Title	Synthesis of the ABCDG ring skeleton of communesin F based on carboborylation of 1，3－diene and $\mathrm{Bi}(\mathrm{OTf})_{3}$－catalyzed cyclizations
Author（s）	Nakajima，Motoyuki；Tsukano，Chihiro；Y asui，Motohiro； Takemoto，Y oshiji
Citation	Journal of A ntibiotics（2019），72：407－419
Issue Date	2019－02－13
URL	http：／hdl ．handle．net／2433／243180
Right	This is the accepted manuscript of the article，which has been published in final form at https：／doi．org／10．1038／s41429－019－ 0142－7．；The full－text file will be made open to the public on 13 September 2019 in accordance with publisher＇s＇Terms and Conditions for Self－A rchiving＇．；This is not the published version．Please cite only the published version．この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Type	Journal A rticle
Textversion	author

Original Article

Abstract

Synthesis of the ABCDG ring skeleton of communesin F based on carboborylation of 1,3 -diene and $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed cyclizations

Motoyuki Nakajima, Chihiro Tsukano,* Motohiro Yasui, and Yoshiji Takemoto* Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

ABSTRACT: Communesins, isolated from the mycelium of a strain of Penicillium sp., are cytotoxic heptacyclic indole alkaloids bearing a bis-aminal structure and two contiguous quaternary carbon centers. Towards a total synthesis of communesin F, we synthesized a pentacyclic ABCDG ring skeleton via carboborylation of 1,3-diene and a Friedel-Crafts-type cyclization, resulting in the formation of an azepine ring through a $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction.

Keywords: communesin/ carboborylation/ amidine/ $\mathrm{Bi}(\mathrm{OTf})_{3}$

Introduction

Communesins A and B, which were originally isolated by Numata and co-workers from the mycelium of a strain of Penicillium sp. attached to the marine alga Enteromorpha intestinalis, are heptacyclic indole alkaloids (Figure 1). ${ }^{1}$ Spectroscopic analyses, including nuclear magnetic resonance (NMR) spectroscopy (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR including 2D NMR) and high-resolution mass spectrometry, have revealed that their structures are quite unique. They are characterized by a heptacyclic skeleton bearing two aminals and two contiguous quaternary carbon centers. To date, nine congeners have been reported, ${ }^{2-6}$ and perophoramidine is also known as a structurally related bis-amidine indole alkaloid. ${ }^{7}$ Recently, Tang and co-workers confirmed that communesins can be biosynthetically produced through the coupling of aurantioclavine and tryptamine based on genetic inactivation studies. ${ }^{8}$ Communesins show cytotoxicity against P388 lymphocytic leukemia cells ($\left.\mathrm{ED}_{50} \mathrm{~A}: 3.5 \mu \mathrm{~g} / \mathrm{mL}, \mathrm{B}: 0.45 \mu \mathrm{~g} / \mathrm{mL}\right)$ and potent insecticidal activity towards silkworms $\left(\mathrm{LD}_{50} \mathrm{D}: 300 \mu \mathrm{~g} / \mathrm{g}, \mathrm{E}: 80 \mu \mathrm{~g} / \mathrm{g}\right)$. Because of their unique structure and biological activity, many research groups have conducted synthetic studies of communesins in which various synthetic methods were developed. ${ }^{9-14}$ The first racemic total synthesis of communesin F was achieved by Qin and co-workers based on an intramolecular cyclopropanation strategy. ${ }^{15}$ Weinreb and Funk also reported total synthesis of communesin F, independently. ${ }^{16,17}$ The first asymmetric total syntheses of communesins A, B and F were accomplished by Ma and co-workers. ${ }^{18,19}$ Asymmetric total syntheses were also reported by Stoltz, Movassaghi, Yang, and Chen, independently. ${ }^{20-23}$ We have also engaged in the development of synthetic strategies for this class of alkaloids including communesins, perophoramidine and aurantioclavin. ${ }^{24-31}$

communesin A-E, G, H
communesin F

perophoramidine

(-)-aurantioclavine

Figure 1. Communesins and related alkaloids.

Results and Discussion

Recently, we have developed palladium(Pd)-catalyzed carbosilylation of 1,3-diene with carbamoyl chloride for the synthesis of several spirooxindoles. ${ }^{32}$ Extending this reaction, a Pd-catalyzed carboborylation of 1,3-diene was developed for a synthesis of iminoindoline. ${ }^{30}$ Considering our developed method, it was envisioned that communesin F would be accessed from a pentacyclic skeleton II through intermediate I by the introduction of an aminoethyl unit and the formation of amidine. The pentacyclic skeleton II would be constructed from a tetracyclic compound IV via III by the introduction of an allyl alcohol unit, resulting in an $\mathrm{S}_{\mathrm{N}} 2$ ' reaction for the formation of an azepine ring and a reduction of amidine. The tetracyclic compound IV can be synthesized by a carboborylation of 1,3-diene VI and an intramolecular Friedel-Crafts-type reaction of a resultant iminoindoline $\mathbf{V} \cdot{ }^{30}$ Following this retrosynthetic analysis, we have recently succeeded in the construction of tetracyclic skeleton $\mathbf{I V}(\mathrm{R}=\mathrm{OMe})$ from diene $\mathrm{VI}(\mathrm{R}=\mathrm{OMe})$ through iminoindoline $\mathbf{V}(\mathrm{R}=\mathrm{OMe})$. However, compound $\mathbf{1}$ could not be converted to compound $\mathbf{2}$ through removal of the methyl group, although we tried various conditions including $\mathrm{BBr}_{3}, \mathrm{BCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{LiCl}, \mathrm{Ph}_{2} \mathrm{PLi}$ and $p \mathrm{MeC}{ }_{6} \mathrm{H}_{4} \mathrm{SLi}$ (Scheme 1b). ${ }^{33}$ These reaction conditions resulted in the removal of a Cbz group or the decomposition of compound 1. Therefore, we needed to revise our initial synthetic route and planned to employ a 1,3-dienecontaining triflate $(\mathrm{R}=\mathrm{OTf})$ to avoid a protecting group manipulation. The use of a substrate bearing a triflate group for Pd-catalyzed carboborylation would extend its reaction scope, and it might react itself under the reaction conditions. In the current manuscript, we report the construction of a pentacyclic skeleton of communesin F by extending our strategy based on carboborylation of 1,3-diene.
(a) Retrosynthesis of communesin F

Scheme 1. (a) Retrosynthesis of communesin F and (b) failed attempt at removing a methyl group from compound
1.

The synthesis started with a removal of a methyl group on a phenolic hydroxyl group. A methoxy aniline derivative 3, which was prepared from t-butyl(3-methoxyphenyl)carbamate in four steps, ${ }^{30}$ was treated using BBr_{3} to give a phenol (Scheme 2). The resultant phenolic hydroxy group was silylated with tert-butyldimethylsilyl (TBS) chloride and imidazole to give compound 4. A half reduction of a lactone with diisobutylaluminum hydride (DIBAL-H) was followed by Wittig olefination, which gave diene 5 through internal transfer of a TBS group. After the formation of urea by a treatment of phenyl isocyanate, a phenolic hydroxy group was protected as a triflate. A removal of a TBS group was followed by a Mitsunobu reaction with $p \mathrm{NsNHBoc}^{34}$ to give compound $\mathbf{8}$, which was converted to carbodiimide 9 through dehydration with $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$.

