
Open Research Online
The Open University’s repository of research publications
and other research outputs

List.MID: A MIDI-Based Benchmark for Evaluating
RDF Lists
Conference or Workshop Item
How to cite:

Meroño-Peñuela, Albert and Daga, Enrico (2019). List.MID: A MIDI-Based Benchmark for Evaluating RDF
Lists. In: Proceedings of the 18th International Semantic Web Conference, The Semantic Web, Springer, (In Press).

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
https://iswc2019.semanticweb.org/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
https://iswc2019.semanticweb.org/
http://oro.open.ac.uk/policies.html

List.MID: A MIDI-Based Benchmark
for RDF Lists

Albert Meroño-Peñuela1[0000−0003−4646−5842] and Enrico
Daga2[0000−0002−3184−5407]

1 Computer Science Department, Vrije Universiteit Amsterdam, NL
albert.merono@vu.nl

2 Knowledge Media Institute, The Open University, UK
enrico.daga@open.ac.uk

Abstract. Linked lists represent a countable number of ordered values,
and are among the most important abstract data types in computer sci-
ence. With the advent of RDF as a highly expressive knowledge represen-
tation language for the Web, various implementations for RDF lists have
been proposed. Yet, there is no benchmark so far dedicated to evaluate
the performance of triple stores and SPARQL query engines on dealing
with ordered linked data. Moreover, essential tasks for evaluating RDF
lists, like generating datasets containing RDF lists of various sizes, or gen-
erating the same RDF list using different modelling choices, are cumber-
some and unprincipled. In this paper, we propose List.MID , a systematic
benchmark for evaluating systems serving RDF lists. List.MID consists
of a dataset generator, which creates RDF list data in various models
and of different sizes; and a set of SPARQL queries. The RDF list data
is coherently generated from a large, community-curated base collection
of Web MIDI files, rich in lists of musical events of arbitrary length. We
describe the List.MID benchmark, and discuss its impact and adoption,
reusability, design, and availability.

Keywords: Linked lists · RDF · Benchmarks

1 Introduction

Linked lists are data structures that represent a countable number of ordered
values, and are one of the fundamental abstract data types in computer science
[15]. They are at least basically supported, with a variety of implementations,
in the core libraries of all major programming languages [20].

With the advent of the Semantic Web [4], the Resource Description Frame-
work [23] (RDF) becomes the standard for knowledge representation on the
Web. As an expressive data format designed for enabling semantic interoper-
ability, data integration, and data modeling in all sorts of domains, many use
cases demand standard ways of representing classic data structures; linked lists
are among them. Consequently, Semantic Web standards such as RDF itself [23],
RDF Schema [6], and more recently JSON-LD [24] propose various implementa-
tions for RDF lists: rdf:Seq, based on list ordering properties; rdf:List, based

2 A. Meroño-Peñuela and E. Daga

on LISP-like rdf:first and rdf:rest pointers; or the "@list": [] JSON-LD
attribute. Moreover, the community itself has developed its own ontology design
patterns [10] to implement list-like ontological structures.

With this variety of alternatives, many questions arise on practical and per-
formance issues with respect to RDF lists. For example, it is hard to choose one
such implementation in large-scale, list-based RDF datasets [18] without know-
ing the impact of such choice in query performance. Differently, other users may
be interested in favoring list readability over performance. In order to address
this, some remarkable users have reported ways to query such RDF lists.3 How-
ever, no standard benchmark has been so far proposed in the Semantic Web
in order to generate RDF list data, in all its possible modeling alternatives, in
a systematic and principled way. Such a benchmark could contribute to clarify
many of the open questions about RDF list modeling and publishing on the Web,
such as query performance, list readability, triplestore reproducible evaluations,
and so forth.

In this paper, we introduce the List.MID benchmark, an RDF list data gener-
ator and query template set specifically designed for the evaluation of RDF lists.
The benchmark has two focus points: (a) to cover as many RDF list implemen-
tations as possible, following a systematic study that surveys and summarizes
different RDF list modeling practices into 6 different RDF list modeling tem-
plates [8]; and (b) to create such multi-model RDF lists out of real-world data,
through the large-scale, list-rich symbolic music notation dataset of the MIDI
Linked Data cloud [18]. Specifically, the contributions of the paper are:

– We list and describe 6 abstract RDF list modeling patterns recently surveyed
[8] (Section 3.1)

– We describe the List.MID data generator (Section 3.2), which generates
RDF list data according to these patterns from the MIDI Linked Data cloud
dataset [18]; and a set of SPARQL query templates for retrieval (Section 3.3)

– We show evidence of use and potential adoption for our proposed benchmark
(Section 4)

The rest of the paper is organized as follows: Section 2 covers the related
work; Section 3 describes the List.MID benchmark, data generator, and queries;
Section 4 shows evidence of use and potential adoption for the benchmark; and
Section 5 draws our conclusions.

