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Abstract
In this paper, we describe a wearable first-person video (FPV) analysis system for evaluating the skill levels of caregivers.
This is a part of our project that aims to quantize and analyze the tender-care technique known as Humanitude by using
wearable sensing and AI technology devices. Using our system, caregivers can evaluate and elevate their care levels by
themselves. From the FPVs of care sessions taken by wearable cameras worn by caregivers, we obtained the 3D facial
distance, pose and eye-contact states between caregivers and receivers by using facial landmark detection and deep neural
network (DNN)-based eye contact detection. We applied statistical analysis to these features and developed algorithms
that provide scores for tender-care skill. In experiments, we first evaluated the performance of our DNN-based eye contact
detection by using eye contact datasets prepared from YouTube videos and FPVs that assume conversational scenes. We
then performed skill evaluations by using Humanitude training scenes involving three novice caregivers, two Humanitude
experts and seven middle-level students. The results showed that our eye contact detection outperformed existing methods
and that our skill evaluations can estimate the care skill levels.

Keywords Dementia · Care · Deep neural network (DNN) · Skill evaluation · Wearable system · Computer vision · First
person video
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1 Introduction

As the elderly population increases, the number of people
suffering from dementia continues to grow. As a result, the
care that needs to be administered to them is becoming increa-
singly important in social terms [8, 25, 42]. The population
of people in Japan afflicted with dementia is expected to
exceed seven million by 2025. A more serious problem is
the shortage of caregivers. The number of caregivers that
will be necessary in 2025 is estimated to be 2.53 million,
but the actual number is estimated to be 2.15 million [29].

Dementia occurs when the brain is damaged by maladies
such as Alzheimer’s disease and Lewy body dementia
and produces a set of symptoms that include memory
loss and difficulties with thinking, problem-solving, and
verbal communication. Dementia can be accompanied by
psychosis, agitation and aggression; thus, caring for people
with dementia is quite difficult [7].

Two approaches can be cited as ways to alleviate the
difficulties this poses for caregivers. The first is providing
patients with customized treatment, which can slow the
progression of dementia and prevent side effects such as
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infections. The second is reducing the burden on caregivers
to prevent them from ”burning out.” Dementia can cause
symptoms similar to those of mental illnesses, known
as behavioral and psychological symptoms of dementia
(BPSD), so caregivers’ working conditions can be harsh. As
a result, the number of caregiving staff members that leave
and become burned out is increasing.

Humanitude tender-care style: Due to this social
background situation, the caregiving style Humanitude has
been spotlighted by care professionals and family caregivers
since it can reduce the occurrence of BPSD events and
caregivers’ burden [20]. Humanitude was developed by Y.
Geneste and R. Marescotti 35 years ago [18] and has been
introduced in more than 600 hospitals and nursing homes in
Europe. Humanitude primarily uses a combination of four
communication skills: gaze, verbal communication, touch,
and helping care receivers to stand up. Several studies have
reported that the cost-efficiency of introducing Humanitude
is around 20 times that of care without it because of a
40% decrease in the use of psychotropic drugs and in the
number of care staff members who leave [22]. In recent
years, Humanitude has become popular in Japan; in the
past three years, more than 2,600 people took Humanitude
training over the course of more than 30 training sessions.

Computational tender-care science project: Since we
believe improved care techniques using robotics and com-
puter vision technologies are valuable to both caregivers
and care receivers, we started a comprehensive project that
aims to (a) quantize and visualize the Humanitude skills,
(b) reveal the brain mechanism behind Humanitude-based
communications and (c) develop a system that will help
people to learn Humanitude skills (Fig. 1). This paper
shows one of the topics in (a) skill quantization, but we
briefly introduce all topics below.

For (a), we developed a system that automatically finds the
skill elements by using wearable sensors that capture lear-
ner’s and care receivers’ behaviors. The system uses data
mining and recognition algorithms developed to enhance
computer vision and machine learning. We then obtained the
essence of Humanitude skills through multi-modal analysis.

For (b), we tried to reveal why using Humanitude facil-
itates communication with people with dementia (PwD)
and why it reduces BPSD through cognitive neuroscientific
approaches. Namely, we conducted functional neuroimag-
ing studies to find the differences between younger people
and elderly people, and between healthy people and people
suffering from Alzheimer’s disease while giving emotional
stimuli such as facial pictures that show eye contact or
dynamic facial expressions.

For (c), on top of the (a) and (b) findings, we developed a
tender-care education platform that presents the caregivers’
skill level to learners by using our care-skill evaluation

systems. With these systems, learners will be able to
evaluate their current tender-care skill levels easily and at
a low cost by themselves. It follows that this platform will
be suitable for non-professional caregivers such as family
caregivers, as well as for professional caregivers who want
to periodically refresh their caregiving skills.

Wearable sensing technique for care behavior analysis:
Since Humanitude consists of communication behaviors
from close distances such as gaze and touch, we use
wearable sensing devices to extract events in which such
behaviors occur. We observed care techniques that do and do
not use Humanitude and found behavioral differences and
their outcomes through statistical computational analysis-
based approaches, as illustrated in Fig. 2.

