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Abstract

Clinical status of critically ill patients is often extreme and rapidly evolving. Hence, phar-

macological therapies must be tailored to patients’ characteristics and adapted according to the

evolution of their clinical pictures. To identify optimal personalized treatments, possible scenarios

produced by different therapeutic choices must be predicted and compared. This process requires

complex analyses involving the development of appropriate mathematical models.

In this Thesis, I focused on two important aspects of the pharmacological treatment of critically

ill patients: the administration of antimicrobial drugs and the control of their glycaemic level.

Although these problems are clinically very different, the modelling of their pathophysiological

mechanisms can be addressed with similar tools.

I performed analyses based on retrospective clinical data collected with MargheritaTre, an

electronic health record developed by GiViTI. The software to synchronize databases from hospitals

to our laboratory and to preprocess data for analyses was written for the purpose of this Thesis.

Starting from the study of the physiological mechanisms at the basis of vancomycin pharma-

cokinetics I constructed a model to describe the evolution of the plasma concentration of this drug

in critically ill patients. Compartment models were fitted on a sample of 141 patients, testing

about 30 patient covariates and several functional dependencies for each variable.

Glucose dynamics were described through a system of delay differential equations reproducing

intake, uptake and endogenous production of glucose, and organ-organ interactions mediated by

hormones. Existing models, describing only the dynamics of glucose and insulin, fail to reproduce

the correct evolution when glucose concentrations vary too rapidly. I improved these models,

by introducing an equation describing glucagon dynamics and taking into account its effect on

glucose metabolism. I investigated the dynamical properties of my model with analytical analyses,

numerical simulations and fitting it to observed data.





A Donata e ai miei genitori



6



ACKNOWLEDGEMENTS

Questa tesi è dedicata ai miei genitori e a Donata, le persone che più mi sono state

vicine in questi quattro anni, in cui sono stati realizzati i lavori presentati in questa

tesi. Con loro ho condiviso gioie e difficoltà. Grazie al loro appoggio è stato più facile

affrontare dubbi e incertezze.

These were the first lines of the acknowledgement section of my first Thesis at SISSA–ISAS. With

the very same lines I want to thank again Donata and my parents. Seven years ago, it continued

like this:

Per varie ragioni è stato molto difficile scegliere di continuare a fare questo lavoro: i

loro consigli mi hanno aiutato a capire quello che volevo per il mio futuro. In particolare

voglio ringraziare Donata per aver compreso e condiviso questa scelta e per il coraggio

di aver accettato, per qualche anno, il rischio di spostamenti in luoghi non ancora

definiti.

This is precisely what happened in the last seven years, which, at the beginning, were characterised

by the uncertainty of not knowing where to live, year by year, first in Trento, then in Paris and

eventually here, in Bergamo. And so, today, I thank again Donata for having followed me.

Un aiuto fondamentale per chiarirmi le idee è venuto da Stefano, che ho annoiato

con lunghe discussioni, e da Guido, che mi ha offerto la possibilità di utilizzare le mie

competenze al di fuori della fisica e con cui spero di continuare a collaborare, insieme

a tutti i ragazzi del GiViTI. Li ringrazio entrambi per il loro grande entusiasmo nella

ricerca, anche se in campi diversi. Ringrazio anche Daniele per la sua capacità di

tradurre, interpretare e analizzare dati clinici con strumenti matematici e statistici. Da

lui ho imparato a cogliere molteplici aspetti di un problema e a leggerli con linguaggi

7



ACKNOWLEDGEMENTS

diversi. E infine ringrazio Iacopo, con cui lavorerò per i prossimi due anni, che ha

sicuramente contribuito alla mia decisione.

Finally, four years ago, that hope become reality. I am now working in the Mario Negri Institute,

in the Laboratory of Clinical Epidemiology. I want to thank prof. Garattini for trusting me and

my supervisor, Guido, for offering me the possibility to work in this lab and supporting me during

these years. I thank him and my English supervisor, Mervyn, for their evaluable pieces of advice

about the work of this Thesis. Thanks also to Roberto, my third-party monitor.

I thank all the colleagues I have been working with during these last four years. First, many

many thanks to the guys of our brand-new unit of Medical Statistics and Mathematical Physiology,

better known as the pink room, Carlotta, Giovanni, Giulia, and Greta, for their help with the

analyses, for several stimulating discussions, and above all, for their sincere friendship and the

time spent together, both at work and outside of work. I also thank Giulia for contributing in the

last year of this project to improve the software to export data from MargheritaTre (M3), and to

develop the glycaemic models.

I thank our project managers, Elena, Gaia, Giulia, the new-entry Valentina, and our extraordi-

nary secretary Luana. Elena, in particular, has provided a fundamental contribution to the work

of this Thesis. We joined the lab almost altogether and everything begun with the first pharma-

cokinetic model we built for her Master Thesis. Those preliminary analyses were the basis of this

work and of the AbioKin project, that is coordinated by Elena and myself.

Thanks also to the IT guys, Carlo, Claudio, Daniele, Giampi, Matteo, Michele, Michelez, Obou,

and Befe, that has just joined the group. A special thank to Giampi, who has been developing M3,

Michele, for his essential and tireless support with the installation of M3, and Claudio and Matteo,

for helping me with data synchronisation. Without their contribution nothing of what was done

for this Thesis would have never been possible.

Thanks to all the guys of the lab who do not work in Ranica, Liliane, for her truly infectious

enthusiasm, Alessia, Davide, and Joanne.

Thanks also to the undergrad students who have been working with me in the last semester,

Giorgia, who helped me with the review of pharmacokinetic models, Irene, who worked on the

Compact project, and Michela, who has written the protocol of the GluDyPS project.

Thanks to Carlotta, Elena, Gaia, Giulia, Greta, and Luana for packaging the kits for the

AbioKin project.

I thank all the clinicians of the GiViTI, especially Mario, who coordinates the M3 project,

Sergio for providing the data for the farmacokinetic model, Giuseppe, who is the clinical PI of the

AbioKin project, Clara for her essential support in the organisation of the AbioKin protocol, and

Bruno for his boundless knowledge on all the aspects of infections in Intensive Care Medicine.

8



ACKNOWLEDGEMENTS

Thanks to Antonello, who introduced me to the pharmacokinetics and pharmacodynamics of

antibiotics, helped Elena and me with our first pharmacokinetic models. In the following months,

he will also measure drug concentrations for the AbioKin project. I thank Danilo and Gianni for

their suggestions about glycaemic metabolism and models. I thank Luigi for stimulating discussions

about pathophysiology and for helping me with the interpretation of the results of my models.

I want to thank Deborah and Roberto for hosting the AbioKin samples in the bio-bank of the

Mario Negri Institute.

Thanks also to Livio, who has been the only person I met at any time in the Institute while

writing up my Thesis during the last summer.

I want to thank Fondazione Cariplo for supporting this research through Grant no. 2014-1962,

Associazione Menuccia Grosso, and Maria for her donation.

Finally, many thanks to Guido, Joanne, and Mervyn for carefully reading and correcting the

manuscript of this Thesis and to the members of the examination panel (Prof. Della Pasqua, Dr.

Gobbi, and Dr. Bonati) for their valuable suggestions.

9



ACKNOWLEDGEMENTS

10



CONTENTS

Abstract 3

Acknowledgments 7

Contents 11

Introduction 15

1 Data collection: MargheritaTre 22

1.1 The electronic health record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.2 Real time analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.3 Support to clinical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 ICU and patient characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Data extraction for research purposes . . . . . . . . . . . . . . . . . . . . . . . . . 30

I Antimicrobial Pharmacokinetics 33

2 Physiology of Pharmacokinetics 34

2.1 Physico-chemical mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Movement through membranes . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Perfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.3 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11



CONTENTS

2.1.4 Protein binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Macroscopic pharmacokinetic processes . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Secondary PK parameters and PK/PD indices . . . . . . . . . . . . . . . . . . . . 55

2.4 Compartment models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Pharmacokinetics in critically ill patients . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.1 Effect of organ dysfunctions on pharmacokinetics . . . . . . . . . . . . . . . 61

2.5.2 Sepsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Antimicrobials in critically ill patients 66

3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Pharmacokinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.2 Mechanisms of action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.3 Kill characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Vancomycin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients 73

3.2.2 Population pharmacokinetic parameters of vancomycin in critically ill patients 74

3.2.3 Vancomycin dosing assessment in intensive care unit patients based on a

population pharmacokinetic/pharmacodynamic simulation . . . . . . . . . . 76

3.2.4 Vancomycin dosing in critically ill patients: robust methods for improved

continuous-infusion regimens . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.5 A new regimen for continuous infusion of vancomycin during continuous renal

replacement therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Compartment Pharmacokinetics 82

4.1 One-compartment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Two-compartment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Homogeneous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Non-homogeneous solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Population models of kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Single-subject model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 Several subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Population model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Pharmacokinetic models of vancomycin 108

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12



CONTENTS

5.1.1 Development sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.3 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.4 Model construction and variable selection . . . . . . . . . . . . . . . . . . . 115

5.2 One-compartment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.2 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.3 External validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.4 Clinical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Two-compartment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.1 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.2 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.3 External validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.4 Clinical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Single-patient predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.1 Simulated concentrations and graphical representation . . . . . . . . . . . . 146

5.4.2 Clinical relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

II Glucose Dynamics 157

6 Physiology of glucose dynamics and mathematical models 158

6.1 Physiology of glucose homoeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.1 Pancreas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1.2 Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1.3 Kidneys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1.4 Muscles and adipose tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1.5 Central nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Intravenous glucose-tolerance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Ultradian oscillations of insulin and glucose . . . . . . . . . . . . . . . . . . . . . . 169

6.3.1 Multicompartmental ODE system . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.2 DDE systems with explicit delays . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Models for critically ill patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4.1 Glucose and insulin subsystems . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4.2 Model for estimation of time-dependent parameters . . . . . . . . . . . . . 181

13



CONTENTS

6.4.3 Adaptive model with endogenous insulin production . . . . . . . . . . . . . 181

7 Glucose–Insulin–Glucagon dynamics 183

7.1 Glucose–insulin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 The glucose-insulin-glucagon model . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.6 Conclusions and future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Conclusions 217

A Effective delay from ordinary linear equations 221

B Delay differential equations 225

C Code structure 227

C.1 Database synchronisation and restoring . . . . . . . . . . . . . . . . . . . . . . . . 227

C.2 Creation of views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

D List of abbreviations and symbols 230

Bibliography 241

14



INTRODUCTION

Patients admitted to Intensive Care Units (ICUs) often manifest very atypical, extreme and

rapidly evolving conditions. In these settings, the choice of appropriate pharmacological therapy

can be extremely complex to determine and must take into account the effects of the combination

of several variables. In particular, treatments tailored to the specific conditions of each patient

must be adopted, often beyond standardized protocols. The identification of such a personalized

therapy requires the analysis of a large amount of clinical and pharmacological data and of the

possible scenarios produced by different therapeutic choices. Thus, it is of paramount importance

to provide clinicians with efficient tools to handle all these variables.

In particular, when two or more factors interact in a nontrivial way, simple clinical reasoning

is not sufficient and must be supported by more sophisticated analyses. For instance, the effect of

a drug can be modified by the simultaneous administration of a second drug [78, 132, 147] or by

the presence of an organ failure [167, 135] (e.g. renal failure can seriously affect the plasma con-

centration of many drugs [110]). A proper analysis is even more complex when patient conditions

evolve rapidly and dynamic effects must be taken into account.

In this Thesis I shall focus on two specific aspects of the pharmacological treatment of critically

ill patients. First, I shall consider the administration of antimicrobial drugs, whose effectiveness

strongly depends on the achievement of minimum concentrations for a sufficient time [97]. Second,

I shall investigate the physiological aspects at the bases of regulation of the glycaemic level [17, 34],

whose time evolution is generally quite complex and difficult to predict. Although these problems

are very different from a clinical perspective, the modelling of their pathophysiological mechanisms

can be addressed using similar tools.

All the work done for this Thesis proceeds along five steps

1. development of informatics tools to load, manage, and process data;
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INTRODUCTION

2. study of the physiological aspects of the investigated clinical problem;

3. formulation in mathematical language of the relevant physiological mechanisms;

4. application of statistical tools to estimate the parameters of the mathematical models;

5. clincal interpretation of the results.

Data collection

Since the first step is common to all the subsequent analyses, I have devoted the first chapter of

this Thesis to the presentation of MargheritaTre (M3), the electronic health record used to collect

data, and the software I have written to preprocess those data.

M3 is an electronic health record dedicated to ICUs developed by GiViTI (Italian Group for

the Evaluation of Interventions in Intensive Care Medicine), thanks to a research grant cofounded

by the Italian Ministry of Health, four Italian Regions, and private companies. GiViTI is a collab-

orative research group, founded in 1991 to evaluate and improve the quality of care in the ICU [3].

Overall, GiViTI involves about 450 ICUs. Among them, about 250 units regularly collect epi-

demiological data (comorbidities, clinical conditions at admission, complications during stay, some

data about treatments, and outcomes) of all admitted patients through the Prosafe software [8].

However, epidemiological data do not allow to study single clinical processes or trace the evolution

of the patient’s clinical picture over time. M3 was developed precisely to collect information with

the necessary granularity to assess such phenomena.

The objective of the M3 project is to integrate clinical research and clinical practice through

an electronic health record that both supports everyday practice in ICU and provides high-quality

data for research purposes. To accomplish this purpose, M3 was designed by a multidisciplinary

team involving clinicians, nurses, IT specialists, and epidemiologists. The ultimate aim of the

project is to return the results of our research to clinicians, through the same software. In this

direction, two modules were developed to generate alarms in the case of allergies to prescribed

drugs and to support, through a step-by-step procedure, the evaluation of brain-death patients for

organ donations.

The development and the maintenance of the software and the analyses of the data collected

with both Prosafe and M3 were performed by the GiViTI coordinating centre, which is hosted by

the Laboratory of Clinical Epidemiology of the Mario Negri Institute of Clinical Research IRCCS.

At the beginning of this Thesis project, four years ago, the M3 software was stable, and had

already been used for six years in more than 20 ICUs. Overall the databases of all the ICUs

contained records of more than 20 000 patients. However, databases had not yet been synchronised

with our with servers and no tool was available to extract data and to process them. Thus, a
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INTRODUCTION

significant part of the work of this Thesis was devoted to developing the tools needed to make this

huge amount of data ready to be analysed, as illustrated in Chap. 1.

Research with MargheritaTre

This work has allowed to exploit M3 data for several research projects. Our research efforts have

been devoted mainly to the study of the management of infections from different perspectives and

with different levels of details.

Along this line, we first performed an observational study to portray the strategies adopted

in our ICUs for the utilization of antibiotic drugs. The specific aims of this project were to

understand what molecules are adopted in prophylaxis, empirical, and target therapies in relation

to infection sites and microorganisms, measuring the length of antibiotic treatments and describing

the administration strategies. This analysis showed a large variability between ICUs with strategies

which were not always optimal.

The results of this investigation has stimulated further questions. We have started a program of

antimicrobial stewardship involving seven general ICUs with the objectives of: (1) understanding

what are the motivations and the causes of the observed clinical decisions, (2) spotting problems and

identifying solutions to improve strategies related to the management of infections, (3) measuring

the effect of this stewardship program with rigorous performance indicators evaluated before and

after the interventions. The project is conducted in collaboration with clinical experts (infectious

disease specialist, clinical microbiologist, intensivist).

In parallel, having observed suboptimal choices of the dosage regimens, we decided to study

the pharmacokinetic properties of some of the most used antimicrobial molecules in critically ill

patients with the ultimate objective of implementing pharmacokinetic real-time simulators in M3

to directly support clinical decisions. The work realised for this Thesis and presented in its first

part represents the first step of this long-term project.

We started also two projects that are not related with the management of infection. One is

focused on a systematic review of databases containing drug-drug interactions with the objective

of implementing in M3 a system of automatic alerts to signal life-threatening drug interactions in

critically ill patients. The latter project is focused on the study of glucose metabolism. Being the

subject of the second part of this Thesis, further details about this project will be provided below.

Antimicrobial Kinetics

Designing an appropriate antimicrobial treatment in ICU is very complex, as attested by the

recurrence of cases of inappropriate or suboptimal therapies, as described in the literature [13, 94],

often resulting from an incorrect estimate of drug pharmacokinetics and pharmacodynamics [188].
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To properly choose the antimicrobial molecule, its dosage, and the manner of administration,

several variables must be taken into account. For instance, the presence of various comorbidities

or organ failures, hyperdynamic conditions associated with sepsis [55], or the adoption of treatments

such as haemodialysis or haemofiltration [134, 48] can alter the plasma concentration of many drugs.

Furthermore the effectiveness of a drug can be modified by the simultaneous administration of

several other drugs with which it can interact [78, 132, 147]. This can result in either underexposure,

which may reduce the therapeutic effect and favour the development of resistant bacterial strains,

or overexposure, with possible increase of drug toxicity.

Pharmacokinetics and pharmacodynamics have been extensively investigated [97, 129] using

in-vitro models [76] and from a clinical standpoint (e.g., see [56]). Mathematical models of phar-

macokinetics and pharmacodynamics have also been constructed analytically [52] or using Monte

Carlo simulations [66]. In particular, stress has been laid on the important role in the design of ef-

fective antimicrobial therapies played by parameters such as the minimum inhibitory concentration

(MIC), the maximum plasma concentration (Cmax), and their ratio Cmax/MIC, the area under the

time/concentration curve, and the time above MIC TMIC. Furthermore, specific pharmacokinetic

software (i.e. NONMEM, MWPharm, ADAPT II) has been developed to help clinicians achieve the

desired values of the above parameters. However, translating the many advances of research into

clinical practice is often problematic [115], both for cultural reasons and because available software

is difficult to use in everyday life, partly considering that the parameters need to be constantly

updated to yield appropriate estimates of drug doses, timing, and route of administration.

In Part I of this Thesis I investigate the pharmacokinetic properties of antibiotic kinetics focus-

ing on vancomycin, a molecule widely used in ICU with a very narrow range between the minimum

therapeutic concentration and the maximum concentration above which it becomes toxic. For this

reason its concentration is measured in clinical practice when therapeutic drug monitoring (TDM)

is required according to clinical judgement.

Preliminary analyses from MargheritaTre database showed that the concentration of van-

comycin in patients admitted to the Italian ICUs participating in the project is often lower than

the minimum therapeutic concentration or higher than the toxicity threshold. We observed that,

by adopting standard dosage regimens, it is difficult to attain a correct plasma concentration when

patients conditions are extreme (e.g., large distribution volumes, or renal failure). In those situa-

tions personalised dosage regimens should be designed. Predictive algorithms must be developed

on the basis of pharmacokinetic models which take into account several clinical factors. The de-

velopment of these models is possible only through large datasets with sufficient inter-individual

variability.

As briefly introduced in the above section, the work presented in this Thesis represents the first
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step of a larger long-term project based on our electronic health record. The specific aims of this

Thesis are: (1) the development of tools to extract data from MargheritaTre, preprocess and make

them available for analyses, (2) the construction of a population pharmacokinetic compartment

model of vancomycin, (3) the external validation of this model.

My analysis was performed on retrospective data collected withMargheritaTre from 141 patients

admitted to MargheritaTre in the ICU of the San Giovanni Bosco Hospital, Torino, Italy. This

was one of the first ICU that joined the project and its database contains the largest set of patient

records including measured values of plasma vancomycin concentration. External validation was

performed on data collected from other five ICUs.

In Chap. 2, I review the most relevant aspects of pharmacokinetics, starting from physiologically

principles and showing how compartment models can be mathematically interpreted as the coarse-

grained approximation of physiological mechanisms. In Chap. 3, I review the mechanisms that can

modify the kinetic properties of antibiotics in critically ill patients focusing on vancomycin kinetics

and present a few important population models for this drug developed on critically ill patients.

In Chap. 4, I illustrate the mathematical structure of the pharmacokinetic models and present

the techniques used to construct a population model. In Chap. 5, I construct one-compartment

and two-compartment population pharmacokinetic models to describe the evolution of the con-

centration of vancomycin in critically ill patients. I determine the clinical parameters that affect

the evolution of plasma drug concentration, compare the performance of the two models, and test

the reliability of their prediction with both internal and external validation. Finally, I discuss the

limits of these models and briefly present AbioKin, an ongoing project designed to collect ad hoc

data to study the pharmacokinetics of some of the antibiotic molecules most widely used in ICUs.

Glycaemic control

Critically ill patients often show high glycaemic peaks due to the development of insulin resistance.

Since large amounts of blood glucose are highly toxic, it is considered good practice to adopt a tight

glycaemic control by means of insulin, glucose and nutrition administration [126, 190]. However it

is still unclear what real benefit is obtained by applying strict control [75, 123, 191, 124, 204] and

what is the optimal target of blood glucose in critically ill patients [62, 202, 59].

Maintaining glycaemic values within the desired range is very difficult [17, 34]. On the one

hand, in critically ill patients the glycaemic level often reaches very high values due to insulin

resistance. On the other hand, patients under strict glycaemic control often experience glycaemic

values below the desired range [119, 108], thus running the risk of a dangerous hypoglycaemic

complications, as demonstrated in experimental studies [64].

Both hyperglycaemia and hypoglycaemia are associated with increased mortality. For these
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reasons, reliable algorithms would be very useful to identify the most appropriate insulin ther-

apy [14, 120].

Several existing models allow the simulation of the metabolism of glucose. Unfortunately, they

all suffer from several drawbacks. Although models developed to describe glucose dynamics in

healthy subjects or in patients affected by chronic diabetes are quite sophisticated [185, 118, 112,

107] from both physiological and mathematical standpoints [60, 113], they fail to reproduce the

complex and rapidly changing dynamics observed in critically ill patients.

These models include several free parameters that must be estimated by a fitting procedure

from patient data. To this aim, blood glucose concentration must be measured several times over

a time interval where patient conditions are almost constant. Since critically ill patients are very

unstable, this requires the collection of a large number of blood samples over a very short time (a

few hours) [28]. However such a frequent sampling is generally impractical with standard diagnostic

techniques (blood gas analysis) [193].

To overcome this drawback, simplified models with fewer parameters have been proposed to fit

data from critically ill patients [44, 207, 82]. However, these models are too simplistic to reproduce

the complex physio-pathological mechanisms at the basis of glucose dynamics on time scales longer

than a few hours [192, 45]. Furthermore those models are not robust against rapid variations of

the system parameters (e.g. in case of fast intravenous doses of glucose).

To support clinicians in the design of glucose- and insulin-administration regimens it would be

important to implement in electronic health records simulators of glucose dynamic based on these

models. However, the realization of such a tool represent a complex problem requiring to first

identify a suitable model and then fit it to a wide dataset containing frequent measurements of

blood glucose concentration. The objective of this Thesis is to identify a model appropriate from

a theoretical physiological perspective, studying the feasibility of the construction of a reliable

algorithm.

These questions are addressed by achieving the following specific aims (Part II): (1) study of the

robustness of existing models in realistic conditions through numerical simulations, (2) proposal

of a more robust and physiologically sensible model that can be adapted to extreme conditions of

low or high blood glucose concentrations, (3) study of the mathematical properties of this model

through a semi-analytical phase-space analysis of the stability of its solutions.

In Chap. 6, I review the main physiological processes at the basis of glucose homoeostasis

and present several models describing the evolution of blood glucose concentrations under very

different conditions. In Chap. 7, I first study the performance of one of the most complete models

describing the coupled dynamics of glucose and insulin through numerical simulations. To overcome

the drawbacks of this model I introduce a new system of equations to take into account the role of
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counter-regulatory hormones, such as glucagon, in maintaining glucose levels within their normal

range. I study the performance of my model with both semi-analytical analyses and numerical

simulations. I also fit the model to real data, critically discussing my results.

A list of abbreviations and symbols is provided in Appendix D.
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Chapter 1

DATA COLLECTION: MARGHERITATRE

New information technologies have allowed to more rapidly and efficiently manage, store, and

share the amount of data generated during the health care process. Particularly, the introduction

of electronic health records (EHR) has transformed the way information is documented and used

in clinical practice.

Initially, EHRs were enthusiastically expected to improve the quality of care and increase

the overall efficiency of the care processes [83]. However, some barriers hindered the diffusion of

EHRs [11] and their expected benefits were confirmed only by a few studies [46, 137]. Nevertheless,

EHR diffusion has now become widespread [81] and a recent meta-analysis reviewing 47 articles

concluded that, while EHRs may reduce documentation time, improve guideline adherence, lower

the number of medication errors and adverse drug effects, no associations with mortality were

detected [39].

Diffusion of EHRs has generated huge amounts of data that can be mined to address countless

research questions [100]. In the ICU in particular, a lot of information is collected per single

patient: vital signs are recorded very frequently, several laboratory tests are performed every day,

multiple drugs are administered at the same time, and sophisticated medical devices are employed

in everyday clinical practice. The simultaneous availability of several parameters, which track the

functionality of almost all organs, in large databases, provides an essential tool to the emerging

field of network physiology, which aims to describe the structural and functional connectivity of

physiological networks underlying both individual organs and the global behaviour at the organism

level [19, 95, 18, 96]. In this framework, quite common conditions in critically ill patients such

as coma or multiple organ failure can be described as a failure of communication and dynamic

coordination among organs [38, 127, 15].

An example of the huge amount of clinical data collected in ICU is provided by MIMIC-
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III (Medical Information Mart for Intensive Care), a freely accessible database, created to share

data of over 50,000 patient admissions to the ICUs of Beth Israel Deaconess Medical Center in

Boston [103]. This database has made it possible to investigate different aspects of the health

care process from critical care, e.g. the validation of algorithms to identify septic patients [121]

or the proposal of a new score for renal failure [178], to other related fields, such as laboratory

medicine [91].

Although the potential of EHRs for clinical research is evident and universally recognized,

ensuring high quality data [41] and guaranteeing homogeneous data collection and reproducibility

of results is not straightforward [102, 16]. To overcome these concerns, the Italian Group for the

Evaluation of Interventions in Intensive Care Medicine (GiViTI - Gruppo italiano per la Valutazione

degli interventi in Terapia Intensiva) has developed MargheritaTre (M3), an EHR for ICU that

serves a double purpose: to be a valid tool to support everyday clinical practice and to provide

reliable and mostly structured data for clinical research [4, 63]. It is currently adopted by 40

units in Italy. Special attention was devoted to the development of the software interface. A good

interface is indeed the sine qua non condition to facilitate data input, reduce documentation time,

and guarantee the quality of collected data [10].

In this chapter I present the structure of M3 and the types of available data, describe the patient

epidemiology, and illustrate how this database can be exploited to conduct research projects.

1.1 The electronic health record

1.1.1 Data structure

Compared to commercial EHRs, M3 does not allow for ICU-specific customisation in order to

ensure quality and uniformity of data. Accordingly, modifications to the software proposed by

clinicians must be evaluated by the coordinating centre before implementation in M3. Approved

changes are then released to all ICUs.

Most information is stored by M3 in structured form (see Table 1.1): vital signs from ICU

monitors, results of blood gas analyses and laboratory tests, pharmacological therapies, procedures

and treatments (e.g. ventilation, haemodialysis, etc...), nursing activities, infections, organ failures,

injuries.

Clinical notes, anamneses, and epicrises are usually recorded as free text in EHRs. However,

to facilitate data analysis, M3 records this information in a partially structured form: clinicians

can compose notes by selecting tags from a list of about 500 keywords.
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Table Type Content Rows
admissions S one row per patient, admission date

and time
105

anamnesis PS medical history, comorbidities, aller-
gies (free text and keywords)

106

diagnosis PS clinical conditions, surgical interven-
tions, diagnosis, admission reasons
(free text and keywords)

106

clinical notes PS note date, time, user, and content (free
text and keywords)

108

vital signs S variable, date, time, value, units 108

laboratory tests S test name, date, time, value, units 107

microbiological tests S date, time, microorganism, antimicro-
bial susceptibility

106

drug administration S drug, start and end times, rate of in-
fusion, drug amount, route

107

nutrition S nutritional bag, start and end times,
rate of infusion, route

106

blood purification treatments S techniques, start and end times, pa-
rameters

105

procedures S type of procedure (e.g., ventilation),
start and end times

107

nursing activities S type of activity, start and end times 106

pathologies S infections, failures, injuries, onset and
resolution time

106

Table 1.1: Type of information stored in M3 tables (S = structured data, PS = partially structured
data) and table dimension (number of rows).

Every piece of information is either input by doctors or nurses or imported from monitors,

devices, or the hospital information system. For legal requirements, M3 traces date, time, and the

user that inputs each item of data.

1.1.2 Real time analyses

Clinicians can analyse their data through graphical tools included in M3. These tools offer the

possibility to plot time evolutions of the value of any clinical parameter or laboratory test and to

create synoptic tables. They are routinely used by doctors and nurses to discuss patients’ clinical

picture in daily briefings. For more sophisticated analyses, data can be directly exported to xlsx

files.

1.1.3 Support to clinical studies

M3 is designed to implement modules to support nurses and physicians in all phases of a clinical

study. For each patient admitted to ICU, M3 checks the eligibility criteria to the study and guides

the clinician in the enrolment phase. From such a module investigators can directly access the

protocol of the study and print the form to obtain patient or next-of-kin informed consent. A
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Figure 1.1: Architecture of M3.

series of automatic notes reminds physicians to withdraw biologic samples or perform laboratory

tests, and the completeness of all required information is automatically checked.

1.1.4 Architecture

M3 has a client/server architecture (see Fig. 1.1), with one server per ICU. Clients are typically

installed on bedside computers and at control desks. They have a modular graphical interface that

allows doctors and nurses to input and visualize data for diagnosis, therapies, laboratory tests,

etc. . .

Each module can load and store data independently from the other modules by communicating

with the server, through a data access layer (DAL). The DAL manages all read and write operations

on a relational database [7], where all data are stored in more than a hundred tables.

Automatic services import data from monitors, devices, and from the hospital information

system and save them in the database through the server.

M3 implements a safe crash utility that periodically saves to pdf files the full records of patients

present in the ICU (every 4 hours by default). This ensures that clinical activities are not stopped

in case of a software crash.

1.2 ICU and patient characteristics

M3 contains data from 40 Italian ICUs: 34 general ICUs (GICU), 2 surgical ICUs (SICU), 1

cardiosurgical ICU (CICU), 2 neurosurgical ICUs (NSICU), and 1 high dependency unit (HDU).
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Figure 1.2: Number of ICUs participating in the M3 project (left panel) and number of recruited
patients per year (Data from M3 database, February 1st, 2018 [63]).

After anonymisation, data are daily synchronized with a database at GiViTI coordinating centre,

which coordinates all the projects based on M3 data.

In Fig. 1.2, I report the number of ICUs participating in the M3 project since the first M3

release in 2008 (left panel) and the number of recruited patients per year (right panel), which has

grown over time. More than 12 000 patients per year were recruited in 2016 and 2017. The M3

database contained 65 987 patients on February 1st, 2018 [63].

The median age of patients is 69 years, 60% patients are male and 49% patients are non-

surgical. The median length of stay in ICU is 2.2 days with an average ICU mortality of 17%.

Table 1.2 provides a breakdown of the population by care unit, the occurrence of disease types at

ICU admission and the frequency of three of the most common treatments in intensive care.

1.3 Data management

A rather complex process of data management is required to make MargheritaTre data available

for the analyses. The code needed to synchronise data with our servers and to pre-process them

was written in the first years of this PhD work and subsequently improved according to the needs

of each analysis. In this section I shall briefly illustrate the architecture of this code. Further
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Table 1.2: Details of M3 patient population, occurrence of disease types at admission, treatments
received, and ICU outcome by care unit: general ICU (GICU), surgical ICU (SICU), cardiosurgical
ICU (CICU), neurosurgical ICU (NSICU), and high dependency unit (HDU). Percentages are
computed out of the total number of admissions in the M3 database for the number of ICU
admissions (second row), out of the number infected patients admitted to an ICU of the same type
for the detail of the anatomic location of the infection, and out of the total number of patients
admitted to an ICU of the same type for any other variable. (Data from M3 database, February
1st, 2018 [63])
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contAdministrations

IDTherapy
eventType
(start/stop)
datetime
...

interAdministrations

IDTherapy
datetime
...

administrations

therapy

ID
IDAdmission
drugCode
drugName
...

admissions

ID
admissionDatetime
dischargeDatetime
testPatient

drugs

drugCode
drugName
IDActiveIngredient
ATCcode

activeIngredients

ID

activeIngredient

antimicrobials

IDActiveIngredient

isAntimicrobial

antibiotics

IDActiveIngredient

isAntibiotic

drugDB

extraDBDrugs

drugName

activeIngredient

isAntibiotic

Figure 1.3: Structure of tables storing information of drug administration. Solid arrows denote
join operations between tables.

details can be found in Appendix C.

Data from each ICU are automatically synchronized every day with our servers after de-

identification. A daemon running on a Linux server checks every minute for database updates.

Each database is then restored on a PostgreSQL Server version 10.3. This daemon is written in

Python v.2.7.6 and is launched by a init.d script.

After restoration, data are transformed in a more structured and analysable form by means

of several views (see Table 1.1). Data from all ICUs are finally stored in a single database. This

part of the code is based on a Python script that calls bash scripts and is executed every night by

crontab.

The structure of the PostgreSQL queries used to create data views for analysis is quite sophis-

ticated. Each MargheritaTre database contains 146 tables that cannot be analysed in their original

form. To gather all the information referring to the same clinical aspect (demographic information,

drug administrations, laboratory tests, etc. . . ), up to ten tables (or sometimes even more) must

be joined together. To illustrate how this complexity is managed, Fig. 1.3 schematically represents

the reconstruction process of the complete information on drug administrations starting from M3

tables.

Finally, I wrote several tools to make data available for analyses in R from the PostgreSQL
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data load tools

getDemographicData
getAdmissionSource
getTypeOfPatient
getReasonForAdmission
getDiagnosis
getComorbidities
getPathologies
getClinicalNotes
getDrugPrescriptions
getDrugAdministrations
getFluidAdministrations
getNutrition
getTreatments
getVitalSigns
getLaboratoryTests
getMicrobiologyTests
getAbioKinData
getOutcome

high-level data load tools

getAntibiotics
getGlucose
getGlucoseAdministrations
getGlucoseDiluent
getGlucoseNutrition

preprocessing tools

getDrugIngredients
administrationStartStopTime
administrationRatesAndAmounts
simplifyUnits
correctErrorsInUnits
convertUnits

formatting tools

formatCentreCodes
createUniquePatientID
convertCSStringsToVectorsquery construction tools

addConditionToQuery
createQueryCentresAndPatients

connection tools

getQuery

Figure 1.4: Structure of the R code that loads data from the PostgreSQL server and preprocesses
them.

database. Tables of any type of data can be easily loaded by typing a single R command, possibly

specifying selection conditions (e.g., ICU code, patient ID, type of drugs, etc...) in PostgreSQL

language. A query is automatically created and passed to the PostgreSQL server. Data resulting

from the query execution are loaded into R data frames and preprocessed. The structure of this

R code is schematically illustrated in Fig. 1.4. There is a low level function (getQuery) that

interacts with the PostgreSQL server, creating a connection, executing a query, and closing the

connection. A set of high-level functions (data load tools) create a different query for each type of

data, possibly appending selection conditions. Such queries are constructed with the help of the

query construction tools and then executed on the server through getQuery. The result of the

query is then processed by each data load function through a set of preprocessing tools and the

final dataset is eventually returned ready to be analysed.

