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We present a methodology to identify change-points in financial markets where the gov-
erning regime shifts from a constant rate-of-return, i.e. normal growth, to superexpo-
nential growth described by a power-law hazard rate. The latter regime corresponds,
in our view, to financial bubbles driven by herding behaviour of market participants.
Assuming that the time series of log-price returns of a financial index can be modelled
by arithmetic Brownian motion, with an additional jump process with power-law hazard
function to approximate the superexponential growth, we derive a threshold value of the
hazard-function control parameter, allowing us to decide in which regime the market is
more likely to be at any given time. An analysis of the Standard & Poors 500 index over
the last 60 years provides evidence that the methodology has merit in identifying when
a period of herding behaviour begins, and, perhaps more importantly, when it ends.

Keywords: criticality, jump process, change point, financial bubble, power laws

1. Introduction

When studying asset-price bubbles and anti-bubbles, a holy grail of theoreticians
and practitioners alike is to predict their start and end, preferably as early as possi-
ble, so as (according to circumstances and inclination) to take maximum advantage
of any opportunities that might arise or to mitigate any negative consequences or
even to intervene in the market to prevent or curtail such a bubble/anti-bubble.
As a result there has been a large amount of literature devoted to the detection of
bubbles/anti-bubbles, with several competing approaches (see Gürkaynak 2008 and
Jarrow 2016).

The valuation of stock markets, and of financial assets more generally, has been
the subject of much debate. For some who favour the efficient markets hypothe-
sis (in its various guises, including the random-walk model), bubbles fail to exist,
full market knowledge having been already factored into the asset price, either im-
mediately or sufficiently quickly to prevent any effective use of temporary market

1



July 25, 2019 13:12 WSPC/INSTRUCTION FILE changepoint

2 Christopher Lynch & Benjamin Mestel

departures from the fundamentals.
In this paper we assume the standpoint that certain periods of accelerated super-

exponential growth may be viewed as financial bubbles driven by herding behaviour
of market participants. Indeed, for many finance researchers and industry practi-
tioners, the existence of asset bubbles and anti-bubbles is an established fact, a
commonplace occurrence, and, indeed, many economists and practitioners question
the strict application of the efficient markets hypothesis. For example, in Robert-
son & Wright (1998), the authors report that long-term stock returns appear to
be “much less uncertain than a random-walk model would imply,” and that re-
search suggests that there is a “weak tendency for stationary valuation indicators
to predict future stock prices” so that “long-run returns can become markedly more
predictable”.

Furthermore, there is a wide variety of methods used to model change-points
in time series, depending on the application and research community. For ex-
ample, for the econometrics community, the detection of change-points between
bubbles/anti-bubbles may proceed by fitting standard time-series models such as
ARIMA, (G)ARCH (Mills & Markellos 2008) and determining time points at which
the nature of the models change, often using Dickey-Fuller-type tests to detect unit
roots in the underlying statistical models. Several review papers discuss this ap-
proach, see, for example, Taipalus (2012), Arshanapalli & Nelson (2016), Harvey
et al. (2015), Astill et al. (2017) and references therein.

There is a large body of literature in the statistics community on change-point
methods, including Monte Carlo Markov Chain methods, e.g. Adams & MacKay
(2007), Benson & Friel (2018), Heard & Turcotte (2017). See Aminikhanghahi
& Cook (2017) for a review from the machine-learning community. The so-called
Pruned Exact Linear Time (PELT) algorithm (Killick et al. 2012), a development
of the method of Jackson et al. (2005), which uses both dynamic programming and
pruning to produce an algorithm that is linear in the data size, is included in the R
package (Killick & Eckley 2013), along with the Segment Neighbourhood algorithm,
and the classical Binary Segmentation algorithm.

The approach to change-point identification taken in this paper is somewhat dif-
ferent from these methods. First, a normal and log-normal bi-variate distribution
of growth rate and volatility is obtained empirically by fitting data from the times
series over random time periods. Second, starting from an assumption that the asset
grows exponentially following a geometric Brownian motion process, with superex-
ponential growth modelled by an additional power-law hazard term (activated when
a parameter ν 6= 0 following Cheah & Fry (2015)), the model is simulated using
the growth rates and volatility selected randomly from the previously determined
bi-variate distribution. To test whether the data fits the superexponential growth
model, a most-likely-value estimate (MLV) is obtained from the distribution of ν

calculated from a maximum-likelihood estimate based on random simulation of the
other model parameters. In the case studied, these MLV estimates are found empir-
ically to be well fitted by generalised/skew logistic distributions (for both normal
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and superexponential growth). The two resulting distributions are close but distinct
and provide signatures for the two types of growth.

These distributions are then used as proxies for the probabilities of superex-
ponential and normal growth themselves, and a threshold is determined which is
considered as the boundary between these two regimes. Using these signature dis-
tributions, it is possible, using past and present prices, to decide, for each trading
day, which is more likely to be the governing regime: superexponential growth or
normal growth.

This paper is divided as follows: in §2 we present a model of returns during a
financial bubble as an arithmetic Brownian motion stochastic differential equation
modulated by a jump process governed by a power-law hazard function, and describe
the control parameter ν, closely following Cheah & Fry (2015). In §3 we use these
defined models of normal and superexponential growth to simulate time series, and
find the threshold value of the control parameter, ν, under each regime. In §4, this
threshold value is applied to the last 60 years of data from the S&P500 index and
the change-points between bubble and normal market regimes are calculated. The
paper concludes in §5 with suggestions for further work.