This paper describes the first step of this project
– a system for extracting face-to-face communication
behavioral skills by using a head-mounted camera worn by
a caregiver. From camera images obtained using mutual
facial distances, we obtained poses and eye contact states by
using facial parts tracking and deep neural network (DNN)-
based eye contact detection algorithms. We compared these
behavioral elements from those we ascertained among
care novices, middle-level Humanitude-care learners and
Humanitude-care experts. Although many attempts have
been made to obtain the aforementioned information by
using third-person view videos, the videos were analyzed by
video annotators. This required considerable cost and time
and there was the risk of obtaining biased results caused by
annotator subjectivity [21]. To address these problems, the
contributions and limitations of this paper are as follows:

1. It describes our development of a prototype system that
uses wearable cameras and image analysis for care skill
evaluation.

2. It describes our development of DNN-based eye
contact detection algorithms that outperform existing
approaches by using eye contact datasets based on
YouTube videos and first-person video (FPVs).

3. It describes how we obtained an FPV dataset while
conducting Humanitude training sessions for novices,
middle-level caregivers and expert caregivers and found
the differences among them regarding face-to-face dis-
tance and pose (angle) as well as eye contact frequency.

4. It describes how we performed unsupervised principal
component analysis (PCA) for the features obtained
from FPVs and found significant correlation between
caregiver levels and PCA scores.

5. The present research represents a preliminary analysis
that uses a relatively small number of datasets. It will be
thus be followed by our analysis of extensive studies using
a much larger number of samples. It will be also important
to use chronological behavioral data for the same indivi-
duals to observe how the skills were acquired or forgetten.
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Fig. 1 Project overview. The
Humanitude tender-care
technique was analyzed from
both computational and
cognitive neuroscientific
approaches
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2 RelatedWork

In this section, we show related studies regarding caregiver’s
burden and effects of intervention, care skill evaluation,
first-person video-based skill evaluations and eye contact
detection from video images.

Caregiver’s burden and effects of interventions: The burden
of caregiver for dementia patients have been reported in a
lot of literature [2, 10, 12, 15, 16, 23, 33, 41]. According
to the recent meta-review paper[2], the larger caregivers
burden is related to 1) female sex, 2) low education, 3)
cohabitation with care recipient, 4) caregiving time and
effort, 5) financial stress, 6) lack of choice and inability to
continue regular employment. As the result, caregiver tends
to having larger risk in mortality, weight loss, poor self-care
and sleep deprivation.

Effects of interventions for reducing caregiver’s bur-
den have been reported as well [1, 13, 15, 19, 31, 32].
Interventions are categorized into several types: psychoed-
ucational intervention, psychosocial intervention, cognitive
behavior therapy, respite, caregiver support groups, anti-
cholinergic and antipsychotic drugs, and skill training. As

the results, practical interventions to reduce caregiver’s bur-
den are 1) encouraging caregivers to function as a member
of the care team, 2) encouraging caregivers to improve
self-care and maintain their health, 3) providing educa-
tion and information, 4) coordinating for assistance with
care, 5) encouraging caregiver to access respite care and 6)
using the supports of technology [2]. Specifically, there are
several reports that skills training such as coping skill train-
ing (CST) may reduce the caregiver strain, depression and
fatigue in caregivers of the patient with cancers [9, 31].

Care skill quantization: There are several approaches that
use care skill quantization. In computer science, Ishikawa
et al. developed a method of care skill evaluation based
on the knowledge of care experts [21]. They categorized
care skills into three layers: intramodality, intermodality and
multimodal-interaction. Intramodality consists of behavior
primitives such as gaze, speech, touch, nodding and
knocking on a door. Intermodality shows the relationships
among intramodalities, such as comprehensiveness of
care, waiting for elderly people’s actions and consistency.
Multimodal-interaction consists of actions that develop
a relationship between actors, such as eye contact and

Skill elements [Ishikawa16]

Usual care

Humanitude care
(Tender-care)

Feature
extrac�on

Feature vectors

Ambient sensing technology
cameras, sensors embedded in environments

Wearable sensing technology
wearable cameras and sensors

- Automated feature detec�on
- Finding new skill elements

Behavioral features
Gaze: target object,
distance, pose
Verbal: context, tone,
pitch, speed, intensity
Touch: loca�on, hand used,
power, stroke

Skill level

Sta�s�cal analysis
find sta�s�cal differences in behaviors

Time-series analysis
find temporal rela�ons o� ehaviors

Mul�-modal analysis
find rela�ons of differen� ypes of signals
(e.g., gaze and verbal, gaze and touch)

Fig. 2 Computational skill extraction obtained using behavioral observation and wearable sensors. We quantized care skill elements with and
without Humanitude and found the differences between them
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FPV of a caregiver

OpenFace
Eye contact
detection
using DNN

Mutual facial distance

Facial parts
Eye images

Vector
quan�za�on

Vector
quan�za�on

Feature vector

Unsupervised
analysis (PCA)

distance

Mutual facial pose

Care giver

Care receiver

Care skill
score

Fig. 3 Overview of the care skill estimation method using first-person video

verbal/nonverbal dialogue. They also developed a web
interface that shows care learners care skills in visual form
to confirm the effectiveness of the system.

First-person video analysis for skill evaluation: There have
been a number of studies on action recognition and
prediction using FPVs [17, 28, 37, 39, 40]. However,
few studies have been conducted for skill evaluation. In
recent years, Bertasius et al. showed a method to assess a
basketball player’s performance from FPVs. They designed
and used temporal CNN and long short-term memory
(LSTM) architecture to evaluate whether a particular play
in basketball was good or not from a player’s FPV [5].
In the medical field, Hei et al. proposed a method for
evaluating skill in robotic surgical operations from video
images. Their method tracks the keypoints of surgical robot
instruments by using cloud sourcing or hourglass networks
and evaluates the skill by support vector machine analysis
[26].