2 Related work

Multiple ways of modelling RDF lists have been proposed. The RDF Schema
(RDFS) recommendation [6] defines several container classes to represent collec-
tions: rdf:Bag to contain unordered elements; rdf:Alt for “alternative” contain-
ers whose typical processing will be to select one of its members; and rdf:Seq
3 See e.g. https://stackoverflow.com/questions/16223095/
sparql-queries-over-collection-and-rdfcontainers and http://www.snee.
com/bobdc.blog/2014/04/rdf-lists-and-sparql.html

https://stackoverflow.com/questions/16223095/sparql-queries-over-collection-and-rdfcontainers
https://stackoverflow.com/questions/16223095/sparql-queries-over-collection-and-rdfcontainers
http://www.snee.com/bobdc.blog/2014/04/rdf-lists-and-sparql.html
http://www.snee.com/bobdc.blog/2014/04/rdf-lists-and-sparql.html

List.MID: A MIDI-Based Benchmark for RDF Lists 3

to contain elements ordered by the numerical order of the container membership
properties. [6] also defines a collection vocabulary to describe closed collection
that can have no more members, through the class rdf:List and the properties
rdf:first, rdf:rest, and rdf:nil. In the more recent JSON-LD [24], ordered
lists like "@list": ["bob", "alice", "carol"] have equivalent representa-
tions as rdf:List. Similarly, the RDF 1.1 Turtle [2] syntax allows for the specifi-
cation of rdf:List instances, e.g. :a :b ("bob" "alice" "carol"). Besides
W3C standards, various ontology design patterns [10], like the Sequence Ontol-
ogy Pattern4 (SOP), address the task of representing RDF lists. About relevant
previous work on benchmarks, the Semantic Web community has developed a
number of them for evaluating the performance of SPARQL engines. The Berlin
SPARQL Benchmark (BSBM) [5] generates benchmark data about exploring
products and analyzing consumer reviews. The Lehigh University Benchmark
(LUBM) [13] does so on data about universities, departments, professors and
students. SP2Bench [22] enables comparison of SPARQL optimization strategies,
an estimation of their generality, and the prediction of their benefits in real-world
scenarios; it includes a benchmark data generator based on the DBLP biblio-
graphic database [16]. Similarly, the DBpedia SPARQL benchmark [19] pro-
poses human-written queries that execute against non-relational schemas. The
Waterloo SPARQL Diversity Test Suite (WatDiv) focuses on measuing “how an
RDF data management system performs across a wide spectrum of SPARQL
queries with varying structural characteristics and selectivity classes” [1]. Other
approaches like Linked SPARQL queries (LSQ) [21] focus specifically on bench-
mark queries from SPARQL query logs, but typically do not generate data to
run these queries on. More recently, frameworks to integrate and compare var-
ious benchmarks, such as IGUANA [7]5, have emerged. Other, more pragmatic
approaches propose ad-hoc benchmarks supporting specific applications [25] or
SPARQL features, like federation [12]. To the best of our knowledge, none of
these benchmarks address specifically the evaluation of RDF lists.

3 The List.MID Benchmark

In this Section we describe the List.MID benchmark. First, we summarize the
various modeling alternatives for lists in RDF (Section 3.1); for a complete sur-
vey, see [8]). Second, we implement these modeling alternatives in a benchmark
data generator that creates RDF datasets rich in lists from a large MIDI data
collection (Section 3.2). Finally, we propose a set of SPARQL queries to retrieve
RDF list data according to the different modeling alternatives (Section 3.3).

All the List.MID benchmark resources are available online in a GitHub
repository at https://github.com/midi-ld/List.MID. The benchmark is li-
censed under the Creative Commons Attribution-ShareAlike 4.0 International6
(CC CY-SA 4.0) license. The benchmark is deposited in Zenodo, Figshare, and
4 http://ontologydesignpatterns.org/wiki/Submissions:Sequence
5 See also https://github.com/dice-group/triplestore-benchmarks
6 https://creativecommons.org/licenses/by-sa/4.0/

https://github.com/midi-ld/List.MID
http://ontologydesignpatterns.org/wiki/Submissions:Sequence
https://github.com/dice-group/triplestore-benchmarks
https://creativecommons.org/licenses/by-sa/4.0/