2. Modelling financial markets with power-law hazard rate

2.1. Asset price bubbles as a stochastic process

In deriving a model of periods of superexponential returns, we initially define a
model for markets operating in “normal” conditions. Our first assumption is that
returns on an asset-price index are log-normally distributed, and, as such, the price
St can be modelled by the geometric stochastic differential equation

dSt =

(
µt +

σ2
t

2

)
St dt+ σtSt dWt , (2.1)

where µt + σ2
t /2 is the drift coefficient, σt is the diffusion coefficient, and Wt is a

standard Wiener process with E[Wt] = 0 and E[W 2
t ] = t. We write Xt = logSt

and then, by applying Itô’s formula, we obtain the arithmetic Brownian motion
stochastic differential equation

dXt = µt dt+ σt dWt . (2.2)

Let the event Y be the occurrence of a market crash at time t = tY . We now
follow Johansen et al. (2000) and Cheah & Fry (2015) and conjecture that in the
period leading up to a crash, the asset price follows the same process as in (2.1),
but suffers a deterioration in the price by a factor κ, where 0 < κ < 1, at the time
of a crash, tY . Therefore, the asset price in this regime, S̃, follows the process

S̃t = St(1− κ)jt , (2.3)
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where jt is the jump process

jt =

{
0 t < tY ,

1 t ≥ tY .
(2.4)

Now, we write X̃t = log(S̃t) = logSt+jt log(1−κ) so that, by applying Itô’s formula
again, we arrive at a modified stochastic differential equation

dX̃t = µt dt+ σtdWt + log(1− κ) djt . (2.5)

2.2. The hazard rate

Under the condition that event Y has not occurred up to time t < tY , the jump
process jt = 0 and its expected value at time t, E[jt] = 0. Therefore, for the
infinitesimally small time period δt,

E[jt+δt − jt] = E[jt+δt] . (2.6)

The expected value of jt+δt can be interpreted as the probability there is a crash
event, Y , in the interval [t, t+δt] conditioned on there not having been such a event
up until this point. If we define the hazard rate, ht, as the probability per unit time
that a crash event, Y , occurs in the next moment, δt, conditioned on it not having
already happened, then

E[jt+δt] = htδt . (2.7)

Similarly, the variance of jt conditioned on the event Y not having occurred up to
time t is given by Var[jt] = 0. Therefore, since it is clear that jt = j2t we have

Var[jt+δt] = htδt− h2
t δt

2 . (2.8)

2.3. Expectation and variance of returns in the hazard rate model

The return of an asset in the time interval [t, t+ δt] is given by dX̃t = X̃t+δt − X̃t.
Since E[dWt] = 0, it follows from (2.5) that, in a bubble regime, the expected value
of the asset return in [t, t+ δt] is

E[X̃t+ δt− X̃t] = E[µtδt] + log(1− κ)E[jt+δt − jt] . (2.9)

Therefore, from (2.7) we have

E[X̃t+δt − X̃t] = µtδt+ log(1− κ)htδt . (2.10)

Now, the expected rate of return, E[X̃t+δt − X̃t], can be interpreted as the mean
return over all periods of δt across the whole time series. Following Cheah & Fry
(2015), we assume this rate of return to be a fixed value per unit time, µ, so that

µt = µ− log(1− κ)ht . (2.11)

Since log(1−κ) < 0, Cheah & Fry (2015) interprets this to suggest that, as the risk
of a crash occurring increases, the return required for traders to stay in the market
must increase to compensate for the increased risk.
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By a similar argument, assuming a fixed volatility σ across the whole time
series, Cheah & Fry (2015) gives the relationship between the hazard function and
the volatility as

σ2
t = σ2 − (log(1− κ))2ht (2.12)

implying, as the authors remark, the rather counter-intuitive suggestion that as the
risk of a crash increases, the volatility of the asset price actually reduces, perhaps
an indication of overconfidence in the market as bubbles mature.

The theory in Cheah & Fry (2015) is valid for finite hazard rate. However, when,
as in the next section, we model the hazard rate as a power law with ht → ∞ as
t approaches a critical time tc, it is clear that equation (2.12) is problematic close
to tc because then σ2

t < 0. Note that in Johansen et al. (2000) it is assumed that
σt = 0 so that the stochasticity enters through the jump process, while in Cheah &
Fry (2015) the full model (2.5) is presented. In this paper we take a middle position,
modelling µ(t) through (2.11), but making the ansatz σt = σ, a non-zero constant.
While it is clear future theoretical developments might incorporate time-varying
σt, the justification for our ansatz is twofold: ex ante because our focus is on the
modelling of the growth rate µt, and ex post because, as we shall see in §3.3, the
ansatz allows the construction of a statistic that appears to discriminate ‘normal’
exponential growth from the superexponential growth that is characteristic of asset
bubbles.

2.4. The hazard rate as a power-law

Asset bubbles (and antibubbles) result from imitative behaviour or herding in the
market. The likelihood of this imitation is a function of the general interconnect-
edness of the market participants, such that if δ is the number of connections of
a typical trader, one might suppose (Johansen et al. 2000) that the hazard rate
satisfies dht/dt = chδ

t with δ > 1 and c constants. Solving the differential equation
with this condition gives

ht = B(tc − t)β , β = − 1

δ − 1
< 0 . (2.13)

where tc is a constant for which ht → ∞ as t approaches tc, the critical time.
Importantly, tc is considered as not being the actual time of the crash, but rather the
time when the crash is most likely to happen (Johansen et al. 2000). Furthermore,
we take δ > 2 so that −1 < β < 0, which is required for the asset to have a finite
value but infinite derivative at t = tc.

It is straightforward to see that the probability distribution function, P (Yt), of
a crash not occurring in the interval (t1, t), where t1 is the initial time, is given by

P (Yt) = exp

[
−
∫ t

t1

hτ dτ

]
. (2.14)
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Therefore, when t < tc,

P (Yt) = exp

[
B

1 + β

(
(tc − t)β+1 − (tc − t1)

β+1
)]

. (2.15)

We restrict β such that it lies within the interval [−1, 0) to prevent P (Ytc) from being
singular. Therefore, and it seems reasonable to suggest, there is a finite probability
that the bubble ends without a crash at all. Furthermore, it follows that since it is
required that P (Yt) must lie in the interval [0, 1], we have the additional restriction
B ≥ 0. Let us write ν = B log(1− κ), then ν ≤ 0 for 0 < κ < 1.