Video-based eye contact detection: Detecting and making
eye contact are important for understanding social commu-
nication and designing communication robots. Therefore,
several studies in this area have been conducted. Smith

Fig. 4 Facial pose parameters obtained from OpenFace

et al. [38] proposed an algorithm to detect gaze-locking
(looking at a camera) faces using eye appearances and PCA
plus multiple discriminate analysis. Ye et al. developed a
pioneering algorithm that detects mutual eye gaze using
wearable glasses [43, 45]. In recent years, deep-learning-
based approaches are being implemented for eye-contact
detection. Mitsuzumi et al. developed the DNN-based eye
contact deteciton algorithm (DeepEC)[30] that uses only
cropped eye regions for eye-contact detection and per-
formed better than existing methods. Eunji et al. develop the
DNN-based PiCNN detector that accepts the facial region
and output both facial postures and eye contact states [11].
Zhang et al. presented an eye-contact detection algorithm
based on their deep neural network (DNN) based gaze esti-
mations [48]. In robotics, Petric et al. developed an eye
contact detection algorithm that uses facial images taken
with a camera embedded in a robot’s eyes [34] to develop
robot-assisted ASD-diagnosis systems. These eye contact
detection algorithms depend on facial landmark detection
libraries or gaze estimation algorithms with which it is
assumed that subject faces are not occluded.

Image-based gaze estimation algorithms have also been
recently studied, although they differ in scope from our
detection algorithms. The current trend in this area is
deep learning-based approaches, namely, learning and pre-
dicting gaze directions according to datasets that describe
the relation between facial images, facial landmarks, and
gaze points. For example, Lu et al. developed a head
pose-free gaze estimation method by synthesizing eye
images from small samples. However, their method requires
personal-dependent eye image samples taken under experi-
mental setups [27]. Zhang et al. proposed a DNN algorithm
that inputs eye images and 3D head poses obtained from
facial landmark points [46]. They also developed a DNN-
based algorithm using full facial images without occlu-
sions [47]. Krafka et al. developed a DNN-based eye gaze
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Fig. 5 Eye contact detection algorithms. a The single-frame eye con-
tact detection algorithm (DeepEC) first detects the eye regions of the
target image frame and obtains a pair of right and left eye images.
The eye contact state is obtained by only the CNN that inputs the eye
images. b Proposed temporal eye contact detection algorithms that use
multiple (i.e. N) image frames. First, they detect facial landmarks with
OpenFace face detection, with which they then obtain eye regions in

each of the N frames. The resulting N pairs of eye images are inputted
to CNNs that have a structure similar to that of DeepEC. These CNNs
are followed by an LSTM network, which learns the temporal state of
the eyes. Finally, the target eye contact state is obtained by the follow-
ing fully connected networks, which use not only the LSTM’s outputs
but also the CNN’s outputs of the target frame (t = T ) with skip
connections

estimation algorithm that inputs full facial images as well as
eye images [24].

In contrast, our detection algorithms only output binary
(eye-contacted/averted) information. However, they do not
require personal-dependent samplings and are robust to
facial occlusions, which frequently occur in FPVs in
caregiving and communication scenarios. This was achieved
by designing a CNN that only uses images taken around the
eyes.

3 ProposedMethod

The flow of our skill evaluation is illustrated in Fig. 3.
From a first-person camera worn by a caregiver we obtained
mutual facial distances, mutual facial poses and eye contact
states. Then, we estimated tender-skill scores through an
unsupervised analysis. In the following subsections, we first
describe the first-person camera hardware and then our
algorithms we used for analyzing FPVs.
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Table 1 First person eye-contact dataset (Youtube dataset)

Name Duration Fps Image size

(sec) (H,V)

Avec 350 29.97 1280×720

Azis 479 23.98 1280×720

Derek 490 23.98 1280×720

Elle 391 29.97 1280×720

Emma 555 23.98 1280×720

Wataru 55 29.97 540×360

James 380 23.98 1280×720

Kendall 447 23.98 1280×720

Liza 447 23.98 1280×720

Neil 687 23.98 1280×720

Selena 460 23.98 1280×720

Mai 337 29.12 1280×720

Taylor 581 23.98 1280×720

3.1 Hardware

We used two types of head-mounted first-person camera
systems. One was a Pivothead Kudu camera [35], which is
equipped with a front-view camera in the middle of a pair
of glasses. The camera takes full HD (1920 × 1080 pixels)

videos at 30 fps. The other was a Pupil Labs camera system
[36], whose frontal camera also takes full HD (1920 × 1080
pixels) videos at 30 fps. The cameras’ projection matrices
were obtained by using the MATLAB camera calibrator.

3.2 Face Detection and 3D Pose Estimation

We then obtained facial positions, poses and eye locations
from the input FPVs. We used the OpenFace library [4] and
obtained 3D facial positions, poses and 68 facial landmark
points. We computed the cameras’ focal lengths from the
camera projection matrices and used them to estimate 3D
facial positions and rotations.

