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Introduction

Nowadays, micronutrient deficiency has become a 
limiting factor for crop productivity in many agricultural 
lands worldwide. Furthermore, many food systems in 
developing countries can not provide sufficient micronutrient 
content to meet the demands of their citizens, especially 
low-income families (Bouis and Welch, 2011). Around half 
of the world population suffers from malnutrition of such 
macro-, and microelements as calcium, copper, iron, iodine, 
magnesium, selenium and zinc (Zhao and McGrath, 2009). 
Furthermore, most of the major staple crops of the world, 
i.e., wheat, rice, cassava, beans, sweet potato or maize are 
often deficient in some of these mineral elements. Thus, the 
increasing of bioavailable concentration of micronutrients in 
edible crop tissues (biofortification) has become a promising 
strategy in modern agriculture, allowing the access of more 
nutritious foods, to more people, with the use of fewer 
resources (Carvalho and Vasconcelos 2013). 

Two main strategies are known enhancing micronutrient 
status of crops: one of them genetically improved food 
crops which are richer in bioavailable micronutrients, either 
through conventional breeding or genetic modification (Johns 
and Eyzaguirre 2007). The process of breeding nutrients 
into food crops, provides a sustainable, long-term strategy 

(Saltzman et al. 2013). Micronutrient-efficient genotypes 
could ensure a number of benefits such as reductions in the 
use of fertilizers, improvements in vitality, and resistance 
against abiotic and abiotic stresses. At the same time using 
bioavailable micronutrient-dense staple crop cultivars can 
also be used to improve the micronutrient nutritional status 
of human (Khoshgoftarmanesh et al. 2010). The agronomical 
biofortification includes several solutions such as soil and 
foliar fertilization, crop systems, application of organic 
amendments. 

On a global level, particularly in developing countries, 
it is above all deficiencies in iron, zinc and iodine that are 
recognized to have a negative impact on public health (Horton 
et al. 2008). Also deficiencies in calcium and selenium are 
considered to represent public health problems, albeit less 
significant ones (Black et al. 2008), and in sub-populations or 
at regional levels also deficiencies in magnesium and copper 
may represent more common health problems as reviewed 
by Stein 2010.

Vegetables are very important source of antioxidants and 
nutraceutical compounds for the human diet. The most part 
of these compounds act against free radicals/reactive oxygen 
species (ROS) in plants as well as in humans (Steinbrenner 
and Sies 2009). ROS include free radicals such as the 
superoxide anion, hydroxyl, lipid radicals, oxidizing non-
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radical species, hydrogen peroxide, peroxynitrite and singlet 
oxygen. 

In general, selenium (Se) has been demonstrated, as 
a component of different enzymes such as gluthathione 
peroxidase and thioredoxinreductase, to play an important 
role in the antioxidant defense system of human and mammals 
cells (Birringer et al. 2002; Ellis and Salt, 2003). However 
plants don’t need Se to keep the normal metabolism but they 
can transform inorganic Se to organic selenoaminoacids 
and their derivatives. It has been clinically demonstrated 
that selenoaminoacid derivatives have anticarcinogenic 
proprieties. The optimum concentration of Se uptake is 
limited to a very narrow concentration range and outside of 
it deficiency or toxicity may occur so easily (Ferrarese et al., 
2012). 

Considering the essentiality of Se for human health 
biorfortication of staple and/or vegetable crops with Se 
offer a good solution decreasing the deficieny. However 
using agromnomical strategies such as Se-fertilizers must 
be performed under very strict conditions, since an over-
accumulation in the edible parts might be toxic for consumers 
(Makela et al. 1995). Se is not essential for Higher plants 
although evidence of its beneficial effects on plant growth 
and stress tolerance is increasing (Hartikainen, 2005). 

Therefore, this review highlights progress to date and 
identifies challenges faced in delivering biofortified vegtable 
crops special regard selenium as essential microelement for 
human.

Biofortification: why?

Humans require at least 44 known nutrients in adequate 
amounts, whereas at least 20 dietary minerals and trace 
elements are essential for the proper functioning of the human 
body (Bouis and Welch, 2011). Consequently, if they are not 
ingested in adequate amounts (or are poorly bioavailable), 
there will be negative impacts on the health of those who 
consume too little of these nutrients. It is well known that 
millions of people worldwide consume insufficient nutirents 
or for adequate health. Besides dietary supplements, and 
mineral enriched processed food, dietary  mutrient (like as 
Se, Zn, Fe etc.) intake can potentially be increased through 
crop biofortification (Broadley et al., 2009). 