4 A. Meroño-Peñuela and E. Daga

Meroño-Peñuela, A. and Daga, E. (2019). List.MID: A MIDI-Based Benchmark for Evaluating
RDF Lists. doi:10.5281/zenodo.3265139
Resource Link
GitHub repository https://github.com/midi-ld/List.MID
Benchmark queries https://github.com/midi-ld/List.MID/tree/master/queries
Benchmark example data https://github.com/midi-ld/List.MID/tree/master/data
Benchmark generation data https://github.com/midi-ld/sources

https://github.com/albertmeronyo/awesome-midi-sources
Full dump download https://github.com/midi-ld/List.MID/archive/master.zip
Zenodo https://zenodo.org/record/3265139#.XRoYXXUzaV4
Figshare https://figshare.com/articles/List_MID_A_MIDI-Based_

Benchmark_for_Evaluating_RDF_Lists/8426912
Datahub https://datahub.ckan.io/dataset/

list-mid-a-midi-based-benchmark-for-evaluating-rdf-lists

Table 1: Links to key resources of the List.MID benchmark.

Datahub. The open availability of the benchmark in these platforms allows for
fast and frictionless contributions from other parties. All relevant URLs and
canonical citation are shown in Table 1.

3.1 Modeling Lists in RDF

There are various models for representing a sequence, a finite collection of ordered
elements, in RDF. In this section we offer a summary of such models and their
properties, recalling the research in [8]. These models were surveyed by selecting
them from the following sources, including W3C standards7 ontology design
patterns [10], resource track papers in ISWC (e.g. [3], [18]), and lookups of
relevant terms in Linked Open Vocabularies [28]. For a further detail and a
description of the surveying methodology, see [8].

RDF Sequences The RDF Schema (RDFS) recommendation [6] defines the
container classes rdf:Bag, rdf:Alt, rdf:Seq to represent collections. Since
rdf:Bag is intended for unordered elements, and rdf:Alt for “alternative” con-
tainers whose typical processing will be to select one of its members, these two
models do not fit our sequence definition, and thus we do not include them
among our candidates. Conversely, we do consider RDF Sequences: collections
represented by rdf:Seq and ordered by the properties rdf:_1, rdf:_2, rdf:_3,
... instances of the class rdfs:ContainerMembershipProperty (see Figure 1).

Properties. RDF Sequences indicate membership through various proper-
ties, which are used in triples in predicate position. Ordering of elements is ab-
solute in such predicates through an integer index after an underscore (“_”).

RDF Lists The RDFS recommendation [6] also defines a vocabulary to describe
closed collections or RDF Lists. Such lists are members of the class rdf:List.
Resembling LISP lists, every element of an RDF List is represented by two

7 https://www.w3.org/standards/

doi:10.5281/zenodo.3265139
https://github.com/midi-ld/List.MID
https://github.com/midi-ld/List.MID/tree/master/queries
https://github.com/midi-ld/List.MID/tree/master/data
https://github.com/midi-ld/sources
https://github.com/albertmeronyo/awesome-midi-sources
https://github.com/midi-ld/List.MID/archive/master.zip
https://zenodo.org/record/3265139#.XRoYXXUzaV4
https://figshare.com/articles/List_MID_A_MIDI-Based_Benchmark_for_Evaluating_RDF_Lists/8426912
https://figshare.com/articles/List_MID_A_MIDI-Based_Benchmark_for_Evaluating_RDF_Lists/8426912
https://datahub.ckan.io/dataset/list-mid-a-midi-based-benchmark-for-evaluating-rdf-lists
https://datahub.ckan.io/dataset/list-mid-a-midi-based-benchmark-for-evaluating-rdf-lists
https://www.w3.org/standards/

List.MID: A MIDI-Based Benchmark for RDF Lists 5

Fig. 1: The RDF Sequence model.

Fig. 2: The RDF List model.

triples: <Lk rdf:first Ek>, where Ek is the k-th element of the list; and <Lk

rdf:rest Lk+1>, representing the rest of the list (in particular, rdf:nil to end
the list) (see Figure 2).

Properties. RDF Lists indicate membership through the use of a unique
property rdf:first in predicate position. Ordering of elements is relative to the
use of the rdf:rest property, and given by the sequential forward traversal of
the list.

URI-based Lists A more practical approach followed by many RDF datasets
[3,18] consists of establishing list membership through an explicit property or
class membership, and assigning order by a unique identifier embedded in the el-
ement’s URI. For instance, the triple <http://ld.zdb-services.de/resource/
1480923-0> a <http://purl.org/ontology/bibo/Periodical> indicates that
the subject belongs to a list of periodicals with list order 14809234; the triple
<http://purl.org/midi-ld/piece/8cf9897/track00> midi:hasEvent <http:
//purl.org/midi-ld/piece/8cf9897/track00/event0006> identifies the 7th
event in a MIDI track [18] (see Figure 3).