3.3 Histograms of Facial Distances and Poses

To quantize the face-to-face communication behaviors
between caregivers and care receivers, we encoded the
mutual facial distances and poses obtained from OpenFace
as illustrated in Fig. 4. Namely, we computed the
histograms fdist = [f 1

dist, . . . , f
11
dist], frx = [f 1

rx
, . . . , f 9

rx
],

fry = [f 1
ry

, . . . , f 9
ry

] and frz = [f 1
rz

, . . . , f 9
rz

] that represent
the mutual facial distances and poses from all frames in a
care session. The bins were set to every 0.1 [m] from 0.0 to
1.0 [m] for the distance feature and 20 [deg] from -90 to +90

Avec Aziz Derec Elle Emma Wataru
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Fig. 6 Eye-contact dataset using publicly available videos from YouTube or conversational scnario (names with *)
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Table 2 First person eye-contact dataset (Conversation dataset)

Name Duration Fps Image size

(sec) (H,V)

Imaizumi 220 29.97 1920×1080

Kitazumi 711 29.97 1920×1080

Ogawa 1865 29.97 1920×1080

[deg] for angular features. The distances larger than 1.0 [m]
were voted to the last bin. Thus, for example, f 1

dist indicates
the number of frames where the mutual facial distances
were from 0.0 to 0.1 [m] and f 4

rx
indicates the number of

frames where the mutual facial rotation (rx) was from -30
to -10 [deg].

3.4 Visualization

After obtaining histograms, we normalized the histogram
and applied principal component analysis (PCA). While
many data analysis or machine learning techniques have
been proposed, we used PCA for its simplicity and
reliability in exploratory data analysis (EDA). Since we
tried to find tender-care technique skills in a bottom-up
(data-driven) manner, this nature of PCA fitted our task
better than other more complicated methods such as non-
linear or supervised-learning based approaches.

We here denote fs as a D × 1 column vector that
represents a normalized histogram of either fdist, frx , fry or
frz of a subject s ∈ {1, . . . , M}. Histograms of all subjects
can be decomposed by using D × 1 column eigenvectors
{e1, . . . , eM} and eigenvalues {λ1,1, . . . , λD,M}, where D is
the dimension of the histogram:

[
f1 · · · fM ] = [

e1 · · · eD
]
⎡

⎢
⎣

λ1,1 · · · λ1,M
...

. . .
...

λD,1 · · · λD,M

⎤

⎥
⎦ .

We plot the eigenvalues of all subjects to visualize the
distribution of their behaviors, as well as to analyze the
elements of eigenvectors to find the relation between skill
levels and behavioral features.

3.5 Eye Contact Features

Another feature is counting eye contact bids, which was
introduced by Ye et al. [44]. They assume ”eye contact
bids”, i.e., situations when a subject wearing an FPV camera
is gazed at by other subjects. Since the definition of eye
contact is making mutual eye gaze—two people look at
each other at the same time – eye contact bids are not
the same as actual eye contact. If we want to accurately
detect eye contact, two people must wear FPV cameras
or a caregiver must use an eye gaze tracker (EGT) device
that detects observers’ gaze information. However, from the
practical point of view it is difficult to use two FPV cameras
or an EGT device since 1) it is difficult for subjects with
dementia to wear such devices and 2) even for caregivers
it is difficult to use eye trackers in actual care scenes
due to their noticeable appearance, calibration requirements
and headmount drift. Therefore, rather than accurately
detecting eye contact, we tried to measure and use eye
contact bids for evaluating care skills. We used facial
poses and eye images for detecting eye contact bids using
DNNs.

Figure 5 illustrates the existing eye contact detection
algorithm (Fig. 5a) and proposed TempEC and TempEC-
HP (Fig. 5b). The TempEC uses only eye images whereas
the TempEC-HP uses both eye images and 3D facial poses.
These algorithms consist of the following components.

Eye region detection: From the landmark points detected
by OpenFace, we obtained the right and left eye regions
in the target frame, from which we obtained each eye
image used as input for the CNN, after gray-scaling and

(a) (b) (c)

Fig. 7 Experimental scenes and example FPV frames of care learning scenes. a Data capturing, b first-person camera and recorder (Pupil Labs +
smartphone) and (c) example frames (OpenFace annotations overlaid)



J Intell Robot Syst

Ta
bl
e
3

T
he

re
su

lts
of

E
xp

er
im

en
t1

N
am

e
To

ta
l

Fa
ce

E
ye

D
ee

pE
C

[3
0]

D
ee

pE
C

+
C

R
F

[3
0]

Te
m

pE
C

(P
ro

po
se

d)
Te

m
pE

C
-H

P(
Pr

op
os

ed
)

Fr
am

es
D

et
ec

te
d

C
on

ta
ct

ed
Pr

ec
is

io
n

R
ec

al
l

F
1

Pr
ec

is
io

n
R

ec
al

l
F

1
Pr

ec
is

io
n

R
ec

al
l

F
1

Pr
ec

is
io

n
R

ec
al

l
F

1

A
ve

c
10

,4
98

8,
94

0
4,

67
1

0.
88

78
0.

82
62

0.
85

59
0.

78
81

0.
85

84
0.

82
17

0.
87

64
0.

88
8

0.
88

22
0.

88
33

0.
92

41
0.

90
32

A
zi

z
11

,5
08

6,
71

1
5,

05
8

0.
93

86
0.

86
95

0.
90

27
0.

88
38

0.
90

77
0.