Higher level functions are written to manipulate data for any specific analysis. To load data

relevant to the topics of this Thesis I wrote a set of functions to filter antibiotic administrations and
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to retrieve any type of glucose administration. The latter task is quite complex because glucose is

ubiquitous. Only a small amount of this molecule is administered directly as an active ingredient.

In fact, glucose is generally administered through bags for enteral or parenteral nutritions, bags of

fluid (e.g. glucose Ringer’s solution), or even through glucose solutions used as a diluent for the

intravenous administration of other drugs.

The functions getGlucoseAdministrations, getGlucoseDiluent, and getGlucoseNutrition

load all data relative to drug administrations (active ingredient and diluent), nutrition, and contin-

uous infusions of fluid solutions using the appropriate data load tools (getDrugAdministrations,

getFluidAdministrations, and getNutrition). After data are loaded, these functions also read the

composition of each drug and bag from the drug database and compute the rate and the total

amount of administered glucose.

1.4 Data extraction for research purposes

To illustrate the potential of M3 to conduct research and clinical projects, I will discuss what

kind of information can be derived from the M3 database. To this purpose I will present three

examples related to the management of infections, one of the complex clinical problems that GiViTI

is investigating from different perspectives and with different levels of detail.

At the epidemiological level, one can extract from M3 information on the usage of antimicrobial

drugs in term of molecules, dosage, and routes of administration and study correlations with

the epidemiology of the micro-organisms or with the reason for administration. Care processes

can be investigated by analysing single clinical cases, relating the evolution of their condition to

diagnostic results and therapeutic decisions. Finally, the analysis of series of vital signs, results

of laboratory tests, and other clinical parameters allows the study of several pathophysiological

aspects of critically ill patients.

These different levels of analysis are illustrated through two examples. In Fig. 1.5, I present the

number of patients treated with antibiotics in 2017 by molecule and reasons for administration:

empirical therapy, targeted therapy, and prophylaxis. This simple analysis provides an overall

picture of the molecules used in the ICUs participating in the M3 project and reveals that the

choice of the antibiotics is not always optimal. For instance, piperacillin/tazobactam is used in

prophylaxis even if it should be reserved only for the treatment of infections [33]. Results of this

kind are necessary to identify widespread problems and suggest how to design projects of antibiotic

stewardship to improve the management of infections.

In Fig. 1.6, I study the typical evolution of the clinical picture of a 76 year-old male patient with
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Figure 1.5: Number of patients treated with the 15 most administered antibiotics in 2017 by
molecule and reason for administration.

a non-surgical infection of the urinary tract by integrating different pieces of information from his

record. The horizontal bars in the upper part of the plot represent administrations of antimicrobial

drugs in empirical (light grey) and targeted therapy (dark grey). Solid and dashed vertical lines

indicate dates of isolations and results of antibiotic sensitivity tests, respectively. The lower panels

report the evolution of temperature, heart rate, respiratory rate, arterial oxygen saturation, lactate

plasma concentrations, white blood cell count and procalcitonin.

The patient’s condition on ICU admission are critical: the values of heart and respiratory rates,

lactate, white blood cell count, and procalcitonin are high. A urine sample is collected for micro-

biological culture and an aggressive empirical antibiotic therapy is started with meropenem and

vancomycin. All clinical parameters rapidly improve. After three days the microbiological culture

is available and the antibiotic therapy is de-escalated to a targeted therapy with ciprofloxacin. This

treatment is suspended after three days when the clinical picture is stable. However, the white

blood cell count increases again and a Stenotrophomonas maltophilia susceptible to co-trimoxazole

is isolated in a bronchoscopic aspirate. Targeted therapy with co-trimoxazole is started. The fol-

lowing day the patient is transferred to the infectious disease unit, since his condition is no longer

critical. This complete picture allows one to describe the full process of care, to study the clinical

effects of the adopted therapeutic strategies, and to possibly identify interventions to improve the

quality of care.

Starting from data collected with M3 we have recently started a program of antimicrobial

stewardship involving seven general ICUs, where the analyses and the graphical tools presented in
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Figure 1.6: Antibiotic administrations, dates of microbiological cultures, antibiotic sensitivity re-
port, and evolution of temperature, heart rate, respiratory rate, arterial oxygen saturation, plasma
lactate concentration, white blood cell count (WBC), and procalcitonin (PCT) for a 76 year-old
male patient with non-surgical infection of the urinary tract and hypovolaemic shock at admis-
sion. Temperature, heart rate, and respiratory rate were collected about 15 times a day, oxygen
saturation and lactate 5 times a day, WBC twice a day, and PCT once a day. Reference ranges
are indicated by dotted lines. The reference range of PCT is not reported since variations in PCT
are more informative than its absolute value, interpretation of which may depend on patient con-
ditions, site of infection, and causative microorganism [198]. The reference range for respiratory
rate (12–28 min−1) has been adapted to elderly patients (65–80 years old) [158].

this section, both at epidemiological and single-patient level, are used in clinical audits by experts

to spot problems and identify solutions to improve antimicrobial administration strategies.

32



Part I

ANTIMICROBIAL
PHARMACOKINETICS

33



Chapter 2

PHYSIOLOGY OF PHARMACOKINETICS

The success of a pharmacological therapy strongly depends on the selected dosage regimen. A

drug may be ineffective when its concentration at the required site of action is too low. Conversely, a

drug becomes toxic if its concentration exceeds a specific threshold. Thus, dosage, route, frequency,

and duration of administration must be appropriately set to achieve the optimal drug efficacy.

The choice of these parameters is particularly crucial in critically ill patients. Their atypical

and extreme conditions require the design of personalised dosage regimens. Furthermore, it is often

important to reach the therapeutic target in a timely manner as the clinical picture may evolve

very rapidly.

To answer the question how, how much, when, and for how long a drug should be administered,

the kinetics of several processes must be taken into account. A drug must move from the site of

administration to the site of action. When a drug is administered, the absorption process starts,

it diffuses to tissues, also reaching those organs (liver and kidneys) that eliminate it. As soon as a

drug is administered, the rate at which it enters the body exceeds the elimination rate. During this

phase, drug concentration increases in both blood and tissues. Eventually, the elimination rate

will overcome the absorption rate and drug concentration will decrease. If a drug is administered

at a constant rate, absorption and elimination balance each other. In this scenario the drug

concentration reaches a constant stationary level [162].

Figure 2.1 provides a graphical picture of all phases of drug kinetics, from administration to

elimination. A drug can be administered through several sites (indicated by circles), that can

be classified as either intravascular or extravascular. By intravascular routes, the drug is directly

introduced into the bloodstream. Extravascular administration routes may be topic (e.g. dermal,

pulmonary) or systemic (e.g. oral, sublingual, buccal, intramuscular, subcutaneous, rectal). When

a drug is administered through one of the latter routes, it must be absorbed in order to enter the
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Figure 2.1: Schematic picture of the complex path followed by a drug. Possible sites of admin-
istration (circles) are: (A) veins, (B) arteries, (C) muscle and subcutaneous tissue, (D) lung, (E)
gastrointestinal tract. Lines with arrows represent drug movements, thick arrows route of elimi-
nations (adapted from Ref. [162]).

blood flow. The time scale of the absorption process strongly depends on the administration site

and may require sophisticated mathematical modelling.

In this Thesis I shall focus only on drugs administered intravascularly, for which the absorption

step is not required. This route is routinely used in the ICU as all patients have vascular accesses

(arterial, venous peripheral, and/or venous central) and infusion pumps are used to precisely control

rates and amounts of administered drugs.

From mathematical and statistical perspectives, the absence of the absorption process strongly

simplifies pharmacokinetic analyses and makes results more reliable. When a drug directly enters

the blood, there is no uncertainty associated with the duration and the rate of the absorption
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process, which may show important between-patient variability.

Once the pharmacokinetic properties of a drug are understood, one must consider its pharma-

codynamic characteristics, i.e., determine how a given concentration in the site of action correlates

with the magnitude of the produced effect. The knowledge of both kinetic and dynamic aspects

allow to design an effective dosage regimen to achieve the therapeutic objective. For instance, to

design an effective antimicrobial therapy, one must take into account that the optimal therapeutic

concentration of antimicrobial drug at the site of an infection depends on both site and causative

microorganism [166].

The main physiological mechanisms at the basis of these processes are briefly described in

this Chapter at the general level and specific pharmacokinetic properties of antimicrobials are re-

viewed in Chap. 3. This Chapter is organized to provide a review of pharmacokinetics principles

with a bottom-up approach. First, in Sec. 2.1 I briefly present the main features of microscopic

physico-chemical principles governing drug kinetics (membrane crossing, perfusion, protein bind-

ing). Second, in Sec. 2.2 I describe the macroscopic processes (distribution, elimination) resulting

from this microscopic mechanisms. Processes which are not relevant to the following analyses

are not discussed (e.g., absorption). Third, Sec. 2.4 is devoted to introduce the basic concepts

of compartmental models, which naturally approximate the complex pharmacokinetic processes

presented in Sec.2.2. In compartmental models, the evolution of drug concentration is described

by simplified systems of differential equations where the contribution of the physiological processes

is summarized into few parameters. The analyses of this Thesis are conducted at this corse-grained

level of approximation. A more detailed review of the methodological aspects at the basis of the

construction of this models and the estimation of their parameters is presented in Chap. 4.

Finally, in the last section of this Chapter, I review how pharmacokinetic processes are affected

by pathological conditions in critically ill patients. The physiological variables tested as covariates

in the construction of the models presented in Chap. 5 are chosen as markers of those conditions.

2.1 Physico-chemical mechanisms

2.1.1 Movement through membranes

The microscopic processes at the basis of all pharmacokinetic aspects (absorption, distribution,

and elimination) ultimately consist of the movement of molecules through membranes. To construct

a realistic mathematical model describing pharmacokinetics it is therefore important to understand

the physical and chemical mechanisms according to which drugs move through membranes.
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Cellular membranes are composed by a lipid bilayer with embedded proteins. The hydrophobic

portion of lipid molecules is oriented towards the centre of the membrane while the hydrophilic end

is directed toward the surrounding aqueous environment. Furthermore, between some cells (e.g.,

in capillary membranes and intestinal epithelium) there are channels filled by aqueous liquid. The

aggregate of several layers of cells and interstitial spaces form macroscopic functional membranes

(e.g., cells and interstitial space between the gastric lumen and capillary blood), which, depending

on their composition, determine how and how fast molecules move from one body compartment

to the other, facilitating or impeding drug movement to different extents.

Diffusion and Convection

The simplest process by which drugs cross membranes is diffusion, which is a passive mechanism

driven by concentration gradient. In this process the rate at which molecules cross the membrane

is symmetric in both directions. The net flux F of molecules crossing the membrane from side 1

to side 2 is proportional to the difference between the concentrations C1 and C2 on the two sides

of the membrane

F = dS (C1 − C2) , (2.1)

where d is a diffusion coefficient expressing the permeability of the membrane and S is its surface

area. Note that dS has the units of flow (volume/time), and consequently, d has units of velocity

(space/time). The diffusion rate depends on geometric features (the membrane surface S) and

physical-chemical properties of the membrane, and of the considered drug which are parametrised

by d. The permeability d is mainly affected by molecular size, lipophilicity, charge, and membrane

thickness. For instance, water-soluble molecules can move through narrow channels between cells

and diffusion is boosted by water convection. Small lipid-soluble non-ionised drugs tend to pen-

etrate lipid membranes more easily. Conversely, large, polar, and charged molecules move slowly

across membranes.

When drug transport is governed by diffusion processes, the net flux is maximum if there is

no drug on one side of the membrane, while it vanishes when drug concentration is the same on

both sides. Thus, the stationary solution of such a system consists of a dynamic equilibrium with

C1 = C2.

Carrier-Mediated Transport

Certain types of molecules (e.g., hydrophobic polar molecules) are not able to cross the cell-

membrane through free diffusion. The passage across the membrane of such molecules is then

mediated by membrane transport proteins, through two processes: passive facilitated diffusion

and active transport.
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C1

F

Figure 2.2: Initial flux (internal concentration C2 = 0) of molecule transport for passive (dashed)
and facilitated (continuous) diffusion as a function of the external concentration C1. The dotted
line represents the limiting rate of F for facilitated diffusion at large C1.

Facilitated diffusion is a passive mechanism that does not require utilisation of chemical en-

ergy and the passage of molecules is driven by the concentration gradient. However, there are

several differences with respect to the simple diffusion illustrated above. Since this mechanism is

based on the binding between the carrier and the transported molecule, the rate of transport may

depend on temperature in a stronger way than simple diffusion. Whereas the transport rate of

simple diffusion is linear in the concentration gradient between the two sides of the membrane [see

Eq. (2.1)], the facilitated-transport rate may have a concentration-dependent saturation threshold.

This behaviour is illustrated in Fig. 2.2, where the transport rate F for facilitated (solid line) and

simple (dashed lines) diffusion are compared as functions of the external concentration C1, for

C2 = 0. The flux F of facilitated diffusion saturates at a limiting value (dotted line) when C1

becomes large.

Active transport requires energy consumption to forcedly move molecules from one side to the

other of the membrane against their concentration gradient. Primary active transport uses ATP as

the source of energy. This mechanism is typically used to transport metal ions through ion pumps

or ion channels. In secondary active transport cotransporters exploits electrochemical potential

difference as the source of energy. These carriers use energy from the favorable movement of one

molecule down to its concentration gradient to move another molecule against its concentration

gradient.
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2.1.2 Perfusion

To describe and quantify how drugs move within the body, it is not sufficient to simply under-

stand how molecules are transferred through membranes separating one tissue from another. It is

also necessary to estimate how drugs are delivered to those tissues by blood. In other words, it is

not possible to disentangle permeability and perfusion considerations.

When membranes have a high resistance to the drug, the rate of transport is limited by low

permeability. Conversely, for highly permeable membranes, the step limiting the rate of drug

transfer is perfusion. As shown in Eq. (2.1), molecules can only be transported if a concentration

gradient is maintained. When membrane crossing is fast, identical concentrations on both sides

are rapidly reached. The flux of molecules ceases until the concentration gradient is restored by

new molecules delivered by the bloodstream.

Thus, the transfer rate of small lipophilic molecules is limited by perfusion, while the trans-

port of large polar molecules is less sensitive to changes in perfusion but is limited by membrane

permeability.

2.1.3 pH

If a drug is an acid or a base, its degree of ionisation may affect its transport rate. Ions are

hardly able to diffuse across membranes, as illustrated in Sec. 2.1.1. For weak acids and bases it

depends on the drug dissociation constant Ka and on the pH of the environment. Taking the non-

ionised form of an acid drug to be HA, the relation for acid-base dissociation in the Brønsted–Lory

model is

HA + H2O
Ka


 A− + H3O+. (2.2)

The equilibrium condition is fixed by

Ka =
[
A−
] [
H3O+]

[HA] , (2.3)

which may be written using the linear operator p [px = − log10(x)] as

log10

(
[HA][
A−
]) = pKa − pH. (2.4)

where pH = pH3O+. Defining the non-ionised fraction of the acid HA as

fua = [HA][
A−
]

+ [HA]
, (2.5)
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Figure 2.3: Non-ionised fraction fua (left panel) and fub (right panel) for different acids (pKa =
2, 5, 8) and bases (pKb = 5, 8, 11, corresponding to pKa = 9, 6, 3 of the conjugate acid), respec-
tively. Very weak acids (pKa = 8) are mostly non-ionised in all physiological environments. Only
extremely weak basis are non-ionised in environments with physiological values of the pH.

one obtains

fua = 1
10pH−pKa + 1 . (2.6)

According to this equation (see Fig. 2.3, left panel), drug is completely non-ionised if pH � pKa

and ionised when pH � pKa. Very weak acids (pKa > 8) are predominantly non-ionised in all

physiological environments (pH < 8).

For a basic drug B,

B + H2O
Kb


 BH+ + OH−, (2.7)

with

Kb =
[
BH+] [OH−

]
[B] . (2.8)

Since pH + pOH = pKw, where Kw is the constant of water self-ionisation, with pKw ≈ 14 , the

ratio between non-ionised and ionised forms of the basic drug B can be written as

log10

(
[B][
BH+]

)
= pKb − pOH = pKb − pKw + pH = pH− pKa, (2.9)

where Ka is the acid dissociation constant of the conjugate acid BH+, which satisfies pKa+pKb =

pKw. Consequently, the non-ionised drug fraction for the basis B is

fub = 1
10pKw−pKb−pH + 1 . (2.10)
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This relation shows that for physiological values of pH, which are less than 9 in all body fluids,

basic drugs are almost completely ionised fub � 1 (see Fig. 2.3, right panel), except for very weak

bases with pKb > 8.

As an example, let me consider the passage of drugs through a membrane separating a first

region with acid environment (pH1 < 7) from a second region with pH2 = 7. The above analysis

suggests that the transport of very weak acids is independent of the pH of the first region, since

these drugs are completely non-ionised on both sides of the membrane. Conversely, the transport of

drugs with a pKa < 7 strongly depends on the pH of the environment of the first region. For these

drugs the transport rate is rapid when pH1 < pKa, since in such an environment most of the acid

drug is still non-ionised. When the pH of the environment of the first region is larger than pKa, the

acid drug is instead ionised and the transport rate becomes small. Analogous considerations show

that only extremely weak (pKb > 11) bases are transported independently of the environmental

pH of the first region. The passage of stronger bases across this barrier is instead very slow, since

those bases exist almost exclusively in an ionised form.

2.1.4 Protein binding

Several drugs bind to plasma proteins (mainly albumin). Protein binding and dissociations are

reversible and quasi-instantaneous processes so that an equilibrium is established between bound

and unbound forms. Since proteins cannot easily cross membranes, only the unbound form is

transferred. Thus, protein binding can affect the rate of drug transport when the transfer rate is

limited by permeability. In this case only a small part of the drug delivered to the tissue can cross

the membrane. Altered protein binding will thus influence the transport rate.

Conversely, if the rate-limiting factor is perfusion, both dissociation and diffusion of the un-

bound molecule through the membrane are so rapid that the rates of delivery and transport are

equal. In this case an alteration in the protein content is not expected to influence the transfer

rate.

2.2 Macroscopic pharmacokinetic processes

In this Section I discuss the macroscopic pharmacokinetic processes focusing on those aspects

which are more relevant for the construction of the pharmacokinetic models presented in the fol-

lowing Chapters. I present the physiological mechanisms on which these processes are based,

discussing how they depend on physiological parameters and modelling this dependence in math-

ematical formalism.
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2.2.1 Distribution

Distribution refers to the transfer of a drug from one location to another within the body, from

the administration site to the sites of action and elimination. This complex process results from the

interplay of the microscopic mechanisms outlined in the previous section. A complete description

of those processes would require drug concentration to be measured in several tissues. However

it is not possible to obtain all the desired measurements in humans. Information on distribution

rates must be derived from observation of drug concentrations in plasma, combined with good

physiological models.

Two quantities characterise how drug distributes within the body: the volume where a drug

can diffuse and the time taken to fill this volume.

Distribution volume

From blood a drug may move to several tissues, each of them having its own volume and a

different affinity with the drug. Thus, drug concentrations may differ from one tissue to another.

Accordingly, the total amount of drug present in the body is

Q = Vp Cp +
∑
i

Vt,i Ct,i, (2.11)

where Vp, Cp are plasma volume and drug concentration, and Vt,i and Ct,i are the volume and the

concentration reached by the drug in each tissue. To construct a mathematical formulation of the

distribution process it is convenient to simplify this picture. To reduce the number of variables

several tissues are grouped in few compartments (see Chap. 4), each with effective volume Vi and

concentration Ci.

Similarly one can define a total apparent volume, as the volume required to store the total

amount of drug Q with the plasma concentration Cp, namely

Va = Q

Cp
. (2.12)

The apparent volume may differ from the total physical volume Vtot = Vp + Vt, where Vt is the

tissue volume, if drug concentration in tissues and plasma differ. Defining the ratio

rc = Ct/Cp (2.13)

between tissue and plasma concentrations Ct and Cp, the total drug amount is

Q = (Vp + rc Vt)Cp. (2.14)
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From this expression, rc Vt is the apparent tissue volume and the total apparent volume reads

Va = Vp + rc Vt. (2.15)

For some drugs rc is very large. In this case, the apparent volume may be much larger than the

total body volume.

Drug distribution is strongly affected by protein binding since only unbound drug can generally

cross membranes and pass from blood to tissues and vice versa. Thus, if a drug is bound to proteins

to a different extent in plasma and tissues, then rc may be different from 1.

I define the fraction of drug unbound and bound to plasma proteins as

fu = Cu
Cp

, fb = Cb
Cp
, (2.16)

where Cu and Cb are the concentrations of unbound and bound drug, respectively. These fractions

depend on drug-protein affinity, characterised by an association constant Ka, which defines the

equilibrium of the reaction

drug + protein
K

 drug-protein complex. (2.17)

By defining the unbound and bound protein concentrations as Pu and Pb, the concentration of the

drug-protein complex is Pb = Cb (assuming that each protein has only one binding site) and

K = Cb
Cu Pu

. (2.18)

The fraction of bound and unbound drugs can be computed by solving the above equation, imposing

Cu + Cb = Cp and Pu + Pb = Pp, where Pp is the total plasma concentration of proteins. A

straightforward calculation yields

K Cp f
2
u + [K (Pp − Cp) + 1] fu − 1 = 0, (2.19)

In the limit where the protein concentration is much larger than drug concentration (Pp � Cp)

fu ≈
1

1 +K Pp
. (2.20)

All drug molecules are trivially unbound if Pb � K−1, whereas the unbound fraction vanishes

when Pb � K−1. Since only unbound drug is transported from blood to tissues, this relation

suggests that the total apparent volume is strongly affected by plasma protein concentrations. If
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drug appears in bound and unbound forms also in tissues, the fraction of unbound drug in tissues

is

ftu ≈
1

1 +Kt Pt
. (2.21)

where Pt is the protein concentration in tissue and Kt is the association constant in tissue, which

may be different from K. For a passive membrane, the equilibrium drug concentration is reached

when the unbound concentrations in plasma and tissues are equal Cu = Ctu, namely

fu Cp = ftu Ct. (2.22)

The concentration ratio between tissue and plasma is

rc = fu
ftu

= 1 +Kt Pt
1 +K Pp

. (2.23)

The apparent distribution volume of Eq. (2.15)

Va = Vp + fu
ftu

Vt. (2.24)

This relation shows that the apparent distribution volume is large when drugs are highly bound

in tissues and almost unbound in plasma. If the concentration of plasma proteins increases (e.g.

by administration of albumin), the fraction of unbound drug in plasma fu decreases, drug con-

centration in tissues decreases and so does the apparent distribution volume. For instance, if an

antimicrobial drug which binds to albumin is administered when the level of plasma albumin is

high, it will rapidly reach a high concentration in plasma (because of the reduced total apparent

volume) but the concentration in tissue may be lower. The dosage regimen must then be adapted

according to the site of the infection (bloodstream or tissues).

Rate of distribution

The time required to achieve the therapeutic target of drug concentration at the site of action

strongly depends on blood perfusion in tissues and membrane permeability to the administered

drug.

Perfusion. Drug penetration at the site of infection is limited by perfusion when membranes

oppose no barrier to drug transport. In this case the flux of drug from blood to the tissue depends

solely on the drug’s presentation and leaving rate to/from the tissue. The former is FB CA, where

FB is the blood flow and CA is the arterial drug concentration, the latter is FB CV , where CV is
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the venous drug concentration. In this case the net drug uptake is

F = FB fu (CA − CV ) (2.25)

To compute the time to fill the tissue with drug, assuming that the arterial drug concentration

remains constant, it is enough to solve a simple linear first-order differential equation describing

the variation of the amount of drug in the tissue:

dQt
dt = F. (2.26)

Using Eq. (2.25), Qt = Vt Ct, and the equilibrium condition between venous and tissue drug

concentrations [Eq. (2.13)], Ct = rc CV , with rc = fu/ftu [Eq. (2.23)] which holds if there is no

impedance to drug movement in the tissue, the above equation becomes

dCt
dt + κperf

e Ct = κp fu CA (2.27)

where I have defined the perfusion rate κp

κp = FB
Vt

(2.28)

as the amount of blood reaching the tissue per unit time and unit tissue volume, and the perfusion

exit rate κperf
e as

κperf
e = FB ftu

Vt
= κp ftu. (2.29)

The solution of the above equation is

Ct(t) = rc CA

[
1− e−κ

perf
e t

]
. (2.30)

assuming that at time t = 0 there is no drug in the tissue. The half-life time to fill the tissue is

therefore

τperf = log(2)
κperf
e

= log(2)
κp ftu

. (2.31)

The time to fill the tissue is shorter if the perfusion rate is higher. Furthermore it takes longer

when the drug affinity with the tissue is greater (ftu small), since a larger amount of drugs can be

stored in the tissue.

Permeability. Drug distribution is limited by permeability when the permeability constant d or

the contact surface S [see Eq. (2.1)] are small and when the perfusion rate κp is large. In this case
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the uptake of drug by tissue is small compared with the amount of drug presented by blood to the

tissue and the venous and arterial concentration are almost the same CA = CV . The differential

equation expressing the time variation of the total amount of drug in the tissue now reads

dQt
dt = dS (fu CA − ftu Ct) , (2.32)

whose solution is identical to Eq. (2.30), provided that the exit rate for perfusion is replaced with

the new permeability-limited exit rate

κperm
e = dS ftu

rc Vt
. (2.33)

The corresponding half-life time is τperm = log(2)Vt/dS ftu.

2.2.2 Elimination

Drugs are eliminated from the body through two mechanisms: excretion and metabolism. Ex-

cretion occurs via the bile, through the breath, but mainly via the kidneys. Metabolic elimination

generally occurs in the liver through several possible pathways based on a few common chemical

mechanisms: oxidation, reduction, hydrolysis, and conjugation.

In this Thesis I shall not enter into the details of the chemical reactions at the basis of metabolic

processes. Rather I shall provide a phenomenological description of the kinetic parameters relevant

to the analysis of the evolution of drug concentrations in plasma and tissues.

Indeed, for the purposes of a pharmacokinetic description, a single parameter, drug clearance,

is enough to model both excretion and metabolisms. The elimination rate dQ/dt is in general

proportional to drug concentration. Accordingly, drug clearance kdrug is defined as the relative

proportionality constant:
dQ
dt = kdrug Cp. (2.34)

The constant kdrug has the units of flow, that is volume over time. The rate of presentation of a

drug to a site of elimination is given by the product of blood flow and arterial drug concentration

FB CA. If elimination is not complete, blood still carries some drug after leaving the elimination

organ. The leaving rate is FB CV , with CV being the venous concentration. The corresponding

elimination rate is FB (CA − CV ) and the extraction ratio re, the amount of eliminated over

presented drug, is

re = 1− CV
CA

. (2.35)
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Using this relation in Eq. (2.34),

kdrug = re FB , (2.36)

drug clearance is the product of blood flow and the fraction of eliminated drug. Thus, it is possible

to interpret it as the flow of blood that is completely cleared of drug. For re ≤ 1 drug clearance

cannot exceed the blood flow in the elimination organ, i.e. about 1.1 and 1.35 l/min in kidneys

and liver, respectively.

When several mechanisms contribute to drug elimination, the total elimination rate is the sum

of the elimination rates of the single processes. Hence the total clearance kdrug is the sum of the

clearances associated with these processes. Since drug is cleared almost completely by liver and

kidneys,

kdrug = kliver + kkidneys. (2.37)

Hepatic clearance

From Eq. (2.36), hepatic metabolic clearance depends on liver perfusion and liver extraction rate.

If extraction is complete, hepatic clearance is the sum of the flow of portal and hepatic arterial

blood flows, 1050 ml/min and 300 ml/min, respectively.

If drug with low extraction ratio is bound with plasma proteins, its hepatic clearance will be

reduced because only unbound molecules are metabolised, thus the effective hepatic clearance is

kliver = ku fu, (2.38)

where ku is the clearance calculated according to unbound concentration ku = re FB .

Another factor limiting metabolic clearance is the availability of the enzymes responsible for

the metabolic process. If drug concentration exceeds the concentration of metabolic enzymes,

the rate at which drug is eliminated saturates. The Michaelis–Menten formula provides a simple

phenomenological way to quantify the elimination rate for a process with saturation:

dQ
dt = − kdrug

1 + Cu/Cs
Cu. (2.39)

When the unbound drug concentration is much lower than the saturation concentration Cs, the

elimination rate is proportional to drug concentration, and it is still possible to define a clearance

constant. [Eq. (2.34)]. Conversely, when Ci is much larger than the saturation concentration Cs,

the elimination rate becomes constant and equal to Vm. In this limit the clearance is no longer

constant but becomes a decreasing function of drug concentration, eventually vanishing for very
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large concentrations

kliver = kdrug

1 + Cu/Cs
. (2.40)

The liver can remove drug not only via metabolism but also by biliary excretion. Biliary

clearance is proportional to bile flow Fbile and depends on the ratio between drug concentration in

bile Cbile and in plasma according to

kbile = Cbile

Cp
Fbile. (2.41)

Bile is not a product of filtration but of active secretion. For this reason the ratio between bile and

plasma concentration can be very large, approaching 1000. However, only some classes of molecules

may show high biliary clearance. The molecule must have a mechanism for active secretion, it must

be polar and its molecular weight must be greater than 250 g/mole. Because of the lipophilic and

porous nature of bile cannaliculae, small non-polar molecules are reabsorbed.

Renal clearance

Every minute kidneys filter about 120 ml of plasma water, i.e. about 10% of total blood flow

(∼ 1.1 l/min) passing through these organs. This flow is called glomerular filtration rate kGFR and

represents the maximum theoretical value of renal clearance due to passive filtration mechanisms

(see Eq. (2.36)).

For certain drugs renal clearance may be effectively larger than kGFR, because two other mech-

anisms contribute to renal elimination: secretion, and reabsorption. Hence, the total renal elimi-

nation rate can be expressed as

dQ
dt = (1− freabsorption)

[
dQ
dt

∣∣∣∣
filtration

+ dQ
dt

∣∣∣∣
secretion

]
, (2.42)

where freabsorption is the fraction of reabsorbed drug and dQ/dt|filtration and dQ/dt|secretion are the

rate of filtration and secretion, respectively.

The renal clearance of a molecule can be easily estimated by measuring the urine flow FU and

the molecule concentration in plasma (Cp) and in urine CU . Since FU CU is the elimination rate,

by definition [Eq. (2.34)], renal clearance is

kkidneys = FU CU
Cp

. (2.43)

Filtration. When blood enters a nephron, the basic anatomic unit of renal function, it is first

filtered by the glomerulus. Here, molecules smaller than about 2000 g/mole easily pass through

the sieve, larger molecules hardly pass and molecules larger than 20 000 g/mole are blocked. For
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instance, proteins like albumin are not found in the urine. As a consequence, only the fraction of

unbound molecules is eliminated with a filtration rate

dQ
dt

∣∣∣∣
filtration

= fu kGFR Cp. (2.44)

It is possible to define a clearance associated with the filtration process as

kfiltration = fu kGFR. (2.45)

Secretion. Blood then passes through the proximal tube, where drug is actively removed by se-

cretion. Molecules undergoing massive secretion may show a clearance greater than the glomerular

filtration rate. The efficiency of secretion is affected by protein binding and perfusion. If a drug

is poorly secreted, its concentration at the secretion site is identical to its plasma concentration

and only the unbound fraction is secreted. Accordingly, the clearance associated with secretion is

proportional to fu. Conversely, when secretion of a drug is very fast, drug is almost completely

removed from blood and the secretion rate does not depend on the unbound fraction. Since the

dissociation of the protein-drug complex is practically instantaneous, the total amount of drug dis-

sociates from proteins and is secreted during the time drug remains in contact with the secretion

site.

Reabsorption. The third process influencing renal clearance is reabsorption. Through this mech-

anism, which can be either active (in the proximal tube) or passive (all along the nephron), several

molecules re-enter the bloodstream. Similarly to what happens in other membranes, the lipoidal

membranes of the cells forming the tubule acts as a barrier against polar and charged molecules.

For this reason lipophilic molecules are more easily reabsorbed than polar molecules.

Furthermore, 80%–90% of the filtered water is reabsorbed in the proximal tubule thanks to

sodium transport from the lumen into the blood by Na+/K+ATPase in the basolateral membrane

of the epithelial cells. Most of the remaining water is reabsorbed in the distal tubule. Consequently,

drugs concentrate in the filtrate. If a drug is filtered but not secreted or reabsorbed, it may reach a

concentration about 100 times as great as the unbound concentration in plasma when about 99% of

water is reabsorbed. As an example, about 2 g of creatinine are excreted every day with a normal

volume output of about 2 l/day. The order of magnitude of urine creatinine concentration is about

1 g/l, about hundred times as great as the order of magnitude of plasma creatinine concentration

(∼ 10 mg/l).

If a drug is mostly reabsorbed its renal clearance strongly depends on urine flow. In the

limit when reabsorption approaches equilibrium, urine drug concentration and unbound plasma
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concentration are equal CU = Cu, with Cu = fu Cp. From Eq. (2.43),

kkidneys = fu FU . (2.46)

Since FU is normally from 1 to 2ml/min, renal drug removal is extremely low when the drug is

reabsorbed, especially when protein binding is strong.

Another factor affecting reabsorption of weak acids and bases is urine pH. While blood pH is

almost constant, around 7.4 (although it may become lower than 7 or higher than 7.6 in severe

pathological conditions [130, 12]), urine pH has an average value of 6.2 but may vary over a much

wider range, between 4.5 and 7.5, under forced acidification and alkalinisation, respectively [20,

160]. Again assuming that reabsorption approaches equilibrium, the concentration of non-ionised

drug in plasma and in urine will be the same. For an acid drug, using the notation introduced in

Sec. 2.1.3,

Cp fua,p = CU fua,U , (2.47)

where fua,p and fua,U denotes the non-ionised fraction of the considered drug in plasma and in

urine, respectively. Using Eqs. (2.43) and (2.6),

kkidneys = 10pHU−pKa + 1
10pHB−pKa + 1 FU , (2.48)

where pHU and pHB are urine and blood pH, respectively. In Fig. 2.4, left panel, I plot the ratio

between renal clearance kkidneys and urine output FU as a function of urinary pH, for different

acids (Ka = 2, 5, 8, 11). For very weak acids, Ka & 8, the acid is completely non-ionised in both

plasma and urine (Fig. 2.3, left panel). Hence renal clearance does not depend on urinary pH

and coincides with the volume of the urine output. For stronger acids kkidneys is very sensitive to

urinary pH. Those acids are almost completely ionised in blood, whereas their degree of ionisation

varies in urine depending on urinary pH. As a consequence, their clearance is generally very low

and decreases with urinary pH. The clearance of those acids may exceed urine output if urine is

more alkaline than blood.

Similarly, I compute the renal clearance for weak bases. Assuming reabsorption at equilibrium,

the concentrations of non-ionised basic drug in blood and urine are the same. Using Eqs. (2.43)

and (2.10),

kkidneys = 10pKw−pKb−pHU + 1
10pKw−pKb−pHB + 1 FU . (2.49)

In the right panel of Fig. 2.4, renal clearance is plotted for various basic drugs (Kb = 2, 5, 8, 11,

corresponding to Ka = 3, 6, 9, 12 for the conjugated acid). Drug clearance does not depend on

urinary pH and equals the urine output for very weak bases which are completely non-ionised in
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Figure 2.4: Ratio between renal clearance and urine output kkidneys/FU for acids (left panels) and
bases (right panel) with different Ka and Kb as functions of urinary pH, for blood pH equal to 7.4,
assuming that reabsorption approaches equilibrium.

both plasma and urine (Fig. 2.3, right panel). For stronger bases, renal clearance strongly depends

on urinary pH. Renal clearance is less than the urine output if urinary pH is higher than blood pH.