Properties. URI-based lists indicate membership through the use of class
membership or through properties. Order is absolute and given by URI-embedded
sequential identifiers.

6 A. Meroño-Peñuela and E. Daga

Fig. 3: The URI-based list model.

Fig. 4: The Number-based list model.

Number-based Lists Another practical model, used e.g. in the Sequence
Ontology/Molecular Sequence Ontology (MSO) [9],8 also uses class member-
ship or object properties to specify the elements that belong to a list, but
use a literal value in a separate property to indicate order. For instance, the
triple <http://purl.org/midi-ld/piece/8cf9897/track00> midi:hasEvent
<http://purl.org/midi-ld/piece/8cf9897/track00/event0006> indicates that
the object belongs to a list of events; and the additional triple <http://purl.org/
midi-ld/piece/8cf9897/track00/event0006> midi:absoluteTick 6 indicates
that the event has index 6 (see Figure 4).

Properties. Number-based lists indicate membership through the use of
class membership or through properties. Order is absolute and given by an integer
index in a literal as an object of an additional property.

Timestamp-based Lists Similarly to Number-based lists, other lists mod-
eled by e.g. the Simple Event Model (SEM) [27], use timestamp markers in-
stead of integer indexes to indicate the time in which the element of the list
occurs. This is particularly useful in event-based applications, in which or-
der clashes in the list are of lesser importance, as long as the timestamp or-
der is preserved. For instance, the triple <http://purl.org/midi-ld/piece/
8cf9897535d79e68c33a3076aa06d073/track00/event0006> midi:absoluteTime

8 https://github.com/The-Sequence-Ontology/Specifications/blob/master/
gff3.md

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

List.MID: A MIDI-Based Benchmark for RDF Lists 7

Fig. 5: The Timestamp-based list model.

Fig. 6: The Sequence Ontology Pattern model.

0e+00 indicates that the 7th event occurs at the start of the list, possibly simul-
taneously with other events (see Figure 5).

Properties. Timestamp-based lists indicate membership through the use
of class membership or through properties. Order is absolute and given by a
timestamp in a literal as an object of an additional property.

Sequence Ontology Pattern A number of models use RDF, RDFS and OWL
to model sequences in domain specific ways. For example, the Time Ontology [14]
and the Timeline Ontology9 offer a number of classes and properties to model
temporality and order, including timestamps (see Section 3.1), but importantly
also before/after relations. The Sequence Ontology Pattern10 (SOP) is an on-
tology design pattern [10] that “represents the ’path’ cognitive schema, which
underlies many different conceptualizations: spatial paths, time lines, event se-
quences, organizational hierarchies, graph paths, etc.”. We select SOP as an
abstract model representing this group of list models (see Figure 6).

Properties. SOP lists indicate list membership through properties. Order
is relative and given by the sequential forward or backward traversal of the
sequence.

9 http://motools.sourceforge.net/timeline/timeline.html#
10 http://ontologydesignpatterns.org/wiki/Submissions:Sequence

http://motools.sourceforge.net/timeline/timeline.html#
http://ontologydesignpatterns.org/wiki/Submissions:Sequence

8 A. Meroño-Peñuela and E. Daga

midi:MIDIFile mo:Track

mo:available_as

midi:Piece midi:Track midi:Event

mo:MusicArtist
foaf:maker

midi:hasTrack
midi:hasEvent

xsd:int
midi:tickOffset

midi:NoteOffEventmidi:NoteOnEvent

midi:Note
midi:velocity

midi:ProgramChangeEvent

xsd:int

midi:note

prov:wasDerivedFrom

midi:channel

midi:Program

xsd:int

midi:note

xsd:intxsd:string

xsd:int

rdfs:label midi:octave

midi:pitch

midi:program

xsd:string
rdfs:label

<http://dbpedia.org/
resource/Grand_piano>

rdfs:seeAlso

xsd:floatxsd:int

midi:metricWeight

midi:scaleDegree

xsd:int

xsd:string

midi:format

midi:key

xsd:string

midi:lyrics

<http://purl.org/midi-ld>

void:inDataset

Fig. 7: Excerpt of the MIDI ontology. Tracks contain lists of sequential MIDI
events.

3.2 Data generator

The first component of the List.MID benchmark is an algorithm to generate
RDF datasets with lists according to the modeling patterns discussed above.
The source code and all documentation are available on GitHub at https://
github.com/midi-ld/List.MID.