Biofortification is a process of increasing the natural 
content of bioavailable nutrients such as selenium in crop 
plants (Hirschi 2008). Biofortification relies on the plant’s 
biosynthetic (vitamins) or physiological (minerals) capacity 
to produce or accumulate the desired nutrients (Mayer et 
al. 2008). This term can also be used to refer to the actual 
process whereby crops load higher levels of minerals and 
vitamins in their organs. 

Plants are at the beginning of every food chain. Therefore, 
improving the uptake of minerals from the soil and enhancing 
their translocation and bioavailability in the edible parts, can 
provide benefits for animal and human nutrition. From this 
aspect two main challenges are ahead: firstly developing crop 

plants that have an increased content of essential minerals 
in the edible parts at the same time exclude toxic elements 
that exhibit similar chemical properties; secondly avoid 
sequestration of nutrients in the inedible parts of the plant 
(Palmgren et al. 2008). Biofortification requires increasing 
public investment in agricultural research and infrastructure. 
The nutrients enhancing efforts in developing countries 
should focus on vegetatively propagated crop species or 
improving quality of cereals, vegetables, as well as fodders. 
Using agricultural biodiversity to reinforce dietary diversity 
can help locate biofortification within the larger context of 
sustainable food-based approaches (Johns and Eyzaguirre 
2007).

Strategies for biofortification of food crops

Plants are extremely versatile biochemical factories, 
capable of synthesizing a nearly full complement of 
essential dietary micronutrients; however, these are unevenly 
distributed among different plant parts. For instance, iron 
content of a rice leaf is high (100–200 mg kg-1) but very low 
in the polished rice grain (3 mg kg-1). Similarly, provitamin 
A carotenoids are present in rice leaves only. Unfortunately, 
poor people specially in developing countries consume low 
amount of vegetable. Predominantly food source of these 
social layer are the starchy staples such as wheat, rice, maize, 
or cassava, which do not provide the biochemical diversity 
needed for a healthy life. 

Biofortification is a process with target to increase 
the bioavailable nutrient/mineral content of crop plants. 
Biofortified crops can provide advantages both for human 
and plants (Winkler, 2011). 

In general, three complementary strategies can be 
employed to increase mineral concentrations in edible crops 
(White and Broadley 2009). One of the most important 
strategy is “agronomical” biofortification, employs the use of 
fertilizers containing the mineral elements lacking in human 
diets. A common limitation for agronomical biofortification 
is the generally low phytoavailability of mineral 
micronutrients in the soil. Thus, the agronomic efforts have 
been directed toward the application of mineral fertilizers 
and the improvement of the solubilization and mobilization 
of mineral elements in the soil Principally Zn, Cu, Fe, I, Se, 
Mg, and Ca are the main micro-, and macroelements which 
are applied as soil inorganic fertilizer, amendments (such 
as composts and manures). The high pH of soil inhibits the 
minerals uptake, therefore acidifying fertilizers (such as 
urea, ammonium nitrate, ammonium sulphate, ammonium 
phosphates, or elemental S) are useful to rectify soil alkalinity 
or lime.  Appropriate crop rotations, intercropping, or the 
introduction of beneficial soil microorganisms to increase the 
phytoavailability of mineral elements could also be important 
tools of agronomical biofortification (White and Greenwood 
2012). Several authors have reviewed appropriate methods, 
infrastructural requirements, and practical benefits for food 
production, economic sustainability, and human health of 
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agronomic biofortification of edible crops (Cakmak 2009). 
Inter alia Se addition to soil fertilizerled to increase dietary 
Se intakes in Finland and New Zealand (Hartikainen 2005; 
White and Broadley 2005). The iodinization of irrigation 
water  also increased effectively dietary intakes of I in 
Xinjiang, China (Dai et al. 2004; Lyons et al. 2004). Last but 
least fertilizers containing Zn as agronomical biofortification 
increased the crop production at the same time dietary Zn 
intakes, and human health in Anatolia, Turkey (Cakmak 
2009). 