Instead, kkidneys becomes much larger than the urinary output when urine is acid. In this case,

drug is non-ionised in blood, while it is ionised in urine if pHU < pKw − pKb. As a consequence

re-absorption is blocked by the pH gradient and diffusion from plasma to urine is enhanced.

Renal replacement therapy

Renal replacement therapy (RRT) contributes to different extents to the total effective clearance

of certain drugs. RRT clearance is influenced by physico-chemical drug properties, by specific

RRT technology and by its operating characteristics [134]. RRT clearance is high for drugs with

high renal clearance. Thus, drug removal by RRT is significant for drugs that are weakly bound to

proteins and with small distribution volumes. In particular, hydrophilic molecules which distribute

in plasma and in the extracellular space are removed by RRT and may require a correction of the

dosage regimen to ensure a therapeutic effect. Conversely, lipophilic drugs, which show consistent

intracellular accumulation, have a large distribution volume. Hence, their concentration in the

tissues is not significantly affected by RRT (despite undergoing complete RRT removal) since only

a small fraction of drug is located within the plasma.

Solute removal by RRT may occur by means of diffusion, in haemodialysis, and convection,

in haemofiltration. In the former mechanism, solutes pass from blood to a counter-flowing fluid

separated by a porous membrane, by passive diffusion. Clearance efficacy of haemodialysis is

larger for small molecules. Thus, depending on filter type, drugs with high molecular weight
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Figure 2.5: Schematic representation of haemodialysis. Molecules diffuse from dialysate to blood
which are counter flowing.

(> 1000 – 10 000Da) are protected from removal. In haemofiltration drugs are removed primarily by

convection. Molecules smaller than filter pores (molecular weight smaller than 30 000 – 50 000Da)

pass through the filter and are eliminated. Since water is also removed, replacement fluids must

be administered to maintain an adequate circulatory volumes before or after filtration. Finally,

haemodialysis and haemofiltration may be combined in haemodiafiltration.

Haemodialysis. Figure 2.5 shows a schematic representation of haemodialysis. Molecules diffuse

from blood to dialysate across the membrane. The two fluids counter flow to maintain a concen-

tration gradient along the entire membrane and thus optimise removal. To compute drug clearance

one must write the differential equations governing drug diffusion across the membrane between

the two propagating fluids. The convective derivative (D = ∂/∂t+ v ∂/∂x) of drug concentration

C along the flow is proportional to the difference of drug concentration:

(
∂

∂t
+ vB

∂

∂x

)
CB = −γ (CB − CD) , (2.50)(

∂

∂t
− vD

∂

∂x

)
CD = −γ (CD − CB) , (2.51)

where CB and CD are drug concentrations in blood and dialysate, vB and vD blood and dialysate

flow velocity, respectively (note the − sign for the velocity of the dialysate which flows from right to

left), and γ represents the diffusion coefficient between plasma and dialysate. I look for a stationary

solution, i.e.

vB
∂CB(x)
∂x

= γ [CD(x)− CB(x)] , (2.52)

vD
∂CD(x)
∂x

= γ [CD(x)− CB(x)] . (2.53)

Subtracting the two equations, I find

vB CB(x)− vD CD(x) = A, (2.54)
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where A is a constant fixed by boundary conditions. At x = L, the length of the haemodialysis

circuit, drug concentration in the dialysate is 0, and the blood concentration reaches its minimum

final value CBf , before blood re-enters the patient circulation. Thus A = vB CBf . Expressing

CD(x) in terms of CB(x) as

CD(x) = vB
vD

[CB(x)− CBf ] . (2.55)

and replacing in Eq. 2.52,

∂CB(x)
∂x

= − γ

vB

[(
1− vB

vD

)
CB(x) + vB

vD
CBf

]
. (2.56)

The solution of this equation is

CB(x) = B e−κx − vB/vD
1− vB/vD

CBf , κ = γ

vB

(
1− vB

vD

)
. (2.57)

The constant B is determined using the boundary condition at x = 0, where CB(0) = CBi, the

initial blood drug concentration:

B = CBi + vB/vD
1− vB/vD

CBf . (2.58)

To find the final blood drug concentration, I compute Eq. (2.57) in x = L and solve for CBf . I

obtain

CBf = (1− vB/vD) e−κL

1− (vB/vD)e−κL CBi. (2.59)

The effective drug clearance is

kHD = CBi − CBf
CBi

FB , (2.60)

where FB is the treated blood flow. Eventually, I obtain

kHD = 1− e−κL

1− (vB/vD)e−κL FB . (2.61)

If dialysate and blood tubes have the same cross section, the ratio vD/vB equals the ratio between

dialysate and blood flows FD/FB . In this case kHD varies as a function of FD/FB as shown in

Fig. 2.6. Removal efficiency rapidly goes to zero when the dialysate flow is smaller than blood

flow, while it is maximum as soon as FD > FB . The maximum clearance depends on the detail of

the dialysate membrane and blood flow and blood velocity as

kmax
HD = FB

(
1− e−γL/vB

)
. (2.62)
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Figure 2.6: haemodialysis clearance as a function of the ratio between dialysate and blood velocity
vD/vB .

Figure 2.7: Schematic representation of haemofiltration. Molecules are dragged by convection
from blood in the ultrafiltrate. Lost fluids are replaced by the replacement fluids in pre- and/or
post-dilution.

This result shows that the maximum clearance is obtained for large blood flows with reduced blood

velocity in the dialysis circuit. In this limit the maximum clearance is equal to the blood flow.

Haemofiltration. The main components of a haemofiltration circuit are schematically represented

in Fig. 2.7. Molecules are dragged by convection from blood in the ultrafiltrate. A filter prevents

large molecules (> 30 000 – 50 000 Da) from being eliminated. Since a large amount of plasma
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water is eliminated with the ultrafiltrate, fluid must be re-infused to maintain the correct circulatory

volume. Replacement fluid can be administered in pre- and/or post-dilution, i.e., before and/or

after the ultrafiltrate is extracted from blood. Having defined the sieving coefficient of the drug

in the filter as Sc, and the flows of blood, ultrafiltrate, pre-dilution and post-dilution as FB , FUF,

Fpre, and Fpost, respectively, the drug clearance rate can be easily computed as follows.

If CBi is the initial drug blood concentration, the drug plasma concentration after pre-dilution

is

Cpre = FB
FB (1− h) + Fpre

CBi. (2.63)

The concentration in the ultrafiltrate is simply

CUF = Sc Cpre. (2.64)

Thus, the total rate of drug removal is Sc Cpre FUF and the clearance due to haemofiltration is [134]

kHF = Sc Cpre FUF

CBi
= FB
FB (1− h) + Fpre

Sc FUF. (2.65)

By means of haemofiltration the amount of fluids present in the body can be adjusted, either

removed or added, if the flow of ultrafiltrate is greater or lower than the flow of replacement fluids

Fpre + Fpost. I define

∆ = FBf − FB = Fpre + Fpost − FUF (2.66)

as the difference between the blood flow returned to and extracted from the patient, and fpre =

Fpre/(Fpost + Fpre) as the fraction of pre-dilution. With this notation, the total clearance can be

expressed as

kHF = Sc Cpre FUF

CBi
= FB
FB (1− h) + fpre (FUF + ∆) Sc FUF. (2.67)

2.3 Secondary PK parameters and PK/PD indices

To design an appropriate dosage regimen it is not enough to know how fast and to what extent

a drug is transported to the site of action and how rapidly it is eliminated from the body. It is

necessary to understand what factors determine its therapeutic effects. Depending on the drug,

its efficacy may depend on the concentration reached at the site of action or on how long the

concentration is maintained. Although in this Thesis I do not investigate any pharmacodynamic

properties of the considered drug, vancomycin, I shall study how therapeutic targets are reached
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depending on dosage regimens and patient-specific pharmacokinetic features.

To measure the effect of a drug it is convenient to introduce a few secondary PK parameters

and pharmacokinetic/pharmacodynamic (PK/PD) indices. First, I define Cmin as the minimum

concentration necessary for a drug to be effective. For antimicrobials, Cmin is generally chosen

as the minimum inhibitory concentration (MIC), that is the minimum drug concentration that

prevents visible growth of a bacterium in vitro.

Maximum concentration Cmax. The efficacy of some drugs strongly depends on the concentration

reached at the site of action. For this reason, such molecules are called concentration-dependent

drugs. The simplest secondary PK parameter correlating with their efficacy is the maximum

peak concentration Cmax reached soon after drug administration and absorption. It is also useful

to construct a dimensionless PK/PD index as the ratio Cmax/Cmin between the maximum peak

concentration and the minimum effective concentration.

Time above the minimum effective concentration T>Cmin . Some drugs (time-dependent drugs)

are effective only if their concentration remains above the therapeutic target concentration for a

sufficiently long time. The PK/PD index that correlates the most with the efficacy of such drugs

is the time T>Cmin for which drug concentration is greater than Cmin.

Area under the concentration-time curve (AUC). To quantify the potential activity of several

drugs neither Cmax and T>Cmin are good parameters. For many drugs it is important not only to

reach a very large concentration for a very short period, but also to maintain it for a sufficiently

long time. That is, several concentration-dependent drugs are effective only if their average con-

centration rather than the peak one is much larger than Cmin. To construct a PK/PD index that

appropriately quantifies the effect of these drugs I need first to introduce a new secondary PK

parameter, the area under the concentration-time curve (AUC, see Figure 2.8), defined as

AC(t) =
∫ t

0
C(t′) dt′. (2.68)

The mean concentration C̄ in the time interval T is

C̄T = AC(T )
T

. (2.69)

As a PK/PD index one usually adopts the ratio between the AUC AC(t = 24 h) measured in

the first 24 hours (indicated with AUC24h) and the minimum concentration Cmin. This ratio

AUC24h/Cmin expresses nothing more than the ratio between the concentration averaged over one
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Figure 2.8: Graphical representation of the area under the concentration curve and the average
concentration C̄ (dashed line).

day and Cmin
C̄24h

Cmin
= AUC24h/Cmin × 24 h. (2.70)

To empirically compute the area under the concentration-time curve it is necessary to measure

the concentration of a drug with a sufficiently large time resolution and then to adopt a standard

numerical approximation technique (e.g. rectangle, trapezoidal, Simpson’s method) to evaluate

the integral of Eq. (2.68).

The measurement of the AUC in an appropriate time interval can be used to compute the total

drug clearance kdrug assuming that kdrug is constant during the time interval used to measure the

AUC. If I(t) is the drug administration rate, the total drug present in the body is the solution of

the following differential equation

dQ(t)
dt = −kdrug C(t) + I(t). (2.71)

Integrating this equation from t = 0 to t = T and assuming that kdrug is constant

kdrug = D − (Q(T )−Q(0))
AC(T ) , (2.72)

where D is the total dosage of administered drug

D =
∫ T

0
I(t) dt. (2.73)
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Equation (2.72) simplifies to

kdrug = D

AC(T ) (2.74)

when the total amount of drug present in the body at the beginning and the end of the time

interval T are equal. To make sure that the two quantities are the same, one can measure the

AUC starting before the first drug administration (Q(0) = 0) and waiting for a sufficiently long

time after the end of the administration so that also Q(T ) = 0.

2.4 Compartment models

Drug diffusion in the body can be quantitatively studied through kinetic models based on

systems of differential equations, which describe the evolution of drug concentrations in blood,

organs, and tissues. These equations should reproduce all the involved processes (absorption,

distribution, metabolism, and excretion) through appropriate mathematical functions parametrised

by kinetic parameters (absorption and diffusion rates, clearances, etc. . . ). However, when a model

must be fitted on data from a population of patients it is practically impossible to include all

the physiological mechanisms presented in the previous chapter in a detailed form as done in

physiologically based pharmacokinetic modelling [146]. Indeed only a few measured values of drug

concentration are typically available for each patient.

It is therefore necessary to find approximate equations that model the relevant physiological

processes in a coarse-grained form, adopting classical compartment models [69, 162]. The number

of relevant compartments and the shape of the functions entering the equations must be adapted

to reproduce the distinctive way each drug is absorbed, transported in body compartments, and

eliminated, taking into account also the amount and the frequency of available data.

The simplest model of pharmacokinetics assumes that drugs distribute only in one compart-

ment. This may be a good approximation not only when a drug effectively remains confined to

a single compartment (e.g., blood) because other compartments have much smaller volumes than

the main one, but also when drug concentration in all compartments is roughly the same and

absorption and diffusion among different compartments are very rapid. Furthermore, if only a

few data are available to develop the model, it may be practically impossible to appreciate the

difference with more sophisticated multi-compartment models.

In this model, absorption time and specific mechanisms of diffusion across membranes are

neglected and the full kinetic process is modelled as a flux of drug that enters and exits a volume

V , where it is distributed with a homogeneous concentration C. The total amount Q of drug
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present in the body is simply given by

Q = C V. (2.75)

The amount of drug in this single compartment increases if the drug is administered to the patient

and drug removal is generally proportionally to drug concentration. Accordingly, the differential

equation governing the evolution of Q is

dQ
dt = −k C + I, (2.76)

When drugs distribute in several tissues and organs and the diffusion times are not negligible

with respect to the elimination time scale, its pharmacokinetic behaviour is not reliably approxi-

mated by a one-compartment model. In this case more complex mathematical models with two or

more compartments must be adopted.

One can define C1, C2, V1 and V2 as the concentrations and distribution volumes in the two

compartments. Accordingly, the total amounts of drug in the two compartments are Q1 = C1 V1

and Q2 = C2 V2. Assuming that the drug is infused in the first compartment at a rate I and

is eliminated only from this compartment with an elimination rate κe, the system of differential

equations reads

dQ1

dt = −κeQ1 − κ12Q1 + κ21Q2 + I, (2.77)

dQ2

dt = κ12Q1 − κ21Q2, (2.78)

where κ12 and κ21 are the diffusion rates from the first to the second compartment and vice versa.

The choice of the most appropriate model to describe the kinetics of a certain drug is guided by

physiological arguments, so that the mathematical structure of the model mimics the physiological

mechanisms at the basis of drug kinetics. However, in the formalism of compartment pharmacoki-

netics the parameters entering the equations, such as κ and V in the one-compartment model or

κ12, κ21, κe, V1, and V2 in the equations of the two-compartment system [Eqs. (4.14) and (4.15)]

cannot be deduced on the basis of theoretical arguments. Thus, they must be determined by

comparing the solutions of the differential equations against data measured in patients.

A mathematical model of pharmacokinetics becomes appealing from a clinical perspective when

it is able to simulate the evolution of drug concentration for specific patient conditions and for

a given dosage regimen. Such a model would indeed support the clinician to design the most

appropriate pharmacological therapy by identifying the optimal loading dose and the optimal rate

of continuous infusion. To simulate the evolution of drug concentration for a single patient, his/her

kinetic parameters must first be estimated based on clinical conditions. Second, the differential
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equations of the chosen compartment model can be integrated to obtain the predicted value of

drug concentration.

Thus, the kinetic parameters must be expressed as a function of patient-specific variables, such

as demographic factors, vital signs, and results of relevant laboratory tests. These functions, in

turn, are parametrised by a set of free parameters. For instance, the clearance kdrug of a drug

undergoing renal elimination depends on renal function, which can be parametrised by creatinine

clearance kcrea, a commonly used estimation of glomerular filtration rate. As a first guess one may

choose a linear link between kdrug and kcrea

kdrug = θ0 + θc kcrea, (2.79)

where θ0 and θc are free parameters to be determined. This relation becomes more complicated

when drug is eliminated through different mechanisms. If a patient undergoes renal replacement

therapy, total drug clearance must take account of the dialysis dose ddial:

kdrug = θ0 + θc kcrea + θd ddial, (2.80)

where I added an extra free parameter θd.

The mathematical and statistical techniques used to construct these population models are

reviewed in Chap. 4.

2.5 Pharmacokinetics in critically ill patients

The pharmacokinetic properties presented in the previous section may be heavily modified by

the extreme clinical conditions of critically ill patients [32, 143, 155, 173] and/or by the intensive

treatments they received during their ICU stay [153]. These variations may eventually cause

pharmacological therapies to fail [188] and, in the case of antimicrobials, yield the appearance

of drug resistances. To construct a personalised pharmacokinetic model it is important to test

as covariates an appropriate set of clinical variables that properly parametrise these variations.

The most relevant causes of altered pharmacokinetics in critically ill patients are summarised in

Table 2.9. In particular, the septic syndrome generates a cascade of alterations that significantly

affect the pharmacokinetic behaviour of several drugs.

In this section I review how pharmacokinetics is modified by organ dysfunctions which may

arise in critically ill patients [143]. Such modifications may be directly caused by organ failures or

as a consequence of intensive treatments (e.g., fluid resuscitation or mechanical ventilation). These
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Increased distribution volume

Patient conditions

• Sepsis
• Ascites
• Mediastinitis
• Pleural effusion
• Trauma
• Severe hypoalbuminaemia
• Reduced cardiac output
• Burns
• Obesity

Treatments

• Fluid therapy
• Parental nutrition
• Post surgical drainage
• Extracorporeal circuits

Increased clearance

Patient conditions

• Hyperdynamic sepsis phase
• Burns
• Acute Leukaemia
• Hypoalbuminaemia

Treatments

• Vasoactive drugs
• Renal replacement therapy

Reduced clearance

Patient conditions

• Renal failure
• Age> 75

Figure 2.9: Impact of pathophysiology of critically ill patients on antibiotic kinetics and dynam-
ics [189].

concepts will be applied to describe the changes in drug pharmacokinetics caused by sepsis [55].

2.5.1 Effect of organ dysfunctions on pharmacokinetics

Cardiovascular failure

Cardiovascular failure affects several pharmacokinetic processes as a consequence of reduced blood

flow and perfusion.

• Drug clearance decreases because of reduced perfusion of liver and kidneys. This effect is

amplified by homeostatic mechanisms attempting to maintain blood flow to heart, brain and

muscles at the expense of renal and splanchnic flow.

• A second consequence of heart failure is fluid retention that, combined with the effect of

fluids administered during fluid resuscitation, may increase the drug distribution volume.

• Anaerobic metabolism is enhanced as a consequence of reduced perfusion. This may yield

metabolic acidosis which may alter the distribution of ionisable drugs.
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Respiratory failure

Pharmacokinetics may be altered by respiratory failure though several mechanisms.

• Hypoxeamia may reduce the activity of hepatic enzymes, thus reducing hepatic clearance.

• The pH is affected by acidosis or alkalosis following respiratory failure. This may change

how ionasible drugs are distributed or cleared.

• Mechanical ventilation may increase intrathoracic pressure, decreasing venous return and

ventricular filling. This causes the reduction of cardiac output, generating the consequences

above described (increase of intra and extra vascular water, reduction of liver blood flow,

etc. . . )

Renal failure

Renal dysfunction, either associated with pre-renal or intrinsic origin, causes the reduction of

drug excretion and, consequently, of drug clearance. However, renal impairment affects also other

aspects of pharmacokinetics. Both chronic and acute renal failure causes fluid retention, with

consequent changes in drug distribution volume. Furthermore, metabolic acidosis and respiratory

acidosis are often associated with renal failure, resulting in pH alteration, and finally in modification

of drug distribution or clearance.

Finally, renal replacement therapy remove drugs usually removed by renal excretion, thus in-

creasing total drug clearance.

Hepatic dysfunction

As outlined in Sec. 2.2.2, hepatic clearance depends on several factors: blood flow, perfusion

and activity of hepatic enzymes. Thus, pathological conditions may affect hepatic clearance by

modifying these factors at different levels. Specifically, the clearance of drugs with high extraction

ratio [see Eq. (2.35)] is mainly affected by variations of hepatic blood flow. Conversely, if the

extraction ratio is low, drug clearance is more sensitive to variations of enzyme activity.

• Blood flow may increase in the early hyperdynamic stage of sepsis as a consequence of

augmented cardiac output or decrease in the late hypodynamic stage of sepsis and in case of

cardiovascular failure. The administration of vasoactive drugs has also an impact on hepatic

blood flow. Vasopressors reduce this flow causing vasocostriction of the hepatic artery and

portal vein. Conversely, vasodilators increase hepatic blood flow by reducing hepatic vascular

resistance.
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• The activity of hepatocellular enzymes is modified by several pathological states. Hypoxaemia

may decrease hepatic clearance by reducing both enzyme production, their efficiency, and the

oxygen available for drug oxidation. Also inflammation may inhibit hepatic drug metabolism

by decreasing the activity of hepatic enzymes.

• Chronic liver diseases also affect hepatic drug clearance. Cirrhosis is associated with reduction

of blood flow caused by the abnormal hepatic architecture, thus affecting clearance of drugs

with high extraction ratio. Clearance of drugs with low-extraction ratio is instead reduced

by hepatocellular injury as, for instance, in ischaemic or viral hepatitis.

Endothelial failure

Burns and systemic inflammatory response syndrome (SIRS) are among the most important causes

of endothelial damage. As a consequence, the volume of interstitial fluid and total body water

increase, thus increasing the drug distribution volume. This fluid shift may also cause hepatic and

renal oedema, responsible for altered drug clearance. This phenomenon may be aggravated by

fluid administration.

Finally, both burns and SIRS may modify serum protein levels, affecting drug protein binding

and, consequently, distribution volume and clearance in a complex and hardly predictable way.

Endocrine disorders

Critically ill patients often show disorders in hormonal function as either cause of admission to

ICU (e.g., hypoadrenalism or hypothyroidism) or stress response to the condition of critical illness.

Stress response may influence drug pharmacokinetics by increasing the cardiac output or redis-

tributing the cardiac output by reducing the splanchnic flow. It may also yields fluid retention and

increase of circulating volumes. Complex changes in plasma proteins may also take place in stress

conditions.

Central nervous system dysfunction

Although central nervous system failure does not directly alter drug pharmacokinetics, its conse-

quences may alter several pharmacokinetic processes. For instance, hypo- and hyper-ventilation,

which are quite common in central nervous system failure, result in pH disturbances. Head injured

patients may show increased cardiac output, resulting in increased hepatic and renal blood flow

and in augmented drug clearance.
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2.5.2 Sepsis

Sepsis is a pathological condition arising when the inflammatory response to infection becomes

systemic and causes injuries to tissues and organ dysfunctions. A cascade of effects are triggered

by the onset of this condition often involving several systems and yielding multiple organ failure.

These effects combine to produce complex modifications in drug distribution volume and clearance

as describe above [55].

Distribution volume

In septic condition, drug distribution is altered by several mechanisms. First, the cardiac output

is redistributed to heart and brain at the expense of less vital organs, as kidneys, spleen, and

gut. Maldistribution of blood flow in the microcirculation results in compromised tissue perfusion,

possibly changing the peripheral drug distribution volume.

Second, in a severe infection, endotoxins from bacteria may stimulate the production of en-

dogenous mediators that may affect the vascular endothelium resulting in endothelial damage and

increased capillary permeability. This yields a fluid shift to the interstitial space that increases

the distribution volume, especially of hydrophilic drugs. Fluid resuscitation, a treatment recom-

mended to control the haemodynamic status in septic patients [151], may contribute to increase

distribution volumes. Similarly to the effect on the vascular endothelium, the inflammatory condi-

tion may alter the permeability of other tissue membranes. For instance, meningeal inflammation

may increase the permeability of the blood-brain barrier, altering the diffusion rate of hydrophilic

drugs in the cerebrospinal fluid.

Third, the distribution volume [see Eq. (2.24)] of molecules with significant protein binding

is affected by variations of plasma protein concentration. During critical illness, reduced dietary

protein intake, increased capillary permeability, haemodilution, and reduction of hepatic synthesis

contribute to reduce the level of serum albumin. Hypoalbuminaemia increases the fraction on

unbound drug and, consequently, the apparent distribution volume.

Finally, reduced organ perfusion causes anaerobic metabolism and acidosis, which may alter

the pH and, consequently, the distribution of ionisable drugs, as described in the previous section.

Clearance

The complex conditions associated with the septic syndrome alter drug metabolism and excretion,

the two mechanisms responsible for drug clearance.

During sepsis and septic shock renal clearance may be augmented by the enhancement of renal

blood flow [see Eq. (2.43)], due to an increase in cardiac output associated with the first hyperdy-
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namic stage of sepsis or to vasoactive drugs administered to compensate the shock condition [55].

At the same time, as illustrated in the above section, the administration of vasopressors may reduce

the hepatic blood flow, reducing hepatic clearance.

On the other hand, worsening of the patient’s condition could cause significant myocardial

depression leading to decreased organ perfusion, failure of microvascular circulation [133], even-

tually progressing to multiple organ dysfunction syndrome. This may include renal and hepatic

dysfunction which are associated with reduced drug clearance.

Drug clearance is also modified by therapies adopted to treat septic patients. Renal replacement

therapy directly increases drug clearance, whereas mechanical ventilation indirectly reduces drug

clearance as illustrated above.

Finally, hypoalbuminaemia may also affect drug clearance, since a decrease in the concentration

of plasma proteins causes an increase in the clearance of renally excreted drugs, due to a larger

drug unbound fraction.
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Chapter 3

ANTIMICROBIALS IN CRITICALLY ILL PATIENTS

The design of effective antibiotic treatments for critically ill patients requires complex pharma-

cokinetic and pharmacodynamic issues to be addressed. Furthermore, antibiotic efficacy may be

strongly modified by patient conditions, which may be extreme and rapidly changing, especially

in critically ill patients. In this chapter, I briefly review the physico-chemical, pharmacokinetic,

and pharmacodynamic properties of some of the most common antibiotic molecules used in ICU

(see Table 3.1 for a schematic summary). In Sec. 3.2 I shall provide more details on vancomycin,

focusing on those aspects that are more relevant for the construction of pharmacokinetic models. I

shall also review a few population models of vancomycin pharmacokinetics in critically ill patients.

3.1 Basic concepts

3.1.1 Pharmacokinetics

The pharmacokinetic properties of antimicrobials are directly related to their chemical proper-

ties [189, 155, 189, 134, 48] (see Table 3.2). Hydrophilic drugs (e.g., β-lactams, aminoglycosides,

glycopeptides, daptomycin) distribute only in plasma and in the extracellular fluids. Their distri-

bution volume is small and their clearance is mainly renal. Renal replacement therapy may strongly

contribute to drug elimination in patients receiving this kind of treatment. Conversely, lipophilic

drugs (e.g., macrolides, colistin, linezolid, quinolones) may show a higher intracellular distribution,

their distribution volume is larger, their kinetic properties are less affected by variation in renal

clearance, and they are often eliminated by hepatic metabolism.

Drug size and protein binding are also important factors affecting apparent distribution vol-
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Hydrophilic Lipophilic
β-lactams
Glycopeptides
Aminoglycosides
Daptomycin

Macrolides
Quinolones
Linezolid
Colistin

Limited volume of distribution Large volume of distribution
Inability to passively diffuse through
plasmatic membrane of eukaryotic cells

Freely diffuse through plasmatic
membrane of eukaryotic cells

Inactive against intracellular
pathogens

Active against intracellular pathogens

Eliminated renally as the unchanged
drug

Eliminated often after hepatic
metabolism

Table 3.2: Hydro and lipophilic antibiotics and their physico-chemical properties [134].

ume and clearance (both physiological and due to RRT). Indeed, only the unbound fraction can

be eliminated by kidneys. Furthermore, large molecules (e.g., glycopeptides, colistin) are not well

eliminated by renal replacement therapies, in particular by diffusive techniques such as haemodial-

ysis [134]. Hence, drugs with large molecular size and moderate/high protein binding, as gly-

copeptides, have interesting and non-trivial pharmacokinetic properties which strongly depend on

patient conditions.

3.1.2 Mechanisms of action

The choice of the most appropriate drug is guided by the characteristics of the microorganism

and the mechanism of action required to kill it (bactericidal action) or inhibit its growth (bacte-

riostatic action). Indeed, each antibiotic acts in a distinctive way and it is effective on some germs

only [74, 67].

Bacteria are commonly classified into two large groups on the basis of the Gram stain test.

Gram-positive bacteria take up the stain used in the test, assuming a purple colour, because of a

thick layer of peptidoglycan that forms the outer layer of their cell walls. The external layer of

the cell wall of Gram-negative bacteria is made instead of a thin layer of peptidoglycan covered

by an outer membrane of lipopolysaccharides and proteins. In this type of cell, the thin layer

of peptidoglycan is dissolved in the Gram stain test. Thus, Gram-negative cells lose the initial

colour. Because of the different structure of the cell wall, antibiotics penetrate differently in

these two groups of germs, and different mechanisms of action must be exploited. For instance,

glycopeptides are active only for Gram-positive bacteria because they cannot penetrate the outer

barrier of Gram-negative bacteria. Conversely, polymyxins and colistin are active against Gram-

negative bacteria thanks to their specificity to the lipopolysaccharide molecule that characterises

the outer membrane of these bacteria.
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Here I briefly illustrate the main types of mechanism of action of the molecules which are mostly

used for the treatment of ICU patients (see Table 3.1).

Inhibitors of cell wall synthesis. The pathways underlying the synthesis of cell walls are very

complex. So, antibiotics may act at several levels in order to interfere with this process. For

instance, β-lactams intervene in the final phase of peptidoglycan synthesis by inhibiting different

enzymes and ultimately inhibiting the formation of the three dimensional cell wall structure. They

are active against both Gram-positive and Gram-negative bacteria. They cannot be effective

against fungi, which do not have a peptidoglycan layer. Vancomycin and teicoplanin exploit a

similar mechanism of action by inhibiting peptidoglycan synthesis. They are active only against

Gram-positive bacteria.

Inhibitors of replication and transcription of nucleic acid. The process of synthesis of DNA and

RNA consists of two phases: the synthesis of precursors (nucleotides and deoxynucleotides) from

intermediate molecules of cell metabolism and the enzymatic polymerisation of nucleotides to form

the DNA macromolecule. The correct sequence of bases is copied by the original DNA template.

Antibiotics may inhibit the replication and transcription of DNA by interfering with different steps

of these two complex phases. For instance quinolones, such as ciprofloxacin, inhibit DNA gyrase,

a replication enzyme that compacts the DNA molecule by acting on its topology introducing

supercoils.

Inhibitors of protein synthesis. Proteins are synthesised by polymerisation of amino acids accord-

ing to an order determined by the sequence of nucleotide triplets in RNA. This is determined, in

turn, by the sequence of deoxynucleotides in DNA. Antibiotics may inhibit the process of protein

synthesis by interfering either with the first phase of activation and identification of the amino

acids from the RNA or with the second phase of polymerisation of the amino acids that takes

place in the ribosomes. For instance, erythromycin, a macrolide, inhibits ribosomal function by

binding to a subunit of ribosomes. These antibiotics are generally bacteriostatic because they just

interrupt the process of protein synthesis. Aminoglycosides such as gentamicin or amikacin, which

also inhibit ribosomal functions, are an exception, being bactericidal. Interestingly, they do not

show one-step resistance because they are able to bind to more than one ribosomal site. Linezolid

also interferes with protein synthesis by inhibiting the very first step of the process, by preventing

the formation of the initiation complex.

Inhibitors of cell membrane functions. Cell membranes separate the interior of the cell from the

exterior and control the passage of molecules in both directions. They have a supermolecular
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structure formed by a double lipid layer intercalated by proteins. Antibiotics may interfere with

cell membrane functions either by disrupting the membrane structure or by affecting the transport

of specific ions causing an abnormal accumulation or depletion of ions. For instance, polymyxins

are made of a peptide ring with basic hydrophilic groups and a lipophilic chain. The hydrophilic

groups bind with the phosphoric group of phospholipids while the lipophilic chain inserts itself

between the lipidic chains of the membrane. This causes the membrane structure to disaggregate.

They are more active on Gram-negative bacteria because they have a large affinity with the outer

membrane. The action mechanism of daptomycin [182] is very different. It binds to cell membranes

in a calcium-dependent manner and promotes the loss of intracellular K+ ions, thus causing a

collapse of the membrane potential. Consequently, it inhibits the cellular uptake of amino acids

by active transport, which depends on membrane potential.

3.1.3 Kill characteristics

Since the desired effect of an antibiotic therapy is to kill the infective microorganisms or in-

hibit their growth, the PK/PD indices introduced in Sec. 2.3 have been related to the mini-

mum inhibitory concentration (MIC). Thus, it is convenient to express these parameters using

Cmin = MIC.

According to their kill characteristics antibiotics have been classified in three classes (see Ta-

ble 3.3 [166, 155]):

Concentration-dependent: These molecules are effective if a peak concentration much larger

than the MIC is attained. For those molecules the best PK/PD index correlating with efficacy

is the ratio between the maximum concentration and the MIC (Cmax/MIC).

Time-dependent: These drugs are effective when a concentration larger than the MIC is main-

tained for a sufficiently long time. The best index to measure their efficacy is the time above

the MIC, T>MIC).

Concentration/time-dependent: The efficacy of these drugs is maximised when a high con-

centration is maintained for a sufficiently long time. The PK/PD index correlating best with

their efficacy is the ratio between the area under the concentration-time curve and the MIC

(AUC0−24/MIC).
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Concentration Time Concentration/Time
Cmax/MIC T>MIC AUC0−24/MIC
Aminoglycosides
Colistin
Daptomycin
Quinolones

β-lactams
Erythromycin
Linezolid

Aminoglycosides
Colistin
Quinolones
Linezolid

Table 3.3: Killing dependence of antibiotics and relevant PK/PD indices [155].

Figure 3.1: Chemical structure of vancomycin (C66H75Cl2N9O24) [206]. Molecular mass:
1449.3 g/mol.

3.2 Vancomycin

Vancomycin is a bactericidal drug which inhibits cell wall synthesis by interfering with peptido-

glycan synthesis (see Table 3.1 and Fig 3.1). It is a hydrophilic glycopeptide with high molecular

mass 1449.3 g/mol and moderate protein binding (55%−60%) [179, 74, 134]. Because of these dis-

tinctive physico-chemical features vancomycin shows interesting and non-trivial pharmacokinetic

and pharmacodynamic properties: It is active only against Gram-positive bacteria because it can-

not cross the outer membrane of Gram-negative bacteria. Its distribution volume and clearance

strongly depend on patient features (e.g., on serum albumin concentration). It is removed by RRT

to a very different extent according to operating conditions [134]. The molecule is too large to

be removed by haemodialysis with old cuprophane membranes (< 1000Da) and is removed by

haemofiltration with a sieving coefficient of about 0.8.

With reference to efficacy, vancomycin has shown concentration-time dependent killing prop-
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erties (see Sec. 3.1, kill characteristics). The range between the minimum concentration at which

this drug is effective and the concentration above which it shows nephrotoxic effects is quite nar-

row. The recommended range has been specified at 20–40µg/ml for peak concentrations and 10–

15µg/ml for trough concentrations [164, 122]. Furthermore, several studies have shown that the

AUC/MIC is the PK/PD index that best correlate with efficacy. In particular, it has been shown

that AUC0−24/MIC is a good predictor of clinical and bacteriological outcomes [165, 215, 164, 93],

with higher clinical success rates in the subset of patients with AUC0−24/MIC > 350 (400 for

bacteria eradication) [125]. Using this value as the threshold to discriminate between effective and

non-effective treatments, Monte Carlo simulations [154] have emphasised that the probability that

an antibiotic treatment is effective is very low with standard dosage regimens [54, 150, 156, 27]

(see Secs. 3.2.1, 3.2.3, 3.2.4, and 3.2.5).