In order to root our benchmark within real-world data, we propose to gener-
ate data using MIDI files [26], a symbolic music encoding, as a basis. The reason
for this is that MIDI files, and symbolic music notations in general, must encode
musical events (the start of a note, the end of a note, the switching of one instru-
ment for another, etc.) in strict sequential order to preserve musical coherence.
Consequently, we use the midi2rdf algorithm proposed in [17] to generate RDF
graphs from MIDI files; and we extend this algorithm here in order to encode
RDF lists of musical events supporting the list data models discussed in Section
3.1.

Figure 7 shows an excerpt of the MIDI ontology used by the original midi2rdf
algorithm. The relevant elements here are midi:Track, each containing a se-
quence of related musical events (e.g. notes played by one single instrument);
and midi:Event, each representing a musical event that happens in a strict or-
der within the track (e.g. the start of a note, the end of a note). For more details
on MIDI event encoding see [17,18,26].

The original midi2rdf algorithm generates implicit lists of events by encod-
ing their order in the URI of the event (e.g. ex:track00/event02 happens imme-
diately before ex:track00/event01 and immediately after ex:track00/event01),
and hence adhering to the URI-based Lists pattern discussed in Section 3.1. We
extend this generation to the remaining patterns.

https://github.com/midi-ld/List.MID
https://github.com/midi-ld/List.MID

List.MID: A MIDI-Based Benchmark for RDF Lists 9

Usage The first step is to find a MIDI file with the desired list size. The MIDI
Linked Data cloud API11 incorporates a query12 to retrieve all track sizes in
number of events in descending order from the dataset [18]. Since this query is
expensive, we include a resulting dump in the benchmark. An inspection of this
result allows users to select a MIDI identifier of the chosen size; this identifier can
be used in a second query13 to download an RDF dump for the MIDI file. This
dump can be transformed into an input MIDI file with the included rdf2midi
command [17].

Once the chosen input MIDI file has been generated, the midi2rdf CLI tool
of the List.MID benchmark can be used to generate its RDF graph according
to the requested list pattern. The syntax is:

midi2rdf [-h]
[--format [{xml,n3,turtle,nt,pretty-xml,trix,trig,nquads,

json-ld}]]
[--gz] [--order [{uri,prop_number,prop_time,seq,list,

sop}]]
[--version]
filename [outfile]

The relevant introduced argument is –order, which lets the user select the
RDF list modeling to use for data generation. The mapping for the values of
this argument with the patterns of Section 3.1 is: RDF Sequences → seq, RDF
Lists → list, URI-based Lists → uri, Number-based Lists → prop_number,
Timestamp-based Lists → prop_time, Sequence Ontology Pattern → sop. For ex-
ample, to generate benchmark data of a preselected http://purl.org/midi-ld/
pattern/bc7d9c25f81a4d90c000c30b6efc887d MIDI with 16,638 list elements
using the RDF List pattern, we do:

midi2rdf --format turtle --order list
bc7d9c25f81a4d90c000c30b6efc887d.mid benchmark.ttl

The output benchmark.ttl file is ready to be used in a standard compliant
RDF store. As shown in the syntax above, the benchmark is agnostic with re-
spect to serialization formats, and the most frequent (including JSON-LD) are
supported.

3.3 Queries

In this section we propose a set of SPARQL query templates for retrieval of
elements of lists, according to the patterns described in Section 3.1. Since the

11 See http://grlc.io/api/midi-ld/queries/
12 http://grlc.io/api/midi-ld/queries/#/default/get_events_count_per_

track_piece
13 http://grlc.io/api/midi-ld/queries/#/default/get_pattern_graph

http://purl.org/midi-ld/pattern/bc7d9c25f81a4d90c000c30b6efc887d
http://purl.org/midi-ld/pattern/bc7d9c25f81a4d90c000c30b6efc887d
http://grlc.io/api/midi-ld/queries/
http://grlc.io/api/midi-ld/queries/##/default/get_events_count_per_track_piece
http://grlc.io/api/midi-ld/queries/##/default/get_events_count_per_track_piece
http://grlc.io/api/midi-ld/queries/##/default/get_pattern_graph

10 A. Meroño-Peñuela and E. Daga

full coverage of list operations in SPARQL is cumbersome, here we restrict our-
selves to typical data publishing functionality. Therefore, we consider minimal
and atomic read operations; and we do not consider management operations
(edit, merge, split of lists, etc.). The implementation of management operations
is possible, but depend on implementations of read operations; thus, we focus
here on read operations, and leave management operations for future work.

Therefore, the currently supported operations in List.MID consist of (a)
orderly retrieve all elements of the list; and (b) access the n-th element of the
list. In order to systematically do this in datasets following one of the RDF
list modeling patterns (Section 3.1), we include corresponding SPARQL query
templates in the benchmark. The queries can be found online in the GitHub
repository of the benchmark,14 and are summarized in Table 2.