89
56

0.
93

5
0.

89
44

0.
91

42
0.

94
71

0.
96

36
0.

95
53

D
er

ek
11

,7
65

4,
55

0
3,

71
0

0.
88

65
0.

87
58

0.
88

11
0.

84
95

0.
92

92
0.

88
76

0.
92

44
0.

89
24

0.
90

81
0.

87
61

0.
94

78
0.

91
06

E
lle

11
,7

39
6,

45
8

4,
00

5
0.

89
7

0.
73

71
0.

80
92

0.
85

22
0.

77
73

0.
81

3
0.

84
79

0.
90

79
0.

87
69

0.
85

56
0.

94
86

0.
89

97

E
m

m
a

13
,3

25
6,

30
2

3,
87

8
0.

81
96

0.
82

78
0.

82
37

0.
75

2
0.

88
21

0.
81

19
0.

83
34

0.
87

01
0.

85
13

0.
84

41
0.

72
73

0.
78

14

W
at

ar
u

1,
67

5
1,

30
6

1,
04

9
0.

87
85

0.
91

62
0.

89
7

0.
83

6
0.

96
15

0.
89

44
0.

84
92

0.
97

62
0.

90
83

0.
83

07
0.

99
64

0.
90

6

Ja
m

es
9,

12
5

3,
27

0
2,

11
0

0.
89

57
0.

42
3

0.
57

46
0.

83
06

0.
48

03
0.

60
86

0.
88

39
0.

91
02

0.
89

68
0.

91
75

0.
81

97
0.

86
58

K
en

da
ll

10
,7

35
4,

33
1

3,
09

4
0.

87
72

0.
84

23
0.

85
94

0.
81

02
0.

89
4

0.
85

0.
88

36
0.

91
7

0.
9

0.
86

54
0.

91
39

0.
88

9

L
iz

a
10

,7
39

7,
44

0
6,

09
7

0.
93

13
0.

85
62

0.
89

22
0.

88
38

0.
91

56
0.

89
44

0.
95

39
0.

89
4

0.
92

3
0.

93
59

0.
91

44
0.

92
5

N
ei

l
16

,4
87

8,
90

4
5,

67
7

0.
84

04
0.

88
94

0.
86

42
0.

42
23

0.
90

31
0.

57
55

0.
84

96
0.

97
29

0.
90

71
0.

79
52

0.
97

53
0.

87
61

Se
le

na
11

,0
43

6,
05

2
3,

63
4

0.
83

22
0.

71
79

0.
77

09
0.

77
67

0.
78

87
0.

78
26

0.
80

18
0.

75
17

0.
77

6
0.

77
36

0.
92

82
0.

84
39

M
ai

9,
84

0
2,

56
5

1,
33

0
0.

73
49

0.
77

62
0.

75
5

0.
69

8
0.

82
31

0.
75

54
0.

70
22

0.
94

59
0.

80
6

0.
63

15
0.

98
8

0.
77

05

Ta
yl

or
13

,9
45

9,
44

4
5,

48
9

0.
80

85
0.

66
74

0.
73

12
0.

74
73

0.
73

08
0.

73
89

0.
88

89
0.

80
28

0.
84

37
0.

81
41

0.
95

71
0.

87
98

Im
ai

zu
m

i*
6,

59
4

2,
34

3
1,

66
4

0.
56

5
0.

88
73

0.
69

04
0.

51
65

0.
95

43
0.

67
02

0.
61

88
0.

91
48

0.
73

82
0.

63
33

0.
93

12
0.

75
39

K
ita

zu
m

i*
21

,3
36

20
,3

64
18

,5
60

0.
90

24
0.

65
93

0.
76

2
0.

79
93

0.
75

61
0.

77
71

0.
94

73
0.

36
12

0.
52

3
0.

90
77

0.
88

18
0.

89
45

O
ga

w
a*

37
,9

17
29

,2
20

28
,0

32
0.

92
42

0.
72

07
0.

80
98

0.
86

22
0.

78
01

0.
81

91
0.

90
18

0.
77

1
0.

83
13

0.
87

14
0.

97
9

0.
92

21

To
ta

l
20

8,
27

1
12

8,
20

0
98

,0
58

0.
85

12
0.

78
08

0.
83

19
0.

76
93

0.
83

39
0.

78
76

0.
85

61
0.

85
44

0.
87

06
0.

83
64

0.
92

48
0.

87
81



J Intell Robot Syst

Table 4 t-test results (p-value) for Experiment 1

Methods Precision Recall F1-score

DeepEC - DeepEC+CRF 0.001∗∗ 0.000∗∗ 0.176

DeepEC - TempEC 0.296 0.035∗ 0.085

DeepEC - TempEC-HP 0.085 0.000∗∗ 0.001∗∗

DeepEC+CRF - TempEC 0.001∗∗ 0.308 0.049∗

DeepEC+CRF - TempEC-HP 0.006∗∗ 0.004∗∗ 0.001∗∗

TempEC - TempEC-HP 0.013∗ 0.039∗ 0.118

The numbers with ∗ and ∗∗ indicates respectively ≤ 0.05 and ≤ 0.01

normalizing with global contrast normalization (GCN).
Using the landmarks as a basis, we obtained the coordinates
of four corner points that determine the eye region. At this
time, we applied a 10% margin to the height and width of
the region so that facial landmark detection errors can be
accepted.