For all the reasons mentioned above, it is very difficult to identify the appropriate dosage

regimen for critically ill patients: PK/PD indices are very sensitive to patient conditions and to the

received treatments and the range of concentrations at which vancomycin is effective without being

toxic is extremely narrow. It is therefore important to develop reliable models of pharmacokinetics

to optimise the dosage regimen [92]. Hence, a lot of effort has recently been devoted to the

construction of pharmacokinetic models in critically ill patients [54, 117, 150, 156, 27]. For other

analogue reasons, it is also strongly recommended to regularly monitor the plasma concentration

of vancomycin during the treatment period [163, 122].

In the literature there are few population models of vancomycin pharmacokinetics in critically

ill patients. Each reveals important features of vancomycin pharmacokinetics but all suffer from

several drawbacks from clinical, physiological, epidemiological, or mathematical perspectives. I

shall present five of the most relevant models highlighting their most interesting features and

discussing their weaknesses. I selected only those works involving critically ill patients with a

sample size of at least a few tens of patients, without aiming to provide a systematic review of

vancomycin pharmacokinetic properties. Three of them are based on a single-compartment model,

two on a two-compartment model. A critical analysis of these models represents the starting point

for the construction of a more realistic model.

In Chap. 5 I shall construct a population model for vancomycin on a wide sample of ICU

patients. I shall choose the model structure, the relevant covariates, and the functional forms

expressing the dependence of pharmacokinetic parameters on patient conditions by following the

properties presented and discussed here and in Chap. 2.
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3.2.1 Pharmacokinetic/pharmacodynamic analysis of

vancomycin in ICU patients

The study was conducted on 46 adult patients admitted to a single ICU of the teaching hospital

of the University of Salamanca (2007 [54]). Patients with less than three measurements of van-

comycin concentration, prior cardiac surgery, neoplastic disorders, or undergoing renal replacement

therapy were excluded from the study. Serum vancomycin concentrations were measured using a

fluorescence polarisation immunoassay (AxSYM), Abbott Laboratories, Abbott Park, IL, USA)

with a quantification limit of 2.00 mg/l and inter-day variation coefficients smaller than 7%.

Pharmacokinetic analysis was performed assuming a one-compartment model. Population anal-

ysis was based on a two-stage approach. In the first stage, individual parameters were determined

by non-linear regression using the software PKS (Abbottbase Pharmacokinetic System). In the

secondtage stage, statistical analysis was applied to the parameters obtained in the first stage.

The distribution volume was normalised to body weight w

V = θw w, (3.1)

with θw = 0.72 l/kg. No dependence on further variables was investigated.

Dependence of drug clearance kvanco per body weight w was investigated as a function of co-

variates adopting multiple regression techniques. Interestingly drug clearance kvanco was expressed

as a function of age a, renal function (parametrised by creatinine clearance kcrea), patient severity

(measured with Apache II Score s), and serum albumin concentration Calb, which quantifies the

level of protein binding:

kvanco

w
= θ0 + θa a− θs s− θalbCalb + θc

kLcrea
w

. (3.2)

Two models were developed using either measured or computed creatinine clearance, through

Levey’s formula [111]. The performance of the two models is comparable, with an r2 of 0.64 and

0.68, respectively. The fitted values of the free parameters are reported in Table 3.4. The variable

included in the model accounted for more than 65% of the vancomycin clearance variability, of

which 50% was by creatinine clearance.

Finally, a Monte Carlo simulation was performed to estimate the percentage of patients in

whom the therapeutic target is achieved with standard vancomycin dosage for several pathogens

(the MIC distribution for each pathogen was empirically based on reported data from the EUCAST

database [2]). The considered goal for treatment optimisation was a ratio AUC/MIC for the first

24 h of treatment higher than 400 h.
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covariate parameter units measured kcrea computed kcrea

– θ0 ml/(min kg) 0.660 0.872
age θa ml/(min kg yr) 0.016 0.015
Apache II Score θs ml/(min kg) 0.006 0.007
serum albumin concentration θalb ml dl/(min kg g) 0.380 0.234
creatinine clearance θc – 0.562 0.346

Table 3.4: Best-fit coefficients of model (3.2) using either measured (third column) or computed
(fourth column) creatinine clearance.

This analysis emphasises the risk of vancomycin underdosing in critically ill patients. Indeed,

according to a standard dosage of 2000 mg/day, it was found that the risk of not achieving the

recommended AUC24h/MIC is not negligible and varies from a minimum of less than 3% for S.

pneumoniae to a maximum of 40% for coagulase-negative Staphylococci. The risk of not attaining

the target with this dosage was 22% for S. aureus. This work shows that to overcome the risk of

underdosing for glycopeptide-intermediate Staphylococcus aureus, doses as high as 5000 mg/day

should be administered to have an 80% probability of achieving the therapeutic target.

Although the model of Eqs. 3.1 and 3.2 allows one to draw important conclusions at an epidemi-

ological level it cannot provide reliable prediction at the patient level. Indeed, the development

sample size was too small and contains only a few covariates. In particular, the distribution volume

is not well characterised, being a function only of the total body weight.

3.2.2 Population pharmacokinetic parameters of

vancomycin in critically ill patients

A pharmacokinetic model of vancomycin was developed on 234 serum vancomycin concentra-

tions measured in 30 adult patients and validated on 40 plasma concentrations from 20 adult

patients (2006 [117]). All included patients had fluctuations of plasma creatinine no higher than

±0.5mg/dl and none of them required renal replacement therapy. Non-steady state plasma con-

centrations were excluded.

All the analyses were performed using NONMEM software. Data were first fitted into one-

and two-compartment models with no covariates. The result of this preliminary analysis suggested

that the two-compartment model was more suitable to describe available data. The adopted two-

compartment model is parametrised by drug clearance from first compartment kvanco, distribution

volume of the central (Vc) and peripheral (Vp) compartment, and intercompartmental clearance

(kint), describing drug exchanges between the two compartments. Adopting the notation of Sec. 4.2,

V1 = Vc, V2 = Vp, and the three diffusion rates κe, κ12, and κ21 defined in Sec. 4.2 are related to
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these pharmacokinetic parameters as

κe = kvanco

Vc
, κ12 = kint

Vc
, κ21 = kint

Vp
, (3.3)

therefore assuming that the membrane crossing is symmetric [see Eq. (4.17)] and the intercom-

partmental clearance is proportional to the diffusion coefficient d and the total membrane surface

S, kint = dS.

Inter-individual variability was described by a proportional error model for three pharmacoki-

netic parameters (kvanco, Vc, and Vp):

kvanco,i = kvanco (1 + ηk,i) , Vc,i = Vc (1 + ηVc,i) , Vp,i = Vp
(
1 + ηVp,i

)
. (3.4)

No inter-individual variability was assumed for the intercompartmental clearance Q.

A proportional-additive error model was instead adopted to describe the residual (intraindivid-

ual) variability on concentration measurements

Cij = Ci(tij) (1 + ε1,ij) + ε2,ij . (3.5)

A linear relationship between vancomycin clearance and creatinine clearance was assumed

kvanco = θc k
CG
crea + θw w, (3.6)

where θw w is the non-renal component of the clearance (which is assumed to be proportional to the

total body weight w) and kCG
drug is the creatinine clearance estimated by means of the Cockcroft–

Gault formula [50]

kCG
vanco = wl/kg (140− a/yr)

72Ccrea dl/mg ml/min×

 1 for men,

0.85 for women.
(3.7)

where Ccrea is the serum creatinine concentration, a is age, and wl is lean body mass

wl = w − wfat, (3.8)

obtained by subtracting fat mass wfat from total body mass w. In patients with serum creatinine

less than 0.5mg/dl, a maximum value of kCG
crea = 120ml/min was adopted to avoid overestimated

values.

The distribution volumes of the two compartments were found to be proportional to total body
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PK parameter covariate parameter units value 95% CI

drug clearance creatinine clearance θc – 0.57 0.17 – 0.93
body weight θw ml/(min kg) 0.25 -0.02 – 0.65

central volume – θVc l/kg 0.41 0.36 – 0.47

peripheral volume – θVp l/kg 1.32 0.79 – 1.86

intercompartment diffusion – θi ml/min 125 102 – 147

Table 3.5: Best-fit estimates of the parameters of the pharmacokinetic model of Eqs. (3.6), (3.9),
and (3.10).

weight

Vc = θVc
w, Vp = θVp

w, (3.9)

while no dependence on patient characteristics was assumed for the intercompartmental clearance

kint = θi. (3.10)

The best-fit estimate of the free parameters θ is reported in Table 3.5. The model was validated

on a validation sample.

With the final best-fit values, the vancomycin clearance of a typical ICU patient with kcrea =

70ml/min and w = 75 kg is kvanco = 58ml/min. The Authors stressed that this value, obtained

for critically ill patients, is similar to those obtained in previous investigations, based on heteroge-

neous [212] or homogeneous populations of severely burned patients [161], oncology patients with

hepatic dysfunction [37], and patients with infected prosthetic devices [92], but lower than the

value reported for critically ill patients in Ref. [138]. Interestingly, with this analysis it was shown

that vancomycin has a relatively important fraction of non-renal clearance, representing about 28%

of total drug clearance.

In this work no Monte Carlo simulations were performed to estimate the probability of achieving

the therapeutic target.

3.2.3 Vancomycin dosing assessment in intensive care unit patients

based on a population pharmacokinetic/

pharmacodynamic simulation

In this work a pharmacokinetic model was developed on a sample of 191 adult patients admitted

to the medical ICU of the University Hospital of Salamanca (2010 [150]). As in Ref. [54], patients

with neoplastic disorders, renal replacement therapy, or without measurements of vancomycin

concentrations were excluded from the analysis. Pre-dose plasma vancomycin concentration was
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measured by fluorescence polarisation immunoassay (AxSYM; Abbott Laboratories, Abbott Park,

USA). The quantification limit was 2.00 mg/l and the intra- and inter-assay coefficients of variation

were less than 7% over the calibration range (7 to 75 mg/l).

A population pharmacokinetic model was constructed from the 569 available vancomycin con-

centrations using the first-order conditional estimation method with interaction as implemented in

NONMEM. Available information allowed to construct only a one-compartment model with first

order elimination. Drug clearance and distribution volume were expressed as functions of clinical

variables selected through a stepwise forward selection procedure based on the minimum value

of the NONMEM objective function to compare nested models and using the Akaike information

criterion to compare non-nested models.

After testing several error models, inter-individual variability was eventually modelled as an

exponential random effect for both clearance and distribution volume

kvanco,i = kvanco e
ηk,i , Vi = V eηV,i . (3.11)

Residual variability was instead modelled with an additive error model

Cij = Ci(tij) + εij . (3.12)

In the final covariate model, vancomycin clearance was estimated per body weight and depended

on 24h-measured creatinine clearance kcrea per body weight w and age a as

kvanco

w
= θc

kcrea

w
+
(
a

yr

)−θa ml
min kg , (3.13)

with θc = 0.67 and θa = 0.24. Thus, total drug clearance effectively depends on the interaction

between age and body weight

kvanco = θc kcrea + w

(
a

yr

)−θa ml
min kg , (3.14)

where the heavier a patient, the higher his/her clearance.

Similarly, the distribution volume depends on serum creatinine concentration Ccrea and body

weight as

V = θw w × θcrea
dcrea , (3.15)

where dcrea is a dichotomous variable which is 1 if the serum creatinine concentration Ccrea is larger

than 1mg/dl and 0 otherwise. The best-fit values of the parameters θ are reported in Table 3.6.

Interestingly, the introduction of serum creatinine as a dichotomous variable accounted for 60%
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PK parameter covariate parameter units value 95% CI

drug clearance creatinine clearance θc – 0.67 0.58 – 0.76
age θa – 0.24 0.21 – 0.27

distribution volume body weight θw l/kg 0.82 0.70 – 0.94
creatinine clearance θcrea – 2.49 2.00 – 2.98

Table 3.6: Best-fit estimates of the parameters of the pharmacokinetic model of Eqs. (3.14)
and (3.15).

of interindividual variability. Apparently serum creatinine is a marker of critical illness which is

typically associated with very large distribution volumes.

Finally, on the basis of a Monte Carlo simulation, the probability of attaining the target con-

centration for a specific drug dose and a specific population of microorganisms was calculated. As

in Ref. [54], the considered goal for treatment optimisation was an AUC/MIC ratio for the first 24 h

of treatment higher than 400 h. It was found that with a daily dose of 2 g, the therapeutic target

was achieved in the treatment of vancomycin susceptible S. aureus in 95.5% of patients older than

65 years and with creatinine clearance lower than 60ml/min, but only in 33.4% of cases younger

than 65 and with creatinine clearance higher than 60ml/min. The corresponding percentages for

vancomycin-intermediate susceptibility strains falls to 23.9% and 0.2%, respectively. This result

suggests that standard dosing often fails to achieve the therapeutic target in critically ill patients,

especially in those with normal renal function.

3.2.4 Vancomycin dosing in critically ill patients: robust methods

for improved continuous-infusion regimens

A one-compartment pharmacokinetic model was developed from 206 adult patients with a

diagnosis of sepsis admitted to a single ICU at Erasme Hospital, Brussels, undergoing continuous

infusion of vancomycin either in monotherapy or in combination with other antimicrobials. Patients

with previous administration of vancomycin by intermittent infusion, or with continuous infusion

lasting less than 48 hours, or undergoing renal replacement therapy were excluded (2011 [156]).

Blood samples were taken once a day and the serum concentration of vancomycin was imme-

diately determined by fluorescence polarisation immunoassay. The assay limit was 0.6 mg/l, with

intra- and inter-day coefficient of variation was 0.6%, and r2 = 0.999.

Population one-, two-, and three-compartment kinetic models were tested using NONMEM

with a first-order conditional estimation method with interaction. The best-fit model was one-

compartment with zeroth order input and combined proportional and additive residual variability,

i.e.

Cij = Ci(tij) eε1,ij + ε2,ij . (3.16)
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PK parameter covariate parameter units value 95% CI
drug clearance creatinine clearance θc – 0.76 0.68 – 0.89
distribution volume body weight θw l/kg 1.53 1.31 – 1.71

Table 3.7: Best-fit estimates of the parameters of the pharmacokinetic model of Eqs. (3.17)
and (3.18) and 95% confidence intervals estimated by bootstrap technique.

and exponential inter-individual variability [see Eq. (3.11))]. Drug clearance was proportional to

creatinine clearance normalised to body surface area S as

kvanco = θc
kcrea

S/1.73 m2 . (3.17)

The distribution volume was expressed as

V = θw w, (3.18)

where w is the total body weight. The best-fit values of the parameters θ are reported in Table 3.7.

Simulations were performed to test the effect on vancomycin concentrations of different loading

doses and continuous infusion rates for patients with different creatinine clearances. The effects

of different weight-based dosing regimens for continuous infusions were also simulated. It was

found that a loading dose of at least 35 mg/kg was necessary to rapidly achieve a vancomycin

concentration of 20 mg/l, with an AUC in the first 24 h of 485 mgh/l, for a patient with a normalised

creatinine clearance of 100 ml/min/1.73 m2 and a continuous infusion rate of 35 mg/kg/day.

The Authors stressed the importance of choosing appropriate continuous infusion rates accord-

ing to the patient’s creatinine clearance. It was found that an infusion rate of 35 mg/kg/day was

not enough to achieve the therapeutic target concentration in patients with creatinine clearance

higher than 100 ml/min/1.73 m2 while, it yielded toxic concentrations (above 30mg/l) in patients

with altered renal function (kcrea/S < 50 ml/min/1.73 m2).

Although this model is quite simplistic, including only a few patient characteristics (creatinine

clearance, body surface, and body weight), it reveals some important aspects of vancomycin kinetics

and provides some estimates of optimal personalised dosing regimens.

3.2.5 A new regimen for continuous infusion of vancomycin during

continuous renal replacement therapy

This study was conducted on 32 adult patients admitted to an ICU of the Erasme Hospital,

Brussels (2013 [27]). Patients undergoing CRRT received a loading dose of 35mg/kg given in
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parameter units value 95% CI
θCRRT kg 57 43 – 71
θi ml/min 80 55 – 128
θVc l/kg 0.44 0.31 – 0.54
θVp

l 60.5 35.4 – 98.3

Table 3.8: Best-fit estimates of the parameters of the pharmacokinetic model of Eqs. (3.19)–(3.22).
Confidence intervals were computed by bootstrap technique.

4 h, followed by continuous infusion at a rate of 14mg/kg/day. The loading dose was determined

according to the results of Ref. [156] for patients without renal dysfunction. The continuous infusion

rate was chosen assuming that CRRT provides a creatinine clearance equivalent to 20–50ml/min.

Vancomycin concentration was measured at the end of the loading dose, 12 h and 24 h after the

commencement of the treatment, and every subsequent day, using a particle-enhanced turbidimetric

inhibition immunoassay (Dimension XPand, Siemens Healthcare Diagnostics, Newark, DJ, USA).

The limit of quantification was 0.8mg/l and the total imprecision was less than 5%.

A two-compartment pharmacokinetic model was fitted through a non-linear mixed-effect pro-

cedure using a first-order conditional estimation method with interaction. Between-subject vari-

ability was described with an exponential model [see Eq. (3.11)] and residual variability with a

combined exponential-additive model [see Eq. (3.16)]. The final model, including all significant

covariates, for the central and peripheral distribution volumes Vc and Vp, for drug clearance kvanco

and intercompartmental clearance kint [see Eq. 3.3] reads

kvanco = θCRRT ICRRT, (3.19)

kint = θi, (3.20)

Vc = θVc
w, (3.21)

Vp = θVp
, (3.22)

where w is the total body weight and ICRRT the CRRT intensity, calculated as the sum of the

dialysate rate and ultrafiltration rate. The values of the best fit parameters are reported in Ta-

ble 3.8. For a typical CRRT intensity I = 35 ml/kg/h = 0.58 ml/kg/min, the resulting clearance

of vancomycin is kvanco = 33ml/min (95% CI: 25 – 41 ml/min). Regarding the achievement of the

therapeutic target, the Authors found that an AUC24h > 400 was reached for 100% of pathogens

with MIC < 1mg/l, 72% with MIC = 1.5mg/l, and 25% with MIC = 2mg/l.

Although this study was conducted on a relatively low number of patients, it showed a significant

correlation between CRRT intensity and total drug clearance in patients undergoing CRRT. It

suggests that the vancomycin clearance provided by CRRT is comparable with the renal clearance
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of a patient without renal failure.
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Chapter 4

COMPARTMENT PHARMACOKINETICS

The construction of a pharmacokinetic model is a complex process which must take into account

all the physiological aspects presented in the previous chapters. In this Chapter I shall present the

mathematical and statistical techniques that will be adopted throughout this Thesis.

To clarify the important role played by the number of compartments and the complexity of the

equations, in this Chapter I shall review two models, with one and two compartments, respectively

(see, e.g, [69, 162]). I shall also briefly review the technique used to fit the model parameters

on patient data (see Sec. 4.3). When the equations are linear with constant coefficients, their

solutions can be analytically computed. A proper mathematical analysis of those solutions allows

to understand the underlying approximations, the aspects of drug kinetics that can be modeled,

and shows the limitations of this approach. Thus, such an analysis allows to acquire a deeper

understanding of the mathematical properties of the system and is fundamental before proceeding

with numerical integration and data fitting.

From the following discussion, it will be evident that the choice of the number of compartments

and the form of the equations cannot be based only on physiological and biochemical arguments,

but must take into account these mathematical aspects.

4.1 One-compartment model

As presented in Sec. 2.4, the simplest model of pharmacokinetics assumes that drugs distribute

only in one compartment [69, 162]. Drug enters and exits a volume V , where it is distributed with
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a homogeneous concentration C. The total amount Q of drug present in the body is

Q = C V (4.1)

and, assuming that drug removal il proportional to drug concentration, the differential equation

governing the evolution of Q is
dQ
dt = −k C + I, (4.2)

where k is the drug clearance and I the external infusion rate. Eliminating C,

dQ
dt = −κQ+ I, (4.3)

where the elimination rate κ = k/V has dimension of the inverse of time.

Eq. (4.3) is a non-homogeneous linear first order equation. To solve it, I first look for a solution

of the corresponding homogeneous equation

dQ
dt = −κQ, (4.4)

which describes the kinetics of the drug after a bolus and in the absence of continuous administra-

tion I. Assuming that the elimination rate k is constant, the solution for Q is

Q(t) = Ae−κt, (4.5)

where the integration constant A is fixed by initial condition. If a bolus of dose D is administered

at time t = 0, the initial amount of drug Q(0) = D, yielding

Q(t) = De−κt. (4.6)

Drug concentration vanishes exponentially with half-life

t1/2 = log(2)
κ

, (4.7)

as illustrated in the left panel of Fig. 4.1. The corresponding AUC [see Eq. (2.68)] is

AC(t) =
∫ t

0
C(t′) dt′ = D

k

(
1− e−κt

)
. (4.8)

In the limit when t→∞, the area under the curve is AC = D/k, as discussed in Sec. 2.3.

To compute the general solution of the non-homogeneous equation Eq. (4.3), it is enough to
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Figure 4.1: Time evolution of total drug amount in body Q after a bolus D without (left) and
with (right) continuous infusion. t1/2 is the drug half-life.

find a particular solution. Assuming a constant infusion rate I, the infusion is exactly balanced by

elimination when the value of the drug amount has a constant value

Q̄ = I

κ
, (4.9)

and its derivative vanishes. The general solution of Eq. (4.3) is therefore

Q(t) = Ae−κt + I

κ
, (4.10)

where A is again an integration constant fixed by the initial condition. If at time t = 0 a bolus D

is administered to the patient, Q(0) = D, A = (D − I/κ) and

Q(t) =
(
D − I

κ

)
e−κt + I

κ
. (4.11)

This solution is represented in the right panel of Fig. 4.1. For times t much larger than the drug

half-life, the total drug amount Q converges to the stationary value Q̄, whatever the loading dose

D. In fact, if D is larger or smaller than Q̄, Q decreases or increases, respectively, to reach Q̄.

If an optimal concentration Copt must be maintained to achieve some therapeutic goal, an

optimal loading dose Dopt

Dopt = CoptV (4.12)
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must be administered to reach the target concentration Copt. Hence, an optimal infusion

Iopt = CoptV κ (4.13)

will allow the steady state concentration Copt to be maintain, corresponding to Q̄ = CoptV . The

right panel of Fig. 4.1 shows that if the loading dose is non-optimal, say smaller (D1) or larger

(D2) than Q̄, the time scale to converge to the target concentration is the half-life time. This time

cannot be controlled by adjusting I, because it depends only on the distribution volume and the

drug clearance. In particular, being proportional 1/κ = V/k, it may be very large for large volumes

and/or reduced clearances. In these cases, the only way to promptly reach the therapeutic target

is to perform an appropriate bolus Dopt.

4.2 Two-compartment model

In this section I review the behaviour of the simple linear two-compartment model presented in

Sec. 2.4 [69, 162]. This model is suitable to describe the kinetic properties of a drug administered

by intravenous infusion that can diffuse into an extra-vascular compartment.

Defining the concentrations and distribution volumes in the two compartments C1, C2, V1 and

V2 and the total amounts of drug in the two compartments Q1 = C1 V1 and Q2 = C2 V2, one

obtains the following system of equations:

dQ1

dt = −κeQ1 − κ12Q1 + κ21Q2 + I, (4.14)

dQ2

dt = κ12Q1 − κ21Q2, (4.15)

where κ12 and κ21 are the diffusion rates from the first to the second compartment and vice versa.

Here we have assumed that the drug is infused in the first compartment at a rate I and eliminated

only from this compartment with an elimination rate κe.

If the membrane separating the two compartments allows symmetric diffusion [see (2.1)], the

quantity of drug per unit time crossing the membrane from compartment 1 to compartment 2 is

dS (C1 − C2) , (4.16)

where d is the diffusion coefficient and S the total surface of the membrane. Comparing Eq. (4.16)

with the diffusion terms in Eqs. (4.14) and (4.15), the diffusion rates are inversely proportional to
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the two distribution volumes

κ12 = dS

V1
, κ21 = dS

V2
. (4.17)

The system of Eqs. (4.14) and (4.15) is linear and non-homogeneous. Its general solution is the

sum of the general solution of the homogeneous system (i.e., without continuous infusion) plus a

particular solution of the non-homogeneous system.

4.2.1 Homogeneous solution

After a few calculations, the general solution of the homogeneous system is

Q1(t) = A1
κ21 − λ1

κ12
e−λ1t +A2

κ21 − λ2

κ12
e−λ2t, (4.18)

Q2(t) = A1 e
−λ1t +A2 e

−λ2t. (4.19)

where A1 and A2 are two integration constants and

λ1 = A+
√
A2 − 4B
2 , λ2 = A−

√
A2 − 4B
2 (4.20)

are the two solutions of the second order equation

λ2 −Aλ+B = 0, (4.21)

with

A = κe + κ12 + κ21, B = κe κ21. (4.22)

Since all κi are positive, it is easy to show that A2 − 4B is positive, so that λ1 and λ2 are always

real and positive. Thus, the homogeneous system always admits a decaying solution.

For later convenience, I shall also prove that

λ2 < κ21 < λ1. (4.23)

This is equivalent to

√
A2 − 4B > 2κ21 −A,

√
A2 − 4B > A− 2κ21, (4.24)

that is √
A2 − 4B > |A− 2κ21| . (4.25)
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Since A2 − 4B is always positive, it is enough to show that

A2 − 4B > (A− 2κ21)2
. (4.26)

The above relation is proved by inserting the values of A and B from Eq. 4.22. Analogously, it

may be proved that

λ1 > κ12. (4.27)

The two integration constants A1 and A2 are easily determined by imposing the initial condition

Q1(0) = D, Q2(0) = 0, (4.28)

which corresponds to a loading dose D administered to the first compartment. One obtains

A2 = −A1 = κ12D

λ1 − λ2
, (4.29)

which yields

Q1(t) = D

λ1 − λ2

[
(κ21 − λ2) e−λ2t + (λ1 − κ21) e−λ1t

]
, (4.30)

Q2(t) = κ12D

λ1 − λ2

[
e−λ2t − e−λ1t

]
. (4.31)

Using Eq. (4.23), it is easy to prove that Q1 and Q2 are always positive. As illustrated in the left

panel of Fig. 4.2, Q1 is monotonic decreasing from D to 0, whereas Q2 starts from 0 at t = 0,

reaches a maximum

Q2max = κ12D

λ1 − λ2

(
λ2

λ1

)λ2/(λ1−λ2) [
1− λ2

λ1

]
(4.32)

at

tmax = log(λ1/λ2)
λ1 − λ2

(4.33)

and finally goes to 0.

In the left panel of Fig. 4.2, diffusion from the first to the second compartment is faster than

elimination (κ12 = 2κe) and the diffusion rate from the second compartment back to the first

one is κ21 = κ12/4. In the case of symmetric membrane [see Eq. (4.17)], this corresponds to a

distribution volume in the second compartment four times larger than the distribution volume in

the first compartment. With this choice of the parameters, λ1 ≈ 3.35κe and λ2 ≈ 0.15κe. The two

exponentials of Eqs. (4.30) and (4.31) decay on very different time scales τ1 = λ−1
1 ≈ 0.30κ−1

e and

τ2 = λ−1
2 ≈ 6.7κ−1

e . Physically, the time scale τ1 over which the drug leaves the first compartment

and fills the second one is much shorter than the time scale τ2 over which both compartments are
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Figure 4.2: Left panel: Time evolution of drug amount in the two compartments Q1 (solid line) and
Q2 (dashed line) after a bolus D, for κ12 = 2κe. Right panel: time evolution of Q1 for three values
of κ12 = 10, 1, 0.1κe (solid lines). In both panels the dotted line represents the time evolution
of Q in a one-compartment model with κ = κe. Q and t are measured in units of D and κ−1

e ,
respectively, and κ21 = κ12/4.

depleted and drug concentrations go to zero. In general when

κ21 � κe + κ21, or κe � κ12 + κ21, (4.34)

the two solutions λ1 and λ2 can be approximated as

λ1 ≈ A = κe + κ12 + κ21, λ2 ≈
B

A
= κeκ21

κe + κ12 + κ21
, (4.35)

that is, the fastest decay rate λ1 is given by the sum of the three rates κe, κ12, and κ21, while λ2

is much smaller and is proportional to κeκ21.

The dotted line in the left panel of Fig. 4.2 represents the solution Q(t) of a one-compartment

system with the same elimination rate κ = κe. Since in a clinical study drug concentrations

are generally measured only in blood, only the predicted evolution of Q1 (which represents drug

concentration in the blood compartment) may be tested against measured concentrations, whilstQ2

is not experimentally accessible. This implies that differences between one- and two-compartment

models, if any, must be appreciated by comparing the two curves Q and Q1. The plot shows

that, just after bolus administration, drug blood concentration decreases much more rapidly in a

two-compartment model than in a one-compartment one. In fact, in the two-compartment model

drug diffuses from the first to the second compartment on a time scale τ1 which is shorter than

the elimination time scale τ = κ−1 in the corresponding one-compartment model. However, in

the two-compartment model the body is completely depleted on a much longer time scale τ2 � τ ,

88



CHAPTER 4. COMPARTMENT PK 4.2. TWO-COMPARTMENT MODEL

since drug stored in the second compartment is eliminated only after a slow diffusion back to the

first compartment. Thus, at later times (t & 3κ−1
e ), Q1 becomes larger than Q and vanishes more

slowly.

In the right panel of Fig. 4.2, the evolution of Q1(t) (solid lines) is compared against Q(t) for

three values of the diffusion coefficient κ12 = 10, 1, 0.1κe. The ratio κ21/κ12 between the two

diffusion rates is fixed at 1/4, and the elimination rate κe equals the elimination rate κ in the

one-compartment model. When the membrane is highly permeable (κ12 = 10κe) the predictions

of the two models are very different. In the opposite limit, when diffusion is negligible with respect

to the elimination rate (κ12/κe � 1), the blood compartment is insulated from the second one. In

this case, the solution Q1(t) almost coincides with the one-compartment solution Q(t).

The total drug clearance for this two-compartment model can be computed using Eq. (2.74). I

first compute the AUC for C1 (which represent the blood compartment)

AC(t) = D

V1 (λ1 − λ2)

[
κ21 − λ2

λ2

(
1− e−λ2t

)
+ λ1 − κ21

λ1

(
1− e−λ1t

)]
. (4.36)

In the limit when t→∞, AC reduces to

AC = Dκ21

V1 λ1λ2
. (4.37)

From Eqs. (4.21) and (4.22), λ1λ2 = B = κeκ21. Finally, the total average drug clearance reads

[Eq. (2.74)]

kdrug = D

AC
= κe V1. (4.38)

4.2.2 Non-homogeneous solutions

To compute the non-homogeneous solution of the system of Eqs. (4.14) and (4.15) (i.e., with a

non-vanishing continuous infusion rate I) it is enough to compute the particular solution (Q̄1, Q̄2)

corresponding to the stationary case ˙̄Q1 = ˙̄Q2 = 0:

Q̄1 = I

κe
, Q̄2 = κ12

κe κ21
I. (4.39)

The general solution of the non-homogeneous is given by the sum of the stationary solutions

with the general solution of the homogeneous system Eqs. (4.18) and (4.19). The two integration

constants A1 and A2 are determined by imposing initial conditions as in Eq. (4.28), that is assuming
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Figure 4.3: Time evolution of drug amount in the two compartments Q1 (solid line) and Q2
(dashed line) for a continuous infusion with constant rate I without loading dose, and for an
optimal administration strategy with D = Copt V2 κ21/κ12 and I = Copt V2 κe κ21/κ12. Q and t
are measured in units of I/κe and κ−1

e , respectively, κ12 = 2κe, and κ21 = κ12/4. Q̄1 = I/κe and
Q̄2 = Iκ12/κeκ21 are the asymptotic stationary solutions.

that at time t = 0 a bolus D is administered in the first compartment. The solution reads

Q1(t) = κ21 − λ2

λ1 − λ2

[
D − λ1

κe κ21
I

]
e−λ2t + λ1 − κ21

λ1 − λ2

[
D − λ2

κeκ21
I

]
e−λ1t + I

κe
, (4.40)

Q2(t) = κ12

λ1 − λ2

[
D − λ1

κe κ21
I

]
e−λ2t − κ12

λ1 − λ2

[
D − λ2

κeκ21
I

]
e−λ1t + κ12

κeκ21
I. (4.41)

Continuous infusion without loading dose. To study these solutions, it is convenient to start with

the case of vanishing loading dose D = 0.

Q1(t) = I

κe

[
1− 1

(λ1 − λ2)κ21

(
(κ21 − λ2)λ1 e

−λ2t + (λ1 − κ21)λ2 e
−λ1t

)]
, (4.42)

Q2(t) = I
κ12

κeκ21

[
1− 1

λ1 − λ2

(
λ1e
−λ2t − λ2e

−λ1t
)]
, (4.43)

The behaviour of Q1 (solid line) and Q2 (dashed line) is illustrated in Fig. 4.3, for κ12 = 2κe and

κ21 = κ12/4.

dQ1

dt = I

λ1 − λ2

[
(κ21 − λ2)e−λ2t + (λ1 − κ21)e−λ1t

]
, (4.44)

dQ2

dt = κ12 I

λ1 − λ2

[
e−λ2t − e−λ1t

]
(4.45)

are always non-negative. To derive these equations I used λ1λ2 = κeκ21, from Eq. (4.21). The

derivatives of Q1 and Q2 for a continuous infusion without loading dose coincide with Eqs. (4.30)

and (4.31), after replacing D with I. In fact a continuous infusion with constant rate I can be

90



CHAPTER 4. COMPARTMENT PK 4.2. TWO-COMPARTMENT MODEL

viewed as a series of infinitely small boluses. Thus, all the results found in the previous paragraph

for Q1 and Q2 are valid in this case for Q̇1 and Q̇2. In particular, Q2 is flat at time t = 0 since

Q̇2(0) = 0, while, as expected Q̇1(0) = I. Furthermore Q̇1 and Q̇2 go to zero exponentially for

t → ∞, and Q1 and Q2 converges to the two stationary solutions Q̂1 and Q̂2 with a time scale

τ2 = λ−1
2 . Furthermore, ˙̂

Q2 has a maximum at

tflex = log(λ1/λ2)
λ1 − λ2

, (4.46)

where, consequently, Q2 shows an inflection point

Q2flex = κ12 I

κeκ21

[
1−

(
λ2

λ1

)λ2/(λ1−λ2)(
1 + λ2

λ1

)]
. (4.47)

Bolus plus a continuous infusion. Finally, the general solution, Eqs. (4.40) and (4.41), are the

sum of the solutions corresponding to a bolus without continuous infusion [Eqs. (4.18) and (4.19)]

and a continuous infusion without bolus [Eqs. (4.42) and (4.43)]. In the former case τ2 is the

time scale over which body is depleted, while in the second case, it represents the time required

to fill it and maintain the stationary concentrations C̄1 = Q̄1/V1 and C̄2 = Q̄2/V2. If Copt is

the optimal concentration to treat an infection in the tissue compartment, the best therapeutic

strategy consists of

(i) reaching the concentration Copt as soon as possible,

(ii) never exceeding toxic concentrations,

(iii) maintaining Copt with the continuous infusion.

The third objective is achieved by imposing that the stationary solution Q̄2 equals V2 Copt:

Iopt = κeκ21

κ12
V2 Copt, (4.48)

corresponding in the first compartment to

Q̄1 = κ21

κ12
V2 Copt, C̄1 = κ21V2

κ12V1
Copt, (4.49)

which, in the case of a symmetric membrane [Eq. 4.17], obviously reduces to C̄1 = C̄2 = Copt.