Now we have expressions of the statistical parameters for a market which is
governed by a jump process with a power-law hazard function, and as such we
can investigate how the maximum log-likelihood of these parameters behaves when
applied to simulated data.

3. Detecting whether a market is in a bubble regime

We have developed a strategy to give a measure of the likelihood that a particular
market is in a bubble regime, and in doing so find areas in observed data where
the market is moving in and out of periods more likely to be exhibiting superex-
ponential growth. The strategy is developed over the next few subsections and the
implementation details are given in §4.

The first part of the strategy is to simulate normal and superexponential markets
N times by building models based on the theory in §2. Let m = 1, . . . , N enumerate
the models. Then each model is determined by a choice of parameters µm, σm, νm,
βm and tc,m. The model is then simulated by random variation of parameters,
including the initial time t1, keeping the final time fixed. Discrete-time simulation
is used with the n equally spaced times (market days), as described below. The aim
is to use the simulations to obtain data from which an implied representative value
ν′ can be obtained by a maximum log-likelihood estimate. It is the distribution
of this representative value of ν that is used to distinguish regimes of normal and
superexponential growth.

3.1. Construction of the simulated data

In order to look at the distributions of ν as calculated in both normal and su-
perexponential regimes, we construct large sets of simulated data for both market
types, say N , allowing us to determine whether one should expect to be able to
detect changes in such distributions. The simulated data for the mth time-series is
constructed such that each data point is given by

ri = xi − xi−1 =
(
µm − νm(tc,m − ti)

βm
)
∆+ σm

√
∆Ni(0, 1) (3.1)

where i = 1, . . . , n, and n is the number of trading-days worth of data in the mth
time series (noting that although n varies, we keep this notation for simplicity),
r1 = 0, ∆ is one trading-day measured in years, and the parameters indexed by m
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are chosen such that each simulated time-series is representative of the market in
question. Here Ni(0, 1) is a standard normal distribution. In what follows we shall
use this notation, sometimes indexed, to denote independent normal distributions.

Equation (3.1), which is equivalent to the differences ri being independently
distributed with probability density function

F (ri, ti) =
1√

2πσ2
ti∆

exp

[
− (ri − µti∆)2

2σ2
ti∆

]
, (3.2)

is derived from (2.5) and (2.11). In what follows we will restrict σ at a constant
value, to reduce the complexity of the maximum log-likelihood calculations in §3.2.

We note that −1 < βm < 0 so that we take βm ∼ U(−1, 0), a uniform distri-
bution on (−1, 0). As for tc, we know that should occur after the time tn. We take
tc ∼ U(tn, tn + γ) where γ is a short time, as described below in §3.2.

The distributions for µm and σm maybe be taken from the observed data of the
target market as described in §3.1.1. This leaves us to consider how to sample νm.
It is not immediately apparent how these values should be distributed, but a closer
look at (2.15) can point us in the right direction. The distribution of νm is discussed
in §3.1.2.

3.1.1. Estimating distributions for µm and σm

Since the aim is to create realistic simulated data for the particular market being
the focus of our investigations, we need to derive realistic samples of both the drift
parameter, µm, and its standard deviation, σm to be used in building the model.

In this section we have taken, as an example, the S&P500 index. We have taken
market close data from January 1950 to June 2018 and calculated the daily mean
of the log-price return, µm∆, and its standard deviation, σm

√
∆ for a large sample

(10, 000) of randomly chosen time periods (in years) of lengths drawn from U(0, 10).
As can be seen from Fig. 1, we have fitted approximate normal distributions

to these sample data for µm∆ and log(σm

√
∆) and in Fig. 2 we have derived a

simulated joint distribution of the daily mean of the log-price returns. This joint
distribution is used in the construction of the simulated data on which we have
based our subsequent analysis of this particular time series, as described in §4.

It is important to note that we have not attempted to accurately model the
distribution of the daily means and standard deviations; rather our aim has been to
capture the approximate range and frequency of values observed in this particular
market.

3.1.2. Estimating a realistic distribution of νm
In order to decide upon a realistic distribution of νm to be used in generating our
simulated data, we must first be clear on which distributions are reasonable for both
B and κ. First, looking at (2.15), we know that at time t = tc the probability that
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Fig. 1. Distribution of daily mean (not annualised) and the logarithm of their standard deviations
derived from the S&P500 index log-price returns from January 1950 to June 2018. 10, 000 sample
time-windows were take with spans up to 10 years drawn randomly from U(0, 10). The returns
and logarithm of their standard deviations have been fitted with normal distributions. As can be
seen, the fits are fair and sufficient for the purposes of building market simulations which are at
least representative of historical reality.

a crash has not occurred up until this point is given by

P (Ytc) = exp

[
− B

1 + β
(tc − t1)

1+β

]
. (3.3)

Since we chose β ∼ U(−1, 0), and defining the random variable p̃ = P (Ytc), for
which, without any other prior knowledge, we take p̃ ∼ U(0, 1), the probability
density function of B can be found by considering the relationship between β and
B given by

B = −(β + 1)θ−(β+1) log p̃ , (3.4)

where θ = tc − t1.
First, we consider the function g(θ, β) = (β+1)θ−(β+1) and its partial derivative

with respect to β,
∂g

∂β
= θ−(β+1)(1− (β + 1) log θ), θ > 0 . (3.5)

It can be seen that the function g(θ, β) has a unique turning point where θ =

exp[1/(β+1)]. However, since −1 ≤ β ≤ 0, a zero of ∂g/∂β only exists when θ ≥ e,
and for 0 < θ ≤ e the function g(θ, β) is monotonically increasing as a function of
β.
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Fig. 2. Joint distributions of daily µ∆ and log(σ
√
∆) for the S&P500 index. In red are 10, 000 points

of observed data taken from the log-price returns of the index between January 1950 and June
2018, and in blue is the fitted bi-variate normal distribution used for simulating data series using
the model given in (3.1). There is an amount of negative correlation between the two parameters,
given by a correlation coefficient of −0.25.