Deep temporal eye contact detection: Given the images of
both eye regions and the 3D facial pose, we implemented
our two deep temporal eye contact detection algorithms, as
shown in Fig. 5b. The algorithms use ten continuous video
frames – the target frame and nine preceding frames – to
make predictions.

As shown in Fig. 5b, each of these eye image pairs ItR, ItL
were input to the CNN. This CNN had the same structure as
DeepEC with the exception of the last two fully connected
layers; namely, it had two streams and six layers— two
convolution layers followed by four max pooling layers. The
CNN outputs a pair of 512-dimensional feature vectors for
each eye image fR(ItR) and fL(ItL).

These feature vectors were input to two separate LSTM
networks for the left and right eye images. In the TempEC

algorithm, each LSTM accepts 10 vectors corresponding to
a series of eye images and outputs one 512-dimensional
feature vector. In the TempEC-HP algorithm, a series of
3D vectors that represent 3D head positions are additionally
input to LSTM.

However, we found that a naı̈ve LSTM could not perform
satisfactorily. To solve this problem, we prepared fully
connected layers that had 2048 (512×4) units at the last
frame, which accepted the outputs of the left and right
DeepEC’s and the LSTM’s cell state vectors. Because the
DeepEC results for the current frames are directly used for
eye contact detection, and since temporal inference is also
merged to the fully connected layers, we were ultimately
able to obtain better results than the naı̈ve implementations
of DeepEC and LSTM.

4 Dataset

We prepared two dataset for learning and evaluating the
algorithms. The first one was an eye contact video dataset,
which we prepared by using publicly available videos
from YouTube and our original FPV videos that assume
conversational scenarios. The second one was obtained in
care learning scenes. We recorded the FPV videos equipped
to the caregiver during Humanitude care teaching classes.

4.1 First-person Eye Contact Video Dataset

The first-person eye contact video dataset was used for
evaluating the eye contact detection performance. The
ground-truth eye contact states (1 or 0) were provided for
every video frame in the dataset. We asked three people to
annotate the eye-contact states and set the eye contact status
as 1 if more than two annotators thought the eye contact was
engaged at the frame.
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Fig. 8 ROC curves of (a) The test results with all dataset, b The test results with videos from Youtube, c The test results obtained during
conversation
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Table 5 The result of Experiment 2

Name Total Face Eye contacted Av. mutual facial Av. mutual facial pose [deg]

frames detected frames distance [mm] rx ry rz

Expert A 3442 2148 (62.4%) 1667 (48.4%) 314.3 6.69 7.37 −23.10

Expert B 4852 2070 (42.7%) 1321 (27.2%) 435.1 −9.31 −0.75 −19.98

Middle A 3214 1857 (57.8%) 1087 (33.8%) 406.8 −7.01 3.57 −30.61

Middle B 2659 1248 (46.9%) 1011 (38%) 404.4 2.80 0.46 −37.09

Middle C 2024 1171 (57.9%) 914 (45.2%) 470.6 −7.80 −2.30 −33.80

Middle D 2775 1108 (39.9%) 817 (29.4%) 489.3 −0.26 −4.07 −26.71

Middle E 4506 2547 (56.5%) 1989 (44.1%) 617.8 −5.30 0.91 −31.63

Middle F 3062 2176 (71.1%) 2114 (69%) 232.5 7.91 4.50 −22.04

Middle G 2485 683 (27.5%) 856 (34.4%) 686.5 −7.50 −9.80 −29.99

Novice A 6287 1648 (26.2%) 553 (8.8%) 485.0 −12.98 −7.37 −39.37

Novice B 6168 2675 (43.4%) 810 (13.1%) 422.2 −10.08 −2.08 −40.19

Novice C 4710 1002 (21.3%) 699 (14.8%) 587.2 −4.92 6.03 −25.00

a) First-person eye contact video Youtube (Youtube
dataset)

We used 13 videos in which a person talked into a cam-
era from Youtube. We took a consensus of the annotations
and made ground-truth data. A list of the videos and their
properties is shown in Table 1 and example frames are
shown in Fig. 6.

b) First-person eye contact video dataset during conver-
sation (Conversation dataset)

We additionally prepared first-person-view videos while
two individuals were conversing. The scenarios were taken
in a lab environment in which two participants were
talking, where one of them wore a Pivothead Kudu first-
person camera. A list of the videos and their properties is
shown in Table 2 and Figure 6. We took three video clips
from six participants and two test-video clips from two
participants.

4.2 FPVs of Care-learning Scenes

To verify the applicability of the proposed algorithms, we
prepared first-person videos of a) two Humanitude care
experts (instructors), b) seven middle-level Humanitude
caregivers and c) three novice Humanitude caregivers as
shown in Table 5 and Fig. 7. In all videos, caregivers
were equipped with the Pupil Labs first-person camera and
performed the same task:

Step 1 Approach the simulated patient while making eye
contact,

Step 2 Perform the care, and
Step 3 Leave the care receiver.

5 Experiments

In the first of two experiments we performed, we
evaluated the performance of eye contact (bids) algorithms,
comparing the two proposed approaches and an existing
approach (DeepEC [30]). The second experiment was
performed for an actual Humanitude care training scene.
In it, we obtained data from a novice caregiver and a
Humanitude care expert and compared the results through
the use of an unsupervised learning algorithm.