ID RDF list
model

Access SPARQL

Q1 RDF Se-
quences

Full list WHERE {[] a midi:Track ; midi:hasEvents [?seq ?event] . BIND
(xsd:integer(SUBSTR(str(?seq), 45)) AS ?index) } ORDER BY ?index

Q2 RDF Se-
quences

n-th
item

WHERE {[] a midi:Track ; midi:hasEvents [?seq ?event] . BIND
(xsd:integer(SUBSTR(str(?seq), 45)) AS ?index)} ORDER BY ?index
OFFSET n LIMIT 1

Q3 RDF Lists Full list WHERE {[] a midi:Track ; midi:hasEvents ?events . ?events
rdf:rest*/rdf:first ?event . BIND (xsd:integer(SUBSTR(str(?event),
77)) AS ?id) } ORDER BY ?id

Q4 RDF Lists n-th
item

WHERE {[] a midi:Track ; midi:hasEvents ?events . ?events
rdf:rest*/rdf:first ?event . BIND (xsd:integer(SUBSTR(str(?event),
77)) AS ?id) } ORDER BY ?id OFFSET n LIMIT 1

Q5 URI-based Full list WHERE { [] a midi:Track ; midi:hasEvent ?event . BIND
(xsd:integer(SUBSTR(str(?event), 77)) AS ?id) } ORDER BY ?id

Q6 URI-based n-th
item

WHERE { [] a midi:Track ; midi:hasEvent ?event . BIND
(xsd:integer(SUBSTR(str(?event), 77)) AS ?id) } ORDER BY ?id OFFSET
n LIMIT 1

Q7 Number-
based

Full list WHERE { [] a midi:Track ; midi:hasEvent ?event . ?event
midi:absoluteTick ?tick . } ORDER BY ?tick

Q8 Number-
based

n-th
item

WHERE { [] a midi:Track ; midi:hasEvent ?event . ?event
midi:absoluteTick ?tick . } ORDER BY ?tick OFFSET n LIMIT 1

Q9 Timestamp-
based

Full list WHERE { [] a midi:Track ; midi:hasEvent ?event . ?event
midi:absoluteTick ?tick . } ORDER BY ?tick

Q10 Timestamp-
based

n-th
item

WHERE { [] a midi:Track ; midi:hasEvent ?event . ?event
midi:absoluteTick ?tick . } ORDER BY ?tick OFFSET n LIMIT 1

Q11 Sequence
Ontology
Pattern

Full list WHERE { [] a midi:Track ; midi:hasEvent ?event . ?event
sequence:precedes? ?next_event . ?next_event sequence:follows?
?event . BIND (xsd:integer(SUBSTR(str(?event), 77)) AS ?id) } ORDER
BY ?time

Q12 Sequence
Ontology
Pattern

n-th
item

WHERE { [] a midi:Track ; midi:hasEvent ?event . ?event
sequence:precedes? ?next_event . ?next_event sequence:follows?
?event . BIND (xsd:integer(SUBSTR(str(?event), 77)) AS ?id) } ORDER
BY ?time OFFSET n LIMIT 1

Table 2: SPARQL query templates of the benchmark.

14 See https://github.com/midi-ld/List.MID

https://github.com/midi-ld/List.MID

List.MID: A MIDI-Based Benchmark for RDF Lists 11

4 Experiments and Reuse

In this Section we discuss current use and potential for reuse of our proposed
benchmark in research.

4.1 First Experiment

The List.MID benchmark has been used in a first Semantic Web research ex-
periment [8]. The purpose of this work is to understand the impact of differ-
ent RDF list modeling patterns (see Section 3.1) in the performance and avail-
ability of sequential retrieval of Linked Data. This crucially includes basic list
operations such as orderly getting all elements of the list; randomly access-
ing one element of the list; and randomly accessing a sublist contained in a
list. The most important findings quantify the impact of different list model-
ing choices in retrieval; and show that this impact is triplestore-invariant to
a great degree. For a full report on such experiments, see [8]. These experi-
ments demonstrate the applicability and usefulness of the benchmark, and can
be easily reproduced with List.MID and the supplementary materials at https:
//www.dropbox.com/sh/m98115y7ah2nqcv/AAAxkGsWuiPaLf6X7c_uM0yWa.

4.2 Online Survey

Since the List.MID benchmark is a new resource for the Semantic Web commu-
nity, we discuss here evidence for potential adoption. To gather such evidence,
we perform an online survey in which we directly ask the community of poten-
tial adopters 8 questions regarding their background, relevance, and interest in
benchmarking RDF lists. The online survey was distributed in the semantic-web
and public-lod public mailing lists of the W3C; and in the internal mailing lists
of the affiliation labs of the authors. In total we gathered N = 24 responses. The
survey can be found online.15 Figure 8 shows the results.