Conservative administration strategy. Regarding item (i), the time needed to fill the second com-

partment with a continuous infusion (roughly speaking τ2 = λ−1) cannot be controlled since drug

is administered only through the first compartment. The best one can do is to fill the first com-
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Figure 4.4: Time evolution of drug amount in the two compartments Q1 (solid line) and Q2
(dashed line) for an optimal administration strategy Iopt = V2 Copt κe κ21/κ12 with D = Dcons =
Copt V2 κ21/κ12 (left panel) and D = Dagg = V2 Copt λ1/κ12 (right panel). In both panels, Q and
t are measured in units of I/κe and κ−1

e , respectively, κ12 = 2κe, and κ21 = κ12/4. Q̄1 = Iopt/κe
and Q̄2 = Ioptκ12/κeκ21 are the asymptotic stationary solutions corresponding to the optimal
concentration C̄2 = Copt in the second compartment.

partment up to the optimal concentration of Eq. (4.49), by administering a bolus

Dcons = Q̄1 = κ21

κ12
V2 Copt, (4.50)

which reduces to

Dcons = V1Copt, (4.51)

in the case of a symmetric membrane. Inserting the values of Iopt and Dcons in Eqs. (4.40)

and (4.41):

Q1(t) = CoptV2
κ21

κ12

[
1− κ12

λ1 − λ2

(
e−λ2t − e−λ1t

)]
, (4.52)

Q2(t) = CoptV2

[
1− 1

λ1 − λ2

(
(λ1 − κ21) e−λ2t + (κ21 − λ1) e−λ1t

)]
(4.53)

where I used

(λ1 − κ21) (κ21 − λ2) = κ21κ12, (4.54)

which is directly derived from Eq. (4.21). This solution is represented in the left panel of Fig. 4.4.

The value of Q1 in Eq. (4.52) is CoptV2κ21/κ12 for t = 0 and in the limit t → ∞. It reaches a

minimum

Qmin = CoptV2
κ21

κ12

[
1− κ12

λ1

(
λ2

λ1

)λ2/(λ1−λ2)
]
, (4.55)
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at

tmin = log(λ1/λ2)
λ1 − λ2

. (4.56)

The function Q1(t) is always positive, since its minimum Qmin is positive, because κ21/λ1 < 1 [see

Eq. (4.27)], λ2/λ1 < 1, and the exponent λ2/(λ1 − λ2) is positive.

The quantity of drug in the second compartment Q2(t) [Eq. (4.53)] is 0 at t = 0 and monoton-

ically increases, converging to the asymptotic stationary solution Q̄2 = CoptV2. Indeed, it is easy

to show that Q̇2 is always positive.

By choosing I and D I have used both two degrees of freedom to optimise items (i) and (iii).

The maximum concentrations in the two compartments, that is item (ii), cannot be controlled

independently. With this choice of I and D neither C1 nor C2 exceed the target concentration, so

there is no risk of toxicity. However, for this administration strategy, the time needed to reach a

concentration close to the optimal one Copt in the second compartment is very large, in the order of

τ2 = λ−1. In fact, the second compartment is filled here by the slow convergence of the continuous

infusion to the stationary solution Q̄2.

Aggressive administration strategy. A very different administration strategy consists of filling the

second compartment through the fast depletion of the first compartment, which takes place on a

time scale of order τ1 = λ−1, just after the loading dose. This strategy requires a much larger

loading dose to suppress the terms proportional to exp(−λ2)t in Eqs. (4.40) and (4.41) that is

Dagg = λ1

κe κ21
Iopt = λ1

κ12
V2 Copt. (4.57)

With this choice, the evolution of the drug amounts in the two compartments read

Q1(t) = Copt V2
κ21

κ12

[
λ1 − κ21

κ21
e−λ1t + 1

]
, (4.58)

Q2(t) = Copt V2
[
1− e−λ1t

]
. (4.59)

This solution is represented in the right panel of Fig. 4.4. The drug amount in the second com-

partment Q2 (dashed line) rapidly reaches the stationary solution

Q̄2 = Copt V2, (4.60)

whereas Q1 (solid line) is monotonically decreasing toward

Q̄1 = Iopt

κe
= Copt V2

κ21

κ12
, (4.61)
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and starts from the initial value

Q1(0) = Copt V2
λ1

κ12
. (4.62)

In the case of a symmetric membrane, this corresponds to an initial concentration

C1(0) = λ1

κ21
Copt. (4.63)

that strongly exceeds the optimal concentration Copt.

Both Q1 and Q2 rapidly converge on a time scale τ1 = λ−1
1 to their stationary asymptotic

solutions Q̄1 and Q̄2, corresponding to the optimal concentration Copt in the second compartment.

However, the rapid convergence to the therapeutic target is achieved here through a large initial

concentration in the blood compartment.

Generic administration strategies. Above I discussed two opposite strategies to reach an optimal

therapeutic concentration in the tissue compartment. In the former case the second compartment

is slowly filled through continuous infusion, while in the latter I exploited the rapid depletion of

the first compartment toward the second. The advantage of the first approach is that the optimal

concentration is never exceeded, whereas in the second case the loading dose is very large, possibly

generating a risk of toxicity. Intermediate strategies can be adopted, balancing the advantages

and disadvantages of the two approaches. In Fig. 4.5 I plot the evolution of Q1(t) (left panel)

and Q2(t) (right panel) for different initial boluses but same infusion rate I. All the solutions

converge to the same Q̄1 and Q̄2. Dashed and dotted lines represent the solutions for loading dose

D = Dcons = Q̄1 [Eq. (4.50)] and D = Dagg [Eq. (4.57)], respectively. The solid lines (from the

lowermost to the uppermost) represent three solutions with three different boluses, one smaller

than Dcons (D = 0.5Q̄1), one larger than Dcons (D = 3Q̄1) but smaller than Dagg, the third larger

than Dagg (D = 8Q̄1).

When D < Dcons, Q1 is always smaller than Q̄1 and converges to Q̄1 from below. The conver-

gence of Q2 to Q̄2 is very slow (on a time scale of order τ2).

When Dcons < D < Dagg, Q1 is initially larger than Q̄1, has a minimum smaller than Q̄1,

and eventually converges to Q̄1 from below. The convergence of Q2 to Q̄2 is more rapid. For

D = 3Q̄1, the central line of the left panel of Fig. 4.5 reaches a value around Q̄2/2 very rapidly, on

a time scale of order τ1. Then, Q̄2 is approached on a time scale of order τ2. With this strategy

the concentration in the second compartment never exceeds Copt, but it can be adopted only if a

concentration larger than Copt can be tolerated in the first compartment for a time scale of order

τ1.

Finally, when D > Dagg, Q1 is always larger than Q̄1 and converges to Q̄1 from above. Q2
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Figure 4.5: Time evolution of drug amount in the two compartments Q1 (left panel) and Q2 (right
panel) for five administration strategies with the same infusion rate I = Iopt = V2 Copt κe κ21/κ12
and different loading doses. Dashed and dotted lines represent the solutions for loading doses
D = Dcons = Copt V2 κ21/κ12 and D = Dagg = V2 Copt λ1/κ12, respectively. In both panels, Q and
t are measured in units of I/κe and κ−1

e , respectively, κ12 = 2κe, and κ21 = κ12/4. Q̄1 = Iopt/κe
and Q̄2 = Ioptκ12/κeκ21 are the asymptotic stationary solutions corresponding to the optimal
concentration C̄2 = Copt in the second compartment.

rapidly grows above Q̄2 (with τ1), reaches a maximum and eventually converges to Q̄2 from above.

Such a strategy should be adopted when it is very important to reach the target concentration

Copt in a very short time. However, it is possible to administer such a large bolus D only if very

high concentrations are tolerated in the first compartment and a concentration slightly higher than

Copt is tolerated in the second compartment.

For all strategies the infusion rate is constant and must be tuned to obtain the optimal therapeu-

tic concentration Copt in the stationary late time regimen. The loading dose must be determined

to reach the therapeutic concentration as soon as possible, without however exceeding toxic levels.

4.3 Population models of kinetics

In the previous sections I presented and discussed some features of two linear models of pharma-

cokinetics, with one and two compartments, respectively. The parameters entering the equations,

such as κ and V in the one-compartment model of Eq. (4.3), or κ12, κ21, κe, V1, and V2 in the equa-

tions of the two-compartment system [Eqs. (4.14) and (4.15)] must be determined by comparing

the solutions of the kinetic equations against data measured in patients. If several measurements

of drug concentrations were available for a single patient, it would be possible to determine the

relevant kinetic parameters of each patient, through ordinary non-linear fit procedures. This ap-
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proach would provide a nice validation of the model for each patient but would be useless for

clinical applications.

As discussed in Sec. 2.4, a mathematical model of pharmacokinetics is appealing from a clinical

perspective when it is able to simulate the evolution of drug concentration for specific patient

conditions and for a given dosage regimen, by expressing the kinetic parameters as a function of

patient-specific variables. For instance, the clearance kdrug of a drug in a patient undergoing renal

replacement therapy can be expressed as

kdrug = θ0 + θc kcrea + θd ddial, (4.64)

where kcrea is creatinine clearance, ddial is the dialysis dose, and θ0, θc, θd and are free parameters

to be determined.

To formalise the problem in mathematical language, I must construct a so-called multilevel

model with two levels. At patient level, kinetic parameters are computed as functions of patient

variables plus some free parameters. At drug-concentration level, drug amounts are determined

as solutions of a system of differential equations (compartment model) in terms of the kinetic

parameters resulting from the former level.

To construct this model, measured drug concentrations and clinical variables must first be

collected for several patients. Hence, a non-linear fitting procedure with mixed effect is the ap-

propriate statistical tool to select significant patient variables and estimate optimal values of the

free parameters. As illustrated in Sec. 4.3, this procedure allows the user to deal with statistical

fluctuations at both patient and drug-concentration levels.

Imagine that two patients have the same value of creatinine clearance kcrea and do not receive

renal replacement therapy. For both patients, Eq. (4.64) returns the same value of drug clearance

kdrug. This value is called the population value of drug clearance. However, there may be unknown

effects or unmeasured variables that may affect the clearance of each patient. Such effects may

include, for instance, specific clinical conditions that are not represented in the development sample

or the absence, in some patients, of frequently-enough measured values of important laboratory

tests (e.g. creatinine clearance). In these cases, the individual drug clearance kdrug,i for the i-th

patient may differ from the population value

kdrug,i = kdrug + ηk,i (4.65)

where ηk,i summarises all unknown and unmeasured effects. Similarly, all the relevant individual

kinetic parameters can be expressed by a population parameter, obtained as a deterministic func-

tion of patient features plus some effect ηi. For instance the individual distribution volume can be
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written as

Vi = V + ηV,i (4.66)

For each patient the pharmacokinetic equations described in the previous sections must be solved

using his/her individual values of pharmacokinetic parameters. The solution of these equations

provides the predicted individual plasma drug concentrations Ci(t) at any time for each patient.

Let me define Cij as the values of drug concentrations measured at times tij , with j = 1, . . . , ni,

for patient i. These values of Cij will in general differ from the respective predicted values Ci(tij)

for several reasons: measurement errors and uncertainties, approximations of the kinetic model,

etc. . . . Thus, I write

Cij = Ci(tij) + εij . (4.67)

The terms ηk,i, ηV,i, and εij represent all the unknown and non-modelled effects at both patient

(interindividual) and measurement (intraindividual) level, respectively. They can be statistically

modelled assuming that they are a realisation of some stochastic variables with a certain probability

distribution. As usual the simplest choice is to assume a normal distribution for both of them. If

I define the vector of interindividual effects as ηi = (ηk,i, ηV,i, . . . ),

ηi ∼ N (0,Ω), εij ∼ N (0, σ2), (4.68)

where Ω is the covariance matrix of ηi and σ2 is the variance of εij . Under these assumptions it is

possible to write a likelihood function

L(θ,Ω, σ; {Cij}i=1,...,m;j=1,...ni
), (4.69)

for the vector θ of parameters describing the kinetic model (e.g., θ = (θ0, θc, θd, . . . ), see Eq. (4.64),

Ω, and σ, and given the set of all the measured values of concentration Cij for all m patients.

Maximum likelihood estimates of θ, Ω, and η can be obtained by approximation methods as

detailed below. After parameter estimation it is also possible to obtain post-hoc estimates of the

interindividual effects ηi by maximising their posterior probability given the maximum likelihood

estimates θ̂, Ω̂, and η̂.

To illustrate the procedure to fit a nonlinear model to a set of data which are clustered by

patient, it is first convenient to describe how to fit data on a single subject. In Sec. 4.3.3 I shall

extend this procedure to data measured on a population of subjects.
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4.3.1 Single-subject model

Let me consider a model describing the evolution of a certain variable y(t) (e.g., plasma drug

concentration in a pharmacokinetic model, blood glucose concentration in a model of glucose

metabolism, etc. . . ) as a function of time t. In general, the function y depends also on a vector ψ

of patient-dependent parameters:

y = y(t;ψ). (4.70)

For instance, in the one-compartmental model, the solution of Eq. (4.11) can be expressed in terms

of plasma drug concentration C as

C(t) =
(
D

V
− I

k

)
e−κt + I

k
. (4.71)

In this case C represents the function y and the vector of free parameters is ψ = (V, k), where V is

the distribution volume and k is the drug clearance (k = κV , with κ being the elimination rate).

If the variable y is measured n times on the same subject at different tj , the measured values

yj = y(tj ;ψ) + εj (4.72)

will be affected by a residual error εj , which takes account of random statistical fluctuations around

the theoretical value y(tj ;ψ), associated with measurement errors and unpredictable effects which

are not accounted for by the model.

If the residuals εj have probability density distribution f(ε), the likelihood of observing the set

of measured values yj is

L(ψ, σ; {yj}) = p({yj}|ψ, σ) =
n∏
j=1

p(yj |ψ, σ) =
n∏
j=1

f (yj − y(tj ;ψ)) , (4.73)

where p(yj |ψ, σ) is the probability of observing a single measured value yj and p({yj}|ψ) is the

probability of observing the set of measured values {yj} for a given vector of parameters ψ and

residual variance σ2. If εj have a normal distribution with zero mean and variance σ2

f(ε) = 1
σ
√

2π
e−ε

2/2σ2
, (4.74)

the logarithm L of the likelihood L is

L(ψ, σ) = −n log(σ
√

2π)− 1
2σ2

n∑
j=1

[yj − y(tj ;ψ)]2 . (4.75)
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The parameters ψ and the residual variance σ2 are eventually determined by a standard max-

imisation of the non-linear log-likelihood function L. Defining the sum of squared residuals S

as

S(ψ) =
n∑
j=1

[yj − y(tj ;ψ)]2 , (4.76)

the maximum-likelihood values ψ̂ and σ̂ are obtained by imposing that the derivative of L with

respect to σ and its gradient with respect to ψ vanish:

0 = ∇ψL|ψ=ψ̂ = − 1
2σ̂2∇ψS(ψ̂), (4.77)

0 = ∂L
∂σ

∣∣∣∣
σ=σ̂,ψ=ψ̂

= −n
σ̂
− 1
σ̂3S(ψ̂) (4.78)

The first equation expresses the standard least-square condition, that is

ψ̂ = arg minS(ψ), (4.79)

where arg min f(x) indicates the value of the argument x that minimises the function f . The

residual variance can be obtained from the second equation as

σ̂2 = S

n
. (4.80)

Different error models (i.e., models with different density distribution f) are treated in an

analogous way. In the special case where the error is proportional to the value of y

yj = y(tj ;ψ) + εj y(tj ;ψ), (4.81)

with εj having a normal distribution, I may write

yj ≈ y(tj ;ψ) exp(εj), (4.82)

if the error term εj y(tj ;ψ) is small with respect to the deterministic part y(tj ;ψ), that is εj � 1.

In this case, the analysis as for normal additional error terms can be applied on the log-transformed

function log(y):

log(yj) ≈ log(y(tj ;ψ)) + εj . (4.83)
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4.3.2 Several subjects

Unique model

To fit the general model of Eq. (4.70) on data yij measured on m subjects i, one may first assume

that the pharmacokinetic parameters ψ are the same for every subject, that is

yij = y(tij ;ψ) + εij , i = 1, . . . ,m, j = 1, . . . , nj . (4.84)

In this way all the measurements yij are considered at the same level and ψ̂ and σ̂ are determined

as discussed above for the case of a single patient

ψ̂ = arg minS(ψ), σ̂2 = S

n
, (4.85)

where S is the sum of all squared residuals, over all patients j and over all measurements i

S(ψ) =
m∑
i=1

ni∑
j=1

[yij − y(tij ;ψ)]2 . (4.86)

Several models

The above approximation is certainly unrealistic because the parameters ψ are expected to be very

different from one patient to another. For instance, in a pharmacokinetic model, drug clearance

is expected to be much lower in a patient with renal failure than in a patient with normal renal

function. To take this variability into account one may fit one model for each patient, as illustrated

above, obtaining m vectors ψ̂i and n residual variances σi. Such a procedure requires that the

number of observations ni for each patient is large enough to allow to construct a model out of

the nj couples (tij , yij). Furthermore, it does not allow the variability of the parameters ψ to be

described as a function of patient characteristic.

4.3.3 Population model

In this Section, I present the procedure to construct a model, on data measured on several

patients, which overcomes the drawbacks discussed in the above section. I require that the model

• be unique and estimated on available data from all patients,

• take account of inter-patient variability,

• describe inter-patient variability as a function of patient features.
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To satisfy the last requirement, one must express the vector of parameters ψ as

ψ = ψ(x; θ). (4.87)

Thus, ψ are no longer free parameters. They are determined as a function of x, a vector of patient

features (i.e., for a pharmacokinetic model, it may include creatinine clearance, body weight,

plasma albumin concentration, etc. . . ), and θ, a vector of free parameters.

The values of ψ computed with the above formula are called population parameters and usually

denoted by ψpop. They represents the best estimate of the single-patient values ψj taking into

account patient characteristics x. Thus, two patients with the same value of all the variables x

have the same ψpop. However, in the same way as a single observation of a variable yij differs from

its theoretical prediction y(tij) by the residual εij , similarly the vector parameters ψi are expected

to differ from their population values ψpop by residual terms ηi:

ψi = ψ(xi; θ) + ηi (4.88)

Namely, ηi is a vector of random terms that describe residual inter-patient variability unexplained

by the patient features x included in the model.

If the distribution of ηi is multinormal, with covariance matrix Ω, its probability density may

be written as

g(η) = 1√
(2π)k det Ω

e−η
T Ω−1η/2, (4.89)

where k is the length of the vector ψ. Then, the probability that a patient with feature xi has a

set of parameters ψi is

p(ψi(xi)|θ,Ω) = g(ψi − ψ(xi; θ)). (4.90)

From Eq. 4.73, the probability of observing the measured values {yij(tij)}j=1,...,ni
at times {tij}j=1,...,ni

for subject i and for a given set ψi is

p({yij(tij)}j=1,...,ni
|ψi, σ) =

ni∏
j=1

f (yij − y(tij ;ψi)) . (4.91)

Hence assuming a normal distribution for observations yij the probability of measuring {yij}j=1,...,ni
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for a patient with feature xi is

p({yij(tij , xi)}j=1,...,ni
|θ, σ,Ω) =

∫
dkψi p({yij(tij)}j=1,...,ni

|ψi, σ)p(ψi|θ,Ω)

=
∫

dkη
ni∏
j=1

f [yij − y(tij ;ψ(xi; θ) + η)] g(η)

= 1

σni

√
(2π)k+ni det Ω

∫
dkη e−[Si(η;θ)/2σ2+ηT Ω−1η/2], (4.92)

where

Si(η; θ) =
ni∑
j=1

[yij − y(tij ;ψ(xi; θ) + η)]2 (4.93)

is the sum of squared residuals for subject i, computed at a given value of η.

Finally, the probability density of observing the whole set of measurements {yij} at times {tij}

for all patients i = 1, . . . ,m is

p({yij(tij , xi)}|θiσ,Ω) =
m∏
i=1

p({yij(tij , xi)}j=1,...,ni
|θ, σ,Ω). (4.94)

This probability gives the likelihood of the free parameters (θ, σ,Ω) for the given set of observations

{yij}

L(θ, σ,Ω; {yij}) = p({yij(tij , xi)}|θiσ,Ω), (4.95)

which must be maximised to determine the best-fit values θ̂, σ̂, and Ω̂ of all model parameters.

The logarithm of the likelihood is

L(θ, σ,Ω; {yij}) =
m∑
i=1
Li(θ, σ,Ω; {yij}j=1,...ni

). (4.96)

where Li(θ, σ,Ω; {yij}j=1,...ni
) is the log-likelihood for a single subject i:

− 2Li(θ, σ,Ω; {yij}j=1,...ni
) = (ni + k) log(2π) + 2ni log σ + log det Ω

− 2 log
[∫

dkη e−[Si(η;θ)/σ2+ηT Ω−1η]/2
]

(4.97)

Post-hoc estimation of η

After the model parameters have been determined, the individual variability terms ηi can be

estimated by maximising their Bayesian posterior density, where the parameters θ, σ, and Ω are

fixed to their maximum-likelihood estimates θ̂, σ̂, and Ω̂

p({yij(tij)}j=1,...,ni |ψi, σ̂)p(ψi|θ̂, Ω̂). (4.98)
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Thus, ηi are determined by maximising

e−[Si(η;θ̂)/2σ̂2+ηT Ω̂−1η/2], (4.99)

that is solving the equation
∇ηSi(ηi; θ̂)

2σ̂2 + ηTi Ω̂−1 = 0. (4.100)

Laplace approximation of the likelihood

There exists several strategies to maximise the likelihood of Eq. (4.95). I evaluate the integral of

Eq. (4.97) computed through the Laplace approximation.

I define Γi(η; θ) and ∆i(η; θ) the gradient and the Hessian of S(η; θ) with respect to the vector

η. I expand the sum of squared residuals Si up to the 1second order around a certain η̂i:

Si(η; θ) ≈ Ŝi + Γ̂Ti (η − η̂i) + 1
2(η − η̂i)T ∆̂i(η − η̂i) (4.101)

where

Ŝi = Si(η̂i; θ), Γ̂i = Γi(η̂i; θ), ∆̂i = ∆i(η̂i; θ). (4.102)

To compute the integral in Eq. (4.97), it is convenient to define δ = η − η̂i:

Si
σ2 + ηTΩ−1η ≈ Ŝi

σ2 + η̂Ti Ω−1η̂i +
(

Γ̂Ti
2σ2 + η̂Ti Ω−1

)
δ + δT

(
Γ̂i

2σ2 + Ω−1η̂i

)
+ δT

(
∆̂i

2σ2 + Ω−1

)
δ.

(4.103)

Defining

A =
(

∆̂i

2σ2 + Ω−1

)
, B =

(
Γ̂i

2σ2 + Ω−1η̂i

)
, C = Ŝi

σ2 + η̂Ti Ω−1η̂i, (4.104)

the above expression becomes

C + δTAδ +BT δ + δBT = C −BTA−1B +
(
δ +A−1B

)T
A
(
δ +A−1B

)
(4.105)

Thus the last term in Eq. (4.97) simplifies as

− 2 log
[∫

dkη e−[Si(η;θ)/σ2+ηT Ω−1η]/2
]

≈ C −BTA−1B − 2 log
[∫

dkδ e−(δ+A−1B)T
A(δ+A−1B)/2

]
= C −BTA−1B + log detA− k log(2π). (4.106)
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Eventually

− 2Li(θ, σ,Ω; {yij}j=1,...ni
) =

Ŝi
σ2 + η̂Ti Ω−1η̂i + ni log(2πσ2) + log det

(
1 + Ω∆̂i

2σ2

)

−

[
Γ̂i

2σ2 + Ω−1η̂i

]T [
∆̂i

2σ2 + Ω−1

]−1 [
Γ̂i

2σ2 + Ω−1η̂i

]
. (4.107)

All estimation methods for nonlinear mixed-effect models use a different variant of this approx-

imation, by adopting different approximations for Γ̂i and ∆̂i and a different choice for the vector

η̂i. Here I present only the first order (FO) method and the first order conditional estimation

(FOCE) method, as implemented in NONMEN [200], the program used to estimate the param-

eters of the pharmacokinetics model investigated in this Thesis. Both methods are based on the

same approximation of ∆̂i, but different choices of η̂i.

First order approximation of ∆̂i

The Hessian matrix ∆̂i with its expectation value over the intraindividual model

∆̂i ≈ E(∆̂i) =
∫

dniy p({yij(tij)}j=1,...,ni
|ψi, σ) ∆̂i. (4.108)

To compute this integral, I first prove a more general expression. Let p be the density probability

of a stochastic variable x, and p depend on some parameter vector ν. Then

∫
dx p(x; ν) = 1. (4.109)

Let G and H be 1the gradient and the Hessian with respect to ν of the log-likelihood:

G = ∇ν log p = ∇νp
p

(4.110)

H = ∇ν∇ν log p = ∇ν∇νp
p

− (∇νp)(∇νp)T

p2 = ∇ν∇νp
p

−GGT . (4.111)

Then, the expectation value over the realisation of x of the Hessian H is

E(H) = E
(
∇ν∇νp

p

)
− E

(
GGT

)
. (4.112)

The first expectation value vanishes:

E
(
∇ν∇νp

p

)
=
∫

dx p ∇ν∇νp
p

= ∇ν∇ν
∫

dx p = 0. (4.113)
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I have therefore proved that

E(H) = −E
(
GGT

)
. (4.114)

Using now the definition of ∆̂i

∆̂i = ∇η∇ηSi|η=η̂ , (4.115)

the expression for the probability pi of measuring {yij} for individual i of Eq. (4.91), and the

definition of Si of Eq. (4.93)

pi = p({yij(tij)}j=1,...,ni
|ψi, σ) = 1

(2πσ2)ni/2
e−Si/2σ2

, (4.116)

it is easy to show that

Γi = ∇ηSi = −2σ2∇η log pi, (4.117)

∆i = ∇η∇ηSi = −2σ2∇η∇η log pi. (4.118)

Thus, using Eq. (4.114)

E(∆̂i) = 1
2σ2E(Γ̂iΓ̂Ti ). (4.119)

To compute this expectation value I use the explicit form of Si of Eq. (4.93) together with

Eq. (4.116):

Γi = ∇ηSi(η; θ) = 2
ni∑
j=1

[yij − y(tij ;ψ(xi; θ) + η)]∇ψy(tij ;ψ(xi; θ) + η) (4.120)

The observations {yij}j=1,...,ni
of the i-th subject are statistically independent and each with

expectation values y(tij ;ψ(xi; θ) + η). As a consequence

E(Γ̂iΓ̂Ti ) = 4
ni∑
j=1
∇ψy(tij ;ψ(xi; θ) + η)∇ψy(tij ;ψ(xi; θ) + η)E

[
(yij − y(tij ;ψ(xi; θ) + η))2

]∣∣∣∣∣∣
η=η̂

.

(4.121)

Since the variance of each observation is σ2 I eventually find the expression for the first-order

approximation of ∆̂i

∆̂i ≈ E(∆̂i) = 2
ni∑
j=1
∇ψy(tij ;ψ(xi; θ) + η)∇ψy(tij ;ψ(xi; θ) + η)

∣∣∣∣∣∣
η=η̂

. (4.122)
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The first-order (FO) method

The simple first-order (FO) method consists of approximating ∆̂i as in Eq. (4.122) and expanding

Si around the population expectation value of the inter-individual effect η, i.e.

η̂i = E(ηi) = 0. (4.123)

With these assumptions Eq. (4.107) reads:

− 2Li(θ, σ,Ω; {yij}j=1,...ni
) =

Ŝi
σ2 + ni log(2πσ2) + log det

(
1 + Ω∆̂i

2σ2

)
−

[
Γ̂i

2σ2

]T [
∆̂i

2σ2 + Ω−1

]−1 [
Γ̂i

2σ2

]
, (4.124)

with

Γ̂i = ∇ηSi(η; θ)|η=0 = 2
ni∑
j=1

[yij − y(tij ;ψ(xi; θ))]∇ψy(tij ;ψ(xi; θ)) (4.125)

and

∆̂i ≈ 2
ni∑
j=1
∇ψy(tij ;ψ(xi; θ))∇ψy(tij ;ψ(xi; θ)). (4.126)

The first-order conditional estimation (FOCE) method

The first-order conditional estimation (FOCE) method consists instead of expanding Si for each

subject i around the its post-hoc conditional estimate η̂i obtained by maximising the posterior

probability of ηi, that is by solving Eq. (4.100). This implies that the total log-likelihood of

Eq. (4.96), obtained by summing over all patients the individual log-likelihood computed with the

Laplace approximation of Eq. (4.107) must be maximised with η̂i satisfying

Γ̂i
2σ̂2 + η̂Ti Ω̂−1 = 0. (4.127)

which yields

− 2Li(θ, σ,Ω; {yij}j=1,...ni) = Ŝi
σ2 + η̂Ti Ω−1η̂i + ni log(2πσ2) + log det

(
1 + Ω∆̂i

2σ2

)
. (4.128)

In practice, the parameter estimates are determined by iteratively executing the following steps

until convergence:

1. determine θ̂, σ̂, and Ω̂, by maximising the total log-likelihood;

2. compute the post-hoc value of η̂i, for i = . . . ,m using Eq. (4.127);
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3. evaluate again the log-likelihood using the new values of η̂i in Eq. (4.128).

To efficiently estimate the model parameters, it is convenient to adopt first the FO method to

get an estimate of the post-hoc values η̂i. Second, these values can be used as initial conditions

for η̂i to refine the estimate of the parameters through the FOCE method.
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Chapter 5

PHARMACOKINETIC MODELS OF VANCOMYCIN

5.1 Methods

5.1.1 Development sample

The models presented in this Chapter were developed using retrospective data collected from

the electronic health record MargheritaTre (Chap. 1) in the general ICU of San Giovanni Bosco

Hospital, Turin from 2008 to 2017. During this period MargheritaTre recorded 4689 admissions

to the ICU, of whom 871 patients received intravenous vancomycin. Plasma drug concentration

was measured in 157 patients of whom 141 patients had at least one measurement of creatinine

clearance. Vancomycin concentration was measured using the analyser system Vista 1500 R© by

Siemens.

Among all the ICUs using MargheritaTre, the integration with the laboratory information

system (LIS) has been active since 2008 only in Turin ICU. For technical issues, integrations with

the LIS have been recently installed in the other ICUs and only a few patients with vancomycin

concentrations have been recorded in the databases of 5 ICUs. Furthermore, the number of patients

with measured vancomycin concentrations and the number of measurements per patients is highly

variable (see Table 5.2). Data quality was also suboptimal because of technical problems of the LIS

in the centre with the highest number of patients (centre 2). For several patients the withdrawal

time of blood samples for laboratory tests was missing and only the date was available.

A study conducted on data from all the ICU would have introduced spurious variability without

being truly multicentric, but representative almost exclusively of Turin situation. I have therefore

decided to develop the models presented in this Chapter using data only from Turin centre. Data

from the other ICUs were used for external validation.
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N %
Sex (male) 85 60.3
Mechanical ventilation 120 85.1
Vasoactive drugs 95 67.4
Continuous renal replacement therapy 9 6.4

Mean SD Q1 Median Q3 Missing
Age (yr) 61.5 14.7 53 64 73 0
Height (cm) 167 8.6 161 167.5 174 11
Weight (kg) 80.5 20.0 67 76.5 92 0
Mean arterial pressure (mmHg) 84.5 14.8 74 83 92 0
Systolic arterial pressure (mmHg) 130 22 114 130 145 0
Diastolic arterial pressure (mmHg) 61 12 52 60 69 0
Heart rate (min−1) 85 17 72 85 96 0
Urine output (ml/d) 1284 1579 125 300 2400 0
Tympanic temperature (◦C) 37.2 0.7 36.7 37.2 37.7 6
Arterial lactate (mmol/l) 1.2 0.7 0.8 1 1.4 0
Arterial pH 7.46 0.06 7.43 7.46 7.5 0
Arterial blood glucose (mg/dl) 147 36 122 139 169 0
Arterial oxygen pressure (mmHg) 115 36 89 110 134 0
White blood cells (103 × µl−1) 13.8 7.1 9.0 12.2 16.7 0
Haematocrit (%) 30.0 4.1 27.4 29.4 32 0
Platelets (103 × µl−1) 257 172 140 222 345 0
Plasma albumin (g/l) 25.6 5.0 22.5 26 29 2
Plasma creatinine (mg/dl) 1.1 0.8 0.6 0.8 1.3 0
Creatinine clearance (ml/min) 89.6 74.5 32 71 143 0
Alanine transaminase – ALT (IU/l) 71 194 19 29 52 0
Aspartate transaminase – AST (IU/l) 84 261 21 33 48 0
Direct bilirubin (mg/dl) 0.79 1.57 0.18 0.28 0.54 0
Indirect bilirubin (mg/dl) 0.21 0.38 0.08 0.13 0.19 0
Total bilirubin (mg/dl) 1.0 1.8 0.29 0.45 0.68 0

Patients Mean SD Q1 Median Q3
Dopamine (µg/min/kg) 33 8.3 4.2 5.1 7.3 10.3
Dobutamine (µg/min/kg) 9 4.1 1.5 3.0 3.8 5.3
Epinephrine (µg/min/kg) 91 0.10 0.05 0.064 0.085 0.11
Norepinephrine (µg/min/kg) 89 0.10 0.05 0.065 0.089 0.11
VIS 95 21 12 12 18 24

Table 5.1: Patient characteristics and treatments. Upper table: dichotomous variables. Central
table: patient characteristics – continuous variables. Lower table: dosage of vasoactive drugs and
vasoactive inotropic score (VIS) – continuous variables.

5.1.2 Covariates

A descriptive analysis of patient characteristics and treatments received is provided in Table 5.1

for categorical and continuous variables, respectively. The mean age was 61.5 yr, 85 patients were

males (60.3%), 120 received mechanical ventilation (85.1%), 95 (67.4%) vasoactive drugs, and 9

continuous renal replacement therapy (6.4%).

The model was developed on 300 serum vancomycin concentrations (2.1 measurements per
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centre ID patients observations observations/patient model manufacturer
1 1 5 5 Taurus Werfen
2 41 223 5.4 Vista 1500 Siemens
3 12 31 2.6 Dimention Siemens
4 8 13 1.6 Vista 1500 Siemens
5 1 3 3 Taurus Werfen

total 63 275 4.4

Table 5.2: Number of patients per centre, measured vancomycin concentrations, and measurement
system in the validation set.

patient on average) testing as covariates all the variables presented in Table 5.1. Validation was

performed on 275 serum vancomycin concentrations from 63 patients from 5 ICUs.

Given the retrospective and observational nature of the study, neither the sampling-time sched-

ule nor the drug-dose protocol could be designed to optimise the estimation of pharmacokinetic

parameters according to ED optimality concepts [183]. Variables tested as possible model covari-

ates where chosen to account for sources of variation in the pharmacokinetic parameters, associated

either with patient conditions (altered renal, hepatic, cardiovascular function) or with treatments

received during the ICU stay, as reviewed in Sec. 2.5 (see also Fig. 2.9). Those variables were

selected by a panel of experts, including intensivists and pharmacologists.

As demonstrated in previous investigations (see Sec. 3.2), the most important predictive fac-

tor of vancomycin clearance is the GFR, since renal excretion is the main mechanism respon-

sible for the elimination of this drug. A good estimate of GFR is given by creatinine clear-

ance [203, 187] measured on the basis of 8, 12, or 24-hour urine collection. Serum creatinine and

estimated creatinine clearance obtained by Cockcroft–Gault or Modified-Diet-in-Renal-Disease for-

mulas [50, 111] fail instead to provide reliable estimates of renal function [87], especially in critically

ill patients [55, 155, 168, 173]. Accordingly, the models presented in this Chapter have been con-

structed using only measured values of creatinine clearance obtained by directly measuring serum

creatinine concentration, urine creatinine concentration, and urine flow.