Now, we consider that the random variable B takes a particular value B = b

where b ≥ 0. By rearranging (3.4) and writing p̃ = pb(β) when B = b, we have

pb(β) = exp

(
− b

g(θ, β)

)
. (3.6)

Since g(θ, β) increases monotonically as a function of β for 0 < θ ≤ e, this is also
true for pb(β). Furthermore, since there is a unique turning point of g(θ, β) while
θ > e this is similarly true for pb(β). These two cases are shown in Fig. 3(a) and
Fig. 3(b) respectively.

Now, since B = −g(θ, β) log p̃, for a fixed value of β, in the two cases 0 < θ ≤ e

and θ > e, B is a monotonically decreasing function of p̃. Therefore, we can see that
the Cumulative Distribution Function of B, FB(b) = P (B ≤ b), can be expressed
as

P (B ≤ b) = 1− P (B > b) = 1−
∫ 0

−1

pb(β)dβ . (3.7)
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(a)

β

p ~

−1 0

0

1

log(θ)
− 1

B < b B > b

(b)

β

p ~

−1 0

0

B < b B > b

Fig. 3. Here is shown, for a given value of b, the relationship between p̃ and β for which where
B = b, in the two cases (a) θ > e, and (b) 0 < θ ≤ e, where θ is the time between the start of
the observed data and the critical time tc. Since 0 ≤ p̃ ≤ 1, in both cases the probability that
B < b is the area above the curve bounded by p̃ ≤ 1. Deriving an expression for this area gives
the probability density function for B for a given value of θ.

Therefore the probability density function of B can then be found by

fB(b) = − d

db

∫ 0

−1

pb(β)dβ (3.8)

=

∫ 1

0

1

(1− ρ)θρ−1
exp

(
− b

(1− ρ)θρ−1

)
dρ ,

where ρ = −β. To simplify matters a little further for the purposes of constructing
the simulated data on which to test the bubble detection method, we assume that
the time between the critical time, tc, and the last date in the observed data is small
compared to the time span of the data set so that the probability density function
becomes

fB(b) =

∫ 1

0

1

(1− ρ)θ̂ρ−1
exp

(
− b

(1− ρ)θ̂ρ−1

)
dρ , (3.9)

where θ̂ is the time span of the observed data.
The distribution of the “expected” percentage fall in the market upon the oc-

currence of a crash, κ, is difficult to determine since market crashes are, on the one
hand, rare and, on the other, not subject to strict definition. Here we model it by a
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Fig. 4. Distribution of B on the left and, on the right, the distribution of ν given from (3.9)
and (3.10) respectively, for varying values of the observed data time span, θ̂, assuming that the
difference between the time tc and the last date of the observed data is small compared to the
total time span. The distribution of ν further assumes that the fraction of the market fall in the
event of a crash is a uniform random variable κ ∼ U(0, 0.75).

uniformly distributed random variable κ ∼ U(0, 0.75). Other choices of upper limit
are certainly possible, and 0.75 may appear somewhat high since a price fall of 75%
is unlikely to occur in practice. However since the value of κ is an expectation of
draw-down if indeed a crash does happen, we should not necessarily take it as being
representative of draw-downs which have happened in the real world.

The distribution of the random variable ν = B log(1− κ) can be written as

fν(ν) = −
∫ κ+

0

1

κ+ log(1− κ)
fB

(
ν

log(1− κ)

)
dκ , (3.10)

where κ+ = 0.75. The probability density functions fB and fν are shown in Fig. 4.
We can obtain the the parameter νm by sampling from the distribution fν .

3.2. Maximum log-likelihood analysis of the power-law hazard function

Now that a model has been built which can generate simulated data x1, . . . , xn via
(3.1) we now describe how these data, and in particular, the log returns r1, . . . , rn,
given by r1 = 0, and ri = xi − xi−1, for i = 1, . . . , n, may be used to obtain
maximum log-likelihood estimates for ν.

Equation (3.2) describes the probability density function of the log-price returns
as normally distributed parametrised by time-dependent drift and variance terms.
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Now, given a set of observed asset log-price returns, model parameters may be
estimated using maximum log-likelihood methods; however, to simplify the analysis
and allow the parameter ν to be found explicitly, we hold the variance, σ2

t , as
a constant such that σ2

t = σ2 giving the simplified probability density function,
F̃ (r, t), as

F̃ (ri, ti) =
1√

2πσ2∆
exp

[
− (ri −∆(µ− ν(tc − ti)

β))2

2σ2∆

]
, (3.11)

so that

log
(
F̃ (ri, ti)

)
= −1

2
log(2π∆)− log σ − (ri −∆(µ− ν(tc − ti)

β))2

2σ2∆
. (3.12)

Therefore, given a series of log-price returns, R = (r1, r2, . . . , rn) and times T =

(t1, t2, . . . , tn), the log-likelihood function of the parameters is given by

logL(µ, σ, ν, tc, β;R) = −n

2
log(2π∆)− n log σ −

n∑
i=1

(ri −∆(µ− ν(tc − ti)
β))2

2σ2∆
.

(3.13)
Given this simplified equation, it is possible to find the maximum log-likelihood
explicitly for the parameters, µ, σ, and ν. We have labelled these as the linear
parameters, and tc and β as nonlinear and we derive expressions to find the value of
each parameter that maximises the log-likelihood function, and which are, therefore,
the most likely true values which generate the observed data.