Except for question 3 (Figure 8c), all questions ask the respondents to quan-
tify the agreement with the statement made from 1 (absolutely disagree) to 5
(absolutely agree), being 3 a neutral response (no agree nor disagree). In the
first two questions (Figure 8a, 8b) we assess the background of the respondents,
finding that 75% of them have experience in modeling and publishing RDF, and
54.2% have experience or interest in RDF benchmarking; and thus proving ade-
quacy of the population sample. Among the various RDF list modeling practices
(Figure 8c), rdf:List is the most popular, known by 2/3 of the respondents.
Other practices like rdf:Seq (37.5%), implicit RDF elemnts as proxies (URIs,
properties, etc.; 25%) and ontology design patterns (20.8%) are also familiar.
Some respondents express here other less known approaches that could fit the
broader categories (e.g. using a xyz:nextitem). Figure 8d shows that the com-
munity is divided in whether expressing lists in RDF is a real need; conversely,
Figure 8e shows that the impact of list modeling choices in query performance
15 See https://forms.gle/SwkCdFFFVGXWCgCp7

https://www.dropbox.com/sh/m98115y7ah2nqcv/AAAxkGsWuiPaLf6X7c_uM0yWa
https://www.dropbox.com/sh/m98115y7ah2nqcv/AAAxkGsWuiPaLf6X7c_uM0yWa
https://forms.gle/SwkCdFFFVGXWCgCp7

12 A. Meroño-Peñuela and E. Daga

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8: Results of the online survey

List.MID: A MIDI-Based Benchmark for RDF Lists 13

is a real concern (0% disagree; 83.3% agree or strongly agree). Figure 8f signals
that current benchmarks might be missing coverage for RDF lists (only 8.3% find
them somewhat covered). Most importantly, the community feels the need of
new benchmarks specifically designed for the evaluation of RDF lists
(Figure 8g, 70.9%). Asking directly on their interest as potential users of a new
RDF list benchmark, the community seems divided (Figure 8h), although this
could be attributed to different research interests. 29.1% of the respondents
would be interested in reusing an RDF list benchmark like the one
here proposed.

5 Conclusions

Lists are fundamental data structures in computer science, and various models
implementing them in the Semantic Web —using RDF, standards, and commu-
nity best practices— have been proposed. So far, studying the differences, and
trade-offs, in features and performance of these RDF list models has been done
only in a superficial and exploratory manner. To address this, in this paper we
contribute two important findings. First, we show evidence that the Semantic
Web community feels the need for a benchmark specifically designed for the
evaluation of RDF lists; and that a number of researchers would be interested
in reusing such a benchmark. Second, we propose the benchmark to precisely
address this issue, enabling a systematic and principled way of generating, and
querying, RDF list data from real-world datasets according to dominant RDF
list models in the Semantic Web. We feel that, by adopting this benchmark,
researchers will be able to understand better the implications of different list-
modeling practices; and developers will find a first building block to construct
more varied and performant solutions for RDF lists. We expect both researchers
and developers to fundamentally contribute, through their research and software,
in making the List.MID benchmark better.

This room for improvement can be observed from various prisms. First, in
next iterations we will include more real-world use cases and base datasets from
which to generate the benchmark data. Similarly, we will include additional list
operations regarding list management, such as inserting a new element, and
swapping two elements, taking inspiration from array operations in program-
ming [11]. If more, alternative models for modeling RDF lists become a need for
our users, we will support them too. Finally, we will continue working to deploy a
more automated and usable infrastructure and tools for RDF list benchmarking.

Acknowledgements. This work was partially funded by the CLARIAH
project of the Dutch Science Foundation (NWO). We are grateful to all partici-
pants of the online survey.

References

1. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified Stress Testing of RDF
Data Management Systems. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,

14 A. Meroño-Peñuela and E. Daga

Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
The Semantic Web – ISWC 2014. pp. 197–212. Springer International Publishing,
Cham (2014)

2. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: RDF 1.1 Turtle
– Terse RDF Triple Language. Tech. rep., World Wide Web Consrotium (2014),
https://www.w3.org/TR/turtle/

3. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: Lod
laundromat: a uniform way of publishing other people’s dirty data. In: International
Semantic Web Conference. pp. 213–228. Springer (2014)

4. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific amer-
ican 284(5), 28–37 (2001)

5. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on
Semantic Web & Information Systems 5(2), 1–24 (2009)