The agronomical biofortification by soil fertilizers 
are relatively simple with fast results but the success of it 
depends on several factors such as physical and chemical 
characterisation of soil, mineral mobility and soil microbial 
activities (Hirschi 2009). Therefore this method cannot be 
seen as an universal approach for enhancing the micronutrient 
levels in edible crop tissues. Several times mineral elements 
(such as Fe or Zn) become rapidly unavailable to roots, 
the use of foliar fertilizers, rather than soil fertilizers, is 
recommended (Fageria et al. 2011). 

The second and third strategies are connected, because 
both of them are based on breeding. The difference is 
in the method what are used: conventional breeding or 
genetic engineering. The aim of “genetic” biofortification is 
improving plant genotypes with increased abilities to acquire 
mineral elements from the environment, for a higher capacity 
to accumulate micronutrients in the edible plant tissues and 
to increase their bioavailability to humans (White et al. 2012; 
Carvalho and Vasconcelos 2013). 

Of course the biofortification strategies are exist not 
only separately however application of mineral fertilizers 
can be combined with breeding crop varieties providing 
higher efficiency in mineral accumulation of vegetable and 
staple crops reach the final aim which is alleviating mineral 
malnutrition of humans (White and Broadley 2009).

It is likely that farmers even in developed or developing 
countries may adopt new genotypes that acquire mineral 
elements more efficiently, particularly if biofortified produce 
demands a premium price along with crops can be grown 
on soils with low phytoavailability of mineral elements with 
reduced fertilizer inputs, better germination, seedling vigour 
and higher resistance to abiotic and biotic stresses (Cakmak 
2008; Graham et al. 2007).

Biofortification and post-harvest processes

Besides the biofortification strategies harvesting crops 
at the optimal state of maturity is well known criterion 
for optimizing nutritional quality of plants. In addition, 
postharvest processing of plant tissues has been used for a 
long time to enhance nutritional quality via either the release 
of nutrients that may otherwise be bound by plant tissues or 
by elimination or destruction of toxins and anti-nutrients. 
The post-harvest processes include cooking (thermal 
processing), fermentation, germination, milling, and soaking 
of edible plant parts (Sands et al. 2009). For example, 

thermal processing is well-known to enhance the nutritional 
quality of grain legume proteins by inactivating trypsin and 
haemagglutinins (Tharanathan and Mahadevamma 2003). 
Heating can also destroy anti-nutrients such as goitrogens, 
thiaminases and phytates (Hotz and Gibson 2007). 

However, postharvest processing is not always 
advantageous for nutritional quality. Salt, heat, alkaline 
or acidic conditions, light, and copper cooking utensils 
can decrease concentrations of vitamins (A, C, B1 and 
B2 and of folate and carotenoides). Nevertheless, post 
harvest processing is an important strategy for balancing 
the physiological constraints of plants for their health and 
vigorous growth with the nutritional needs of humans (Sands 
et al., 2009).

Biofortification of vegetable crops with Se 

It could be noticed that, the importance and using of 
Se for biofortifying crops, is less comparing with other 
elements (from Ca to Zn). Being that Se is a microelement 
it needs in micro molar concentration for all animals and 
humans however above this concentration it can be reached 
easily the toxic level (White and Broadley 2005). The 
recommended dietary allowance in the USA is 55 μg Se d–1 
and the reference nutrient intake in the UK is 60–75 μg Se 
d–1 (White and Broadley 2005). Se deficiency in humans is 
associated with cardiovascular disorders, hypothyroidism, 
a weakened immune system, male infertility, and increased 
incidence of various cancers. It is estimated that about 15% 
of the world’s population are suffered from different levels 
of Se deficiency, which is a consequence of consuming 
crops grown on Se poor soils (White et al. 2007). Selenium 
fertilizers are generally applied to pastures and forages at a 
rate of 5–10 g Se ha–1 year–1. The most frequent applied form 
is water-soluble selenate salt (such as Na2SeO4 or K2SeO4) 
provides an immediate source for Se uptake by plants. 
However these days the interest is going to turn towards to 
the selenite or a less soluble selenate salt such as BaSeO4 
providing longer-lasting Se availability. Se concentrations 
in food crops can also be increased through Se fertilization 
(Broadley et al. 2006). The selenium agronomical strategy 
has been pioneered in Finland, where the addition of Se to 
fertilizer formulations has been mandatory since 1984 and 
currently soil fertilizers containing 10 mg Se kg–1 (White et 
al. 2007).