Linear parameters. Starting with the parameters µ and ν, the values, µ′ and ν′,
which maximise the log-likelihood function are found by forming the partial deriva-
tives

∂

∂ν
logL = − 1

σ2

n∑
i=1

(tc − ti)
β
(
ri −∆(µ− ν(tc − ti)

β)
)
= 0

∂

∂µ
logL =

1

σ2

n∑
i=1

(
ri −∆(µ− ν(tc − ti)

β)
)
= 0 (3.14)

and, as such, are given uniquely by

µ′ =
c1c2 − nc3R̄

∆c4
, ν′ =

n(c2 − c1R̄)

∆c4
, (3.15)

where

c1 =

n∑
i=1

(tc − ti)
β , c2 =

n∑
i=1

(tc − ti)
βri, c3 =

n∑
i=1

(tc − ti)
2β (3.16)

and

R̄ =
1

n

n∑
i=1

ri, c4 = c21 − nc3 . (3.17)
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Finally, the partial derivative of the log-likelihood function with respect to σ is

∂

∂σ
logL = −n

σ
+

1

σ3∆

n∑
i=1

(
ri −∆(µ− ν(tc − ti)

β)
)2

= 0 , (3.18)

so that σ′2 can be explicitly expressed as

σ′2 =
1

n∆

n∑
i=1

(
ri −∆(µ′ − ν′(tc − ti)

β)
)2

. (3.19)

Since the value which maximises the log-likelihood function for each of the linear
parameters may be determined uniquely for given values of tc and β, it is necessary
to first determine the maximising values t′c and β′.

Non-linear parameters. By differentiating with respect to tc and β, the non-linear
parameters must satisfy

ν′β

σ′2

n∑
i=1

1

tc − ti

(
∆
(
µ′(tc − ti)

β − ν′(tc − ti)
2β
)
− ri(tc − ti)

β
)
= 0 (3.20)

and
ν′

σ′2

n∑
i=1

log(tc − ti)
(
∆
(
µ′(tc − ti)

β − ν′(tc − ti)
2β
)
− ri(tc − ti)

β
)
= 0 . (3.21)

It can be seen that it is not possible to determine these nonlinear parameters explic-
itly. However, we do know something about their constraints. First, it is necessary
that −1 < β < 0 such that the probability of a crash occurring, on the condition
that it has not already happened, remains finite. As for tc, we know that it should
occur after the time tn, for the same reason. Furthermore, if tc is very far away from
t, it is unlikely that the effect of the power-law would be detectable. Therefore, we
can sample values of β ∼ U(−1, 0) and tc ∼ U(t, t + γ) where γ is a short time
interval, and derive distributions for µ′ and σ′, but more importantly for ν′. In
what follows, we take γ = 0.5 year.

3.3. Maximum log-likelihood analysis of ν in simulated data

3.3.1. ν′ distribution

Equations (3.15) give µ′ and ν′ from the maximum log-likelihood estimates,
given a simulated set of log returns R = (r1, r2, . . . , rn) observed at times T =

(t1, t2, . . . , tn). Recall from the beginning of §3 that we build N models, with the
mth model given by (3.1). In what follows, we take the returns data ri,m, i = 1, . . . , n

for the mth model to input into a simulation where n, tc and β are random variables
which are independent of the model chosen. We therefore must modify the maxi-
mum log-likelihood estimates slightly to take into account the difference between
the model generating the log returns data and that being used in the simulation.
Specifically, we use (3.13) to obtain the maximum log-likelihood estimates for ν
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(and µ), with ri = ri,m, i = 1, . . . , n, where n is the (randomly varying) length of
the time series.

Recall from (3.14) that a time series of log-price returns R = (r1, r2, . . . , rn)

observed at times T = (t1, t2, . . . , tn), the values of ν′ and µ′ that maximise their
respective log-likelihoods are given by

ν′ =
µ′∑n

i=1(tc − ti)
β −∆−1

∑n
i=1(tc − ti)

βri∑n
i=1(tc − ti)2β

µ′ =
ν′

n

n∑
i=1

(tc − ti)
β +∆−1 1

n

n∑
i=1

ri . (3.22)

Setting ri = ri,m, the sum of the simulated log-price returns is given by
n∑

i=1

ri,m =

n∑
i=1

(
(µm − νm(tc,m − ti)

βm)∆ + σm

√
∆Ni(0, 1)

)
(3.23)

= nµm∆− νm∆k1 +

n∑
i=1

σm

√
∆Ni(0, 1) ,

where k1 =
∑n

i=1(tc,m − ti)
βm . Recalling the notation in (3.16), and substituting

into equation (3.22), we have

µ′ =
ν′c1
n

+
1

n

(
nµm − νmk1 +

n∑
i=1

σm√
∆
Ni(0, 1)

)
(3.24)

= µm +
1

n
(c1ν

′ − k1νm) + S1 ,

where S1 = 1
n

∑n
i=1

σm√
∆
Ni(0, 1). Furthermore,

ν′ =
1

c3

(
µ′c1 − µmc1 + νmk3 −

n∑
i=1

σm√
∆
(tc − ti)

βNi(0, 1)

)
(3.25)

=
k3
c3

νm +
c1
c3

(µ′ − µm)− S2 ,

where S2 =
1

c3

n∑
i=1

σm√
∆
(tc− ti)

βNi(0, 1) and k3 =
∑n

i=1(tc− ti)
β(tc,m− ti)

βm . Now,

solving for ν′,

ν′ =
1

nc3 − c21
((k3n− c1k1)νm − n(c3S2 − c1S1)) . (3.26)

However

c3S2 − c1S1 =

n∑
i=1

(
σm√
∆
(tc − ti)

β − c1σm√
∆n

)
Ni(0, 1) (3.27)

= Nm (0, 1)
σm√
∆

√(
c3 −

c21
n

)
,
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where Nm(0, 1) is a single normally distributed random variable. Therefore

ν′ =
1

nc3 − c21

(
(k3n− c1k1)νm − nNm (0, 1)σm

√
1

∆

(
c3 −

c21
n

))
. (3.28)

Furthermore, for analysis of simulated data that follow a Brownian motion stochas-
tic differential equation, we simply set νm = 0 and (3.28) becomes

ν′ = Nm (0, 1)
σm√

∆

(
c3 −

c21
n

) . (3.29)

Note that, although νm ≤ 0, there is no such restriction in the distribution of
ν′, because random variation may cause the maximum log-likelihood estimate to
correspond to negative growth, even when νm < 0. In fact, as is to be expected,
the distribution in the case of superexponential growth falls principally on negative
values of ν′, but for νm = 0, the distribution is symmetric about ν′ = 0.