For each treatment I recorded the initial and final dates and times. Ventilation and continuous

renal replacement therapy were tested in the model as dichotomous variables with value 1 in the

period when the patient received the treatment, 0 otherwise. I did not introduce in the model any

further details on those treatments (e.g., ventilator parameters or setting of CRRT) since available

data were not reliable. Conversely, more precise information was available on the administration

of vasoactive drugs. I tested both the dosage of each molecule and the vasoactive inotropic score,

an aggregated variable introduced to quantify the impact of the pharmacological cardiovascular
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extraction

vital signs
laboratory tests
treatments
drug administrations
(see Table 5.1)

variable choice

clinical experts
phyisological principles

pre-processing

unit correction
outliers identification
variable interpolation

data management

fit

FOCE estimation
forward selection
backward elimination

output

pharmacokinetic parameters
as functions of patient
variables
prediction of plasma drug
concentrations as function of
time and patient variables

model development

validation

goodness of fit
external validation

clinical interpretation

covariate interpretation
single patient simulations

model test

Figure 5.1: Workflow of model construction.

support [205]. The score weights the dosage of each molecule according to the formula

VIS = dopamine
µg/kg/min + dobutamine

µg/kg/min + 10× milrinone
µg/kg/min + 100× epinephrine

µg/kg/min

+ 100× norepinephrine
µg/kg/min + 10 000× vasopressin

U/kg/min . (5.1)

5.1.3 Data management

Data were loaded into R data frames from MargheritaTre servers using the data load tools

presented in Sec. 1.3 and eligible patients selected as described in the previous section. I plotted

the distribution of every variable (laboratory tests, vital signs, drug administrations) to identify

outliers and possible errors in the unit of measurement. Errors were corrected and clinically non-

plausible outliers were eliminated (see Fig. 5.1 for a workflow diagram of the process of model

construction).

I then wrote a NONMEM data input file (.dta), using, for each patient, only data (laboratory

test and vital signs and treatments) relative to the period elapsing between the first vancomycin

administration (tfirst) and the last measurement of plasma vancomycin concentration (tlast). NON-

MEM input files are space separated text files with the following required columns [5]:

ID: Numeric ID for patients.

DAT1, TIME: Event date and time.
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EVID: Event type.

0. Observation — measured value of plasma drug concentrations in the central compartment.

When EVID = 0, DV must not be null.

1. Drug administration. When EVID = 1, the fields AMT and RATE must not be null and

DAT1 and TIME contains the initial date and time of drug administration.

2. Other event — change of value of other variables.

DV: Measured value of drug concentration.

AMT, RATE: Amount and rate of drug administration.

In addition, further variables may be added to the .dat file with any column name. The rows must

be written in ascending order of date and time (DAT1 and TIME) and the values of covariates

in each row are valid from the date-time of the previous row to the date-time of the current row.

Said vi the value of the covariate v in the i-th row,

v(t) = vi, for ti−i < t ≤ ti. (5.2)

The NONMEM routines (ADVAN1 and ADVAN3) used to develop the model integrate the linear

differential equations Eqs. (4.3), (4.14), and (4.15) piecewise in every time interval [ti−i, ti]. The

coefficients of the equations are kept constant for the whole interval and computed using the

expressions of the structural model (see Sec. 4.3) as functions of covariate values from the i-th

record.

The rules to create the rows of the .dta input file must be fixed according to these behaviours of

NONMEM. In particular, it is important to adopt the most suitable approximation for the choice

of the initial and final validity times for each type of variable.

Treatment variables. For variables describing treatment settings, such as the dosage of a drug, the

initial and final validity times coincide with the start and the end of the treatment. In Table 5.3 I

illustrate how to complete the NONMEM input file with the dosage of a drug administered from

time 2 to time 3 with dosage 10, from time 4 to time 5 with dosage 20, and from time 5 to time 7

dosage 15. Five NONMEM events are needed to represent this sequence of administrations

1st row: Start of the first administration at time 2. The variable DOS has value 0 because the

drug is not administered at times earlier than 2.

2nd row: End of the first administration at time 3. DOS = 10 indicates that the dosage is 10

starting from the time of the previous record.
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TIME DOS
2 0
3 10
4 0
5 20
7 15

Table 5.3: Columns of NONMEM input file relative to drug dosage for a drug administered from
time 2 to time 3 with dosage 10, from time 4 to time 5 with dosage 20, and from time 5 to time 7
dosage 15.

3rd row: Start of the second administration ad time 4. DOS = 0 indicates that no drug is

administered from t = 3 to t = 4.

4th row: Change of dosage at time 5, from 20 to 15. DOS = 20 indicates that the drug dosage

is 20 from t = 4 to t = 5.

5th row: End of drug administration at time 7. DOS = 15 indicates the dosage of the last period

of administration, t = 5 to t = 7.

Vital signs and laboratory tests. If two values of the same variable are measured at two different

times ta and tb, the variable changed its value at a certain time in between ta and tb. In the absence

of further information (e.g., details on measurement technique or treatments that may affect the

value of the variable), it is reasonable to assume that the change happened at t̄ = (ta + tb) /2.

Thus, if numerical values va, vb, vc are measured at times ta, tb, tc, I assume that va, vb, vc are

valid for any t < t1, t1 < t < t2, and t > t2, respectively, with t1 = (ta + tb) /2, t2 = (tb + tc) /2

(see Fig. 5.2). Accordingly, the events in the NONMEM input file are coded as illustrated in

Fig. 5.2, right panel. In the first row I write the value va with the time t1 (v = va before t1), vb

with time t2 (v = vb from t1 to t2), and vc with tlast (v = vc for any after t2, up to the time of the

last record t3 = tlast, corresponding to the last measurement of plasma drug concentration).

Creatinine clearance. The above construction of the validity time intervals cannot be applied to

creatinine clearance. This test is performed by measuring the total amount of drug eliminated

in urine in 24 hours, according to Eq. (2.43). For instance, let assume the measured value of

creatinine clearance be 90ml/min at 7:00 a.m. on day 3, and 110ml/min at 7:00 a.m on day 5.

It is reasonable to assume that creatinine clearance is 90ml/min during the 24 h preceding the

first observation (from 7:00 a.m. of day 2 to 7:00 a.m. of day 3) and 110ml/min during the 24 h

preceding the second observation (from 7:00 a.m. of day 4 to 7:00 a.m. of day 5). In the time

interval from 7:00 a.m. of day 3 to 7 a.m. of day 4, no measured value is present. With no further

available information, I halve this period and assume that creatinine clearance is 90ml/min until

7:00 p.m. of day 3, and 110ml/min afterwards. If I had instead applied the naive construction
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●

●

●

t

v

t a t b( t a + t b )/2 t c( t b + t c )/2

TIME VAR
t1 = (ta + tb) /2 va
t2 = (ta + tb) /2 vb
t3 = tlast vc

Figure 5.2: Left panel: Construction of validity time intervals for the values of a generic patient
variable measured at times ta, tb, and tc. Right panel: Corresponding columns of NONMEM
input file. tlast is the time of the last record, corresponding to the last measurement of plasma
drug concentration.

●

●

●

t

k
cr

ea

t ata − 24 h t btb − 24 h( t a + t b − 24 h)/2 t c

TIME CLCR
t1 = (ta + tb − 24 h) /2 kcrea,a
t2 = tb kcrea,b
t3 = tlast kcrea,c

Figure 5.3: Left panel: Construction of validity time intervals for the values of creatinine clearance
measured at times ta, tb, and tc. Right panel: Corresponding columns of NONMEM input file. tlast
is the time of the last record, corresponding to the last measurement of plasma drug concentration.

introduced in the previous paragraph, I would have used the first measured value of 90ml/min up

to 7:00 a.m. of day 4.

This construction is graphically represented in the left panel Fig. 5.3, for three measured con-

centrations of creatinine clearance kcrea,a, kcrea,b, and kcrea,c at times ta, tb, and tc, respectively,

with tb − ta > 24 h and tc − tb = 24 h. The table in the right panel reports the two corresponding

columns in the NONMEM data input file. The times where the value of creatinine clearance is

assumed to vary are t1 = (tb − ta − 24 h) /2 and tb.
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●

●

●

t

a

s1 s2 s3( s1 + s2 + s3 )/3 ( t b + t c )/2t a tb t c

TIME ALB
t1 = (s1 + s2 + s3) /3 aa
t2 = (tb + tc) ab
t3 = tlast ac

Figure 5.4: Left panel: Construction of validity time intervals for the values of plasma albumin
concentration measured at times ta, tb, and tc. Albumin is administered at times s1, s2, and s3
(triangles). Right panel: Corresponding columns of NONMEM input file. tlast is the time of the
last record, corresponding to the last measurement of plasma drug concentration.

Plasma albumin concentration. The simple construction illustrated in Fig. 5.2 may be improved if

additional information is known about factors that can affect the value of the considered variable.

Plasma albumin concentration, for instance, is artificially modified by intravenous administration

of albumin. I construct the times at which this variable changes between two measurements as the

mean of the times at which albumin is administered. If there is no administration, I follow the

general procedure of 5.2. This construction is represented in Fig. 5.4 for three measurements of

albumin aa, ab, and ac measured at times ta, tb, and tc. Albumin is administered at times s1, s2,

and s3, all within ta and tb. Plasma albumin concentration is assumed to change from aa to ab at

time t1 = (s1 + s2 + s3) /3 and from ab to av at time t2 = (tb + tc) /2.

5.1.4 Model construction and variable selection

Model covariates were automatically selected among the set of clinically relevant variables pre-

sented in Table 5.1 in a forward stepwise procedure, followed by a backward elimination. Variables

were included in the model if the difference in the objective function value (OFV, namely the

log-likelihood statistic) was statistically significant (using log-likelihood ratio test) with p < 0.05.

At each step, I tested different mathematical relationships between the pharmacokinetic parame-

ters and the covariate: linear, power-law, logarithmic, and in interaction with the other covariates

already selected.

Goodness-of-fit of final models was assessed by graphically comparing observations and pre-

dictions, plotting conditional weighted residuals (CWRES [86]) versus time and observed con-
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centrations, and computing the shrinkage. The distribution of estimated model parameters was

constructed by bootstrap technique with 1000 resamplings with replacement. Monte Carlo sim-

ulations (1000 runs) were performed to draw confidence bands of model predictions. Using the

results of those simulations, variance-prediction-corrected visual predictive checks (vpcVPC [26])

and mirror plots were constructed. I also computed extended normalised predicted distribution

errors (NPDE [35, 51]), namely, empirical Bayes estimate (EBE) NPDE and CWRES NPDE to

investigate separately possible issues associated with between-subject variability and residual er-

rors [106]. I plotted their distribution and compared their quantiles against the quantiles of the

normal distribution in QQ plots. Formal non-parametric tests of normality were performed. I

performed the Wilcoxon rank-test with null hypothesis of symmetric distribution around zero, the

Kolmogorov–Smirnov test with null hypothesis of gaussian distribution with mean equal to the

sample mean and variance one, and, finally, the Shapiro–Wilk test for normality. Those analyses

were performed both in internal and external validation on the development sample (Turin ICU)

and on the validation sample (other ICUs), see Sec. 5.1.1.

All the following models were constructed using NONMEM v.7.4.1, with the FOCE method

with interaction. In the NONMEM model file .mod I included $TABLE records to export output

data to Xpose4 [9], the R package used to perform some post-processing analyses of the results of

NONMEM runs. I implemented a semi-automatic forward selection procedure of patient variables

through an R script that creates a model file for each tested variable, runs it using Perl-speaks-

NONMEM (PsN) v.4.8.1 [6], appends the output parameters to a .csv file, and logs the path

containing the results of the run, some notes, and the OFV to a file. The R script is parallelised

on 4 cores to speed up calculations. Thanks to this script it is possible, at each step of the forward

procedure, to compare the value of the OFV among all variables, perform the likelihood ratio

test, and eventually select the most significant variable that improve the goodness of fit. For each

run I also computed the covariance matrix of the estimated parameters through the NONMEM

$COVARIANCE record. The successful execution of the covariance step ensures that convergence

is properly reached and the estimated parameters are reliable. Bootstrap analyses and simulations

were performed using PsN. Plots were realised through Xpose4 library of R.

Testing all variables of Table 5.1 by replacing them one by one in the formula of a single

pharmacokinetic parameter (e.g., clearance or distribution volume) takes about 1.5 h. For a one-

compartment model (two pharmacokinetic parameters) it takes about 3 h on a machine with 4

Intel-i7 – 2 GHz cores with 8 GB memory to perform a single step of the forward procedure and

identify the most significant new variable. For a two-compartment model, there are twice as many

combinations to screen as in the one-compartment model. In this case it takes about 6 hours to

perform a single step of the forward procedure.
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5.2 One-compartment model

5.2.1 Model development

One-compartment models were constructed using the NONMEM ADVAN1 routine. A minimal

one-compartment model [see Eq. 4.3] without patient covariates was first constructed as

kvanco,i = θk e
ηk,i , (5.3)

Vi = θV e
ηV,i , (5.4)

Cij = C(tij)(1 + εij). (5.5)

Inter-individual variability was modelled as an exponential random effect to ensure that both k and

V are positive. Residual variability was modelled with a proportional error. The minimal model

provides very poor estimates in terms of population predictions (Fig. 5.5, left panel). The popula-

tion predictions are computed using for all patients the same average values of the pharmacokinetic

parameters, kdrug = θk, V = θV . That is, no patient-specific variables are taken into account at

this stage. However, the individual predictions, computed using Eqs. (5.3) and (5.4) and the post-

hoc estimates of ηk,i and ηV,i (see Appendix 4.3.3), already provide quite precise estimates of the

observed concentrations (Fig. 5.5, right panel). These results suggest that the one-compartment

model may represent a fair approximation of the kinetics of vancomycin, but the pharmacokinetic

parameters must be personalised according to the patient’s conditions. Relevant patient covariates

to explain observations were identified by visual inspection of residuals-vs-covariate using the R

package Xpose4. Plots of pharmacokinetic parameters versus covariates were used to guess the

relationship between each covariate and V and k. The mathematical forms of the relations between

covariates and pharmacokinetic parameters were chosen according to the underlying physiological

mechanisms discussed in Chap. 2 and to the result of this visual inspection.

Significant terms and the corresponding free parameters were selected using the likelihood ratio

test in a forward selection procedure, whose steps are reported in Table 5.4. All variables were

normalised using their median value. In a first phase I tested linear effects [steps (1)–(4)] and

introduced multiplicative terms with the main effects [steps (5)–(7)]. Moreover, from step (3) to

step (4) the intercept of kvanco was removed because it was not significantly different from 0, after

the introduction of the term proportional to the total body weight w.

In a second phase, the model was refined by testing non-linear effects to make the depen-

dence on covariates sharper (for exponents larger than 1) or flatter (Table 5.5). Nonlinearities

were introduced through power-law terms and the corresponding exponents were estimated as free
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Figure 5.5: Measured plasma vancomycin concentrations versus population (left panel) and indi-
vidual prediction (right panel). Population predictions are computed evolving Eq. 4.3 using for all
patients the average value of drug clearance kdrug = θk and distribution volume V = θV . Individual
predictions are computed taking into account the post-hoc estimates of ηk,i and ηV,i.

parameters. Statistical significance of these terms was assessed by the likelihood ratio test. For

variables like age, creatinine, and VIS, appearing in the model in the form (1 + θx x/x̄) (where I

indicate with x̄ the median value of the variable x), I tested both forms

[
1 + θx

(x
x̄

)αx
]
, θx ∈ R, αx > 0, (5.6)

and (x
x̄

)βx

, βx ∈ R. (5.7)

The OFV decreased significantly by introducing a power-law dependence for the creatinine

clearance kcrea with an exponent βcr ≈ 0.61. The relationship between creatinine clearance and

vancomycin clearance is therefore sublinear, implying that vancomycin clearance is not affected by

the very large values that creatinine clearance may assume (Q3 = 143ml/min (see Table 5.1). The

OFV of the model decreased significantly by expressing the dependence of the distribution volume

on creatinine plasma concentration as a decreasing exponential low. Conversely, it did not decrease

significantly by replacing the other variables with either Eqs. (5.6) or (5.7). However, since the

OFV did not increase by introducing a power-law for the covariate age, I decided to implement

this step also. Indeed power-law terms, being always positive, make the model more robust than

linear terms, which, conversely, can generate negative pharmacokinetic parameters if the values of

the associated covariate are very large.

As the last step in the construction of the structural model, I performed a final screening of the
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Model structure n OFV

(0)
kvanco = θk

V = θV
2 1693.9

(1)
kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)]
V = θV

3 1547.6

(2)
kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
V = θV

4 1506.4

(3)
kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
V = θV

[
1 + θcrea

Ccrea

0.8mg/dl

] 5 1492.1

(4)
kvanco = θcr

(
kcrea

71ml/min

)
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

[
1 + θcrea

Ccrea

0.8mg/dl

] 5 1480.6

(5)

kvanco = θcr

(
kcrea

71ml/min

)[
1 + θa

(
a

64 yr

)]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

[
1 + θcrea

Ccrea

0.8mg/dl

] 6 1469.8

(6)

kvanco = θcr

(
kcrea

71ml/min

)[
1 + θa

(
a

64 yr

)][
1 + θk,crea

Ccrea

0.8mg/dl

]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

[
1 + θV,crea

Ccrea

0.8mg/dl

] 7 1462.7

(7)

kvanco = θcr

(
kcrea

71ml/min

)[
1 + θa

(
a

64 yr

)][
1 + θk,crea

Ccrea

0.8mg/dl

]
×
[
1 + θVIS

VIS
18

]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

[
1 + θV,crea

Ccrea

0.8mg/dl

] 8 1457.7

Table 5.4: First phases of the development of the structural model with the corresponding number
of free parameters n and the value of the objective function value, OFV = −2L. Parameters were
introduced in the model if the corresponding likelihood ratio test was significant. From step (3) to
step (4) the intercept of kvanco was removed because it vanished after the introduction of the total
body weight w.

variables not included in the model by testing them in power-law form multiplying (one by one)

the four additive terms presented in the model: the three terms in kvanco proportional to kcrea, w

and δCRRT, respectively, and the unique term forming the expression of V ). I finally obtain the
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Model structure n OFV

(8)

kvanco = θcr

(
kcrea

71ml/min

)βcr [
1 + θa

(
a

64 yr

)][
1 + θk,crea

Ccrea

0.8mg/dl

]
×
[
1 + θVIS

VIS
16.4

]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

[
1 + θV,crea

Ccrea

0.8mg/dl

] 9 1448.0

(9)

kvanco = θcr

(
kcrea

71ml/min

)βcr [
1 + θa

(
a

64 yr

)][
1 + θk,crea

Ccrea

0.8mg/dl

]
×
[
1 + θVIS

VIS
16.4

]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

(
Ccrea

0.8mg/dl

)βcrea

9 1443.3

(10)

kvanco = θcr

(
kcrea

71ml/min

)βcr (
a

64 yr

)βa
[

1 + θk,crea
Ccrea

0.8mg/dl

]
×
[
1 + θVIS

VIS
16.4

]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

V = θV

(
Ccrea

0.8mg/dl

)βcrea

9 1443.1

Table 5.5: Model refinement with testing of various functional forms relating the covariate with
the pharmacokinetic parameters. n is the number of free parameters and OFV is the objective
function value, OFV = −2L.

following structural model:

kvanco = θcr

(
kcrea

71ml/min

)βcr ( a

64 yr

)βa
[
1 + θk,crea

Ccrea

0.8mg/dl

] [
1 + θVIS

VIS
16.4

]
+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT, (5.8)

V = θV

(
Ccrea

0.8mg/dl

)βcrea

, (5.9)

where kcrea and Ccrea are creatinine clearance and plasma concentration, respectively, a is age, w

total body weight, and δCRRT is a dichotomous variable that assumes value 1 when the patient

undergoes renal replacement therapy. In Table 5.6 I report the matrix of correlations among

variables included in the final model. As discussed in Ref. [30] variables with correlation greater

than 0.5 should normally not be included in the model. However, although collinearity makes

more difficult the clinical interpretation of the structure of the model (see Sec. 5.2.4), affects the

coefficients and p-values of the parameters, it does not influence the predictions and the goodness-

of-fit [109].

Finally, I reconsidered the statistical structure of the model, testing exponential and propor-

tional residual errors. The best results in terms of precision of the estimates of the fixed effects

and of the description of interindividual and residual variability were obtained with only additive
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kcrea a Ccrea VIS w

kcrea 1.00 -0.36 -0.50 -0.21 -0.07
a -0.36 1.00 0.08 -0.08 -0.06

Ccrea -0.50 0.08 1.00 0.23 0.19
VIS -0.21 -0.08 0.23 1.00 -0.08
w -0.07 -0.06 0.19 -0.08 1.00

Table 5.6: Correlation matrix of the continuous variables included in the final one-compartment
model of Eqs. (5.8) and (5.9).

parameter units value SD 95% CI
θcr ml/min 37.3 2.4 36.6 – 42.1
θk,crea – -0.17 0.02 −0.20 – −0.12
θw ml/min 12.4 1.6 10.3 – 15.1
θCRRT ml/min 17.3 2.9 10.7 – 24.6
θVIS – 0.080 0.046 0.015 – 0.18
βcr – 0.72 0.08 0.58 – 0.94
βa – -0.55 0.11 −0.33 – −0.79
θV l 77.7 6.6 64 – 90
βcrea – -0.35 0.06 −0.46 – −0.19
Ωηkηk

– 0.064 0.014 0.037 – 0.091
ΩηV ηV

– 0.21 0.06 0.07 – 0.32
σ2 (µg/ml)2 10.0 1.7 6.5 – 13.5

Table 5.7: Best-fit estimates and estimated standard deviations of the parameters of the pharma-
cokinetic model of Eqs. (5.8)–(5.12). Confidence intervals were computed by bootstrap technique.

random residual effects as

kvanco,i = kvanco e
ηk,i , (5.10)

Vi = V eηV,i , (5.11)

Cij = Ci(tij) + εij . (5.12)

The best-fit values of the model parameters and of the random-effect variances are reported in

Table 5.7, together with their maximum-likelihood standard deviation. The last column reports

the 95% confidence interval of the empirical parameter distribution obtained by constructing 1000

pharmacokinetic models starting from samples bootstrapped with repetition from the original

population. In Fig. 5.6 I compare the marginal probability density of each parameter, obtained

by bootstrap technique (histogram), with the corresponding normal distribution (solid line) built

using the maximum-likelihood estimates of mean and variance. The normal approximations of the

parameter distributions are generally good, except for a few parameters, especially the exponents

β and the variances of the random effects Ω and σ2, which show a small bias between the two

distributions. In Sec. 5.4 I shall compare confidence and prediction intervals at single-patient level,

obtained with either normal or empirical distribution.
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Figure 5.6: Normal distribution with maximum-likelihood estimates of mean and variance of the
parameters (solid lines) and bootstrap distribution (histogram) for each parameter of the one-
compartment model (see Table 5.12).
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Figure 5.7: Measured plasma vancomycin concentrations versus population (left panel) and indi-
vidual prediction (right panel) for the final one-compartment model of Eqs. (5.8) and (5.9) with
random interindividual and residual variabilities expressed by Eq. (5.10), (5.11), and (5.12).

5.2.2 Goodness of fit

In Fig. 5.7, measured drug concentrations are plotted versus population and individual predic-

tions for this final one-compartment model. The concordance between measured concentrations

and population predictions has been considerably improved with respect to the minimal model (see

Fig. 5.5) thanks to the introduction of patient covariates in Eqs. (5.8) and (5.9). The residual vari-

ability not explained by patient covariates and interindividual variability has been also significantly

reduced, as shown in the right panel of Fig. 5.7. The standard deviation of the difference between

observations and population predictions is 9.1µg/ml, whereas it is 2.2µg/ml between observations

and individual predictions. Observations fall in 94.6% of cases in the 95%-confidence interval of

predictions, estimated with bootstrap techniques. This suggests that the structural model and

the covariance structure are properly modelled. However the distance between observations and

population predictions is too wide to implement the population-model in a bedside simulator of

pharmacokinetics without measuring any concentration on the patient. Nevertheless, since indi-

vidual predictions are reliably close to observations, it would be possible to use individual post-hoc

estimated pharmacokinetic parameters to predict the evolution of drug concentration. One or two

values of plasma concentration of the patient, measured at the beginning of the antibiotic therapy,

should be input in the simulator to adapt the population values of k and V .

Shrinkage of individual weighted residual is 63%, of ηk is 16%, and of ηV is 41%. Although it

is difficult to interpret the sources of shrinkage since its value is affected by several factors [211],

it is reasonable to conclude that the large shrinkage is caused in this case by the low number of
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Figure 5.8: Conditional weighted residuals (CWRES) versus time (left panel) and predicted plasma
concentrations (right panel) for the final one-compartment model of Eqs. (5.8) and (5.9).

measured samples per patient (see Sec. 5.1.1).

Conditional weighted residuals are plotted in Fig. 5.8 versus time (left panel) and predicted

plasma concentration (right panel). No substantial model misspecification appears from those

plots.

To compare predictions on patients with different dosage regimen, sampling time, and possibly

different variability, visual predictive checks were corrected for prediction and variance and plotted

in Fig. 5.9. To construct vpcVPC, 1000 simulations were performed starting from 1000 bootstrap

sets of estimated parameters, as described above. No significant difference between model predic-

tions and simulations appears from this plot. However, simulated confidence intervals are quite

wide.

Extended NPDE of ηk and ηV EBE and CWRES were constructed using PsN and NONMEM.

In Fig. 5.10 I report their distributions (left panels) and compare their empirical quantiles versus

the theoretical quantiles of the normal distribution. The p-values of Wilcoxon (W), Kolmogorov–

Smirnov (KS), and Shapiro–Wilk (SW) tests are reported in Table 5.8. The agreement between

simulated and theoretical distributions is good and the confidence envelope of the observed quan-

tiles always contains the bisector. Means and variances of the empirical NPDE are not significantly

different from 0 and 1, except for the W test for CWRES is mildly significant. The Shapiro–Wilk

test for normality is not significant for the CWRES and mildly significant for the two EBE distri-

butions.

Three simulations were used to construct mirror plots (Fig. 5.11) of observations versus pop-

ulation predictions (upper panels) and observations versus individual predictions (lower panels).
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Figure 5.9: Variance and prediction corrected visual predictive checks (vpcVPC) versus time for
the final one-compartment model of Eqs. (5.8) and (5.9). The solid line represents the median of
the observed variance-prediction corrected plasma concentration and the dark grey area represents
a simulation-based 95% confidence interval of the median. The dashed lines represent the 5% and
95% percentiles of the observed variance-prediction corrected plasma concentration and the light
grey areas represent the corresponding simulation-based 95% confidence intervals.

NPDE mean p (W) variance p (KS) skewness kurtosis p (SW)
ηk -0.084 0.62 0.98 0.58 -0.55 0.30 0.007
ηV -0.044 0.55 1.07 0.59 -0.13 0.82 0.012

CWRES 0.147 0.02 0.96 0.91 0.17 0.38 0.13

Table 5.8: Mean, variance, skewness, and kurtosis of EBE and CWRES NPDEs and p-values of
Wilcoxon (W) test for zero-mean, Kolmogorov–Smirnov (KS) test for gaussian distribution with
mean equal to the sample mean and unit-variance, and Shapiro–Wilk (SW) test for normality.

Comparison with Fig. 5.7 shows that there is no apparent issue with the variance-covariance struc-

ture.

These analyses show that the model correctly describes data. It is correctly specified, both

in term of population model structure and error structure, and properly predicts the observed

concentrations on the development sample. However, the width of the confidence intervals of the

predictions is still too large to make this model usable in every-day clinical practice. Possible

clinical utilisations of this model will be widely discussed with two examples in Sec. 5.4. The high

value of the shrinkage suggests that a study with a higher number of observations per patient

should be conducted to construct a model offering more reliable and precise predictions.

5.2.3 External validation

The model was validated on data from 63 patients from 5 ICUs (see Table 5.2). Measured

plasma vancomycin concentrations versus population and individual predictions, CWRES versus
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Figure 5.10: Extended normalised predicted distribution error (NPDE) for the final one-
compartment model of Eqs. (5.8) and (5.9): ηk (upper panels) and ηV (central panels) EBE
NPDE, and CWRES NPDE (lower panels). Left panels: probability density of the simulated
empirical distributions (histogram) and of the normal distribution (solid line). Right panels: QQ
plots comparing the quantiles of the simulated NPDE versus the theoretical normal quantiles (right
panels). Dashed lines represent the 95% confidence interval. The solid line is the bisector. Results
of formal tests are reported in Table 5.8.
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Figure 5.11: Mirror plots of observations versus population predictions (upper panels) and individ-
ual predictions (lower panels) for three simulated datasets using the final one-compartment model
of Eqs. (5.8) and (5.9).

NPDE mean p (W) variance p (KS) skewness kurtosis p (SW)
ηk 0.066 1.0 1.5 0.61 0.37 0.19 0.23
ηV -0.31 0.02 1.3 0.05 -0.22 1.8 < 0.001

CWRES 0.16 0.003 0.81 0.02 0.21 1.3 < 0.001

Table 5.9: Mean, variance, skewness, and kurtosis of EBE and CWRES NPDEs and p-values of
Wilcoxon (W) test for zero-mean, Kolmogorov–Smirnov (KS) test for gaussian distribution with
mean equal to the sample mean and unit-variance, and Shapiro–Wilk (SW) test for normality on
the validation set.

time, and CWRES versus predicted concentrations are plotted in Fig. 5.12. In Fig. 5.13 I report

variance and prediction corrected VPC. NPDE for EBE and CWRES are reported in Fig. 5.14

along with the results of formal statistical tests for normality in Table 5.9.

As expected, discrepancy between observations and predictions (upper panels of Fig. 5.12) is

slightly larger for individual predictions than in the development dataset (Fig. 5.7), whereas it is

similar for population predictions. The standard deviation of the difference between population

predictions and observations is indeed 8.5µg/ml, comparable with the discrepancy observed in

the development sample. The number of observations included in the 95%-confidence interval of

population predictions is 93.1%, compatible with a fraction of type I error of 5%.

CWRES are distributed homogeneously with time but a small bias in CWRES appears in the

right lower panel of Fig. 5.12, suggesting that the model underestimates plasma concentrations
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Figure 5.12: Measured plasma vancomycin concentrations versus population predictions (left upper
panel), individual predictions (right upper panel), CWRES versus time (left lower panel) and pre-
dicted plasma concentrations (right lower panel) for the final one-compartment model of Eqs. (5.8)
and (5.9) on the validation set.

at very low concentrations, and overestimates it at high concentrations. Variance and prediction

VPC confirms that the agreement between predictions and observations is fair. However, confidence

intervals are wide and the agreement worsens at very large times (t > 300 h) after the first drug

administration.

Although the overall agreement between predictions and observations is good, some discrepancy

appears when looking at the distribution of the random parameters (see Fig. 5.14). Inter-subject

variability of drug clearance is properly modelled, as proved by the normal distribution of NPDE of

ηk. The other NPDEs, in particular for the EBE of V , deviate from the normal distribution. This

issue may be associated with the poor capacity of the model of describing inter-subject variability
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Figure 5.13: Variance and prediction corrected visual predictive checks (vpcVPC) versus time for
the final one-compartment model of Eqs. (5.8) and (5.9) on the validation set. See caption of
Fig. 5.9.

of the distribution volume V (only one covariate was included in Eq. 5.9). This generates a larger

residual variability that does not follow a simple lognormal distribution as assumed in Eq. (5.11).

5.2.4 Clinical interpretation

In this model one can envisage several aspects of the pharmacokinetics of vancomycin presented

in Chaps. 2 and 3. Since vancomycin is mostly eliminated by the kidneys, drug clearance strongly

depends on renal function, which is parametrised in the model by creatinine clearance. Patients

with severe renal failure have low renal clearance but they undergo renal replacement therapy. In

these patients drug clearance is mainly due to CRRT.

The renal capacity of eliminating vancomycin appears to be modulated also by age, creatinine

plasma concentration, body weight, and VIS. In particular age, creatinine concentration, and

weight are known to be correlated with renal function, appearing in the Cockroft–Gault formula

for the estimation of the creatinine clerance [50] (see also the correlation matrix in Table 5.6).

The appearance of these factors is however surprising, given that the measured clearance is

already included in the model. Although renal clearance is lower in elderly patients and is increased

by the administration of vasoactive drugs, one may conjecture that these factors influence both

creatinine and vancomycin clearance. Similarly, creatinine and drug concentrations should be

affected by the rate of renal removal in exactly the same way. Thus, once creatinine clearance is

included in the model, those three variables should not add any further information.

However, creatinine clearance is measured quite rarely, every few days. Conversely, creatinine

plasma concentration is measured daily and the times of vasoactive administrations are precisely
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Figure 5.14: Extended normalised predicted distribution error (NPDE) for the final one-
compartment model of Eqs. (5.8) and (5.9) on the validation set: ηk (upper panels) and ηV
(central panels) EBE NPDE, and CWRES NPDE (lower panels). See caption of Fig. 5.10. Results
of formal tests are reported in Table 5.9.
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known from MargheritaTre. Thus, these two variables are not redundant and do not generate any

problem of collinearity in the estimate of the pharmacokinetic parameters. In fact, they contribute

to provide information on renal clearance with higher time resolution with respect to the mea-

surements of creatinine clearance. The opposite argument may hold for age. Creatinine clearance

may be subject to important variations depending on the patient’s condition and measurement

errors. The presence of the variable age may contribute to make the estimate of drug clearance

more stable and less affected by such fluctuations.

In this model the distribution volume is not as well characterised as clearance, since only

creatinine concentration appeared in Eq. (5.9) to explain part of volume variability. One may

argue that creatinine concentration is a weak marker of volaemic status and of vessel leakage or of

augmented creatinine secretion. Also the interpretation of the term proportional to body weight w

in kvanco is not straightforward. It may represent non-renal elimination of vancomycin or residual

renal drug elimination still present when creatinine clearance vanishes.

However, these unexpected features may signal either the lack of sufficient data to accurately

estimate both kvanco and V or the presence of a problem in the fundamental mathematical structure

of the adopted model.

On the one hand, kvanco and V are not properly decoupled: kvanco contains a covariate (the body

weight) that would rather be expected to explain volume variability and vice versa. Unfortunately,

in a simple one-compartment model only the elimination constant κ = kdrug/V can be easily

estimated by observing time variations in drug concentration (see Sec. 4.1). To properly estimate

V and disentangle it from kvanco, it would be necessary to measure Cvanco soon after the initial

loading dose before the effects of elimination become appreciable.

On the other hand, the term proportional to w in the clearance equation may represent drug

accumulation in a second compartment that cannot be modelled by this simple one-compartment

model. In the following section I shall address this issue by constructing a two-compartment model.

5.3 Two-compartment model

5.3.1 Model development

Two-compartment models were constructed using NONMEM v.7.4.1, with the FOCE method

with interaction, using the ADVAN3 routine. Following the same procedure adopted in building
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the one-compartment model I start from a minimal model of the form

kvanco,i = θk e
ηk,i , (5.13)

kint,i = θkint e
ηkint,i , (5.14)

Vc = θVc e
ηVc,i , (5.15)

Vp = θVp e
ηVp,i , (5.16)

Cij = C(tij)(1 + εij). (5.17)

The model parameters of Eqs. 4.14 and 4.15 have been re-parametrised as

Q1 = Qc, Q2 = Qp, κe = kdrug

Vc
, κ12 = kint

Vc
, κ21 = kint

Vp
, (5.18)

within the approximation of symmetric membrane [Eq. (4.17)].