With carbodiimide 9 containing a diene moiety, we investigated whether the triflate is intact under the reaction conditions of Pd-catalyzed carboborylation of 1,3-diene. In the previous literature, there is no report concerning
$\operatorname{Pd}($ II $)$-catalyzed Miyaura borylation of triflates and diborone without a ligand, but reactions using diphenylphosphinoferrocene ${ }^{35}$ or the reaction of arylbromide have been reported. ${ }^{36}$ Therefore, it was expected that a triflate group would be intact during the carboborylation of 1,3-diene. As expected, the reaction of 9 proceeded smoothly under the established conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2},(\mathrm{pinB})_{2}\right.$, xylene, $\left.50^{\circ} \mathrm{C}\right)$ to give an allyl borane, which was treated with $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ to give allyl alcohol 10. After silylation of allyl alcohol 10, a tert-butoxyoxycarbonyl (Boc) group was introduced to an amidine nitrogen for further transformation. The treatment of compound $\mathbf{1 1}$ using tetrabutylammonium fluoride gave an allyl alcohol along with the removal of a triflate group, which was converted to allyl bromide $\mathbf{1 2}$ under standard conditions. Unfortunately, the resultant allyl bromide $\mathbf{1 2}$ could not be converted to compound $\mathbf{1 3}$ through a treatment of $\mathrm{Tf}_{2} \mathrm{O}$ and pyridine. On the other hand, when HF-pyridine was used, a triethylsilyl group was selectively removed with the triflate group intact. The resultant allyl alcohol was also converted to allyl bromide $\mathbf{1 3}$ containing a triflate group, while a small amount of compound $\mathbf{1 4}$ was also obtained through the removal of a Boc group.

Scheme 2. Synthesis of 3,3-disubstituted iminoindoline $\mathbf{1 0}$ based on the Pd-catalyzed carboborylation of 1,3-diene
and its derivatization.

Next, we investigated Friedel-Crafts-type cyclization of allyl bromides $\mathbf{1 2}$ and $\mathbf{1 3}$ to construct a tetracyclic ABCD ring skeleton. Previously, we have reported the cyclization of compound $\mathbf{1 5}$ containing a methoxy group using 10 $\mathrm{mol} \%$ of $\mathrm{Bi}(\mathrm{OTf})_{3}$ and 3.5 equivalents of AgOTf (Table 1, entry 1)..$^{30,37-39}$ The reaction gave compound 16a in 49% yield along with $\mathbf{1 6 b}$ in $\mathbf{3 0 \%}$ yield. We initially applied these conditions to a cyclization of compound $\mathbf{1 3}$ containing a triflate group. However, the reaction gave a complex mixture instead of any cyclized products $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$ (entry 2). On the other hand, the cyclization of compound $\mathbf{1 2}$ containing a phenolic hydroxy group proceeded under the same conditions to give compounds $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ in 63% and 30% yields with excellent stereochemistry, respectively (entry 3). The stereochemistry was determined by a comparison with our previous results ${ }^{30}$ and a NOESY experiment of a derivatized compound 28 (Scheme 4, vide infra). When 3.5 equivalents of AgOTf was reduced to 1.2 equivalents, the formation of byproduct $\mathbf{1 8 b}$ was suppressed to 17% yield (entry 4). Finally, the yield of the desired product 18a was improved to 80% yield using 1.05 equivalents of AgOTf (entry 5). AgOTf was essential for this Friedel-Craftstype reaction (entry 6)

Table 1. Formation of a tetracyclic ABCD skeleton through a Friedel-Crafts-type reaction.

After the construction of a tetracyclic ABCD ring skeleton containing an amidine, we turned our attention to the
formation of an azepine ring (G ring). A treatment of compound 18a with $\mathrm{Tf}_{2} \mathrm{O}$ and pyridine gave compound $\mathbf{1 7 a}$ in 91% yield (Scheme 3). To introduce an allyl alcohol unit, Suzuki-Miyaura coupling with vinyl boronic ester 19 was examined. When compound 17a and vinyl boronic ester 19 were treated with a catalytic amount of $\mathrm{Pd}(\mathrm{dba})_{2}$, SPhos and $\mathrm{K}_{3} \mathrm{PO}_{4}$, or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in N, N-dimethylformamide (DMF) at $100^{\circ} \mathrm{C}$, respectively, these reactions gave the desired product 20 in low yields (Table 2, entries 1 and 2). However, conditions involving $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in toluene and ethanol at $100^{\circ} \mathrm{C}$ improved the yield to 56% (entry 3). The removal of the $p \mathrm{Ns}$ and trimethylsilyl (TMS) group gave allyl alcohol 21 in 66% yield over two steps. To construct the azepine ring, mesylation of a tertiary alcohol was initially attempted through a treatment using methanesulfonyl chloride (MsCl) and $\mathrm{Et}_{3} \mathrm{~N} .{ }^{18}$ However, a dehydration occurred to give diene 23 instead of the desired cyclized product 22. Interestingly, when compound 21 was treated with pyridinium p-toluenesulfonate (PPTS), ${ }^{15}$ ortho-amide 24 was observed (as assessed using ${ }^{1} \mathrm{H}$ NMR analysis). A related structure was observed in synthetic studies of dehaloperophoramidine reported by Somfai and co-workers. ${ }^{13,14}$ We considered the thermodynamic stability of possible equilibrium products such as simplified compounds 25, 26 and 27 through density functional theory (DFT) calculations (Figure 2). These calculations revealed that ortho-amide 26 was the most stable isomer among these compounds. These results indicate that the formation of the ortho-amide through acid activation using PPTS from amidine would be a competitive process with the formation of the azepine ring via the $\mathrm{S}_{\mathrm{N}} 2$ reaction of the tertiary alcohol, and the equilibrium tends to be biased towards the ortho-amides such as compounds 24 and 26. Therefore, we expected that it would be difficult to achieve the formation of azepine $\mathbf{2 2}$ from compound $\mathbf{2 1}$ containing the amidine moiety.

Scheme 3. Failed attempt at the formation of an azepine ring.

Table 2. Suzuki-Miyaura coupling of compound $\mathbf{1 7 a}$ and boronic acid 19.

entry	cat.	ligand	base	solvent	temp.	yield
1	$\mathrm{Pd}(\mathrm{dba})_{2}$	SPhos	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMF	$100^{\circ} \mathrm{C}$	10%
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	DMF	$100^{\circ} \mathrm{C}$	28%
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	toluene/EtOH	$100^{\circ} \mathrm{C}$	56%

Figure 2. Comparison of the thermodynamic stability of formable compounds 25, 26 and 27, calculated using Gaussian ' 09 at the B3LYP/6-31G(d) level of theory (DFT).