Vegetable crops are important part of the daily diet. 
Therefore biofortifying vegetables can contribute alleviating 
the selenium deficiency. Beside soil fertilizer several other 
agronomical attempts are known enhancing Se content of 
different vegetables in open or closed system as collected the 
Table 1. 

There are difference in sensitivity of chemical forms 
and amount of selenium between vegetable species. The 
Se sensitivity of species is derived from alterations in Se 
metabolism. According to Brown and Shrift (1981), Se-
accumulating plants could tolerate large amounts of Se 
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due to a mechanism responsible for excluding Se from 
incorporation into proteins. None of the vegetable plants 
seems to possess this mechanism in spite of the fact that 
three of these belong to the Brassicaceae family (radish, 
cauliflower and turnip) and two to the Alliaceae family 
(onion and garlic). Both families possess several secondary 
accumulator members which can grow on soil with low to 
medium Se content and can accumulate up to 1000 mg $ kg–1 
Se (Brown and Shrift 1982). The Se toxicity were observed 
due to interference with sulphur metabolism. Selenium can 
substitute for S leading to the formation of Se analogues of 
S organic compounds in plants. Similarity of Se-aminoacids 
to their S-analogues of cysteine and methionine can built into 
functional protein disrupt them (Anderson and Scarf 1983). 
The nuclear diameter of Se is higher than S so incorporation 
of Se into proteins can result in the alteration of protein 
structure, inactivation of proteins, which eventually lead to 
metabolic disorders of plants Dhillon and Dhillon (2009). 

Vegetable sprouts are some-day-old baby plants which 
have increasingly interest in these days beacuse of their 
nutritional values. Enhancing of sprouting seeds with 
selenium is special form of vegetables biofortification. 
The sprouting process could be achieved in closed system 
using different germinating devices. The micro-farms are 
considered an promising tools for biofortifying vegetable 
crops as shown in Fig. 1.

It could be used micro-farm automatically to grow a large 
variety of seeds, baby greens, beans, shoots, and wheatgrass, 
under any climate conditions, at any time of the year, with 
or without soil. Some micro-farm is supplied with one large 

tray for wheatgrass and five standard cartridges for sprouts. 
Some models are stackable, so that it could be purchased one 
first to suit the present needs and add more modules as the 
desires change. The micro-farm has a built-in water reservoir 
so that you can locate the machine in any convenient place, 
not necessarily near a water source. Micro-farm includes 
built-in mist irrigator, timer, 5 standard sized cartridges, and 
drainage tube. It could be used this micro-farm system to 
follow plant nutrition sprouter production and plant nutrition 
research (Fig. 1). It could be also modified the micro-farm 
system to evaluate different plant nutrition studies. The 
micro-farm sprouter could be used a patented technology of 
misting water and air on the surface of the seeds (El-Ramady 
et al. 2013b). In this system continuous Se fortification can 
be achieved as foliar application. At the same Se solution can 
change to water before harvesting removing the Se residue 
which has stuck to the sprouts surface. The advantage of 
foliar application compared with soil fertilization with Se 
for bio-fortification is that losses caused by soil adsorption, 
chemical or microbiologically mediated conversions or 
losses are not likely to occur (Table 1). Furthermore, the 
direct foliar uptake ensures higher efficiency of assimilation 
by the plant (Kápolna et al., 2009; Kápolna et al., 2012). 