5.1 Experiment 1: Evaluation of eye contact
detection performance

As mentioned, we first conducted an experiment to compare
the performances of the proposed algorithms and an existing
algorithm by using the datasets. One video was chosen for
testing and the others were used for learning. We iterated
this step for 16 videos and obtained the average performance
for them.

The learning of the networks with DeepEC, TempEC and
TempEC-HP was conducted as follows. We first computed
the bounding rectangles of eyes using the facial landmark
points obtained by OpenFace. The obtained eye images
were then rescaled such that the image was (60 × 36)
pixels. We used static CNN hyper-parameters for all of the
experiments. Specifically, the drop-out rate was 0.5 and
Leaky ReLU activation function’s α was set to 0.01. We
used a Nadam optimizer [14] with the learning rate set to
0.001, the decay as 0.004 per epoch and β1 and β2 as 0.9
and 0.999, respectively. Learning was performed on a GPU-
based workstation (Intel Core i7-7800X CPU 3.50GHz,
128GB RAM, NVIDIA GeForce1080Ti-11G). On average,
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Fig. 9 (Left) Histograms of mutual facial distances and poses (rx, ry
and rz). (Right) PCA score results where the x and y axes show the first
and second components. There are clear thresholds between novices

and others at about x = 0.16 for the distance PCA score, and between
experts and others at about x = −0.18 in rz PCA score

it took 230 sec, 1900 sec and 1920 sec for learning 1 epoch
of DeepEC, TempEC and TempEC+HP, respectively. The
learning of CRF of DeepEC-CRF took about 57 sec. We
took leave-one-out cross-validation strategy for splitting the
learning data and test data.

The results are given in Table 3 and t-test results between
four algorithms are given in Table 4. The results show
that TempEC+HP algorithms generally outperform other
approaches. Namely, the TempEC algorithm thoroughly
outperforming DeepEC in precision = 0.8561, recall =
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Fig. 10 Example differences among DeepEC+CRF, TempEC and TempEC-HP. Adding CRF to DeepEC tends to ‘smoothen’ the temporal
inference while the other two algorithms correctly estimate the state change

0.8544 and F1 score = 0.8706. TempEC-HP outperformed
TempEC, DeepEC and DeepEC+CRF in recall and F1-
score, with a recall of 0.9248 and F1 score of 0.8781 on
average. Figure 8 shows the area under the curve (AUC)
of our algorithm is larger than that of DeepEC. TempEC-
HP had the best AUC (0.870) followed by TempEC (AUC

= 0.85). With respect to accuracy, TempEC-HP achieved
a 25% improvement in miss detection rate, with 0.1751
in comparison to DeepEC’s 0.2330. Overall, the recall
performances increased by introducing temporal inference
(CRF or LSTM). In addition, the proposed methods using
LSTM outperforms the method using CRF.

Related to
novices

Related to
experts

(a) 1st PCA component (distance) (b) 1st PCA component (rz)

Fig. 11 1st components of PCA of the distance and rz histograms.
Negative elements are related to the experts’ behaviors while positive
elements are related to the novices’ behaviors. In the distance his-
togram, bins 2 and 3 (0.2 - 0.4 [m]) are related to experts while bins

4 and 5 (0.4 - 0.6 [cm]) are related to novices. Regarding the rz his-
togram, bins 4 and 5 (-30 - +10 [deg]) are related to experts while bins
2 and 3 (-70 - -30 [deg]) are related to novices
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5.2 Experiment 2: Observation of Face-to-Face
Communication Behavior During Care Learning
Scenes

In the second experiment we compared the occurrence of
Humanitude care skill between novice and expert caregivers
using the FPVs of care learning scenes. We obtained the
number of eye contact frames, mutual facial distances and
poses from a care scene dataset and compared the results.

Analysis and results: The occurrences of eye contact
frames, average mutual facial distance and poses (angles)
are shown in Table 5 and normalized histograms of each
feature are shown in Fig. 9 (left). We applied PCA to
the histograms. The resulting PCA scores are shown in
Fig. 9 (right), where the x-axis shows the scores of the
first component and the y-axis indicates the scores of the
second PCA component. From the eye contact rates and
PCA analysis results, we were able to clearly distinguish the
scores of novices and experts for eye contact rate, mutual
facial distance and rz PCA scores. There were significant
differences in eye contact rate between the expert & middle-
level and novice groups (p = 0.0452), and clear thresholds
at about x = 0.16 for mutual facial distance and at about
x = −0.18 for the rz PCA scores. In the mutual facial
distance category, the histograms showed that the expert
caregivers and most of the middle-level ones approached
the care receiver such that the distance was less than 30
[cm]. In the mutual facial pose category, there were clear
dissimilarities in the z-rotation, which is the rotation of
the care receiver’s face in the FPV image plane (the plane
perpendicular to the facial frontal direction) as shown in
Fig. 4. Namely, the average and peak z-rotation values of the
experts and the middle-level caregivers were located around
0 [deg] while those of novices were much larger.

6 Discussion and Conclusion

In this section, we will discuss the main points we have
made for the proposed image-based eye contact detection
algorithms and wearable care-skill evaluation system and
draw conclusions from them.