Therefore, a reduction of amidine $\mathbf{2 0}$ was investigated prior to the formation of the azepine ring to avoid the formation of the ortho-amide (Scheme 4). When compound 20 was treated using NaBH_{4}, the desired product was not obtained. In the case of DIBAL-H, the removal of a Boc group occurred instead of the reduction of the amidine. However, in sharp contrast, treatment using catecholborane ${ }^{40}$ gave the desired product $\mathbf{2 8}$ in 65% yield as a $3.3: 1$ mixture of diastereomers. A NOESY experiment indicated that the stereochemistry of the major isomer was a trans-fused structure, which would be epimerized to a cis-fused structure later. Because a reducing reagent approached from the less hindered face, the trans isomer was obtained as a major product in this reaction. After the removal of Boc and the TMS groups, the formation of an azepine ring was investigated again. When compound 29 was treated using MsCl and $\mathrm{Et}_{3} \mathrm{~N},{ }^{18}$ the reaction gave diene $\mathbf{3 1}$ in 48% yield and the desired cyclized product $\mathbf{3 0}$ was not detected at all (Table 3, entry 1). When $\mathrm{Bi}(\mathrm{OTf})_{3}$ was employed at $-15^{\circ} \mathrm{C}$ as a Lewis acid, the reaction proceeded to give the desired product 30 as a major product albeit in low yield (entry 2)..41,42 The reaction using $\mathrm{Bi}(\mathrm{OTf})_{3}$ at $-40^{\circ} \mathrm{C}$ gave the desired product $\mathbf{3 0}$ in 17% yield with recovery of the starting material (entry 3). However, under room temperature reaction
conditions the starting material 29 was consumed completely to give the desired azepine $\mathbf{3 0}$ in 55% yield, while diene 31 was obtained in 34\% yield (entry 4). The obtained pentacyclic compound $\mathbf{3 0}$ would be useful for further derivatization, and now we are investigating further transformations to achieve a total synthesis of communesin F .

Scheme 4. Synthesis of the ABCDG ring skeleton 30.

Table 3. Investigation of the formation of the azepine ring.

entry	conditions	yields
1	$\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	30: 0\%, 31: 48\%
2	$\begin{gathered} \mathrm{Bi}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%), \mathrm{MS} 4 \AA \\ \mathrm{CH}_{2} \mathrm{Cl}_{2},-15^{\circ} \mathrm{C} \end{gathered}$	30: $23 \%, 31:$ trace
3	$\begin{gathered} \mathrm{Bi}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%), \mathrm{MS} 4 \AA \\ \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C} \end{gathered}$	30:17\%, 31: 0\%, strating material 29 67\%
4	$\mathrm{Bi}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%), \mathrm{MS} 4 \AA$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt	30: 55\%, 31: 34%

In summary, we have investigated the synthesis of a pentacyclic ABCDG ring skeleton of communesin F based on carboborylation of 1,3 -diene, a $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed Friedel-Crafts-type reaction and azepine ring formation. It is interesting that a triflate group was intact under the conditions required for Pd -catalyzed carboborylation of 1,3-diene. Additionally, it was essential that the resultant amidine was reduced prior to the formation of the azepine ring through $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed cyclization to avoid an undesired formation of ortho-amide. We are currently investigating further transformation of the pentacyclic compound to complete the synthesis of communesin F .

Experimental Procedure

General. All non-aqueous reactions were carried out under a positive pressure of argon in over-dried glassware. Analytical thin-layer chromatography was performed using Silica gel 60 plates (Merck, Darmstadt, Germany). Silica gel column chromatography was performed using Kanto silica gel 60 (particle size 63-210 μ m, Kanto, Tokyo, Japan) and Chromatorex BW-300 (Fuji silysia, Aichi, Japan). Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded using a JNM-ECA 500 (JEOL, Tokyo, Japan) at 500 MHz or a JNM-AL 400 (JEOL) at 400 MHz . Chemical shifts were reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.00)$ in CDCl_{3} or the residual solvent peak in $\mathrm{C}_{6} \mathrm{D}_{6}(\delta 7.16)$. Multiplicity was indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded using a JNM-ECA 500 at 126 MHz or a JNMAL 400 at 100 MHz . Chemical shifts were reported relative to $\mathrm{CDCl}_{3}(\delta 77.0)$ or $\mathrm{C}_{6} \mathrm{D}_{6}(\delta 128.0)$. Infrared spectra were recorded using a FT/IR-4100 Fourier-transform infrared spectrometer (JASCO, Tokyo, Japan) with ATR (attenuated total reflectance). Low and high resolution mass spectra were recorded using a JMS-700 mass spectrometer (JEOL) for FAB-MS and a LCMS-IT-TOF (Shimadzu, Kyoto, Japan) for ESI-MS.

Experimental procedures and spectroscopic data.

3

63% (2 steps)

4

Silylether 4: To a solution of aniline $3(2.06 \mathrm{~g}, 9.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94.0 \mathrm{~mL})$ was added a solution of $\mathrm{BBr}_{3}(25.0$ $\mathrm{g}, 94.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , and then warmed to room temperature. After 2 h , saturated aqueous NaHCO_{3} and 1 M aqueous NaOH were added to the reaction mixture until the mixture became basic. The mixture was extracted with EtOAc. The combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure gave a crude demethylated lactone.
To a solution of the above crude lactone in anhydrous DMF (20.0 mL) were added $\mathrm{TBSCl}(2.80 \mathrm{~g}, 18.8 \mathrm{mmol})$ and imidazole $(1.90 \mathrm{~g}, 28.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 3 h . After addition of water, the mixture was extracted with extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($5-40 \% \mathrm{EtOAc} /$ hexane) gave silylether $4(1.88 \mathrm{~g}, 63 \%$ in 2 steps $)$ as a pale yellow solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.99(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 6.35(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.1 \mathrm{~Hz}), 6.27(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.1 \mathrm{~Hz}), 6.06(\mathrm{dd}, 1 \mathrm{H}, J=1.7$, $1.2 \mathrm{~Hz}), 4.53(\mathrm{dd}, 2 \mathrm{H}, J=6.3,5.8 \mathrm{~Hz}), 3.76(\mathrm{br}, 2 \mathrm{H}), 2.72(\mathrm{dd}, 2 \mathrm{H}, J=6.3,5.7 \mathrm{~Hz}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 164.4,156.1,153.1,144.0,129.8,120.3,115.5,108.7,108.6,66.5,28.2,25.6,18.1,-4.1$; IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3369,2954,2891,2857,1716,1625,1580,1462,1398,1302,1257,1219,1081,1020$; MS (FAB) $m / z 320[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$320.1682; Found: m / z 320.1685 .

(E)-Dienylaniline 5: To a solution of silylether $\mathbf{4}(1.25 \mathrm{~g}, 3.91 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL})$ was added DIBAL-H (1M in toluene, $7.80 \mathrm{~mL}, 7.80 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , saturated aqueous Na / K tartrate was added to the reaction solution. The resultant mixture was stirred vigorously at room temperature for 2 h , and extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure gave a crude acetal.
To a suspension of $\mathrm{MePPh}_{3} \mathrm{Br}(4.89 \mathrm{~g}, 13.7 \mathrm{mmol})$ in anhydrous THF $(25.0 \mathrm{~mL})$ was added KHMDS (1 M solution in THF; $12.0 \mathrm{~mL}, 11.7 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the yellow mixture was then added a solution of the above crude acetal in anhydrous THF (15 mL) via cannula. The reaction mixture was stirred at room temperature for 2 h . After addition of water, the resultant mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($5-40 \% \mathrm{EtOAc} /$ hexane) gave (E)-dienylaniline 5 (963.1 $\mathrm{mg}, 77 \%$ in 2 steps) as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 6.77(\mathrm{ddd}, 1 \mathrm{H}, J=$ $16.9,10.9,10.3 \mathrm{~Hz}), 6.36(\mathrm{dd}, 1 \mathrm{H}, J=8.0,0.8 \mathrm{~Hz}), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 6.25(\mathrm{dd}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 5.27(\mathrm{dd}$, $1 \mathrm{H}, J=16.9,1.2 \mathrm{~Hz}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.75(\mathrm{br}, 1 \mathrm{H}), 3.63(\mathrm{br}, 1 \mathrm{H}), 3.60(\mathrm{br}, 2 \mathrm{H}), 2.98(\mathrm{br}, 1 \mathrm{H}), 2.38(\mathrm{br}$, $1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.9,144.7,136.6,132.4,132.1,128.7,119.3,115.8$, $106.9,106.0,60.6,33.3,25.7,18.1,-5.5$; IR (ATR, cm^{-1}) 3375, 2955, 2924, 2857, 1618, 1581, 1464, 1234, 1088; MS (FAB) $m / z 320[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$320.2046; Found: $m / z 320.2045$.