Unfortunately, I could not introduce interindividual-variability terms for every pharmacokinetic

parameter because data did not support the estimation of all these effects. Indeed, only a few

measured values of drug concentration per patient were available. Roughly speaking, in this

kind of model it is possible to estimate a number of interindividual-variability terms smaller than

the number of observations per subject. Since intra-vascular volume is not expected to vary

significantly among patients and inter-compartment clearance should depend only on membrane

permeability to vancomycin, I set to zero the interindividual effects associated with the central

volume and with kint (ηVc
= ηkint = 0). Populations and individual predictions are compared with

measured concentrations for the two-compartment minimal model in Fig. 5.15.

Analogous to what I observed for the one-compartment model (Fig. 5.5), the agreement be-

tween population predictions and observations was very poor, whereas the individual predictions

already provide quite precise estimates of the observed concentrations. The two-compartment

model represent a good mathematical model to describe the kinetics of vancomycin, but the four

pharmacokinetic parameters need to be estimated as functions of the patients’ covariates.

The structural model was constructed by forward selection of covariates as illustrated in

Sec. 5.2.1 using the Likelihood ratio test. However, I adopted a slightly different strategy due to the

complexity of the two-compartment model in terms of possible combinations between pharmacoki-

netic parameters and patient variables. Differently from what was done for the one-compartment

model, where I tested the best functional forms (additive, proportional, power-laws) for the in-

cluded variables only at the end of the selection process (see Tables 5.4 and 5.5), here I tested

different functional forms for each variable step by step during the forward procedure. All the

steps of the construction of the structural model are reported in Table 5.10. In the end I tested
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Figure 5.15: Measured plasma vancomycin concentrations versus population (left panel) and indi-
vidual prediction (right panel). Population predictions are computed evolving Eqs. 4.14 and 4.15
using for all patients the average value of pharmacokinetic parameters kdrug] = θk, kint = θkint ,
Vc = θVc

, and Vp = θVp
. Individual predictions are computed taking into account the post-hoc

estimates of ηk,i and ηVp,i ( ηkint,i = ηVc,i = 0, see text).

Model structure n OFV

(0)
kvanco = θk kint = θkint

Vc = θVc Vp = θVp

4 1674.2

(1)
kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)]
kint = θkint Vc = θVc Vp = θVp

5 1517.2

(2)
kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
kint = θkint Vc = θVc Vp = θVp

6 1470.8

(3)

kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
kint = θkint Vc = θVc

Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea

7 1440.3

(4)

kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
kint = θkint Vc = θVc

Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

) 7 1426.9
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(5)

kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
kint = θkint log

(
CALT

IU/l

)
Vc = θVc

Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
7 1417.4

(6)

kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θCRRTδCRRT

]
kint = θkint log

(
CALT

IU/l

)
Vc = θVc

(29.4
h

)
Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
7 1412.0

(7)

kvanco = θk

[
1 + θcr

(
kcrea

71ml/min

)
+ θSEXδSEX + θCRRTδCRRT

]
kint = θkint log

(
CALT

IU/l

)
Vc = θVc

(29.4
h

)
Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
8 1405.4

(8)

kvanco = θcr

(
kcrea

71ml/min

)
+ θSEXδSEX + θw

(
w

76.5 kg

)
+ θCRRTδCRRT

kint = θkint log
(
CALT

IU/l

)
Vc = θVc

(29.4
h

)
Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
8 1401.8

(9)

kvanco = θcr

(
kcrea

71ml/min

)(
a

64 yr

)βa

+ θSEXδSEX

+ θw

(
w

76.5 kg

)
+ θCRRTδCRRT

kint = θkint log
(
CALT

IU/l

)
Vc = θVc

(29.4
h

)
Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
9 1384.5

(10)

kvanco = θcr

(
kcrea

71ml/min

)(
a

64 yr

)βa (
h

29.4

)
+ θSEXδSEX + θw

(
w

76.5 kg

)
+ θCRRTδCRRT

kint = θkint log
(
CALT

IU/l

)
Vc = θVc

(29.4
h

)
Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
9 1380.8
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kcrea a Ccrea h w log(CALT)
kcrea 1.00 -0.36 -0.50 -0.08 -0.07 0.16

a -0.36 1.00 0.08 0.12 -0.06 -0.32
Ccrea -0.50 0.08 1.00 0.11 0.19 0.05

h -0.08 0.12 0.11 1.00 0.28 -0.04
w -0.07 -0.06 0.19 0.28 1.00 0.04

log(CALT) 0.16 -0.32 0.05 -0.04 0.04 1.00

Table 5.11: Correlation matrix of the continuous variables included in the final two-compartment
model of Eqs. (5.19)– (5.22).

kvanco = θcr

(
kcrea

71ml/min

)(
a

64 yr

)βa (
h

29.4

)
+ θSEXδSEX + θw

(
w

76.5 kg

)
+ θCRRTδCRRT

kint = θkint log
(
CALT

IU/l

)
(1 + θkint,SEXδSEX)

Vc = θVc

(29.4
h

)
Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea (
w

76.5 kg

)
10 1374.9

Table 5.10: Development of the structural part of a two-compartment model with the corresponding

number of free parameters n and the value of the objective function value, OFV = −2L. Parameters

were introduced in the model if the corresponding likelihood ratio test was significant. Ci is the

concentration of the molecule i, h the haematocrit. δSEX = 1 for male patients and −1 for females.

δCRRT = 1 if the patient undergoes continuous renal replacement therapy, 0 otherwise.

the significance of all the parameters entered in the model and non-significant parameters were

removed. I eventually obtained

kvanco = θcr

(
kcrea

71ml/min

)(
a

64 yr

)βa
(

h

29.4

)
+ θSEXδSEX + θw

(
w

76.5 kg

)
+ θCRRTδCRRT, (5.19)

kint = θkint log
(
CALT

IU/l

)
(1 + θkint,SEXδSEX) , (5.20)

Vc = θVc

(
29.4
h

)
, (5.21)

Vp = θVp

(
Ccrea

0.8mg/dl

)βcrea ( w

76.5 kg

)
, (5.22)

where h is the haematocrit, CALT is the concentration of alanine transaminase, and δSEX = 1 for

male patients and −1 for females. In Table 5.11 I report the matrix of correlations among variables

included in the final model. No covariate with more than 0.5 correlation were selected [30].

Finally, I explored different error models by testing inter-individual random effects on every
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parameter units value SD 95% CI
θcr ml/min 19.2 2.0 15.3 – 24.1
θw ml/min 12.3 1.0 10.1 – 14.6
θSEX ml/min 3.1 0.7 0.09 – 0.27
θCRRT ml/min 16.4 3.0 9.1 – 22.5
βa – −0.74 0.15 −1.10 – −0.48
θkint ml/min 10.8 1.5 8.2 – 16.8
θkint,SEX – −0.28 0.11 −0.50 – 0.08
θVc l 33.7 4.1 21.2 – 42.0
θVp

l 140 27 77 – 212
βcrea – −1.17 0.16 −1.56 – −0.71
Ωηkηk

– 0.038 0.011 0.012 – 0.071
ΩηVpηVp

– 0.67 0.23 0.29 – 1.42
σ2

1 – 0.008 0.003 0.001 – 0.017
σ2

2 (µg/ml)2 6.4 2.9 0.06 – 11.9

Table 5.12: Best-fit estimates and estimated standard deviations of the parameters of the pharma-
cokinetic model of Eqs. (5.19)–(5.27). Confidence intervals were computed by bootstrap technique.

pharmacokinetic parameter and various forms (additive, proportional, exponential, and their com-

binations) for the residual error term. The final model had exponential interindividual variability

on clearance and peripheral volume and combined exponential and additive residual variability:

kvanco,i = θk e
ηk,i , (5.23)

kint,i = θkint , (5.24)

Vc = θVc
, (5.25)

Vp = θVp
eηVp,i , (5.26)

Cij = Ci(tij) eε1,ij + ε2,ij . (5.27)

The best-fit parameters of the structural model and the covariance of random effects are reported

in Table 5.12, together with their maximum-likelihood standard deviation. The last column re-

ports the 95% confidence interval of the empirical parameter distribution obtained by constructing

1000 pharmacokinetic models starting from samples bootstrapped with repetition from the original

population. In Fig. 5.16 I compare the marginal probability density of each parameter, obtained

by a bootstrap technique (histogram), with the corresponding normal distribution (solid line) built

with the maximum-likelihood estimates of mean and variance. The agreement between the two dis-

tributions is very good except for the variances σ2
1 and σ2

2 of the two components (exponential and

additive) of the residual variability, whose empirical distributions show strong non-gaussianities.

The effect of this non-gaussian distribution on single-patient prediction is investigated in Sec. 5.4.
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Figure 5.16: Normal distribution with maximum-likelihood estimates of mean and variance of the
parameters (solid lines) and bootstrap distribution (histogram) for each parameter of the two-
compartment model (see Table 5.12). 137
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Figure 5.17: Measured plasma vancomycin concentrations versus population (left panel) and in-
dividual predictions (right panel) for the final two-compartment model of Eqs. (5.19)–(5.22) with
random interindividual and residual variabilities expressed by Eqs. (5.23)–(5.27).

5.3.2 Goodness of fit

In Fig. 5.17, measured drug concentrations are plotted versus population and individual pre-

dictions for this final two-compartment model. The concordance between measured concentrations

and population predictions has been improved with respect to the minimal model (see Fig. 5.15)

thanks to the introduction of patient covariates. Furthermore, the two-compartment model also

provides reliable predictions in those few cases in which the one-compartment model failed to re-

produce the observed concentrations (left panel of Fig. 5.7). The variability unexplained by patient

covariates has also been significantly reduced, as shown in the left panel of Fig. 5.17. However, the

unexplained residual variability is slightly higher than in the one-compartment model (Fig. 5.7,

right panel). Accordingly, the standard deviation of the difference between observations and pop-

ulation predictions is reduced to 6.9µg/ml, whereas the standard deviation of the difference with

individual predictions (2.8µg/ml) is slightly larger than in the one-compartment model.

Shrinkage of individual weighted residual is 71%, of ηk is 36%, and of ηVp is 38%. The shrinkage

is higher than in the one-compartment model. Again, those high values are probably associated

with the low number of measured samples per patient [211] (see Sec. 5.1.1).

Conditional weighted residuals are plotted in Fig. 5.18 versus time (left panel) and predicted

plasma concentration (right panel). No model misspecification appears from these plots.

To compare predictions on patients with different dosage regimen, sampling time, and possibly

different variability, visual predictive checks were corrected for prediction and variance and plotted

in Fig. 5.19. To construct vpcVPC, 1000 simulations were performed starting from 1000 bootstrap
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Figure 5.18: Conditional weighted residuals (CWRES) versus time (left panel) and predicted
plasma concentrations (right panel) for the final two-compartment model of Eqs. (5.19)–(5.22).
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Figure 5.19: Variance and prediction corrected visual predictive checks (vpcVPC) versus time for
the final two-compartment model of Eqs. (5.19)–(5.22). The solid line represents the median of the
observed variance-prediction corrected plasma concentration and the dark grey area represents a
simulation-based 95% confidence interval of the median. The dashed lines represent the 5% and
95% percentiles of the observed variance-prediction corrected plasma concentration and the light
grey areas represent the corresponding simulation-based 95% confidence intervals.

sets of estimated parameters, as described above. No significant difference between model predic-

tions and simulations appears from this plot. However, simulated confidence intervals are quite

wide.

Extended NPDE of ηk and ηV EBE and CWRES were constructed using PsN and NONMEM.

In Fig. 5.20 I report their distributions (left panels) and compare their empirical quantiles versus

the theoretical quantiles of the normal distribution. The p-values of Wilcoxon (W), Kolmogorov–
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NPDE mean p (W) variance p (KS) skewness kurtosis p (SW)
ηk -0.032 0.89 1.05 0.74 -0.43 0.32 0.081
ηVp -0.029 0.71 1.14 0.78 0.053 0.39 0.41

CWRES 0.092 0.19 0.99 0.87 0.22 0.21 0.15

Table 5.13: Mean, variance, skewness, and kurtosis of EBE and CWRES NPDEs and p-values of
Wilcoxon (W) test for zero-mean, Kolmogorov–Smirnov (KS) test for gaussian distribution with
mean equal to the sample mean and unit-variance, and Shapiro–Wilk (SW) test for normality for
the two-compartment model.

Smirnov (KS), and Shapiro–Wilk (SW) tests are reported in Table 5.13. The agreement between

simulated and theoretical distributions is very good and the confidence envelope of the observed

quantiles always contains the bisector. Means and variances of the empirical EBE NPDE are not

significantly different from 0 and 1. The Shapiro–Wilk test for normality is always non-significant.

Three simulations were used to construct mirror plots (Fig. 5.21) of observations versus pop-

ulation predictions (upper panels) and observations versus individual predictions (lower panels).

Comparison with Fig. 5.17 shows that there is no apparent issue with the variance-covariance

structure.

Similarly to what observed for the one-compartment model (see Sec. 5.2), these analyses show

that the model fairly describe data. It is correctly specified, both in term of population model

structure and error structure. The population predictions are closer to the observations than in

the one-compartment model but the width of the confidence intervals of the predictions is slightly

larger. There is no striking advantage with respect to the simpler model constructed in Sec. 5.2.

Higher number of observations per patient would be required to appreciate the difference between

the two models.

5.3.3 External validation

This model was validated on the same validation set used to validate the one-compartment

model (see Table 5.2). Measured plasma vancomycin concentrations versus population and indi-

vidual predictions, CWRES versus time, and CWRES versus predicted concentrations are plotted

in Fig. 5.22. In Fig. 5.23 I report variance and prediction corrected VPC. NPDE for EBE and

CWRES are reported in Fig. 5.24 along with the results of formal statistical tests for normality in

Table 5.14.

Similarly to what observed for the one-compartment model, discrepancy between observations

and predictions (upper panels of Fig. 5.22) is slightly larger for individual predictions than in the

development dataset (Fig. 5.17), whereas it is similar for population predictions. The standard

deviation of the difference between population predictions and observations is indeed 9.4µg/ml,
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Figure 5.20: Extended normalised predicted distribution error (NPDE) for the final two-
compartment model of Eqs. (5.19)–(5.22): ηk (upper panels) and ηVp

(central panels) EBE NPDE,
and CWRES NPDE (lower panels). Left panels: probability density of the simulated empirical
distributions (histogram) and of the normal distribution (solid line). Right panels: QQ plots com-
paring the quantiles of the simulated NPDE versus the theoretical normal quantiles (right panels).
Dashed lines represent the 95% confidence interval. The solid line is the bisector. Results of formal
tests are reported in Table 5.13.
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Figure 5.21: Mirror plots of observations versus population predictions (upper panels) and individ-
ual predictions (lower panels) for three simulated datasets using the final two-compartment model
of Eqs. (5.19)–(5.22).

NPDE mean p (W) variance p (KS) skewness kurtosis p (SW)
ηk -0.13 0.20 2.6 0.008 0.36 -0.66 < 0.001
ηVp

-0.20 0.15 3.5 < 0.001 0.16 -0.97 < 0.001
CWRES 0.13 0.001 0.91 0.004 0.22 1.2 < 0.001

Table 5.14: Mean, variance, skewness, and kurtosis of EBE and CWRES NPDEs and p-values of
Wilcoxon (W) test for zero-mean, Kolmogorov–Smirnov (KS) test for gaussian distribution with
mean equal to the sample mean and unit-variance, and Shapiro–Wilk (SW) test for normality on
the validation set for the two compartment model.

comparable with the discrepancy observed in the one-compartment model. The number of ob-

servations included in the 95%-confidence interval of population predictions is 90.8%, lower than

expected.

CWRES are distributed quite homogeneously with time but a small bias in CWRES appears

at large times t & 250 h and in the right lower panel of Fig. 5.12, suggesting that the model

underestimates plasma concentrations at very low concentrations, and overestimates it at high

concentrations. Variance and prediction VPC shows that the agreement between the distribution

of predictions and observations is not optimal, especially at low concentrations. Furthermore,

confidence intervals are wide and the agreement worsens at very large times (t > 300 h). Significant

discrepancies appear in the distribution of the random parameters (see Fig. 5.14). Deviations from

normal distribution are stronger than in the one-compartment model.
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Figure 5.22: Measured plasma vancomycin concentrations versus population predictions (left up-
per panel), individual predictions (right upper panel), CWRES versus time (left lower panel)
and predicted plasma concentrations (right lower panel) for the final two-compartment model of
Eqs. (5.19)–(5.22) on the validation set.

Even if the goodness of fit of the two-compartment model on the development sample is good,

the results of the external validation are worse for the two-compartment model than for the one-

compartment one, suggesting that this model is probably overparametrised.

5.3.4 Clinical interpretation

Covariates entered this two-compartment model in a very similar way to what was obtained for

the one-compartment model (see Table 5.4), confirming the robustness of the adopted approach

and the reliability of the one-compartment approximation. The most important factors affecting

drug clearance [Eq. (5.19)] are again creatinine clearance, total body weight, and renal replacement
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Figure 5.23: Variance and prediction corrected visual predictive checks (vpcVPC) versus time
for the final two-compartment model of Eqs. (5.19)–(5.22) on the validation set. See caption of
Fig. 5.19.

therapy. A new additive term depending on sex entered the expression for kvanco. As expected,

clearance is higher for males than females. The term proportional to creatinine clearance is modu-

lated by age and haematocrit. Although these variables are expected to be correlated to creatinine

clearance [50] (see Table 5.11), they are not redundant and provide extra-information to the model

since they are measured with different frequency (see Sec. 5.2.4).

The inter-compartment clearance kint [Eq. (5.20)], which parametrises the diffusion rate between

the central and peripheral compartments [see Eq. (5.18)], depends on sex and on the logarithm of

alanine transaminase. The increase of both ALT levels, a marker of liver injury, and drug diffusion

rate may have a common origin that explains the correlation between these two variables. For

instance, the onset of right-sided heart failure may cause congestion of organs upstream of the

right ventricle [71]. This causes both congestive hepatopathy [84] and peripheral oedema, which

may be associated with increased inter-compartment clearance.

The central volume Vc [Eq. (5.21)] is inversely proportional to the haematocrit. Assuming that

vancomycin can easily diffuse from blood to the extracellular fluid, the central volume represents the

total volume of fluid into which vancomycin can diffuse. Thus, haematocrit provides a reasonable

estimate of the fluid status: the lower the haematocrit, the higher the amount of fluids.

The peripheral volume Vp [Eq. (5.21)], representing the volume of tissue where vancomycin

accumulates, is proportional to total body weight. It also decreases when plasma creatinine con-

centration increases. A possible explanation of the correlation between Vc and Ccrea was formulated

on page 131. The peripheral volume for a patient with median creatinine concentration (0.8mg/dl)

and median total body weight (76.5 kg) is Vp = θVc = (140± 27) l, about twice as large as the
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Figure 5.24: Extended normalised predicted distribution error (NPDE) for the final two-
compartment model of Eqs. (5.19)–(5.22): ηk (upper panels) and ηVp (central panels) EBE NPDE,
and CWRES NPDE (lower panels) on the validation set. See caption of Fig. 5.20. Results of
formal tests are reported in Table 5.13.
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total body volume. This suggests that vancomycin concentration in tissues is about twice as high

as vancomycin concentration in the central compartment [see Eqs. (2.13) and (2.15)].

I concluded Sec. 5.2 observing that the pharmacokinetic parameters in the one-compartment

model were not completely decoupled, probably due to the approximated nature of the model. Con-

versely, the two-compartment model reproduces the physiological processes governing the evolution

of vancomycin concentration in a more realistic way. However, only variations of drug clearance are

well explained by patient variables. The model structure of the other pharmacokinetic parameters

is richer than in the one-compartment model but still poorer than the equation for drug clearance.

Indeed, the estimates of the parameters of Eq. (5.19) are much more precise than those of Vc and

Vp and the variance of the inter-individual random effect Ωηkηk
(see Table 5.12) is much smaller

than ΩηVpηVp
. Even with a two-compartment model, available data do not allow to explain the

variations of the distribution volumes as functions of patient covariates. As underlined in Sec. 5.2,

in order to obtain more precise estimates of Vc and Vp, it would be necessary to measure Cvanco soon

after the initial loading dose. To collect the data needed to build more accurate pharmacokinetic

models we have started the AbioKin project (see Sec. 5.6).

5.4 Single-patient predictions

Pharmacokinetic models can be used to predict the evolution of drug concentration in patients

for a few hours after drug administration and to adjust the dosage regimen accordingly. In this

Section I graphically study the performance of the one- and two-compartment models in predicting

the plasma vancomycin concentration in the same patients used to develop the model. All the

analyses were performed in R v.3.3.3.

5.4.1 Simulated concentrations and graphical representation

In Fig. 5.25 I plot the observed and predicted plasma vancomycin concentrations of one- (left

panels) and two-compartment models (right panels) for a 79-year-old female patient. Dots indicate

measured concentrations. Solid lines are population expected mean concentrations. They were

obtained by integration of the dynamic equation using the typical values of the pharmacokinetic

parameters from Eqs. (5.8) and (5.9) for the one-compartment model and Eqs. (5.19)–(5.22) for

the two-compartment model.

The dark grey band is the 95% confidence band of this curve. In the top panels, it was con-

structed by simulating 1000 evolutions of drug concentration by randomly sampling the parameters

by a multivariate normal distribution with mean θ̂ and covariance cov(θ̂), where θ̂ is the vector
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Figure 5.25: Population (solid line) and individual (dashed line) mean predicted concentrations
and measured concentrations for a 79-year-old female patient admitted to ICU with a pneumonia
and septic-shock, from the first administration of vancomycin (t = 0, loading dose) to the last
measurement of plasma drug concentration. Dark grey band: 95% confidence interval of the
population mean concentration. Light grey: 95% prediction interval for observed concentrations.
Left panels: one-compartment model. Right panels: two-compartment model. Upper panels:
confidence and prediction intervals are computed with the multivariate normal distribution of
the parameters, using the maximum-likelihood estimates of the expected values (θ̂, Ω̂, σ̂2) and of
their covariance matrix. Lower panels: confidence and prediction intervals are computed with the
empirical bootstrap distribution of (θ̂, Ω̂, σ̂2).

of the best-fit estimates of the model parameters (see Tables 5.7 and 5.12) and cov(θ̂) is the

maximum-likelihood estimate of the covariance matrix. In the bottom panels, 1000 pharmacoki-

netic population models were first constructed starting from samples bootstrapped with repetition

from the original population. The dark grey band has been drawn by simulating 1000 evolutions

of drug concentration, each one constructed from the set of values of θ obtained by a single boot-

strapped model. For both models, the width of the confidence-band is quite narrow, confirming

that the structural models provide precise estimates of the expected concentrations The evolution

147



5.4. SINGLE-PATIENT PREDICTIONS CHAPTER 5. PK MODELS OF VANCOMYCIN

predicted by the two-compartment model is more sensitive to small variations of pharmacokinetic

parameters. The shapes and widths of the confidence bands computed with the multivariate nor-

mal distributions of the parameters or using their exact bootstrap distributions are similar. This

result confirms what was observed in Figs. 5.6 and 5.16 where I compared the marginal empirical

and normal distributions of the parameters θ.

The dashed line represents the individual predictions computed evolving the dynamical equa-

tions by adjusting the population estimates of the pharmacokinetic parameters with the post-hoc

estimates of the interindividual random parameters ηk,i and ηV,i for the one-compartment model

[Eqs. (5.10) and (5.11)] and of ηk,i and ηVp,i [Eqs. (5.23)–(5.26)]. The agreement of the values

of observed concentrations with the individual predictions represented by the dashed curve is, of

course, stricter than the agreement with population predictions (see also Figs 5.7 and 5.17). Un-

fortunately, the post-hoc values of ηi are available only after concentrations are measured. Thus,

the dashed curve cannot be used to formulate predictions of plasma drug concentration for a new

patient at the time of drug prescription.

Hence, real-time simulations to support clinicians in designing antibiotic treatments must be

built starting from the typical population estimates (solid curve) and constructing appropriate

prediction intervals around them. For each realisation of (θ̂, Ω̂, σ̂), from either the multivariate

normal or the bootstrap distribution, one must perform the following steps:

1. Compute the values of the population pharmacokinetic parameters from Eqs. (5.8) and (5.9)

or Eqs. (5.19)–(5.22), for the one- or two-compartment model, respectively.

2. Sample ηk,i and ηV,i (or ηk,i and ηVp,i, respectively) from a multivariate normal distribution

with zero mean and variance Ω̂ and compute the simulated values of the pharmacokinetic

parameters for that realisation of (θ̂, Ω̂, σ̂), using Eqs. (5.10) and (5.11) [Eqs. (5.23)–(5.26),

respectively].

3. Evolve the dynamic equations to obtain a simulated curve of drug concentrations with values

of the pharmacokinetic parameters determined at step 2.

4. For each time, sample a value of ε1 and ε2 from two normal distributions with zero mean

and variance σ̂2
1,2 and insert them in Eq. (5.12) [Eq. (5.12), respectively] to obtain a time

series of simulated observed drug concentrations.

Repeating these steps n times (I used n = 1000), I obtained for each time t a set of n values of

simulated concentrations {Ci(t)}i=1,...n. A prediction interval at 95% confidence level is obtained

for C(t) taking, for each t, the 2.5% and 97.5% quantiles of {Ci(t)}i=1,...n. The light grey bands

of Fig. 5.25 were eventually built by plotting this confidence interval for every t.
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Both covariance-matrix and bootstrap prediction bands are qualitatively similar (compare top

and bottom panels). However, the bootstrap prediction band is larger, in particular for the two-

compartment model. This is in perfect agreement with the results shown in Fig. 5.16 for the

marginal distribution of the random-effect variances σ2
1 and σ2

2 . The bootstrap distributions of

these parameters are indeed strongly non-gaussian and much broader than the corresponding nor-

mal distributions. Non-gaussian deviations are much milder for the residual variance σ2 of the

one-compartment model (see Fig. 5.6). I also computed with numerical simulations the number of

type-I errors for both constructions. I found that covariance-matrix confidence bands give a higher

number of type-I errors with respect to bootstrap-based bands which are more reliable.

Prediction bands of the two-compartment model are larger than bands of the one-compartment

model (right versus left panels). Although the two-compartment model seems to more faithfully

reproduce drug kinetics at the level of population estimates (solid line) and has a clearer physi-

ological interpretation, it suffers from overfitting more than the one-compartment model, which

offers instead more precise predictions in terms of residual variability.

The very same procedure used to construct the prediction interval of C(t) can be adopted to

compute the probability of reaching the therapeutic target (in terms of either drug concentration, or

more sophisticated PK parameters as AUC0−24 h) for given patient conditions and dosage regimen.

5.4.2 Clinical relevance

Individual plots of the evolution of vancomycin concentrations are useful not only to simulate

drug kinetics to adjust dosage regimens, but also as tools to critically review adopted administra-

tion strategies in clinical case reports. They allow clinicians to review clinical practice, identify

commonly adopted strategies, and improve internal protocols. Indeed, the curve of individual

predictions (dashed line in Fig. 5.25) is the best approximation of the evolution of plasma drug

concentration. It offers a sort of continuous interpolation of the measured concentrations based

on the population pharmacokinetic model and adjusted to a single patient, thanks to the post-hoc

estimates of the interindividual variability.

The curves of Fig. 5.25 refer to a 79-year-old female patient admitted to ICU with pneumonia

and septic-shock. Microbiological analysis at ICU admission revealed an infection caused by Strep-

tococcus pneumoniae, initially treated with ceftriaxone and levofloxacin for 15 days. After isolation

of a methicillin-resistant Staphylococcus aureus, the antibiotic therapy was suspended and treat-

ment with vancomycin (loading dose followed by continuous infusion) was started on the 17th day

after ICU admission (t = 0) and eventually suspended on the 28th day. During the administration

of vancomycin, plasma drug concentration was measured four times, the last one on the 28th day

(t = 254 h).
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Both the one- and two-compartment models agree on the fact that the loading dose (500mg)

was not sufficient to reach the target therapeutic concentration of about 20–30µg/ml (see Chap. 5),

even though the values of vancomycin concentrations estimated by the two models after the bolus

were quite different, about 8µg/ml and 15µg/ml, respectively. The loading dose is followed by

a continuous infusion with a rate of 42mg/h. The first measured value of drug concentration

[C(t = 39 h) = 16µg/ml] was likely judged too low and the rate of continuous infusion was

increased to 80mg/h at t = 95h. This apparently yielded a quite satisfactory value of drug

concentration at the second measurement [C(t = 135 h) = 28µg/ml]. However, C kept growing in

the following hours up to values of 37µg/ml and 38µg/ml, measured at t = 206 h and t = 254 h,

respectively.

Fig. 5.25 helps to interpret what happened. The initial infusion rate (42mg/h) was probably

appropriate for this patient since her renal clearance was quite low (kcrea = 43ml/min). However,

the time scale τ to converge to the stationary solution is inversely proportional to drug clearance

(τ = 1/κe = V/kdrug in the one-compartment approximation). Thus, in this patient τ is more than

twice as large as the respective value for a patient with normal renal function. Hence, when drug

concentration was measured at t = 38h, the stationary state had not yet been attained. Indeed,

drug concentration continued to increase, reaching an almost stationary value of about 20µg/ml,

even before the change in the infusion rate at t = 95h. The new rate (80mg/h) was twice as

high as the old one. Accordingly, the corresponding stationary concentration, about 40µg/ml, was

twice as high as the previous stationary concentration (20µg/ml).

The analysis of this case shows that the initial infusion rate was correctly adjusted (1 g/day),

according to the reduced renal function. However, it was probably not realised that the time to

reach the stationary state is roughly inversely proportional to renal clearance. In patients with renal

failure it is fundamental to administer the appropriate loading dose, otherwise it could take days to

reach the stationary concentration by means of continuous infusion only. When it was noticed that

drug concentration was too low, the clinicians should have administered a second small loading

dose, maintained the same continuous infusion rate, rather than increasing the infusion rate to

2mg/d.

In Fig. 5.26 I present a further example. As in Fig. 5.25, prediction curves were constructed

with the one- and two- compartment model in the left and right panel, respectively. Confidence and

prediction bands were constructed using the bootstrap-based distribution of estimated parameters

(θ̂, Ω̂, σ̂2), as illustrated in Sec. 5.4.1.

The plots report the evolution of plasma vancomycin concentration in a 48-year-old female

patient receiving haemofiltration. The patient was admitted to the ICU in a shock condition

following a pneumonia. Both H1N1 influenza and methicillin-resistant Staphylococcus aureus tests
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Figure 5.26: Population (solid line) and individual (dashed line) mean predicted concentrations,
obtained with the one- (left panel) and two-compartment model (right panel), and measured con-
centrations for a 48-year-old female patient with pneumonia receiving continuous renal replacement
therapy starting at t = 146 h after the first administration of vancomycin (t = 0, loading dose)
and continuing after the last measurement of plasma drug concentration. Dark grey band: 95%
confidence interval of the population mean concentration. Light grey: 95% prediction interval
for observed concentrations. Confidence and prediction bands were computed using the empirical
bootstrap distribution of the model parameters (θ̂, Ω̂, σ̂2).

were positive. Antibiotic therapy with levofloxacin, linezolid and piperacillin/tazobactam was

started on admission. Levofloxacin and piperacillin/tazobactam were suspended on the 10th day

after admission. On the 15th day linezolid was suspended due to thrombocytopenia and vancomycin

administration started (t = 0). Eventually, vancomycin was suspended on the 30th day (t = 366 h).

Plasma vancomycin concentration was measured three times at t = 119 h, 141 h, and 189 h. The

patient started to receive haemofiltration at t = 146 h.

With respect to the previous patient, in this case the optimal therapeutic concentration was

almost attained after the loading dose (500 mg). The value reported by the dashed line just after

the administration of the first bolus is indeed about 16µg/ml in the one-compartment model and

19µg/ml in the two-compartment one. After the initial bolus, a continuous infusion was started at

a rate of 42mg/h (1 g/d). The patient was however in renal failure and vancomycin concentration

increased (dashed line) to about 40µg/ml. When vancomycin concentration was measured both

at t = 119 h and 141 h, C = 44µg/ml and 41µg/ml. After a few hours haemodialysis started,

total clearance was increased to normal values, and, consequently, the drug concentration dropped

down to about 20µg/ml (value measured at t = 189 h).

Although already very low (1 g/d), the rate of continuous infusion was about twice as high as

needed, since renal function was extremely compromised. Because of the reduced renal function,

the time to reach the stationary state was also extremely long (about four days). Unfortunately, no
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measured values of creatinine clearance were available when vancomycin was prescribed. On the one

hand, the lack of this information did not allow the appropriate dosage regimen to be chosen. On

the other hand it does not permit reliable predictions to be made using the typical population value

of drug clearance in either the one- or two-compartment model. This explains the large discrepancy

between population (solid line) and individual (dashed line) predictions in Fig. 5.26, where I had

to use a single value of creatinine clearance measured a long time after vancomycin administration.

Without up-to-date values of laboratory tests and other patient variables, the population model

fails to provide reliable estimates of drug concentration. Nevertheless, the agreement between

observations and individual prediction is very good, since the latter are adjusted using the post-hoc

estimates of inter-individual variability.

Finally, in both cases I note that the value of plasma concentration of vancomycin after the

loading dose estimated by the two-compartment model is higher and definitely more realistic than

in the one-compartment model. In the two-compartment model the distribution volume is divided

into a relatively small central volume Vc, which is rapidly filled by intravascular administrations,

and a large volume Vp accounting for slower tissue accumulation. Conversely, in a one-compartment

model, the unique volume V must describe both effects, so that Vc < V < (Vp + Vc). This result

shows again both the importance and the difficulty of building a pharmacokinetic model that

properly estimates distribution volume. This is possible only if plasma drug concentration is

measured soon after the loading dose, as already discussed at the end of both Secs. 5.2 and 5.3.

5.5 Discussion

The results presented in this Chapter have shown on the one hand that the choice of the dosage

regimen for antibiotics is complex, and on the other hand that MargheritaTre offers an invaluable

mine of data to investigate drug pharmacokinetics. The clinical parameters recorded in electronic

health records allow one to construct complex compartment models. However the analyses of

this Chapter have also shown that the schedule of measurements of plasma drug concentrations

present in MargheritaTre was not optimal to develop models with good predictive performance.

The one- and two-compartment models have similar goodness of fit and predictive performance on

external validation sets. However, residual variability was modelled worse in the two-compartment

model, as shown in external validation. In particular, inter-subject variability of the distribution

volume was poorly modelled since vancomycin concentration was seldom measured after the initial

bolus. Furthermore, the confidence interval of the population predicted values of vancomycin

concentration are still too wide for a practical application at patient bedside.

152



CHAPTER 5. PK MODELS OF VANCOMYCIN 5.6. FUTURE PERSPECTIVES

Both models have a sensible clinical interpretation. Vancomycin clearance strongly depends on

renal functions, which is parametrised by creatinine clearance and on renal replacement therapy.

Unfortunately data on flows of haemofiltration were not available. Only the average clearance

associated with haemofiltration was derived and it was not possible to estimate it as a function

of the characteristic of the treatment, as recently done in Ref. [61] in a prospective observational

study conducted on nine septic-shock patients.

