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ABSTRACT
Given the established roles of glucose-dependent insulinotropic polypeptide (GIP) in pro-
moting fat storage and bone formation, we assessed the contribution of GIP to obesity
and osteopenia in ovariectomized mice with a gene encoding green fluorescent protein
(GFP) inserted into the GIP locus, in which GIP was either reduced (GIPgfp/+) or absent
(GIPgfp/gfp). In GIPgfp/gfp mice, weight gain, subcutaneous and visceral fat mass were
reduced, and glucose intolerance was improved compared with wild-type mice with the
same magnitude of insulin responses. Cancellous bone mineral density and bone cortical
thickness were reduced in GIPgfp/gfp mice compared with wild-type mice. In GIPgfp/+ mice,
weight gain, glucose intolerance and cancellous bone mineral density were not different
from that of wild-type mice. These results indicate that the total elimination of GIP amelio-
rates weight gain and adiposity in ovariectomized mice, but it enhances osteopenia, par-
ticularly in cancellous bone by partly suppressing bone formation.

INTRODUCTION
Glucose-dependent insulinotropic polypeptide (GIP) is a gut
hormone released from enteroendocrine K cells that enhances
insulin secretion after food intake1. The GIP receptor is
expressed in pancreatic b-cells, and other tissues including adi-
pose tissue and bone2–4. We previously generated GIP-deficient
mice, and found that GIP deficiency protected the mice from
high-fat diet-induced obesity and insulin resistance5, suggesting
that blocking GIP signaling might be a strategy to treat obesity.
However, mice lacking GIP showed signs of osteopenia, charac-
terized by reduced bone volume, reduced number of trabeculae
and increased osteoclast numbers5. Ovariectomy accelerates
osteopenia and fat accumulation in the abdominal region6,7,
and leads to metabolic abnormalities, such as insulin resistance
and dyslipidemia8,9; however, the mechanisms remain unclear.
To further investigate the role of GIP in fat, glucose and bone
metabolism, we evaluated the effect of GIP deficiency on

adipose tissue and bone metabolism in the setting of ovariec-
tomy in mice.

METHODS
Animal care and procedures were approved by Kyoto Univer-
sity Animal Care Committee (MedKyo16584).
GIP gene expression was reduced in C57BL/6J GIPgfp/+ mice

or was entirely absent in GIPgfp/gfp mice compared with wild-
type (WT) mice, which were all housed as described previ-
ously5. Surgical ovariectomies (dorsal approach) were carried
out on female WT, GIPgfp/+ and GIPgfp/gfp mice at the age of
8 weeks. Experiments were carried out on three separate
cohorts of mice, each consisting of three groups of five to seven
mice. Body fat mass, food intake along with energy expenditure
and locomotor activity were measured as described previ-
ously10,11. Oral glucose tolerance tests (OGTTs) were carried
out at 17 and 37 weeks-of-age using 2 g/kg body weight glu-
cose, and insulin tolerance tests were carried out at 24 and
40 weeks-of-age using 0.5 U/kg regular insulin as described
previously10. Plasma insulin, total GIP and glucagon-like
polypeptide-1 (GLP-1) levels were measured using a mouse

†These authors contributed equally to this article.
Received 2 July 2018; revised 14 November 2018; accepted 15 November 2018

ª 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd J Diabetes Investig Vol. 10 No. 4 July 2019 909
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

SHORT REPORT

https://orcid.org/0000-0001-8720-1013
https://orcid.org/0000-0001-8720-1013
https://orcid.org/0000-0001-8261-2593
https://orcid.org/0000-0001-8261-2593
mailto:
http://creativecommons.org/licenses/by-nc/4.0/