Conclusion

This paper has described the biofortification of vegetable 
crops with Se and the different tools for agronomic 
biofortification. It has also highlighted different strageties 
of biofortification. Function of minerals and elements in 
humans and higher plants, which use in biofortified crops 
were highlighted. It has noted that the problems of mineral 
deficiencies and toxicities must be addressed to maximize 
crop production in both intensive and extensive agricultural 
systems. The chemical constraints to crop production on 
acid, saline, alkaline and sodic soils can be addressed 
through agronomy or the development of tolerant genotypes. 
In intensive agricultural systems, it is likely that inorganic 
fertilizers will continue to be required to maintain yields. 
To reduce the entry of toxic elements into the human food 
chain, strict quality requirements for inorganic and organic 
fertilizers might be enforced, agronomic strategies could be 
used to reduce the phytoavailability of these elements, and 
crop genotypes can be developed that do not accumulate toxic 
concentrations of mineral elements in their edible tissues. On 
the other hand, to increase the dietary delivery of mineral 
elements essential to human wellbeing, agronomic strategies 
to increase the phytoavailability of these elements combined 
with the cultivation of crops that acquire and accumulate 
greater concentrations of these elements in their edible 
tissues can be pursued where there is sufficiency of these 
elements present in the soil to support mineral dense crops. 
However, where these essential elements are not present 
in the soil, the application of fertilizers containing these 
elements is required to increase their amounts in human diets, 
if diets remain unchanged. Thus, interdisciplinary research 

Fig. 1: Micro-farm, as a model for plant nutrition and soil fertility research. 
These photos represent the using of micro-farm for sprouts production as 
well as for different plant nutrition research. These photos with kind per-
mission from Eric Viard (http://www.easygreeneurope.com/10.3.2013) 
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Experimentation 
medium/ vegetable 

crop

Se addition (rate, 
mg L-1) * and period 

of experiment

Total  
Se 

 (µg g-1)
References

Nutrient solution medium

Lupine  
(Lupinus albus)

Na2SeO4 (1) 14 days 631 Ximénez-
Embún et al. 
(2004)

Na2SeO3 (1) 41 days   50

Sunflower  
(Helianthus annuus)

Na2SeO4 (1) 14 days   73

Na2SeO3 (1) 14 days   12

Cichory  
(Cichorium intybus)

Na2SeO4 (7)   5 days   88 Mazej et al. 
(2006)Na2SeO4 (7) 10 days 131

Na2SeO4 (7) 41 days 480

Pot experiments (green house)

Lettuce (L. sativa) 
young (YS)  and 
senescing seedlings 
(SS)

H2SeO4 (1) 7 weeks 
(YS)
H2SeO4 (1) 14 weeks 
(SS)

270
  41

Xue et al. 
(2001)

Potato (S. tuberosum) 
tubers

Na2SeO4 (0.3) 15 
weeks

    7.4 Turakainen et 
al. (2004)

Potato (S. tuberosum) 
edible part

Na2SeO4 (5) 45 days   33 Dhillon and 
Dhillon (2009)

Carrot (Daucus 
carota), Id

Na2SeO4 (5) 45 days   35

Radish (Raphanus 
sativus L.), Id

Na2SeO4 (5) 45 days   45

Garlic (Allium 
sativum), Id

Na2SeO4 (5) 45 days   53

Turnip (Brassica 
rapa), Id

Na2SeO4 (5) 45 days   65

Spinach (Spinacia 
oleracea), Id

Na2SeO4 (5) 45 days   93

Onion (Allium cepa cv. 
Sturon)

Na2SeO3(50)17 
weeks, leaf†

    6.3 Kápolna et al. 
(2012)

Na2SeO3 (50)17 
weeks, bulb

    6.8

Carrot (D. carota cv. 
Bolero)

Na2SeO3 (50)17 
weeks, root 

    2.8

Na2SeO3 (50)17 
weeks, leaf

  25.0

Onion (Allium nutans 
L.)

Na2SeO3(2.3) 17 
weeks, leaf

    0.41 Golubkina et al. 
(2012)

Se0 (2.3) 17 weeks, 
leaf

    0.72

Na2SeO4(2.3) 17 
weeks, leaf

    1.08

Field experiments

Turnip (Brassica rapa) Na2SeO4 (20 g ha-1)     1.05 Seppänen et al. 
(2010)Na2SeO3 (20 g ha-1)     0.85

Oilseed rape (B. napus) Na2SeO4 (20 g ha-1)     1.59

Na2SeO3 (20 g ha-1)     1.55

Hydroponics medium

Onion (Allium cepa) Na2SeO3 (5) 8 days 154 Wróbel et al. 
(2004)Na2SeO4 (5) 8 days 601

Green onion (A. 
fistulosum)

Na2SeO3 (15) 14 
days††

  30 Shah et al. 
(2004)

Green onion (A. f. va. 
Tetenyi r.)