3.4. Approximations for large N

Given the large number, N , of models needed to derive a properly representative
picture of the distributions of ν′, it is important to approximate the sums in (3.28)
and (3.29) to reduce the computing time required.

Replacing the sums with integral approximations, it is straightforward to obtain

c1 =

n∑
i=1

(tc − ti)
β ≈ ĉ1 =

1

∆

(tc − t1)
β+1 − (tc − tn)

β+1

β + 1
(3.30)

c3 =

n∑
i=1

(tc − ti)
2β ≈ ĉ3 =

1

∆

(tc − t1)
2β+1 − (tc − tn)

2β+1

2β + 1
(3.31)

k1 =

n∑
i=1

(tc,m − ti)
βm ≈ k̂1 =

1

∆

(tc,m − t1)
βm+1 − (tc,m − tn)

βm+1

βm + 1
. (3.32)

An approximation to k3, of order a ≥ 0, is

k̂3 =
1

∆



a∑
j=0

(
βm

j

)
(tc,m − tc)

j (tc − t1)
αm−j+1 − (tc − tn)

αm−j+1

αm − j + 1
tc,m < tc

(tc − t1)
αm+1 − (tc − tn)

αm+1

αm + 1
tc,m = tc

a∑
j=0

(
β

j

)
(tc − tc,m)j

(tc,m − t1)
αm−j+1 − (tc,m − tn)

αm−j+1

αm − j + 1
tc,m > tc

where αm = β + βm.
Using these approximations, which work remarkably well in practice, the ex-

pressions for ν′ in (3.28) and (3.29) become

ν′ =
1

nĉ3 − ĉ21

(
(k̂3n− ĉ1k̂1)νm − nNm (0, 1)σm

√
1

∆

(
ĉ3 −

ĉ21
n

))
(3.33)
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and

ν′ = Nm (0, 1)
σm√

∆

(
ĉ3 −

ĉ21
n

) . (3.34)

3.4.1. Example fitted distributions of ν′ most likely value

Let us now briefly take stock of the development thus far. For each of m = 1, . . . , N

we have randomly selected parameters µm, σm, νm, βm and tc,m. Now for each of
these parameter choices, we simulate the model by taking a large random sample
of times t1, . . . , tn, with tn fixed but n, and hence t1, varying randomly, and of
parameters β ∼ U(−1, 0) and tc ∼ U(tn, tn + γ), so that the returns r1, . . . , rn are
obtained from (3.1).

For each of these simulated data series, we can find distributions of ν′ given
sufficient samples drawn for the controlling random variables, β and tc. However,
since the MLEs in (3.15) are highly biased, in that the expected value of ν′ may
diverge from the simulated parameter value, we take the most likely value of these
distributions, rather than the expected value, as an estimate of the parameter value.
We investigate how the most likely values of these distributions are themselves
distributed over many thousands of simulated data series. We define the most likely
value of the distribution of ν′ as ν̄.

As an example, Fig. 5 shows the resulting distribution for ν̄ for the normal and
superexponential growth cases taken from sample data drawn from the S&P500
index over the past 60 years, as used in section 4. In this figure, the distributions
are overlaid with, in both cases, the generalised/skew forms of the Cauchy, nor-
mal, Laplace and logistic distributions. These fits were obtained by the fitdistrplus
package as used in the statistical computing platform, R. In Table 3.4.1 we give
summary statistics for all fitted distributions.

By all standard measures, the generalised logistic distributions are the best
fits, with none of the other distributions not being rejected at the 5% level for the
Kolmogorov-Smirov test. Although these fits are clearly not exact around the modal
value, there is remarkably good agreement with 5000 data points. In the normal
and superexponential cases the fits cannot be rejected in a Kolmogorov-Smirnov
(KS) test at the 5% level.

A better fit may be possible using a distribution that truncates the (generalised)
logistic distribution, but a more refined fit is unlikely to improve the application to
financial indices, as the distribution of µm∆ and log(σm

√
∆) is only approximated

by the bi-normal distribution in equation (3.1).

3.4.2. Threshold value of ν̄

In order to determine whether a particular time series is in a normal or superexpo-
nential growth regime we have decided to take a Bayesian approach to hypothesis
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Normal
Measure Logistic Laplace Cauchy Normal

AIC 9954 10151 11324 10142
BIC 9974 10171 11344 10162
KS p-value 0.0059 0.0366 0.0652 0.0275
KS test not rejected rejected rejected rejected

Superexponential
Measure Logistic Laplace Cauchy Normal

AIC 11448 11504 12473 12204
BIC 11467 11524 12492 12224
KS p-value 0.0188 0.0321 0.0585 0.0695
KS test not rejected rejected rejected rejected

Table 1. Simulated data ν̄ distribution fitting statistics, showing the
generalised/skew logistic distributions to be the best fits for both normal
and superexponential growth.

testing such that we have two potential hypotheses: H1 being the case in which the
most likely value, ν̄, indicates a superexponential governing regime, and H0, the
case in which ν̄ indicates the market is following a normal growth period. We accept
H1 and reject H0 when P (H1|ν̄) > P (H0|ν̄). Since P (Hi|ν̄) = fHi(ν̄)P (Hi)/P (ν̄),
where fHi

(ν̄) is the probability density function of ν̄ given the underlying hypoth-
esis, we accept H1 when

fH1(ν̄) > fH0(ν̄)
P (H0)

P (H1)
. (3.35)

Assuming that the probability of the governing regime being superexponential
P (H1) = p, the threshold is the value of ν̄ for which

fH1
(ν̄) = fH0

(ν̄)
1− p

p
. (3.36)

We have no prior knowledge of the value of p, and have assumed a value of 0.5

such that the threshold value, ν̄T is given by the solution of fH1
(ν̄) = fH0

(ν̄).
Therefore, when applying this threshold to market data, by calculating the most
likely value of the log-likelihood maximising distribution of ν′ for a particular time
period, we can simply say that this regime is more probably in a normal growth
phase if ν̄ > ν̄T where ν̄T is the threshold value calculated from the simulations of
H1 and H0 derived from the statistical parameters of the market in question.