(E)-Dienylurea 6: To a solution of (E)-dienylaniline $5(847.9 \mathrm{mg}, 2.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26.0 \mathrm{~mL})$ was added phenyl isocyanate $(317.0 \mu \mathrm{~L}, 2.92 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 13 h . After addition of water, the reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by short column chromatography on silica gel (10$20 \% \mathrm{EtOAc} /$ hexane) gave a crude urea as a white solid.
To a solution of the above crude urea in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50.0 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(2.10 \mathrm{~mL}, 15.1 \mathrm{mmol})$ and $\mathrm{PhNTf}_{2}(6.15$ $\mathrm{g}, 17.2 \mathrm{mmol}$) in some portions. The resultant solution was refluxed at $55^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was then cooled to room temperature. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($5-20 \% \mathrm{EtOAc} /$ hexane) gave (E)-dienylurea 6 $(1.37 \mathrm{~g}, 90 \%$ in 2 steps $)$ as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{dd}, 1 \mathrm{H}, J=8.3,0.9 \mathrm{~Hz}), 7.39$ (br, 1H), 7.34-7.30 (m, 5H), 7.13-7.09 (m, 1H), $9.97(\mathrm{dd}, 1 \mathrm{H}, J=8.3,0.9 \mathrm{~Hz}), 6.69(\mathrm{ddd}, 1 \mathrm{H}, J=16.6,10.9,10.3$ $\mathrm{Hz}), 6.65(\mathrm{br}, 1 \mathrm{H}), 6.21(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 5.38-5.34(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.95(\mathrm{~m}$, $1 \mathrm{H}), 2.39-2.36(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.6,147.2,138.8,137.6,137.1$, 131.4, 129.7, 129.3, 128.9, 126.8, 124.4, 121.4, 121.1, 120.6, 119.7, 118.4 (q, $J=321 \mathrm{~Hz}$), 115.1, 61.6, 35.0, 25.9, 18.5, -5.5; IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3332,2954,2857,1659,1550,1524,1446,1420,1296,1250,1207,1139,1054,962 ; \mathrm{MS}$
(FAB) $m / z 571[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 571.1910$; Found: m / z 570.1910.

(E)-Dienylalcohol 7: To a solution of (E)-dienylurea $6(42.7 \mathrm{mg}, 0.0748 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added TBAF (1 M in THF, $83.0 \mu \mathrm{~L}, 0.0823 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10-40\% EtOAc/hexane) gave (E)-dienylalcohol 7 (35.3 mg , quant.) as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.77(\mathrm{br}, 1 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{br}, 1 \mathrm{H}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=7.1,6.9$ $\mathrm{Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.72(\mathrm{ddd}, 1 \mathrm{H}, J=16.9,10.9,10.3 \mathrm{~Hz}), 6.24(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 5.39-5.33(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{br}, 1 \mathrm{H}), 3.46(\mathrm{br}, 1 \mathrm{H}), 3.04(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 2.23(\mathrm{br}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $153.2,147.3,139.3,137.9,137.8,131.3,129.2,129.1,129.1,126.1,124.1,121.4,120.9,119.6,118.4$ (q, $J=321$ $\mathrm{Hz}), 114.8,60.2,34.2$; $\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right) 3337,3010,2926,1670,1579,1550,1446,1420,1297,1210,1138,1051$, 963; MS (FAB) $m / z 457[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 457.1045$; Found: $m / z 457.1042$.

(E)-Dienylurea 8: To a solution of (E)-dienylalcohol $7(992.0 \mathrm{mg}, 2.17 \mathrm{mmol}), p \mathrm{NsNHBoc}(786.0 \mathrm{mg}, 2.60 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(682.0 \mathrm{mg}, 2.60 \mathrm{mmol})$ in THF $(12.0 \mathrm{~mL})$ was added a solution of di-tert-butyl azodicarboxylate (598.7 $\mathrm{mg}, 2.60 \mathrm{mmol})$ in THF $(10.0 \mathrm{~mL})$. The mixture was stirred at room temperature for 13.5 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc . The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($10-40 \%$ EtOAc/hexane) gave the mixture of (E)-dienylurea $\mathbf{8}$ and $p \mathrm{NsNHBoc}$. The mixture was dissolved in CHCl_{3}, washed with 1 M aqueous NaOH and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure gave (E)-dienylurea $8(1.43 \mathrm{~g}, 89 \%)$ as a pale yellow solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35-8.32(\mathrm{~m}, 3 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}$, $J=9.1 \mathrm{~Hz}), 7.47(\mathrm{br}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{br}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.79(\mathrm{ddd}$, $1 \mathrm{H}, J=16.3,10.9,10.6 \mathrm{~Hz}), 6.24(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 5.42-5.38(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 1 \mathrm{H})$, $2.76-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.6,150.9,150.5,147.3,145.1,138.5,138.4$, $137.7,131.3,129.4,129.4,129.1,128.1,125.9,124.6,124.1,122.6,121.3,120.0,118.4(\mathrm{q}, J=321 \mathrm{~Hz}), 115.1,86.5$, $46.2,33.4,27.9$; IR (ATR, cm^{-1}) 3349, 2929, 2854, 1732, 1668, 1534, 1446, 1420, 1368, 1351, 1291, 1249, 1212, 1139, 1055, 961; MS (FAB) $m / z 741[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 741.1512$; Found: m / z 741.1512 .

(E)-Dienylcarbodiimide 9: To a solution of (E)-dienylurea $8(62.5 \mathrm{mg}, 0.0844 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(73.5 \mathrm{mg}, 0.270$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(47.0 \mu \mathrm{~L}, 0.338 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(83.9 \mathrm{mg}, 0.253 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h . After concentration of the mixture under reduced pressure, purification of the residue by flash column chromatography on neutral silica gel ($5-20 \% \mathrm{EtOAc} /$ hexane) gave (E)-dienylcarbodiimide $\mathbf{9}(56.4 \mathrm{mg}, 92 \%)$ as a pale-yellow oil. The product was not stable, thus it was used for the next reaction immediately: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}$), $8.07(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.37-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J$ $=7.5,7.4 \mathrm{~Hz}), 7.16-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{ddd}, 1 \mathrm{H}, J=16.6,10.6,10.6 \mathrm{~Hz}), 6.25(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.37-5.32(\mathrm{~m}$, $2 \mathrm{H}), 3.89(\mathrm{dd}, 2 \mathrm{H}, J=7.2,7.2 \mathrm{~Hz}), 2.99(\mathrm{br}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,150.2,147.6$, $145.4,139.3,137.3,137.2,132.4,132.1,131.1,129.5,129.3,129.1,127.9,125.9,124.9,124.4,123.9,121.6,118.4$ (q, $J=321 \mathrm{~Hz}$), 118.2, 85.2, 45.9, 33.4, 27.7; IR (ATR, cm^{-1}) 3105, 2938, 2857, 2141, 1731, 1591, 1563, 1533, 1476, 1452, 1421, 1366, 1351, 1285, 1250, 1213, 1137, 909. (Compound 9 was too unstable to measure HRMS)