insulin enzyme-linked immunosorbent assay kit (Shibayagi,
Gunma, Japan), GIP enzyme-linked immunosorbent assay kit
(EMD Millipore Corporation, Billerica, MA, USA) and total
GLP-1 enzyme-linked immunosorbent assay kit (Meso Scale
Discovery, Rockville, MD, USA), respectively. Bone analysis by
dual-energy X-ray absorptiometry and microcomputed tomog-
raphy (lCT; LCT-100M, Aloka, Tokyo, Japan), and the mea-
surement of plasma osteocalcin and C-terminal telopeptide of
type I collagen using a mouse osteocalcin EIA kit (Biomedical
Technologies Inc., Stoughton, MA, USA) and RatLapsTM EIA
kit (Immunodiagnostic Systems Inc, Gaithersburg, MD, USA)
were carried out at 16 weeks-of-age. The blood samples were
collected from the tail vein without anesthesia.
All data are expressed as the mean – standard error of the

mean. Statistical analysis was carried out using one-way ANOVA

with the Tukey–Kramer multiple comparison test. P-values
<0.05 were considered significant.

RESULTS
Body weight gain after ovariectomies was tracked in cohort 2
(Figure 1a). The body weight of GIPgfp/gfp mice was significantly
lower than WT mice from 25 weeks-of-age, but there was no
difference between WT and GIPgfp/+ mice throughout the study.
As expected, the uterus showed atrophy in all ovariectomized
mice (data not shown). Both subcutaneous and visceral fat
depots were reduced by ~40% in GIPgfp/gfp mice, but not signifi-
cantly reduced in GIPgfp/+ mice compared with those in WT
mice at 26 weeks-of-age in cohort 1 (Figure 1b). Lean body
weight, food intake, locomotor activity and energy expenditure
were not different among all three groups (Figure 1b-e).
Blood glucose levels during OGTTs at 17 weeks-of-age in

cohort 1 were not different (Figure 2a). Insulin levels were
decreased at 30 min after glucose administration in GIPgfp/gfp

mice compared with WT mice, but the area under the curves
(AUC) of plasma insulin responses were not different (Fig-
ure 2b). The AUC of plasma GIP were under the detection
level in GIPgfp/gfp mice, and the AUC of GIP responses were
similar in WT and GIPgfp/+ (Figure 2c,g). By 37 weeks-of-age
in cohort 2, blood glucose levels were significantly decreased in
GIPgfp/gfp mice compared with WT, resulting in a lower AUC
(Figure 2e). In contrast, insulin responses to oral glucose were
not different among the three groups (Figure 2f). Plasma GLP-
1 levels during OGTT were not significantly different in WT
and GIPgfp/gfp mice (15.81 – 2.55 and 11.95 – 6.26 pg/dL at
15 min after OGTT, respectively). There were no differences in
glucose reduction in response to exogenous insulin administra-
tion among the three groups at either 24 or 40 weeks-of-age
(Figures 2d,h). The ovariectomized WT mice showed GIP
hypersecretion, obesity and insulin resistance compared with
non-ovariectomized WT mice (Figure S1).
At 16 weeks-of-age in cohort 3, body length and bone

mineral density measured by dual-energy X-ray absorptiome-
try, whole and cortical bone mineral density as determined
by microcomputed tomography, and plasma C-terminal

telopeptide of type I collagen levels were not different
between the three groups (Table 1). However, cancellous bone
mineral density, cortical thickness and plasma osteocalcin
levels were decreased by 64%, 50% and 38% in GIPgfp/gfp

mice compared with WT mice, respectively. Cortical thickness
and plasma osteocalcin levels were decreased by 43% and
27% in GIPgfp/gfp mice compared with GIPgfp/+ mice, respec-
tively, whereas there was no difference in GIPgfp/+ mice com-
pared with WT mice.