Na2SeO4 (10) 28 days 199 Domokos-
Szabolcsy et al. 
(2006)Green onion (A. f. va. 

Makoi br.)
Na2SeO4 (10) 28 days 348

Experimentation 
medium/ vegetable 

crop

Se addition (rate, 
mg L-1) * and period 

of experiment

Total  
Se 

 (µg g-1)
References

Absorbent cotton medium ‡

Onion (Allium cepa) Na2SeO3 (10) 7 
days **

  17.8 Sugihara et al. 
(2004)

Eggplant (Solanum 
melongena)

Na2SeO3 (10) 15 
days **

  22.0

Spinach (Spinacia 
oleracea)

Na2SeO3 (10) 8 
days **

  25.6

Lettuce (Lactuca 
sativa) 

Na2SeO3 (10) 7 
days **

  27.3

Carrot (Daucus carota) Na2SeO3 (10) 8 
days **

  29.0

Broccoli (Brassica 
oleracea)

Na2SeO3 (10) 8 
days **

  32.1

Chinese cabbage (B. 
campestris)

Na2SeO3 (10) 7 
days **

  36.5

Turnip (Brassica rapa) Na2SeO3 (10) 8 
days **

  37.7

Parsley (Petroselinum 
crispum)

Na2SeO3 (10) 15 
days **

  46.3

Growth chamber medium 

Lettuce (L. sativa L. cv 
Philipus)

Na2SeO3 (20) 66 
days, leaf

  40.0 Ríos et al. 
(2008)

Na2SeO4 (20) 66 
days, leaf

  45.0

Carrot (Daucus carota) 
foliar ap.

Na2SeO3(10) 13 
weeks, root

    0.4 Kapolna et al. 
(2009)

Na2SeO3(10) 13 
weeks, leaf

    5.1

Na2SeO4(10) 13 
weeks, root

    0.5

Na2SeO4(10) 13 
weeks, leaf

    5.7

Closed fortification system

Onion (A. cepa cv 
Makói bronz)

Na2SeO4 (10) 21 days   93 Domokos-
Szabolcsy et al. 
(2011)Onion (A. cepa cv 

Makói lila)
Na2SeO4 (10) 21 days 100

In vitro culture medium

Radish (Raphanus 
sativus L.) 

Na2SeO4 (10) 7 days, 
roots

420 Domokos-
Szabolcsy et al. 
(2005)Na2SeO4 (10) 7 days, 

shoots
  75

Micro-farm condition

Radish (R. sativus) 
whole plant

Na2SeO4 (2) 10 days   69.2 El-Ramady et 
al. (2013a)Na2SeO4 (5) 10 days 211.0

Na2SeO4 (10) 10 days 303.6

* dry weight and ** fresh weight (whole plant)
† Total Se concentration denotes sum of naturally occurring and isotopi-
cally enriched concentration, 77Se(IV)
†† Growing media are cell packs, which containing 3 – 5 seeds and with 
four cells each of dimensions (13 cm × 13 cm × 10 cm) were employed. 
Each cell contained mixture of sphagnum, peat moss, perlite, vermiculite, 
dolomite and calicitic lime stone.
‡ Absorbent cotton (ca. 20 g) was spread over the base of a synthetic resin 
container (25 cm × 35 cm × 14 cm)

Table 1: Total concentration and forms of Se in leaves of cultivated crop plants exposed to Se under different experimental conditions as a result 
of fortification with different Se forms
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in plant mineral nutrition, soil science, agronomy, and crop 
breeding is required for future food security to improve soil 
quality, optimize fertilizer applications for sustainable crop 
production, and develop strategies for the biofortification of 
edible crops with essential mineral elements.

Growing sprouts from vegetable seeds is a special part 
of horticulture in closed system. Sprouting can achieved in 
different germinating devices from the simpliest germination 
bowl to the complex germination equipments are broad the 
scale. The micro-farms are considered a promising tool for 
germination. At the same time these germination systems 
allow using different target solutions instead of water 
enhancing the nutrient content (such as selenium) of sprouts.

Considering the human, economical and sociological 
gravity of the micronutrient deficiency special regard in 
developing countries the importance biofortification strategy/
strategies application are increasing even in open or closed 
system.     
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