2-Iminoindoline 10: To a solution of carbodiimide $9(56.4 \mathrm{mg}, 0.0780 \mathrm{mmol})$ in anhydrous xylene (1.0 mL) were added bis(pinacolato)diboron ($39.6 \mathrm{mg}, 0.156 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.5 \mathrm{mg}, 0.0156 \mathrm{mmol})$ and the reaction atmosphere was replaced by the Ar atmosphere. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and then cooled to $0{ }^{\circ} \mathrm{C}$. After addition of water (1.0 mL) and sodium perborate tetrahydrate ($72.0 \mathrm{mg}, 0.468 \mathrm{mmol}$), the mixture was stirred vigorously at room temperature for 1 h . The mixture was then extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($20-60 \%$ EtOAc/hexane) gave 2-iminoindoline $\mathbf{1 0}(42.4 \mathrm{mg}, 73 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26$ (d, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}$), $7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}$), 7.79 (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.40-$ 7.34 (m, 4H), 7.13 (dd, $1 \mathrm{H}, J=7.5,7.4 \mathrm{~Hz}$), 6.98 (br, 1H), 6.93-6.90 (m, 1H), 6.07 (ddd, $1 \mathrm{H}, J=15.8,5.2,4.8 \mathrm{~Hz}$), $5.78(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.23(\mathrm{~d}, 2 \mathrm{H}, J=4.9 \mathrm{~Hz}), 3.45(\mathrm{ddd}, 1 \mathrm{H}, J=14.0,11.8,4.0 \mathrm{~Hz}), 3.22$ (ddd, $1 \mathrm{H}, J=14.3$, $12.0,4.3 \mathrm{~Hz}), 2.89(\mathrm{ddd}, 1 \mathrm{H}, J=12.6,12.6,4.3 \mathrm{~Hz}), 2.54$ (ddd, $1 \mathrm{H}, J=12.6,12.4,4.0 \mathrm{~Hz}$), 1.94 (br, 1H), 1.31 (s, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,158.9,150.3,150.0,145.1,144.9,138.6,133.2,131.1,129.2,129.1$, 127.6, 127.5, 124.1, 123.9, 120.0, 118.5 (q, $J=320 \mathrm{~Hz}$), 117.9, 114.4, 85.7, 62.8, 59.0, 43.4, 33.0, 27.7; IR (ATR, cm^{-1}) 3380, 3106, 2936, 2877, 1732, 1561, 1534, 1439, 1420, 1349, 1247, 1213, 1138, 1083, 1014, 907; MS (FAB) $m / z 741[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 741.1512$; Found: $m / z 741.1508$.

N-Boc-iminoindoline 11: To a solution of 2-iminoindoline $10(39.4 \mathrm{mg}, 0.0532 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(23.0 \mu \mathrm{~L}, 0.160 \mathrm{mmol})$ and $\operatorname{TESCl}(16.0 \mu \mathrm{~L}, 0.106 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h . After addition of water, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by short column chromatography on neutral silica gel ($10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) gave a crude TES-protected iminoindoline. To a solution of the above crude iminoindoline in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(37.0 \mu \mathrm{~L}, 0.213 \mathrm{mmol})$, $\mathrm{Boc}_{2} \mathrm{O}(34.9 \mathrm{mg}, 0.160 \mathrm{mmol})$ and DMAP $(6.5 \mathrm{mg}, 0.0532 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1.5 h . After concentration of the resultant mixture under reduced pressure, purification of the residue by flash column chromatography on silica gel (10-30\% EtOAc/hexane) gave N-Boc-iminoindoline 11 ($33.7 \mathrm{mg}, 84 \%$ in 2 steps) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.73$ $(\mathrm{d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=8.6,8.3 \mathrm{~Hz}), 7.31(\mathrm{dd}, 2 \mathrm{H}, J=7.8,7.7 \mathrm{~Hz}) 7.12(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.06-7.02$ $(\mathrm{m}, 3 \mathrm{H}), 5.93(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 5.66(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.17(\mathrm{~d}, 2 \mathrm{H}, J=4.3 \mathrm{~Hz}), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.62$ $(\mathrm{m}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{dd}, 9 \mathrm{H}, J=8.0,7.8 \mathrm{~Hz}), 0.57(\mathrm{q}, 6 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 153.2,150.2,150.1,149.0,147.9,145.9,145.6,143.5,131.5,130.5,129.4,129.1,128.7$, $123.9,123.8,122.1,120.5,118.3(\mathrm{q}, ~ J=321 \mathrm{~Hz}), 115.8,114.1,85.3,84.8,62.6,54.0,43.2,34.7,27.7,27.4,6.7,4.3$; IR (ATR, cm^{-1}) 2955, 2876, 1731, 1698, 1617, 1594, 1535, 1456, 1421, 1370, 1348, 1287, 1251, 1218, 1141, 1046, 1014, 917, 822; MS (FAB) $m / z 955[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 955.2901$; Found: m / z 955.2900 .

Allyl bromide 12: To a solution of N-Boc-iminoindoline $11(21.9 \mathrm{mg}, 0.0229 \mathrm{mmol})$ in THF (0.5 mL) was added TBAF $(48.1 \mu \mathrm{~L}, 0.0481 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($20-60 \%$ EtOAc/hexane) gave an allyl alcohol ($15.1 \mathrm{mg}, 93 \%$) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.29(\mathrm{dd}, 2 \mathrm{H}, J=7.5,7.2 \mathrm{~Hz}), 7.19(\mathrm{~d}$, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}) 7.04-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.03(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz}), 5.77(\mathrm{~d}$, $1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 4.09(\mathrm{br}, 2 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, 1 \mathrm{H}, J=12.3,12.1,4.6 \mathrm{~Hz}), 2.58$ (ddd, $1 \mathrm{H}, J=12.1,12.0,4.3 \mathrm{~Hz}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,152.7,150.3$,
$150.2,149.2,148.4,145.5,142.2,131.3,129.8,129.6,129.4,129.1,123.8,123.7,120.4,115.2,112.7,106.6,85.2$, 84.2, 62.9, 53.5, 43.9, 35.2, 27.7, 27.5; IR (ATR, cm^{-1}) 3445, 2980, 1729, 1695, 1535, 1450, 1360, 1352, 1270, 1085, 910, 730; MS (FAB) $m / z 709[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 709.2543$; Found: $m / z 709.2543$.