DISCUSSION
Ovarian hormone deficiency increases abdominal fat, insulin
resistance and osteopenia8,9,12. We investigated the role of GIP in
a rodent ovariectomy model, and the combined effect of ovarian
hormone deficiency and GIP deficiency. We found that weight
gain, subcutaneous and visceral fat mass, cancellous bone min-
eral density, bone cortical thickness, and plasma osteocalcin
levels were reduced in GIP knockout mice compared with WT
mice. These results are consistent with previous findings in GIP
receptor knockout mice, GIP receptor antagonists, chemical K-
cell ablation, and GIP antibody therapy showing the anabolic
effect of GIP on adipose tissue5,13–15 and bone16.
Although we did not detect significant changes in food

intake or locomotor activity, we cannot exclude the possibility
that small reductions in food intake or increase in locomotor
activity contributed to reduced weight gain in GIPgfp/gfp mice.
We also observed improved glucose intolerance in GIPgfp/gfp

mice aged 37 weeks-of-age compared with WT mice with the
same magnitude of insulin responses, whereas no difference
was seen at 17 weeks-of-age. Perhaps the significantly lower
body weight and lower visceral fat mass in GIPgfp/gfp mice com-
pared with WT mice after 26 weeks-of-age might have con-
tributed to these results. We have previously reported that
GLP-1 secretion remained unchanged in GIPgfp/gfp mice5, and
the present study also showed no compensatory hypersecretion
of GLP-1 in the ovariectomized GIP-deficient mice.
We did not detect any improvement in insulin sensitivity,

which might have been expected with reduced fat accumula-
tion, but we cannot exclude the possibility of subtle changes
in insulin sensitivity that could not be detected by our whole-
body insulin tolerance tests. We speculate that glucose home-
ostasis is not dramatically impaired in the GIP-deficient mice,
because lower body weight and visceral fat mass improved
insulin sensitivity.
The present study did not show any significant changes in

glucose and bone metabolism in GIPgfp/+ mice compared with
WT mice. These results were different from previous findings
on partial reduction of GIP signaling5,17. Although we used
GIPgfp/+ mice in which GIP levels were reduced before ovariec-
tomies (Figure S2), the levels of GIP at OGTT were similar to
that of WT mice after ovariectomies. The mechanisms of how
ovariectomy might influence GIP production in GIPgfp/+ mice
are unknown, but potentially, changes in estrogen or gonado-
tropin hormones might alter GIP secretion.
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Regarding the role of GIP on bone metabolism, reduced
bone formation, decreased bone strength and bone quality have
been reported in GIP receptor knockout mice18–21, and con-
versely, GIP-overexpressing transgenic mice showed increased
bone mass22. Although there is a report of osteocalcin-induced
release of glucagon-like peptide-123, no report that GIP regu-
lates osteocalcin directly exists as far as we know. Ovarian hor-
mone deficiency induced osteopenia itself, but GIP deficiency
enhanced osteopenia, particularly in cancellous bone by partly

suppressing bone formation. We have to consider not only
estrogen deficiency, but also elevated gonadotropins might con-
tribute to bone metabolism. There are very few reports of the
relationship between GIP and estrogen deficiency. In humans,
plasma GIP levels were approximately twice as high in post-
menopausal women as young premenopausal women24, and
estrogen replacement therapy reduced plasma GIP levels in
postmenopausal women25. We could investigate only a part of
the relationship between GIP and estrogen in the present study,
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but the mechanism by which estrogen modulates GIP produc-
tion requires further study.
In conclusion, the present study supports the concept that

the total elimination of GIP might reduce weight gain and
improve glucose metabolism, but could be associated with
undesirable consequences on bone loss in the setting of ovariec-
tomy in mice.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 | OGTT and ITT in ovariectomized WT (WT) mice and non-ovariectomized WT (WT sham) mice (n = 4–6). Body
weight of WT mice and WT sham mice were 44.2 – 2.1 g and 28.2 – 1.4 g, respectively (P < 0.01). *P < 0.05, **P < 0.01 com-
pared to WT sham. GIP, glucose-dependent insulinotropic polypeptide; HOMA-IR, homeostasis model assessment of insulin resis-
tance; WT, wild-type. Data are expressed as means – standard error of the mean.
Figure S2 | OGTT in female 9 weeks of age in WT, GIPgfp/+ and GIPgfp/gfp mice (n = 7). *P < 0.05, **P < 0.01 compared to
WT. GIP, glucose-dependent insulinotropic polypeptide; GFP, green fluorescent protein; WT, wild-type. Data are expressed as
means – standard error of the mean.
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