
0.05 0.373 0.295 0.187 0.248
0.00 0.394 0.312 0.215 0.283
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CONCLUSION

In this study, TD-LC-DFTB2 was implemented in conjunction with PCM in GAMESS-

US based on an earlier implementation of an LC-DFTB2 method.22 It was further used to

compute excited-state energies and geometries. Analytic first-order derivatives were also

implemented by employing the Z-vector method as in the well-known TD-DFT with long-

range corrections. The exchange-type term was computed via efficient matrix multiplications

and, thus, the scaling of the (TD-)LC-DFTB was expected to be cubic as in the conven-

tional (TD-)DFTB. Compared with the conventional DFTB2, LC-DFTB2 for the ground

state was 1.4 times more computationally expensive, while TD-LC-DFTB2 for excited states

was approximately three times more computationally expensive. However, a single-point

gradient calculation for a system consisting of one thousand atoms took only 30 minutes

(without PCM) with one CPU core, demonstrating the advantage of the TD-LC-DFTB2

method. Adding PCM increased the computation time significantly. As a pilot example,

in the calculations for 3HF, which exhibits dual emission, TD-LC-DFTB2 predicted sim-

ilar absorption and enol-form emission energies as TD-LC-BLYP/aug-cc-pVDZ; however,

the predicted emission energy of the keto form deviated significantly from experiment and

TD-LC-BLYP. Further benchmark calculations were performed using the other TD-DFTB

methods implemented in GAMESS-US, TD-DFTB2, TD-DFTB3, and TD-LC-DFTB2, for

a set of molecules that was previously collected and theoretically evaluated by Jacquemin et

al.24 Even though TD-LC-DFTB2 clearly overestimated the absorption and 0–0 transition

energies when compared with the experimentally measured values, they agreed well with the

results obtained by CAM-B3LYP and significantly reduced the computational cost. Further,

when the range-separation parameter ω was decreased from 0.30 to 0.15, the results agreed

even more closely with CAM-B3LYP. Therefore, based on these benchmark calculations,

TD-LC-DFTB2 can be considered a computationally cost-effective approximation of DFT

with long-range corrections.

It should be noted that the currently available parameter set38 is rather limited and only
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includes various combinations of H, C, N, and O elements. In addition, the extension to

include the third-order Taylor expansion, namely (TD-)LC-DFTB3, is also important. The

extension to TD-LC-DFTB3 should be rather straightforward as long as the LC-DFTB3

energy is formulated and appropriate parameters are developed, since TD-DFTB3 has been

developed in GAMESS-US.23 Hence, further development and improvement is essential for

practical application studies. The developed method is expected to be publicly available in

GAMESS-US in the future.
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(18) Stojanović, L.; Aziz, S. G.; Hilal, R. H.; Plasser, F.; Niehaus, T. A.; Barbatti, M.

Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping. J.

Chem. Theory Comput. 2017, 13, 5846–5860.

(19) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Mod-

els. Chem. Rev. 2005, 105, 2999–3094.

(20) Barone, V.; Carnimeo, I.; Scalmani, G. Computational Spectroscopy of Large Sys-

tems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach. J. Chem. Theory

Comput. 2013, 9, 2052–2071.

32



(21) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;

Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. et al. General Atomic

and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.

(22) Vuong, V. Q.; Nishimoto, Y.; Fedorov, D. G.; Sumpter, B. G.; Niehaus, T. A.; Irle, S.

The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-

Functional Tight-Binding. J. Chem. Theory Comput. 2019, 15, 3008–3020.

(23) Nishimoto, Y. Time-Dependent Density-Functional Tight-Binding Method with the

Third-Order Expansion of Electron Density. J. Chem. Phys. 2015, 143, 094108.

(24) Jacquemin, D.; Planchat, A.; Adamo, C.; Mennucci, B. TD-DFT Assessment of Func-

tionals for Optical 0-0 Transitions in Solvated Dyes. J. Chem. Theory Comput. 2012,

8, 2359–2372.

(25) Parr, R. G.; Pearson, R. G. Absolute Hardness: Companion Parameter to Absolute

Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516.

(26) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradi-

ents in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001.
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