To a solution of the above allyl alcohol ($169.6 \mathrm{mg}, 0.239 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(157.4 \mathrm{mg}, 0.598 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ mL) was added $\mathrm{CBr}_{4}(158.5 \mathrm{mg}, 0.478 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After addition of water, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10$40 \% \mathrm{EtOAc} /$ hexane $)$ gave allylbromide $12(180.3 \mathrm{mg}, 98 \%)$ as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.08(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.32(\mathrm{dd}, 2 \mathrm{H}, J=8.0,7.7 \mathrm{~Hz}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}) 7.07-$ $7.02(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 5.87-5.81(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{ddd}$, $1 \mathrm{H}, J=14.7,11.1,4.6 \mathrm{~Hz}$), $3.67(\mathrm{dd}, 1 \mathrm{H}, J=12.0,11.2 \mathrm{~Hz}$), $2.77(\mathrm{dd}, 1 \mathrm{H}, J=12.3,10.9 \mathrm{~Hz}$), 2.58 (ddd, $1 \mathrm{H}, J=$ $12.3,12.0,4.3 \mathrm{~Hz}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,152.2,150.3,150.2,149.2$, $148.3,145.5,142.4,134.6,130.1,129.4,129.1,126.8,123.8,120.5,114.8,112.8,107.4,107.3,85.3,84.2,53.5,43.8$, $34.8,32.1,27.8,27.4$; IR (ATR, cm^{-1}) 3445, 2980, 1729, 1695, 1599, 1532, 1460, 1366, 1348, 1277, 1250, 1143, 1085, 1061, 968, 909, 852, 730, 605, 578; MS (FAB) $m / z 771[M+H]^{+}$; HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{BrN}_{4} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 771.1699; Found: m/z 771.1696.

Tetracyclic compound 18a: A suspension of allylbromide $12(300.0 \mathrm{mg}, 0.389 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(25.5 \mathrm{mg}, 0.0389$ $\mathrm{mmol}), \operatorname{AgOTf}(104.8 \mathrm{mg}, 0.408 \mathrm{mmol})$, $\mathrm{MS} 4 \AA(300 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(161.7 \mathrm{mg}, 1.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL})$ was stirred at room temperature for 15 min . After addition of water, the mixture was then filtered through Celite pad. The filtrate was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10-60\% EtOAc/hexane) gave a tetracyclic compound $\mathbf{1 8 a}(215.8 \mathrm{mg}, 80 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.89(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.1 \mathrm{~Hz}), 7.36(\mathrm{dd}, 1 \mathrm{H}, J=7.5,7.4 \mathrm{~Hz}), 7.24$ (ddd, $1 \mathrm{H}, J=8.3,8.3,0.8 \mathrm{~Hz}$), $7.18(\mathrm{dd}, 1 \mathrm{H}, J=7.5,7.4 \mathrm{~Hz}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.48$ (ddd, $1 \mathrm{H}, J=17.4,10.0,9.1 \mathrm{~Hz}), 5.81(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 5.67(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 3.57-$ $3.50(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0$, $152.9,150.2,149.9,149.3,145.0,143.6,142.9,136.2,130.7,129.5,128.6,126.5,126.0,125.8,125.1,124.7,123.8$, $114.5,114.2,108.0,85.1,84.2,50.1,47.9,43.8,28.2,27.7,27.3$; IR (ATR, cm^{-1}) $3449,2979,2919,1731,1654,1599$, 1533, 1460, 1368, 1348, 1282, 1236, 1148, 1088, 889, ; MS (FAB) $m / z 691[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$691.2438; Found: $m / z 691.2439$.

Triflate 17a: To a solution of tetracyclic compound $\mathbf{1 8 a}(213.0 \mathrm{mg}, 0.308 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ were added pyridine ($87.3 \mu \mathrm{~L}, 1.08 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(103.5 \mu \mathrm{~L}, 0.616 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h . After addition of water, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($5-20 \% \mathrm{EtOAc} /$ hexane $)$ gave triflate $\mathbf{1 7 a}(230.3 \mathrm{mg}, 91 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.91(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.45(\mathrm{dd}, 1 \mathrm{H}, J=8.6,8.3 \mathrm{~Hz}), 7.37-7.32$ (m, 2H), 7.23-7.14 (m, 3H), 6.28 (ddd, 1H, $J=16.9,10.0,9.8 \mathrm{~Hz}$), 5.55 (d, 1H, $J=10.0 \mathrm{~Hz}$), 5.30 (d, 1H, $J=16.9$ $\mathrm{Hz}), 3.88(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,150.2,149.7,149.1,147.1,145.2,144.5,143.4,133.6,131.0,129.5,128.4$, $126.8,126.3,125.7,125.5,123.8,121.5,119.5,118.2(q, J=318 \mathrm{~Hz}), 114.9,114.3,85.3,84.8,51.0,48.1,43.2,28.1$, 27.8, 27.6; IR (ATR, cm^{-1}) 2982, 2933, 1729, 1661, 1613, 1534, 1455, 1423, 1369, 13647, 1291, 1217, 1143, 1086, 1033, 922; MS (FAB) $m / z 823[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 823.1931$; Found: $m / z 823.1929$.

Coupling product 20: To a solution of triflate $\mathbf{1 7 a}(30.0 \mathrm{mg}, 0.0365 \mathrm{mmol})$ and vinyl boronate $\mathbf{1 9}(20.8 \mathrm{mg}, 0.0730$ $\mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ and $\mathrm{EtOH}(0.1 \mathrm{~mL})$ were added 0.5 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(220.0 \mu \mathrm{~L}, 0.110 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(4.2 \mathrm{mg}, 3.65 \times 10^{-3} \mathrm{mmol}\right)$. The reaction atmosphere was replaced by the Ar atmosphere, and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 7 h . After the reaction mixture was then cooled to room temperature, the resultant mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (5-20\% EtOAc/hexane) gave coupling product $20(16.9 \mathrm{mg}, 56 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, 2 \mathrm{H}$, $J=8.9 \mathrm{~Hz}), 7.86(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 6.30$ (ddd, 1H, $J=16.9,10.1,10.0 \mathrm{~Hz}), 6.13(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 5.48(\mathrm{dd}, 1 \mathrm{H}, J=10.0,1.5 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 3.85$ (d, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}$), 3.41 (ddd, $1 \mathrm{H}, J=14.3,13.7,4.0 \mathrm{~Hz}$), $3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.29$ (ddd, $1 \mathrm{H}, J=12.9,12.8,5.5$ $\mathrm{Hz}), 2.16(\mathrm{ddd}, 1 \mathrm{H}, J=12.9,12.0,4.0 \mathrm{~Hz}), 1.67(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,149.8,149.6,149.7,145.2,144.1,142.6,139.0,136.1,134.6,129.4,129.0,128.2$, 126.7, 126.3, 125.7, 125.3, 125.3, 125.0, 123.8, 123.7, 122.5, 122.4, 113.5, 85.1, 84.0, 74.0, 51.5, 48.1, 44.3, 30.1,
30.1, 28.2, 27.9, 2.6; IR (ATR, cm^{-1}) 2978, 1727, 1655, 1597, 1575, 1533, 1474, 1452, 1368, 1347, 1291, 1249, 1150, 1087, 1034, 840, 748, 713, 685, 628, 602; MS (FAB) $m / z 831[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$ 831.3459; Found: $m / z 831.3448$.