4. Applying ν̄T log-likelihood threshold to S&P500 index

We have used the methodology developed in the preceding sections to examine
the S&P500 index from January 1960 up to June 2018, to determine whether the
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Fig. 5. Distributions of ν̄, given the experimental simulations of the (a) superexponential and
(b) normal regimes. Having trialled a number of candidate distributions against the experimental
data, a generalised logistic distribution appears to fit the data well for both the normal and
superexponential governing regimes.

market is exhibiting superexponential growth at any particular time. The precise
algorithm for the calculation of the distribution of ν̄ and of the threshold value ν̄T
is somewhat involved and is described below as a sequence of steps. Some of these
steps have been described earlier by way of example of the theory, but are included
here for completeness.

Gather market data for simulations. Taking the S&P500 index from 1950, the
(daily) log-returns were calculated. Random time spans of up to 10 years with
random starting points (consistent with the period January 1950 – June 2018) were
sampled and on each of these random intervals the mean daily log return µ∆ and
its standard deviation σ

√
∆ were calculated and fitted to a bi-variate normal distri-

bution. In this study, 10,000 random intervals were taken. In Fig. 2, a comparison
of the data and fitted distribution is illustrated, showing fair agreement between
the model and the data.

Simulate market regimes to find ν̄ distribution. The second stage is to simulate log-
returns using the stochastic models for normal and superexponential growth. Taking
the arbitrary, but convenient 10-year period 1980 – 1990, a stochastic model was
built, and simulated data for each of the two cases were generated, as described
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Fig. 6. A comparison of the logistic fitted distributions of the superexponential and normal regimes.
The threshold value ν̄T is interpreted as the lower bound on the value of ν̄ at which one should
expect the governing regime to be normal. This makes the assumption that the probability of the
regime being in one of the two possible regimes is 0.5.

below.
Normal growth. 5000 simulations were built for normal growth by randomly

choosing µm, σm via the bi-variate normal distribution given above, tc,m from the
uniform distribution U(1990, 1990.5) and βm from the uniform distribution U(−1, 0)

and choosing νm = 0.
Then, for each model, 5000 values of ν′ were obtained from the maximum

likelihood estimates given in (3.29) and by randomly sampling values of tc ∼
U(1990, 1990.5) and β ∼ U(−1, 0) taking a time interval up to 1990 from a start-
ing point drawn randomly from the uniform distribution U(1980, 1990). From 5000
values of ν′ a most likely value ν̄m was determined by using the modeest package
in R.

Superexponential growth. For superexponential growth, the procedure was sim-
ilar to that of normal growth with the crucial difference that νm were chosen ran-
domly from the distribution (3.10). As before, the model was then simulated 5000
times and a most likely value ν̄m was obtained from the 5000 values of ν′ calculated
from the maximum likelihood estimates (3.28).

Fit generalised logistic distributions and find ν̄T . In both cases, the distributions
of {ν̄m : m = 1, . . . , 5000} were well described by generalised logistic distributions



July 25, 2019 13:12 WSPC/INSTRUCTION FILE changepoint

20 Christopher Lynch & Benjamin Mestel

as shown in Fig. 5. By examining these distributions, ν̄T was calculated. This is a
threshold value which is specifically relevant for the S&P500 index.

Find most likely value of ν̄ for each trading day of the observed data. Now, for each
trading day of the S&P500 index from 1960 up until the present day the distribution
of ν′ was calculated by taking 5000 random samples of the parameters tc and β from
the same distributions as for the simulated data and applying (3.15) for randomly
chosen time periods of up to ten years.

Identify regime change-points. Finally, for each trading day, the calculated value
of ν̄ was compared to the value of ν̄T . Where ν̄ ≤ ν̄T it was determined that the
market at that point was governed by a superexponential regime.

The results of this process are shown in Fig. 7. From a visual inspection, the ar-
eas where it is determined that superexpontial growth as the more likely governing
regime (as shown in the blue shading) seem to correspond almost exclusively to
periods of growth. Encouragingly for the algorithm, we do not detect superexpo-
nential growth rates in periods of negative growth, and there are also long periods
of actual growth in the market which is not detected as superexponential. This is
what one would expect to find based on the initial assumptions.

On closer examination, it appears that, at least when viewed from an ex post
perspective, there may be a predictive quality to the algorithm, in that just prior to
crashes, steep sell-offs, and longer declines, there are shifts from one regime to the
other demonstrated by a well-defined boundary between shaded and subsequently
non-shaded areas. These are the change-points that have been sought in the data.

However, as one would expect with observed data, the results are subject to a
fair degree of “noise”, in that there are periods of superexponential growth inter-
spersed with brief periods of normal growth. Since it is unlikely that the market
governing regime would switch this rapidly, we conclude the algorithm does not
capture the granular-level market features, but appears to identify remarkably well
the gross features of the market over longer timescales. Note that it appears that
longer periods of normal growth are not generally interspersed by shorter periods
of superexponential growth.

We now focus on some notable historical financial events, and the results from
application of the algorithm over shorter timescales. In particular, we look at the
10-year periods preceding the great crash of October 1987, so called Black Monday,
the financial crisis of 2007 – 2009, and the 2015 – 2016 stock market sell-off. These
are shown in Fig. 8 as plots (a), (b) and (c) respectively.