Image-based eye contact detection: We developed eye-
contact-detection algorithms that use temporal features as
well as static image features. Our algorithms show better
performance for various types of datasets. They combine
CNNs and LSTM and successfully learned both static fea-
tures and temporal dependence. In experiments, the pro-
posed TempEC and TempEC-HP algorithms outperformed
the DeepEC algorithm. In particular, TempEC-HP achieved
a 25% improvement in the miss-detection rate over existing
algorithms.

In a preliminary experiment, we found that a simple
concatenation of CNNs and LSTM was not effective.
We concluded that such a primitive combination was not
suitable for learning both static and temporal features at the
same time. Thus, in the final estimation step we introduced
a skip connection that jumps over the LSTM networks
and directly links the CNN outputs to the final fully
connected layers. This structure improved our algorithms’
performance, as the experiment 1 results showed. They
showed that the skip connection enables the algorithms to
successfully learn both static and temporal features at the
same time.

Surprisingly, some tests showed that TempEC performed
better than TempEC-HP. This was contrary to what we had
expected because we believed the facial pose information in
TempEC-HP would help in detecting eye contact for various
face directions. However, these results do not indicate
that facial pose information is useless. In our TempEC-
HP algorithm, 3D facial pose estimation is based on facial
landmarks, the detection of which is mostly accurate but
has a certain degree of error. This error is not significant,
which is why it is not a problem when used to obtain
eye regions. However, in facial pose estimation, such a
small error sometimes causes a large incorrect gap between
two contiguous frames. The facial pose of two adjacent
frames should be close because a human’s face cannot move
very much in a short time (namely, 0.03 sec because the
videos were recorded at 30 fps). Due to this problem, facial
pose estimation is occasionally not sufficiently reliable,
which causes TempEC-HP to perform poorly. Hence, the
performance of TempEC-HP can be improved by using
a more accurate facial detection or facial pose estimation
algorithm.

Another notable finding was that introducing temporal
inference increased the algorithms’ recall performance,
which means the temporal information contributed to
‘overlooked’ effects of eye contact. Our experiments
showed that adding a conditional random field (CRF) to the
DeepEC algorithm could not improve its results. Several
examples (Fig. 10) showed that CRF tends to ”smoothen”
temporal inference in DeepEC, which may help to avoid
the ‘jittering’ effects of single frame estimations but does
not solve the temporal inference problem fundamentally.
Thus, we believe our current algorithms, which combine the
internal states of single frame recognition and LSTM, are a
better solution.

Our results show that our algorithms enable excellent eye
contact detection performance to be achieved. They also
show the potential of temporal learning of eye behavior,
with which we can evaluate the care skills of caregivers.

Evaluation of wearable care-skill estimation system: Unsu-
pervised analysis results of mutual facial distances and
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facial poses enabled us to find significant differences
between novices, middle-level and expert Humanitude care-
givers. Specially, we found a clear threshold in eye contact
frequency and PCA scores of facial distance and rz-rotation
histograms, which indicate that the important skills in
Humanitude tender-care are related to a) frequent eye con-
tact, b) a nearest mutual facial distance of less than 30 [cm]
and c) mutual facial poses being in the same direction. This
can also be seen from the 1st PCA components of the dis-
tance and rz histograms (Fig. 11). In the distance histogram,
bins 2 and 3 (0.2 - 0.4 [m]) are related to the experts while
bins 4 and 5 (0.4 - 0.6 [m]) are related to the novices. For
the rz histogram, bins 4 and 5 (-30 - +10 [deg]) are related
to the experts while bins 2 and 3 (-70 - -30 [deg]) are related
to the novices. These skills are a part of Humanitude gaze
skill: caregivers should communicate to the care receivers
while keeping eye contact from a close distance and pos-
sessing the same facial angles of the care receiver’s face.
This is based on the idea of Humanitude care methodology
that all behaviors are considered to imply non-verbal mes-
sages. To have the eye contact straight in front of the care
receiver expresses the fairness, and the distance between
caregivers and care receivers reflects their friendliness. The
study results show that the experts expressed fairness and
friendliness much more than the novices. This skill is a core
skill with which to establish a good relationship that leads
to high-quality care.

Open issues and future work: Though our analyses can
quantize and visualize the Humanitude care communication
skills, several open issues remain to increase the analysis
quality, as we ascertained from the responses of Humanitude
experts. The first point is the face detection stability
of OpenFace. Specifically, OpenFace cannot detect care
receivers’ faces when x or y rotations are quite large
(e.g., looks at the size of the faces). The second point
is the temporal analysis. The estimation of facial poses
and distances is currently performed frame-by-frame and
TempEC considers only 1/3 seconds as the temporal
duration. However, it has been reported that the duration of
eye contact is about three seconds in typical communication
scenes [6] and that a longer duration of mutual gaze is
often effective in communicating with a dementia patient
[3]. Thus, temporal inference using a longer duration can be
expected to be effective in care-skill evaluation as well.

The tender-care concept involves multi-modal skills
including gazing, speaking and touching. As the initial
step in computational care communication analysis, we
treated face-to-face communication skills. We are currently
developing a method for detecting and analyzing voice
signals and sensing touch behaviors through the use of

wearable contact sensors or vision analysis. We believe that
our findings for tender-care skills and systems for obtaining
care skills will prove to be important and usable, not only
for increasing the skills of caregivers but also for designing
and evaluating care robots’ behaviors.
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34. Petric, F., Miklić, D., kovačić, Z.: Probabilistic eye contact
detection for the robot-assisted asd diagnostic protocol. In:
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