20

(trans:cis $=3.3: 1$)

28

Aminal 28: To a solution of coupling product $20(50.0 \mathrm{mg}, 0.0602 \mathrm{mmol})$ in THF (6.0 mL) was added catechol borane solution (1 M in THF, $75.3 \mu \mathrm{~L}, 0.0753 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . After addition of water, the resultant mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (5$20 \% \mathrm{EtOAc} /$ hexane) gave aminal $28(32.6 \mathrm{mg}, 65 \%, \mathrm{dr}=3.3: 1)$ as a yellow oil: (major diastereomer) ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.75(\mathrm{br}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.27-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 6.89(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.4 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.07$ $(\mathrm{d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 6.05-5.98(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{dd}, 1 \mathrm{H}, J=10.0,1.7 \mathrm{~Hz}), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=16.9,1.5 \mathrm{~Hz}), 4.89(\mathrm{~s}, 1 \mathrm{H})$, $4.15(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{ddd}, 1 \mathrm{H}, J=14.1,14.1,4.0 \mathrm{~Hz}), 2.08(\mathrm{ddd}, 1 \mathrm{H}, J=12.6,12.6$, $4.3 \mathrm{~Hz}), 1.86(\mathrm{ddd}, 1 \mathrm{H}, J=12.9,12.9,4.3 \mathrm{~Hz}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.4,150.2,145.7,144.7,140.6,137.8,137.1,131.5,129.5,129.2,128.9,127.8,127.7$, $127.0,125.4,123.8,123.7,123.5,121.9,120.1,116.9,113.7,84.6,83.3,78.3,74.1,54.8,50.6,44.8,30.6,30.4,28.6$, 27.9, 2.8; IR (ATR, cm^{-1}) 2997, 2918, 1731, 1696, 1534, 1467, 1370, 1347, 1235, 1089, 887, 627 ; MS (FAB) m / z $833[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$833.3616; Found: m / z 833.3616.

Aminal 29: To a solution of aminal $28(10.8 \mathrm{mg}, 0.0130 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL})$ was added TBAF (1M in THF, 15.6 $\mu \mathrm{L}, 0.0156 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the resultant mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (5$30 \% \mathrm{EtOAc} /$ hexane) gave an alcohol ($7.6 \mathrm{mg}, 77 \%$) as a yellow oil.
To a solution of the above alcohol ($7.6 \mathrm{mg}, 9.99 \times 10^{-3} \mathrm{mmol}$) in $\mathrm{MeCN}(1.0 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(9.6 \mathrm{mg}, 0.0695$ $\mathrm{mmol})$ and $\mathrm{PhSH}(6.3 \mu \mathrm{~L}, 0.0614 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h , and then diluted with EtOAc . The organic layer was washed with water and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel (5-30\% EtOAc/hexane) gave
aminal $29(4.0 \mathrm{mg}, 70 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{br}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}$, $1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{ddd}, 1 \mathrm{H}, J=7.8,7.8,1.2 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.14-6.07(\mathrm{~m}$, $2 \mathrm{H}), 5.97(\mathrm{br}, 1 \mathrm{H}), 5.61(\mathrm{dd}, 1 \mathrm{H}, J=10.0,1.7 \mathrm{~Hz}), 5.40(\mathrm{dd}, 1 \mathrm{H}, J=17.2,1.8 \mathrm{~Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{br}, 1 \mathrm{H}), 4.15$ $(\mathrm{d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 2.94(\mathrm{br}, 1 \mathrm{H}), 2.73(\mathrm{br}, 1 \mathrm{H}), 1.93(\mathrm{br}, 1 \mathrm{H}), 1.86(\mathrm{br}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,144.7,142.9,140.7,139.3,137.2,131.3,129.9,129.1,128.8$, 127.6, 127.3, 124.0, 122.9, 120.9, 120.1, 117.2, 113.9, 83.2, 78.9, 78.4, 71.2, 55.5, 50.8, 37.1, 30.2, 29.3, 28.53, 28.49; IR (ATR, cm^{-1}) 2978, 2916, 1469, 1384, 1283, 1234, 1089, 888, 628; MS (FAB) $m / z 576[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}]^{+}$575.3359; Found: m / z 575.3359.

Pentacyclic compound 30: To a mixture of aminal $29(6.9 \mathrm{mg}, 0.0120 \mathrm{mmol})$ and $\mathrm{MS} 4 \AA(7.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2$ $\mathrm{mL})$ was added $\mathrm{Bi}(\mathrm{OTf})_{3}\left(0.8 \mathrm{mg}, 1.2 \times 10^{-3} \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , and then warmed to room temperature and stirred for 1 h . After addition of saturated aqueous NaHCO_{3}, and the mixture was diluted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, purification by flash column chromatography on silica gel ($5-20 \% \mathrm{EtOAc} /$ hexane $)$ gave a pentacyclic compound $30(3.7 \mathrm{mg}, 55 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{br}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11$ (dd, $1 \mathrm{H}, J=7.2,7.1 \mathrm{~Hz}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=8.3,7.9 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.94(\mathrm{~d}$, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.92-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{br}, 1 \mathrm{H}), 5.42(\mathrm{dd}, 1 \mathrm{H}, J=16.6,2.3 \mathrm{~Hz}), 5.38(\mathrm{dd}, 1 \mathrm{H}, J=9.5,2.3 \mathrm{~Hz}), 5.05$ $(\mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=14.0,4.0 \mathrm{~Hz}), 2.10(\mathrm{ddd}, 1 \mathrm{H}, J=14.6$, $11.4,5.4 \mathrm{~Hz}), 2.03-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155.4,153.8,144.7,142.8,138.5,137.7,132.7,131.2,130.7,128.2,127.6,126.0,124.7,122.8,120.0,118.2,116.7$, $114.6,82.8,79.2,78.7,58.7,58.2,50.7,41.0,28.5,28.4,25.2,23.5,18.4$; IR (ATR, cm^{-1}) 2977, 2919, 1691, 1466, 1391, $1341,1279,1235,1089,889,756,628,523$; MS (FAB) $m / z 558[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}-$ H] ${ }^{-}$556.3175; Found: m / z 556.3177. (ESI) HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 558.3332$; Found: $m / z 558.3311$.

Acknowledgements

This work was supported by a Grant-in-Aid from JSPS KAKENHI (Grant Nos. JP17H05051 (CT), JP18H04407 (CT) and JP16H06384 (YT)) and a Grant-in-Aid from the Uehara Memorial Foundation, Japan (CT).