Black Monday. The most notable, and well studied, financial crash of the second
half of the last century is the stock market crash of Monday, 19 October 1987.
There has been much debate over the causes of this crash and the subsequent
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Fig. 7. Results from applying the threshold value, ν̄T , found from the fitted distributions of ν̄

calculated from both superexponential and normal market simulations, to the historical daily log-
returns of the S&P500 index from January 1960 to June 2018. Areas where the calculated value of
ν̄ for the observed data is less than ν̄T are shaded in blue. One can see a striking visual correlation
between periods of high growth and the blue shaded area, and also a general agreement between
the right boundaries of visually significant areas of blue shading and subsequent market downturns.

contagion across the global financial markets (Barro et al. 1989). When viewed
from an econophysics perspective, the crash has often been attributed to critical
behaviour following a period of superexponential power-law growth decorated with
log-periodic oscillations (Sornette et al. 1996 and Feigenbaum & Freund 1996).

By the method presented here, bearing in mind that, for each point ten years’
worth of preceding market data is used, we detect the superexponential growth
modelled by the log-periodic power-law models for the period immediately prior to
Black Monday. However, there are also periods in which superexponential growth
is not detected. Indeed, we see each market rally showing superexponential growth,
and when the market is in an intermediate downturn, no superexponential growth is
found. There is clearly an oscillatory pattern in the market data, and the algorithm
picks up this feature. Furthermore, when looked at closely, with the benefit of
hindsight, there are fluctuating periods of sub- and super-threshold regions end
some days prior to the crash.

Financial crisis of 2007 – 2009. This period was certainly the worst financial crisis
of this century and, probably was the most severe since the Great Depression of
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Fig. 8. Results from applying the threshold value, ν̄T , found from the fitted distributions of ν̄ for
specific periods in the last 60 years of the S&P500 index. (a) Black Monday, October 1987, (b) the
financial crisis of 2007 – 2009, and (c) the 2015 – 2016 stock market sell-off. Note that for clarity
the price rather than the log price is shown.

the 1930s. The US market peaked in October 2007 and there followed a period of
steep decline until the global markets suffered a significant draw-down when the
fall-out of the subprime mortgage market led to the collapse of large US banking
institutions, such as Lehman Brothers, on 15 September 2008. What followed was
a global economic downturn, which became known as the Great Recession.

The period 2003 – 2007 was a bull market. However, when we look at the cal-
culated intervals of superexponential growth in this period, we only see sustained
superexponential growth from late 2006. Contrary to the example of Black Mon-
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day, the superexponential regime does not end with a crash following immediately
afterwards, but rather a steep downturn continuing for some time prior to a more
severe crash.

2015 – 2016 stock market sell-off. Since the end of the Great Recession in 2009, the
market followed an almost relentless bull run up to the end of our observed data
(June 2018). This is one of the longest bull markets in history, and, according to our
analysis, the majority of it has been governed by a superexponential regime from
late 2009 until the beginning of 2015. There does not appear to be the oscillatory
patterns of the bull market in the 10 years prior to Black Monday, and, looking at
the data from an ex post perspective, it is clear that the superexponential period
ended with a relatively long period of growth. Here we see an example of a su-
perexponential bubble, which peters out rather than suffering a catastrophic burst.
However, the following August the market did suffer large losses which took until
the following June to recover.

These examples show that if there is merit in the algorithm’s ability to detect
periods where the markets are in a bubble regime and experiencing superexponential
growth, the transitioning from one regime to the other is not typified by either
a catastrophic crash or a market downturn. However, in general there is a good
agreement that market downturns are preceded by a regime change, and this appears
to be evident on a variety of scales.

5. Conclusion and suggestion for further work

We conclude with some remarks on further study in this area. The distributions of
the parameter ν̄ for the normal and superexponential growth regimes are are very
well fitted by generalised/skew logistic distributions. Although logistic distributions
have been used successfully to model financial assets (Olson & Wu 2013, Tolikas
& Gettinby 2009 and Tolikas & Brown 2006), further work is needed to elicit the
reason for the logistic distributions in this case. It is worth noting that the logistic
distribution is known to arise in extreme value statistics — see Gumbel’s classical
result on the distribution of the midrange of samples from a continuous distribution
(Gumbel 1944).

In the modelling presented herein we have not given a full model of the time
series, but rather we have focussed on the influence of the parameter ν. Indeed, we
have generated simulated data with superexponential mean log-returns and we have
specifically constructed the simulations to have constant standard deviations in the
stochastic terms. In examining these simulated times series we have restricted to the
case of constant σt. We conjecture that it is the existence, or otherwise, of the hazard
function in the drift term alone that can determine whether regime change has
occurred. Although this simplification greatly eases the analysis, allowing a closed-
form solution to the log-likelihood minimising value of ν, it is to be hoped that
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future theoretical developments will provide a more complete theory incorporating
time-varying σ.

The financial significance of the parameter ν̄ needs further study. Formally,
it is the coefficient of the hazard function corresponding to a superexponential
financial bubble, and it would certainly be interesting to investigate in some detail
possible financial interpretations, perhaps leading to further understanding of the
distribution of ν̄.

The investigations so far have been restricted to the S&P500 index, albeit over
60 years, which constitutes a serious longitudinal study. However, it remains to
apply this methodology to other financial time series, including other stock-market
indices.

Finally, an important area for future research is the practical utility of the
distributions of ν̄ for financial practitioners. Can ν̄ be used by traders either for
short-term trades (both on the index itself and/or derivatives) or for market timing
for longer-term trading strategies? Indeed, can ν̄ be used as an early-warning for
financial crashes and/or the end of a bull market? An in-depth study of these and
other issues would be of significant interest to practitioners and theoreticians alike.
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