6. Brickley, D., Guha, R.: RDF Schema 1.1. Tech. rep., World Wide Web Consrotium
(2014), https://www.w3.org/TR/rdf-schema/

7. Conrads, F., Lehmann, J., Saleem, M., Morsey, M., Ngomo, A.N.: Iguana: A generic
framework for benchmarking the read-write performance of triple stores. In: The
Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna,
Austria, October 21-25, 2017, Proceedings, Part II. pp. 48–65 (2017)

8. Daga, E., Meroño-Peñuela, A., Motta, E.: Modelling and Querying Lists in RDF.
A Pragmatic Study. In: 3rd Workshop on Querying and Benchmarking the Web
of Data (QuWeDa 2019), ISWC 2019 (under review) (2019)

9. Eilbeck, K., Lewis, S.E., Mungall, C.J., Yandell, M., Stein, L., Durbin, R., Ash-
burner, M.: The sequence ontology: a tool for the unification of genome annotations.
Genome biology 6(5), R44 (2005)

10. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Seman-
tic Web – ISWC 2005. 4th International Semantic Web Conference. pp. 262–276.
Springer (2005)

11. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array oper-
ations. SIGPLAN Not. 40(1), 338–350 (Jan 2005), http://doi.acm.org.vu-nl.
idm.oclc.org/10.1145/1047659.1040333

12. Görlitz, O., Thimm, M., Staab, S.: Splodge: Systematic generation of sparql bench-
mark queries for linked open data. In: International Semantic Web Conference. pp.
116–132. Springer (2012)

13. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics – Science, Services and Agents on the World
Wide Web 3(2), 158–182 (2005)

14. Hobbs, J.R., Pan, F.: Time Ontology in OWL. W3C working draft 27, 133 (2006)
15. Hopcroft, J.E., Ullman, J.D.: Data structures and algorithms (1983)
16. Ley, M.: The dblp computer science bibliography: Evolution, research issues, per-

spectives. In: International symposium on string processing and information re-
trieval. pp. 1–10. Springer (2002)

17. Meroño-Peñuela, A., Hoekstra, R.: The Song Remains The Same: Lossless Con-
version and Streaming of MIDI to RDF and Back. In: The Semantic Web: ESWC
Satellite Events (ESWC 2016). LNCS, vol. 9989, pp. 194–199. Springer (2016)

18. Meroño-Peñuela, A., Hoekstra, R., Gangemi, A., Bloem, P., de Valk, R., Stringer,
B., Janssen, B., de Boer, V., Allik, A., Schlobach, S., Page, K.: The MIDI Linked
Data Cloud. In: The Semantic Web – ISWC 2017, 16th International Semantic
Web Conference. vol. 10587, pp. 156–164 (2017)

http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1047659.1040333
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1047659.1040333

List.MID: A MIDI-Based Benchmark for RDF Lists 15

19. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.C.N.: Dbpedia sparql benchmark–
performance assessment with real queries on real data. In: International Semantic
Web Conference. pp. 454–469. Springer (2011)

20. Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial algorithms: theory and prac-
tice. Prentice Hall College Div (1977)

21. Saleem, M., Ali, M.I., Mehmood, Q., Hogan, A., Ngomo, A.C.N.: LSQ: Linked
SPARQL Queries Dataset. In: The Semantic Web - ISWC 2015. LNCS, vol. 9367,
pp. 261–269. Springer (2015)

22. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SPˆ 2Bench: a SPARQL perfor-
mance benchmark. In: Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on. pp. 222–233. IEEE (2009)

23. Schreiber, G., Raimond, Y.: RDF 1.1 Primer. Tech. rep., World Wide Web Con-
srotium (2014), https://www.w3.org/TR/rdf11-primer/

24. Sporny, M., Kellogg, G., Lanthaler, M.: JSON-LD 1.0. Tech. rep., World Wide
Web Consrotium (2014), https://www.w3.org/TR/2014/REC-json-ld-20140116/

25. Thakker, D., Osman, T., Gohil, S., Lakin, P.: A pragmatic approach to semantic
repositories benchmarking. In: Extended Semantic Web Conference. pp. 379–393.
Springer (2010)

26. The MIDI Manufacturers Association: MIDI 1.0 Detailed Specification. Tech. rep.,
Los Angeles, CA (1996-2014), https://www.midi.org/specifications

27. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and
use of the simple event model (sem). Web Semantics: Science, Services and Agents
on the World Wide Web 9(2), 128–136 (2011)

28. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the
Web. Semantic Web 8(3), 437–452 (2017)

https://www.midi.org/specifications

	List.MID: A MIDI-Based Benchmark for RDF Lists