References

1. Numata A, et al. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett. 1993;34:2355-2358.
2. Jadulco R, et al. New Communesin Derivatives from the Fungus Penicillium sp. Derived from the Mediterranean Sponge Axinella verrucosa. J. Nat. Prod. 2004;67:78-81.
3. Hayashi H, Matsumoto H, Akiyama K. New Insecticidal Compounds, Communesins C, D and E, from Penicillium expansum Link MK-57. Biosci. Biotechnol. Biochem. 2004;68:753-756.
4. Dalsgaard PW, Blunt JW, Munro MHG, Frisvad JC, Christophersen C. Communesins G and H, New Alkaloids from the Psychrotolerant Fungus Penicillium rivulum. J. Nat. Prod. 2005;68:258-261.
5. Kerzaon I, et al. Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum Link by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:3928-3938.
6. Fan YQ, et al. Alkaloids with Cardiovascular Effects from the Marine-Derived Fungus Penicillium expansum Y32. Mar. Drugs. 2015;13:6489-6504.
7. Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM. Isolation, Structure Determination, and Biological Activity of a Novel Alkaloid, Perophoramidine, from the Philippine Ascidian Perophora namei. J. Org. Chem. 2002;67:7124-7126.
8. Lin HC, et al. Elucidation of the concise biosynthetic pathway of the communesin indole alkaloids. Angew. Chem. Int. Ed. 2015;54:3004-3007.
9. Trost BM, Osipov M. Recent Advances on the Total Syntheses of Communesin Alkaloids and Perophoramidine. Chem. Eur. J. 2015;21:16318-16343.
10. Siengalewicz P, Gaich T, Mulzer J. It All Began with an Error: The Nomofungin/Communesin Story. Angew. Chem. Int. Ed. 2008;47:8170-8276.
11. Johnston CA, et al. Polycyclic ethers and an unexpected dearomatisation reaction during studies towards the bioactive alkaloid, perophoramidine. Tetrahedron 2018;74:3339-3347.
12. Shao W, You SL. Highly Diastereo- and Enantioselective Synthesis of Tetrahydro-5H-Indolo[2,3-b]quinolines through Copper-Catalyzed Propargylic Dearomatization of Indoles. Chem. Eur. J. 2017;23:12489-12493.
13. Hoang A, Popov K, Somfai P. An Efficient Synthesis of (\pm)-Dehaloperophoramidine. J. Org. Chem. 2017;82:2171-2176.
14. Popov K, Hoang A, Somfai P. Concise Total Synthesis of Dehaloperophoramidine. Angew. Chem. Int. Ed. 2016;55:1801-1804.
15. Yang J, Wu H, Shen L, Qin Y. Total Synthesis of (\pm)-Communesin F. J. Am. Chem. Soc. 2007;129:13794-13795.
16. Liu P, Seo JH, Weinreb SM. Total Synthesis of the Polycyclic Fungal Metabolite (\pm)-Communesin F. Angew. Chem. Int. Ed. 2010;49:2000-2003.
17. Belmar J, Funk RL. Total Synthesis of (\pm)-Communesin F via a Cycloaddition with Indol-2-one. J. Am. Chem. Soc. 2012;134:16941-16943.
18. Zuo Z, Xie W, Ma D. Total Synthesis and Absolute Stereochemical Assignment of (-)-Communesin F. J. Am. Chem. Soc. 2010;132:13226-13228.
19. Zuo Z, Ma D. Enantioselective Total Syntheses of Communesins A and B. Angew. Chem. Int. Ed. 2011;50:12008-12011.
20. Han S-J, et al. A Diastereodivergent Synthetic Strategy for the Syntheses of Communesin F and Perophoramidine. Org. Lett. 2014;16:3316-3319.
21. Lathrop SP, Pompeo M, Chang W-T, Movassaghi M. Convergent and Biomimetic Enantioselective Total Synthesis of (-)-Communesin F. J. Am. Chem. Soc. 2016;138:7763-7769.
22. Liang X, et al. Ir-Catalyzed Asymmetric Total Synthesis of (-)-Communesin F. J. Am. Chem. Soc. 2017;139:3364-3367.
23. Park J, Jean A, Chen DY-K. Asymmetric Total Syntheses of Communesin F and a Putative Member of the Communesin Family. Angew. Chem. Int. Ed. 2017;56:14237-14240.
24. Ishida T, Tsukano C, Takemoto Y. Synthesis of 2-Iminoindolines via Samarium Diiodide Mediated Reductive Cyclization of Carbodiimides. Chem. Lett. 2012;41:44-46.
25. Ishida T, Ikota H, Kurahashi K, Tsukano C, Takemoto Y. Dearomatizing Conjugate Addition to Quinolinyl Amidines for the Synthesis of Dehaloperophoramidine through Tandem Arylation and Allylation. Angew. Chem. Int. Ed. 2013;52:10204-10207.
26. Ishida T, Takemoto Y. Synthetic study of perophoramidine: construction of pentacyclic core structure via $\mathrm{SmI}_{2}-$ mediated reductive cyclization. Tetrahedron 2013;69:4517-4523.
27. Nanjo T, Tsukano C, Takemoto Y. Synthesis of 3,3-Disubstituted 2-Aminoindolenines by Palladium-Catalyzed Allylic Amidination with Isocyanide. Synlett 2014;25:1473-1477.
28. Suetsugu S, Nishiguchi H, Tsukano C, Takemoto Y. Asymmetric Synthesis of (-)-Aurantioclavine via PalladiumCatalyzed Intramolecular Allylic Amination. Org. Lett. 2014;16:996-999.
29. Suetsugu S, Tsukano C, Takemoto Y. Synthetic Studies towards Communesins: Diastereoselective Oxidative Rearrangement of Aurantioclavine Derivatives. Eur. J. Org. Chem. 2016;2016:108-115.
30. Tsukano C, Nakajima M, Hande SM, Takemoto Y. Palladium-catalyzed intramolecular carboborylation of 1,3diene and synthesis of ABCD ring of communesins. Org. Biomol. Chem. In press 2018, 10.1039/C8OB02224K.
31. Ikota H, Tsukano C, Takemoto Y. Concise Synthesis of (\pm)-Aurantioclavine. Heterocycles. In press 2018.
32. Hande SM, Nakajima M, Kamisaki H, Tsukano C, Takemoto Y. Flexible Strategy for Syntheses of Spirooxindoles using Palladium-Catalyzed Carbosilylation and Sakurai-Type Cyclization. Org. Lett. 2011;13:1828-1831.
33. Also see Supplementary Information.
34. Fukuyama T, Cheung M, Kan T. N-Carboalkoxy-2-Nitrobenzenesulfonamides: A Practical Preparation of N-Boc-, N-Alloc-, and N-Cbz-Protected Primary Amines. Synlett 1999;1999:1301-1303.
35. Ishiyama T, Itoh Y, Kitano T, Miyaura N. Synthesis of arylboronates via the palladium(0)-catalyzed crosscoupling reaction of tetra(alkoxo)diborons with aryl triflates. Tetrahedron Lett. 1997;38:3447-3450.
36. Papagni A, et al. Cross-Coupling of 5,11-Dibromotetracene Catalyzed by a Triethylammonium Ion Tagged Diphenylphosphine Palladium Complex in Ionic Liquids. Organometallics 2011;30:4325-4329.
37. Hayashi R, Cook GR. $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed 5-exo-trig cyclization via halide activation. Tetrahedron Lett. 2008;49:3888-3890.
38. Giera DS, Schneider C. InCl_{3}-Catalyzed Allylic Friedel-Crafts Reactions toward the Stereocontrolled Synthesis of 1,2,3,4-Tetrahydroquinolines. Org. Lett. 2010;12:4884-4887.
39. Kargbo RB, Hashemi ZS, Roy S, Jin X, Herr RJ. Synthesis of 3-benzazepines and azepino[4,5-b]heterocyclic ring systems via intramolecular Friedel-Crafts cyclization. Tetrahedron Lett. 2013;54:2018-2021.
40. Okada M, Sato I, Cho SJ, Dubnau D, Sakagami Y. Chemical synthesis of ComX pheromone and related peptides containing isoprenoidal tryptophan residues. Tetrahedron 2006;62:8907-8918.
41. Kawai N, Abe R, Uenishi J. Lewis acid-catalyzed intramolecular amination via 1,3-chirality transfer. Tetrahedron Lett. 2009;50:6580-6583.
42. Kawai N, Abe R, Matsuda M, Uenishi J. Synthesis of Chiral 1-Substituted Tetrahydroisoquinolines by the Intramolecular 1,3-Chirality Transfer Reaction Catalyzed by Bi(OTf)3. J. Org. Chem. 2011;76:2102-2114.