The approach adopted in this Thesis was more empirical with respect to recent physiologically

based pharmacokinetic modelling [146]. As discussed in Sec. 2.4 one must find a proper balance

between the capacity of the model of describing the details of physiological processes and the

ability of fitting available data. The frequency of data collected for standard clinical practice is

not high enough to appreciate the difference between a complex model with several compartments

and a simpler one- or two- compartment model. The strengths of this work are instead the

numerous sample size, the availability of several clinical parameters, and the measurement of

drug concentrations measured for several days. This allows one to better model the inter-subject

variability end the evolution of clinical conditions. Analyses focused on very specific populations,

with high-frequency sampling, on the one hand provide very precise results, on the other hand can

be hardly generalised to a population of critically ill patients, where variability is typically large.

The most important limitations of this analysis are the low number of plasma vancomycin

concentrations per patients and the lack of observations soon after the administration of the initial

bolus. This resulted in wide prediction intervals and poor modelling of drug distribution volume

as function of patient conditions. Furthermore no data on haemofiltration flows were available.

5.6 Future perspectives

To overcome the issues discussed in Sec. 5.5, we decided to start AbioKin [1], a multicen-

tric prospective study to investigate the kinetics of four among the most administered molecules

in ICUs (linezolid, meropenem, piperacillin/tazobactam, and vancomycin). The study involves 10

Italian general ICUs and about 1600 patients, 400 per molecule. We consider eligible adult patients

admitted to ICU with an expected length of stay longer than two days and receiving intra-vascular

administrations of at least one of the considered molecules. For patients that started the antibiotic

therapy before admission, we ask clinicians to record in MargheritaTre information about adminis-

tration times and amounts of all the doses received. To avoid unreliable data we excluded patients

that started the antibiotic treatment more then 24 h before admission in the ICU.

Up to five (nine for patients undergoing renal replacement therapy) 6ml blood samples are
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1st sample: after loading dose
2nd sample: day 1

3rd sample: day 2

4th sample: day 3 – day 5

5th sample: day 6 – day 8

4 samples

C
R

R
T

Three times a day

vital signs

Once a day

complete blood count
blood gas test
serum creatinine

Once every two days

creatinine clearance

Twice a week

albumin
bilirubin
ALT/AST
creatine phosphokinase
serum urea

Figure 5.27: Schedule of blood sample withdrawals and laboratory tests for the AbioKin study [1].

withdrawn from enrolled patients during the period of the antibiotic treatment. Blood samples are

spin dried for 10 min at 4000 rpm within one hour. Plasma is then separated in two collection tubes

and stored at -80 ◦C in the hospital laboratory. Collection tubes are then centralised in the bio-bank

of the Mario Negri Institute for Pharmacological Research. For each sample, one of the two tubes

will be sent to the Laboratory of Pharmacology of the University of Pisa to measure antibiotic

concentration. The other will be stored in the bio-bank for 20 years for future projects. The

schedule of blood withdrawals has been designed to ensure that all the pharmacokinetic parameters

can be estimated (see Fig. 5.27, left panel). Since the study is observational administered drug

doses are chosen according to standard clinical practice by clinicians. No ED criteria [183] were

adopted to design the sampling schedule for both theoretical and logistic reasons. The structure

of the pharmacokinetic model, the covariate structure, and the error measurement structures are

not known [85]. Furthermore, for logistic reasons we had to adopt the same sampling schedule for

all the investigated molecules to interfere as least as possible with the standard daily schedule of

blood withdrawals in the participating ICUs.

To improve identification of the distribution volume the first blood sample must be collected

between 20 min and one hour after the end of the loading dose. To be able to estimate parame-
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ters affecting both short and long time-scale kinetics, the other four samples must be withdrawn

as follows: one on day one, one on day two, two between day three and day eight. Four extra

samples may be collected in the following days if the patient starts to receive a continuous renal

replacement therapy in order to increase the power of the model. To correlate the pharmacoki-

netic parameters with CRRT, operating characteristics of haemofiltration and haemodialysis are

recorded in MargheritaTre.

To ensure that all necessary data will be available for the development of the model, we ask to

perform complete blood count test every day, to measure serum creatinine concentration every day,

creatinine clearance by 24 h urine collection at least once every two days, serum concentrations of

albumin, bilirubin, ALT and AST transaminase, creatine phosphokinase, and urea at least twice a

week (see Fig. 5.27, right panel). Blood gas test must be performed at least once a day and vital

signs must be recorded at least three times a day.

The long-term goal of these investigations is the realisation of a simulator of pharmacokinetics

to be integrated in the electronic health record MargheritaTre. Starting from the patient’s data

present in the electronic record, the simulator will allow clinicians to simulate the evolution of

plasma concentrations of the molecules studied in the AbioKin study with the correct confidence

bands constructed as described in Sec. 5.4.

Thanks to this tool, clinicians will be able to compute the probability of reaching the therapeutic

target. By adjusting the antibiotic doses according to the patient’s condition one will be able to

identify an optimal therapeutic strategy that maximises the probability of attaining the therapeutic

concentration and minimises the probability of overcoming the toxicity threshold.
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GLUCOSE DYNAMICS
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Chapter 6

PHYSIOLOGY OF GLUCOSE DYNAMICS AND

MATHEMATICAL MODELS

With a concentration of about 100 mg of glucose per decilitre of blood and a blood volume of

5 l, the total amount of glucose in our blood is approximately 5 g, equivalent to a teaspoon of sugar.

Considering that 1 g of glucose provides about 4 kcal, the total amount of glucose present in the

bloodstream can provide only 20 kcal, which is a tiny fraction of the daily energetic requirement

of about 2000 kcal. Hence, without continuous replacement, blood glucose would be completely

depleted in a few minutes because of uptake by muscles and the central nervous system. The

rate of glucose uptake may also vary significantly depending, for instance, on physical activity.

Accordingly, the flux of glucose released into blood must be rapidly adjusted in relation to energy

requirements. Similarly, after meals, glucose must be rapidly removed from blood and stored to

prevent glucose concentration from increasing beyond dangerous levels.

In this Chapter, I shall briefly illustrate how each organ intervenes in maintaining glucose ho-

moeostasis (Sec. 6.1) and review some of the existing mathematical models of coupled glucose-

insulin dynamics, discussing the underlying approximations and their regimes of applicability

(Secs. 6.2, 6.3, and 6.4).

In Chap. 7 I shall introduce my model, based on a system of three delay differential equations,

that describes the couple dynamics of glucose, insulin, and glucagon, and test its performance with

analytical and numerical analysis.
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Glucose (G) Pancreas

Liver

Kidneys

Muscles/Fat

CNS

Ingestion Administration

Insulin (I)

Glucagon (L)

Figure 6.1: Schematic representation of physiological interactions at the basis of glucose control.
Molecules (glucose, glucagon, and insulin), organs, external sources (food ingestion and insulin
infusion) are represented by grey boxes, ellipses, and white boxes, respectively. Fluxes of molecules
are denoted by solid arrow. Dashed arrows indicate the capability of a molecule to stimulate the
reaction of an organ.

6.1 Physiology of glucose homoeostasis

The maintenance of a constant blood glucose level rests on a very fragile equilibrium, which is

ensured by the cooperation of several organs. An illustrative description of the main mechanisms

underlying the control of blood glucose concentration is provided in Fig. 6.1. The two key organs

involved in this process are the pancreas and the liver. The former continuously monitors the

blood glucose level and releases two hormones, insulin and glucagon when glucose concentration

increases or decreases, respectively, beyond normal levels. The latter removes glucose from blood

and stores it as glycogen when stimulated by a high concentration of blood insulin. Conversely,

liver transforms glycogen into glucose and releases it in blood when stimulated by a high level of

glucagon. Insulin has also the effect of stimulating glucose uptake by muscles and adipose tissue,

whereas the central nervous systems consumes glucose at a constant rate, independently of insulin

concentration.

Although this picture is extremely simplified (e.g., I neglected the contribution of several other
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hormones), it provides a good approximation of the physiological mechanisms at the basis of glucose

regulation, describing the response to both high and low levels of blood glucose.

6.1.1 Pancreas

Pancreas is a primary endocrine organ. It works as an exocrine gland, secreting enzymes

and fluid into the gastrointestinal tract, and an endocrine gland, secreting hormones involved in

blood glucose control and metabolism [174]. The two major hormones produced by the pancreas

are secreted by different cell types located in cell clusters named islets of Langerhans: insulin is

produced by β-cells and glucagon by α-cells.

Insulin. High levels of blood glucose concentration (after a meal or an intravascular glucose ad-

ministration) stimulate β-cells to secrete insulin, which is released in two phases. In the first phase,

the majority of insulin is secreted at a high rate, which reaches its maximum around five minutes

after the glucose stimulus. In the second phase, the remaining insulin is secreted at a much lower

rate. Measuring endogenous production of insulin is practically impossible since most of the insulin

is removed by liver before reaching peripheral circulation (see Sec. 6.1.2). For this reason C-peptide

is measured as a marker of insulin production [49]. C-peptide is a short amino-acid polypeptide

produced during insulin synthesis in a ratio 1:1 with insulin molecule [176].

When blood glucose concentration increases, glucose molecules are taken up by the transmem-

brane carrier protein glucose transporter 2 (GLUT2) and undergo glycolysis, eventually generating

ATP. The increased ATP/ADP ratio stimulates the closure of ATP-sensitive K+ channels. The

consequent decrease of the outgoing K+ current causes membrane depolarisation that is followed

by the opening of voltage-dependent Ca2+ channels. The increase of intracellular concentration of

calcium eventually triggers the fusion of granules containing insulin with the membrane cell and

the subsequent release of insulin [157].

Pancreas does not release insulin at a continuous rate but in series of bursts with an interval

of about 4–15 min [142]. The mechanism at the origin of such a pulsatile release resides in single

cells as proven by in vitro studies showing that individual β cells are able to secrete in pulse. This

periodicity is linked with the cycle of glycolysis, ATP production, and membrane depolarisation.

However, in vivo studies show that all pancreas cells secrete insulin in common bursts. Thus, β cells

must be electrophysiologically coupled to ensure macroscopic coordination. Several microscopic

models have been proposed to explain these features of insulin release [104].

The rate of insulin production oscillates also on longer ultradian time scales, with a period

of 50–120min [170]. These insulin oscillations are correlated with and anticipated by blood glu-

cose oscillations and their amplitude depends on the level of blood glucose. Their origin stems
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from the complex hormone-mediated interactions between organs involved in maintaining glucose

homoeostasis [177]. Thus, a proper model of glucose dynamics should be able to describe this

phenomenon and predict its evolution (see Sec. 6.3).

Glucagon. Glucagon is produced by pancreatic α-cells when blood glucose concentration is lower

than about 80mg/dl and is inhibited above 90 dl/l. Whereas the biochemical mechanisms governing

insulin secretion are well known, it is still unclear how glucagon secretion is regulated. Both

intrinsic and paracrine mechanisms have been proposed and investigated but their importance in

determining the rate of secreted glucagon is still controversial [36].

Among paracrine mechanisms, it seems that some factor secreted by β-cells can inhibit glucagon

production. However it is a matter of debate whether the inhibitory action is provided by insulin,

GABA, or Zn2+ [131, 159, 214, 149]. For instance, the contribution of insulin is not clear since

glucagon release is inhibited at a glucose concentration of 90mg/dl, where insulin is not yet se-

creted. An important role in inhibiting glucagon production may be played by somatostatin [175],

which is secreted at lower glucose concentrations compared to insulin. However, it has been ex-

perimentally shown that the secretion of glucagon at high glucose concentration is inhibited even

if the somatostatin signalling process is blocked [197, 47].

These studies suggest that other inhibitory mechanisms exist, independently of somatostatin

and possibly intrinsic in α cells. Alternative mechanisms have been proposed based on electrophys-

iological arguments. Analogously to insulin release in β-cells, glucagon is secreted by α-cells when

a high intracellular concentration of Ca2+ stimulates exocytosis of granules containing glucagon.

Calcium concentration increases when voltage-dependent P/Q channels open as a result of high-

voltage action potentials sustained by the activation of voltage-dependent Na+ channels [73, 213].

When blood glucose increases, ATP-dependent K+ channels close because of enhanced ATP

production. This causes membrane depolarisation, which results in inactivation of Na+ channels.

Eventually, the voltage of action potential is no longer sufficient to open Ca2+ channels, inhibiting

glucagon release. Membrane depolarisation may also be caused by a higher ingoing flux of positive

Na+ ions transported by sodium-glucose co-transporter 2 [31], a glucose transporter that carries

one Na+ ion inside the cell for each glucose molecule.

These considerations show that the complexity of the regulation mechanisms of glucagon secre-

tion cannot be explained only through paracrine effects associated with insulin production. Hence,

a proper dynamical model of glucose metabolism must include a variable, independent of insulin,

which represents glucagon. Indeed a decrease of insulin concentration is neither physiologically nor

mathematically equivalent to an increase of glucagon level.

161



6.1. HOMEOSTASIS CHAPTER 6. GLUCOSE DYNAMICS

6.1.2 Liver

Liver contributes to maintaining glucose homoeostasis by removing, accumulating, and releasing

glucose in blood. Although glucose transfer across the membrane of hepatic cells is primarily

guaranteed by an insulin-independent transporter, GLUT2, the flux of glucose from blood to

liver is strongly controlled by hormones, through the regulation of the four processes at the basis

of glucose storage and release: glycolysis, glycogenesis, gluconeogenesis, and glycogenolysis. The

former two processes convert glucose into pyruvate (CH3COCOO−) and glycogen (a multibranched

polymeric carbohydrate molecule), respectively. Gluconeogenesis and glycogenolysis are almost the

reverse processes (the respective pathways are not symmetrically reverted), converting pyruvate

and glycogen into glucose.

When glucagon binds to its hepatic receptor a complex signalling cascade is activated, resulting

in the promotion of gluconeogenesis and glycogenolysis and in the inhibition of the other two

processes. Conversely, insulin stimulates glycolysis and the conversion of glucose into glycogen [157,

101, 145]. An amount of about 100 g of glycogen is stored in liver cells, ready to be converted into

glucose and delivered to blood in fasting conditions.

Liver also plays an important indirect role in the control of glucose level by removing insulin

from blood. After being released by pancreas, insulin reaches liver through the portal vein and

about 50% is removed from circulation. Most of insulin uptake is receptor-mediated with the onset

of saturation effects at concentrations of about 500–2000µU/ml [57]. However, not all bound

insulin is destroyed. A significant amount of receptor-bound insulin re-enters circulation, after

spending a long time bound to liver receptors (about 1 h [90]). The fraction of insulin that is

not released is internalised by the cell, where it can be processed and destroyed through multiple

complex pathways.

Glucagon undergoes similar hepatic removal. Experimental studies in animals show indeed

that a significant fraction of portal glucagon is removed by liver [99, 70]. However the biochemical

mechanisms at the basis of this process have been less investigated especially in humans.

6.1.3 Kidneys

Kidneys provide an important contribution in maintaining glucose homoeostasis. Indeed, they

release glucose in blood through gluconeogenesis, remove it by glomerular filtration, reabsorb it in

proximal tubules [186], and remove insulin and glucagon from peripheral circulation.

At normal concentration, all glucose removed by glomerular filtration is actively reabsorbed

through sodium-coupled glucose cotransporters (SGLT) [208, 209]. SGLT molecules exploit energy

associated with sodium electrochemical potential, to transport glucose against its concentration
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gradient. Indeed SGLT1 and SGLT2 cotransport two or one Na+ ions, respectively, with one-

molecule of glucose across the proximal-tubule membrane down the sodium concentration gradient.

This gradient is actively maintained by the sodium/potassium pump using energy from ATP,

which transports Na+ and K+ ions in a 3:2 ratio across the membrane against their concentration

gradients. Above plasma glucose concentration of 180mg/dl, SGLT binding sites start to saturate,

glucose is not completely reabsorbed and is consequently found in urine. Eventually, when plasma

glucose reaches a concentration of 350mg/dl, cotransporters are fully saturated and glucose cannot

be reabsorbed.

Kidneys remove about 50% of peripheral insulin [57] by the combined action of glomerular fil-

tration and proximal-tubule reabsorption. After being eliminated by filtration insulin is reabsorbed

by proximal-tubule cell by endocytosis. Here insulin is degraded through multiple pathways as in

liver. Eventually, almost no insulin is excreted in urine. Because of the important contribution of

kidneys to the clearance of this molecule, renal function may strongly affect glucose homoeostasis.

For instance renal failure may cause hypoglycaemia, due to reduced clearance.

Kidneys are recognised also as one of the major sites of glucagon elimination, since a decrease

in glucagon clearance was observed in patients with renal failure [70]. However, their contribution

has not been precisely quantified yet.

6.1.4 Muscles and adipose tissue

Transport of glucose into muscle, cardiac, and adipose tissue is mainly due to glucose trans-

porter 4 (GLUT4), an insulin-regulated transporter, that facilitates diffusion of glucose down its

concentration gradient [186]. At low insulin levels, GLUT4 is stored in vesicles in the cytoplasm.

When insulin binds to its receptors on the cell membrane, it stimulates the production of GLUT4

molecules and triggers insertion of stored GLUT4 in the cell membrane by exocytosis [201].

Thus, when glucose level increases, pancreas starts producing insulin and the rate at which

muscle and adipose tissue uptake glucose increases. Glucose is either used for energy production

or transformed into glycogen that is stored in muscles. Differently from liver, muscles cannot

release glucose in blood. Thus, the glycogen accumulated in this tissue (about 400 g) is an energy

reserve accessible only by muscles themselves.

Since muscle cells have insulin receptors, they are also responsible for insulin removal by inter-

nalisation and degradation, as in liver and kidney cells.
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6.1.5 Central nervous system

Glucose represents the primary energy source of the central nervous system, which consumes

about 60% of the blood glucose during fasting. The rate at which brain uptakes glucose (about

72 mg/min) is constant, insulin-independent, and almost independent from glucose concentration.

Neurons are particularly sensitive to hypoglycaemia since they do not store glycogen. Consequently,

in such condition their consumption of glucose rapidly drops [174].

Glucose is transported into neurons mainly by glucose transporter 3 (GLUT3), an insulin-

independent transporter [195]. GLUT3 has a higher affinity with glucose and five-fold greater

transport capacity than other glucose transporters [172]. This guarantees efficient glucose supply

to neurons in an environment, the cerebrospinal fluid, where glucose concentration is about two-

thirds than in blood [174].
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6.2 Intravenous glucose-tolerance test

The first models describing the dynamics of blood glucose were developed to estimate insulin

sensitivity through the intravenous glucose-tolerance test (IVGTT). This test involves frequent

sampling of peripheral plasma after an intravenous glucose injection. By measuring the time course

of plasma insulin and glucose concentration it is possible to derive a quantitative estimate of insulin

tissue sensitivity. First investigations showed that blood glucose concentration approximately

undergoes exponential decay with time [58]. A rough index of glucose tolerance was proposed as

the constant K, simply computed as

K = log(C1/C2)
t2 − t1

, (6.1)

using only two values C1 and C2 of blood glucose concentrations, measured at times t1 and t2.

More advanced models of IVGTT must be able to reproduce the full glycaemic curve resulting

from the coupled evolution of glucose and insulin in a short period of time (a few hours) and are

fitted on a dataset with frequent sampling. For these reasons they are quite simple and cannot

be generalised to describe situations where glucose and insulin are administered with complex

schemes. Furthermore they cannot be adopted to describe the physiological reaction to hypogly-

caemic conditions, that is their approximations fail when the blood glucose levels drop below a

certain level.

Bolie’s model. The simplest model by Bolie [29] is based on a system of two linear differential

equations describing the interaction between glucose and insulin

dG
dt = −a1G− a2I + p, (6.2)

dI
dt = a3G− a4I, (6.3)

where G and I represent glucose and insulin amount in blood. This model is affected by several

drawbacks. First, it is not based on experimental evidence. The relationship between insulin

secretion rate and glucose is not linear and requires many parameters [23, 72]. Second, this model

does not properly consider the complex glucose control through hepatic production and uptake [22].

Minimal model. Starting from a few essential criteria Bergman et al. and Toffolo et al. [25, 24, 184]

developed a minimal model that:

(a) is physiologically based,
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(b) is identifiable from a single glycaemic curve,

(c) is parsimonious in terms of number of parameters,

(d) the estimated parameters must have a physiological interpretation.

In addition to insulin I and glucose G, the standard formulation of the minimal model includes an

auxiliary function X representing insulin in a distant compartment, stimulating glucose uptake by

tissues [53]:

dG
dt = − [p1 +X]G+ p1Gb, G(0) = p0, (6.4)

dX
dt = −p2X + p3 [I − Ib] , X(0) = 0, (6.5)

dI
dt = p4 [G− p5]+ t− p6 [I − Ib] , I(0) = p7 + Ib, (6.6)

where [a]+ = max(a, 0) is the positive part of a, Gp and Ip are subject specific glucose and insulin

basal levels, and pi are:

p0 theoretical glucose concentration after glucose bolus,

p1 insulin-independent rate of glucose uptake,

p2 insulin decay rate in the distant compartment,

p3 rate of insulin increase in the distant compartment,

p4 rate of pancreatic release of insulin after the bolus,

p5 pancreatic target glycaemia,

p6 decay rate of insulin in plasma,

p7 theoretical plasma insulin concentration above basal insulinaemia, after glucose bolus.

Although this model can reproduce the short-time dynamics of an IVGTT, it is not suitable for

a general description of the complex physiology at the basis of the full dynamics of blood glucose

level.

First, the presence of the term t in Eq. (6.6) expresses the fact that after a sudden glucose bolus

the amount of insulin released by pancreas increases with time. Although this approximation holds

in the first tens of minutes after the bolus, it explicitly breaks the invariance of the equations for

time translations, since it arbitrarily fixes a time origin with respect to which all biochemical events

take place. Furthermore, if G was kept larger than p5, by continuous glucose administration, this

term would yield a linearly growing rate of insulin production and make the system unstable. This
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clearly shows that this model cannot be applied to reproduce scenarios that differ from the settings

of an IVGTT.

Second, in a proper physiological model, the basal values Gb and Ib of glucose and insulin

levels should be stationary solutions of the system (based on parameters describing production,

exchanges, uptake, and clearance of molecules) and must not be forced as external parameters.

Conversely, all the terms of Eqs. (6.4), (6.5), and (6.6) containing G and I are expressed as

deviations around the basal values Gb and Ib. Such an expansion is expected to be valid for values

of G and I not too far from Gb and Ib. In particular, this approximation fails to describe the

physiological reaction to hypoglycaemic conditions.

Dynamical model. To remove the auxiliary function X and the explicit time dependence from the

equations, De Gaetano and Arino [53] proposed a model based on a couple of integro-differential

equations

dG
dt = −p1G− b4I G+ b7, G(0) = Gb + b0, G(t) = Gb ∀t ∈ [−b5, 0), (6.7)

dI
dt = −b2I + b6

b5

∫ t

t−b5

G(s)ds, I(0) = Ib + b3b0, (6.8)

where Gb and Ib are the basal pre-bolus glucose and insulin concentrations and bi are:

b0 theoretical increase of glucose concentration after glucose bolus,

b1 insulin-independent rate of glucose elimination,

b2 insulin decay rate,

b3 first-phase increase of insulin concentration per unit of glucose increase after glucose bolus,

b4 insulin-dependent rate of glucose elimination,

b5 length of past period whose glucose concentration can influence pancreatic insulin secretion,

p6 second-phase of insulin release dependent on the average of plasma glucose concentration in the

previous b5 period of time,

p7 constant glucose release by liver.

Even if this model removes the ugly time-dependent feature of the minimal model, it does not

provide a satisfactory solution to the presence of an auxiliary variable. The choice of introducing

an effective delay between glucose increase and insulin production through the time average of

G is as arbitrary as the introduction of an auxiliary variable and cannot be justified with simple

167



6.2. IVGTT CHAPTER 6. GLUCOSE DYNAMICS

physiological arguments. By taking the time derivative of Eq. (6.8)

d2I(t)
dt2 = −b2

dI(t)
dt + b6

b5
[G(t)−G(t− b5)] (6.9)

which, introducing the new variable Y = dI/dt, can be written as a system of differential equations

dY
dt = −b2Y + b6

b5
[G(t)−G(t− b5)] , (6.10)

dI
dt = Y. (6.11)

It is now apparent that also De Gaetano and Arino’s dynamical model contains an auxiliary variable

Y , which in Eq. (6.8) is just masked through the trick of writing the equations in integro-differential

form. Furthermore the formulation of Eq. 6.10 explicitly indicates the presence of an arbitrary

time delay b5 in the production of Y with respect to an increase of G. Interestingly, Eq. (6.8) has

been extended to general non-negative square integrable normalised kernels [128]:

dI
dt = −b2I + b6

∫ ∞
0

ω(s)G(t− s)ds. (6.12)

By varying ω(s) one can reproduce almost all the possible causal relationships between G and I.

This formal definition of the link between G and I allows one to derive general theoretical results

on the existence and the convergence of the solutions of the system. The choice of the functional

form of ω(s) must be based on physiological considerations and should be constructed as a solution

of differential equations describing fundamental physiological interactions.

Kernel estimation. To clarify with an example how to determine the kernel in an integro-differential

equation like Eq. (6.12), I step back to the minimal model defined in the system of Eqs. (6.4), (6.5),

and (6.6). The auxiliary variable X can be eliminated from this system by integrating Eq. (6.5)

through the method of variation of parameters

X(t) =
∫ t

−∞
G(t− t′) [I(t′)− Ib] dt′, (6.13)

where the interstitial insulin level X depends on past values of the plasma insulin level I, weighted

by the Green function

G(t) = p3 e
−p2t. (6.14)

I have chosen the lower integration limit as −∞. In practice, given the exponentially decaying

behaviour of G, it is enough to know the value of the insulin level I in the past of t back to a few

τ = p−1
2 .
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As a last step, I eliminate X from Eq. (6.4):

dG
dt = −

[
p1 +

∫ t

−∞
G(t− t′) [I(t′)− Ib] dt′

]
G+ p1Gb. (6.15)

Though at first glance this equation looks more complicated than Eq. (6.8), the minimal model

is based on much clearer and simpler physiological assumptions. The term p3 [I − Ib] in Eq. (6.5)

parametrises a diffusive process through which insulin I moves from plasma to a distant compart-

ment (e.g., interstitial fluid). Furthermore, in Eq. (6.13) there is no explicit arbitrary time delay.

The delay between I and X appears through the average of I with the smooth kernel G and the

time scale τ of the corresponding delay is naturally fixed by the elimination rate p2.

6.3 Ultradian oscillations of insulin and glucose

Glucose and insulin dynamics show ultradian oscillations on a time scale of 50–120 minutes

with the following intriguing features [185, 171, 169, 177]:

• Oscillations are self-sustained during glucose infusion at a constant rate.

• The increase of the glucose infusion rate results in oscillations with larger amplitudes, but

does not affect their frequency [40];

• The time evolution of glucose and insulin concentrations are highly correlated and glucose

peaks precede insulin peaks by a few minutes [171, 140, 169, 40].

• Oscillations after meal or oral glucose ingestion are damped.

Several models have been proposed to explain this phenomenon [105], starting from the same

heuristic argument: the release of insulin when blood concentration of glucose increases is not

instantaneous. Analogously, there is a delay of a few minutes between the release of insulin by

pancreas and the uptake of glucose by liver, muscle, and adipose tissues, stimulated by an increase

of insulin concentration. The combination of these two delays produces a cyclic effect in the time

evolution of glucose and insulin, even in a stationary scenario when all the parameters remain

constants and there is no intake of glucose.

Starting from an initial condition where both the concentration of insulin and glucose are low,

liver starts producing glucose. When blood glucose exceeds a certain threshold, pancreas releases

insulin in the blood stream. However, the reaction of liver, muscles, and adipose tissues to a higher

concentration of insulin is not instantaneous. Thus blood glucose concentration keeps increasing

for a few minutes. Meanwhile pancreas continues to produce insulin. When the uptake of glucose
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starts, the insulin level is already very high. After glucose levels go below the pancreatic threshold

concentration, pancreas stops producing insulin. However, it will take a few minutes to completely

clear insulin from blood. During this period, glucose concentration further decreases and goes

down to a relatively low level. The system has returned to the initial state and an other cycle can

start.

These delays can be modelled in two ways. One possibility is to write a couple of delayed

differential equations (DDE) by explicitly introducing two constant delays in the two equations

describing the variation of insulin and glucose [60, 112]. Another possibility consists in increasing

the number of compartments in which insulin and/or glucose move (e.g. blood, interstitial flow,

etc...), and, accordingly, the number of variables [177, 185]. The differential equations remain

ordinary and of first order, but the number of equations increases. The first approach leads to

a more compact set of equations and allows a more straightforward analysis of the mathematical

properties of their solutions [60, 21, 112, 107].

6.3.1 Multicompartmental ODE system

In the model developed by Sturis et al [177], the delay between insulin production and the

stimulation of glucose uptake implicitly appears through a complex system of six ordinary differ-

ential equations. In this work, the structure of the equations is based on an accurate theoretical

description of the physiological processes.

This model contains three main variables: the total amount of glucose in plasma and intercel-

lular space G, the amount of insulin in plasma Ip, and the amount of insulin in the intercellular

space Ii. Furthermore, there are three auxiliary variables x1, x2, and x3 representing the delay

between insulin release in plasma and its effect on hepatic glucose production.

The three main equations, for G, Ip, and Ii are

dIp
dt = f1(G)− E

(
Ip
Vp
− Ii
Vi

)
− Ip
tp
, (6.16)

dIi
dt = E

(
Ip
Vp
− Ii
Vi

)
− Ii
ti
, (6.17)

dG
dt = Gin − f2(G)− f3(G)f4(Ii) + f5(x3). (6.18)

The auxiliary variable x3 is related to the amount of insulin in plasma Ip, through a cascade of
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Parameter Value Units
Vp 3 l
Vi 11 l
Vg 10 l
E 0.2 l/min
tp 6 min
ti 100 min
td 36 min
Rm 210 mU/min
a1 300 mg/l
C1 2000 mg/l
Ub 72 mg/min
C2 144 mg/l
C3 1000 mg/l
U0 40 mg/min
Um 940 mg/min
β 1.77
C4 80 mU/l
Rg 180 mg/min
α 0.29 l/mU
C5 26 mU/l

Table 6.1: Parameters of the model presented in Eqs. (6.16)–(6.21) [177].

three simple differential equations

dx1

dt = 3
td

(Ip − x1) , (6.19)

dx2

dt = 3
td

(x1 − x2) , (6.20)

dx3

dt = 3
td

(x2 − x3) . (6.21)

The functional form of each term fi was determined through a careful review of the experimental

results. The value of all the parameters, reported in Table 6.1 were fitted to experimental results.

Equations (6.16) and (6.17) express the variation of the total amount of insulin in plasma and

in the intercellular space, whose volumes are Vp and Vi, respectively. Insulin is degraded in plasma

and in the intercellular space with two different time constants tp and ti. The transport between

the two insulin compartments is modelled as a diffusive process driven by the difference in insulin

concentration, with transfer rate E [139]. The pancreatic insulin production controlled by glucose

concentration is

f1(G) = Rm
1 + e−(G/Vg−C1)/a1

, (6.22)

where unknown parameters were fitted to experimental results involving the measure of C-peptide

concentration [140, 169].

Equation (6.18) describes the variation of the total amount of glucose, distributed in a volume

Vg. The first term Gin represents the exogenous supply of glucose, either from food or intravenous
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infusion. The other terms represent glucose removal and endogenous glucose production. Glucose

is removed from plasma by several organs in different ways. Glucose utilisation by the central

nervous system (CNS) does not depend on the concentration of insulin and is almost constant

(approximately 72 mg/min). The consumption of glucose by the CNS drops to zero only in

conditions of severe hypoglycaemia. This behaviour is described by

f2(G) = Ub

(
1− e−G/C2Vg

)
, (6.23)

which was fitted to experimental data from Verdonk et al [196]. Glucose utilisation by muscle and

adipose tissues depends instead on the concentration of both glucose and insulin. This dependence

has been decoupled through the product of the two functions f3 and f4. The dependence on G is

assumed to be linear

f3(G) = G

C3Vg
, (6.24)

in agreement with experimental results [152, 196]. The insulin dependent term is modelled as

f4(Ii) = U0 + Um − U0

1 + [Ii (1/Vi + 1/Eti) /C4]−β
, (6.25)

which is expressed in terms of the experimental relation between plasma insulin concentration and

cellular glucose uptake [152]. The last term of the glucose equation represents hepatic glucose

production. In this model endogenous glucose production is controlled only by insulin and involves

a time delay, implemented through the three auxiliary variables x1, x2, and x3:

f5(x3) = Rg
1 + eα(x3/Vp−C5) . (6.26)

Indeed, Eqs. (6.19), (6.20), and (6.21) generate an effective total delay of td [144]. By integrating

these equations one at a time, as shown in Appendix A, one finds that

x3(t) =
∫ t

−∞
G3 (t− t1) I(t1)dt1, G3(τ) = 1

2κ
3τ2 e−κτ . (6.27)

The value of x3 computed at time t is the weighted average of the insulin concentrations I(t′)

measured at times t′ < t, with weight G3(t − t′), where the function G3 is normalised to 1, with

average τ̄ = td, and standard deviation td/
√

3.

Sturis’ model has self-sustained oscillatory solutions in a wide range of parameters [177] and

accounts for the experimental findings summarised at the beginning of this section (see page 169).
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6.3.2 DDE systems with explicit delays

Bennett and Gourley’s model. The delay between the production of insulin and its effect on

liver or other organs can be implemented by introducing an explicit time delay in the system of

differential equation [21]. Equations (6.19), (6.20), and (6.21) are removed from the system and

Eq. (6.18) is modified as

dG
dt = Gin − f2(G)− f3(G)f4(Ii) + f5(Ip(t− τ)), (6.28)

with initial conditions

Ip(t) = I0
p(t) ≥ 0, −τ ≤ s ≤ 0, and I0

p(0) > 0, (6.29)

Ii(0) = I0
i > 0, (6.30)

G(0) = G0 > 0. (6.31)

With respect to Sturis’ model, this system does not introduce unobserved auxiliary variables

xi. Several fundamental properties of its solutions can be derived analytically [21] by assuming

that f3 is linear and fi satisfies very weak conditions

fi > 0, i = 1, 2, 4, 5, (6.32)

f ′i > 0, i = 1, 2, 4, f ′5 < 0, (6.33)

fi(0) = 0, i = 2, 3, fi(x)→ ai > 0, as x→ 0, i = 4, 5, (6.34)

fi(x)→ bi > 0, as x→ +∞, i = 1, 2, 4, f5(x)→ 0, as x→ +∞. (6.35)

Under these conditions the solutions of this model exist for any t > 0, are strictly positive,

and uniformly bounded from above and below. Furthermore, there is only one equilibrium point

(I∗p , I∗i , G∗), solution of
dG
dt = dIi

dt = dIp
dt = 0. (6.36)

Using Lyapunov functions, Bennett and Gourley [21] identified a set of sufficient conditions under

which the solutions converge to the equilibrium (I∗p , I∗i , G∗). They found quite complex conditions

involving the time scale ti and tp on which interstitial and plasma insulin degrades and the delay

τ between the production of insulin and the appearance of its effect. Qualitatively, if ti, tp,

and τ are all sufficiently small, then the solutions globally converge to the equilibrium solutions

(I∗p , I∗i , G∗). For larger delay τ , and slow degradation rates (large ti and tp) solutions with self-

sustained oscillations become possible.
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It was also proved that the solution does not converge to equilibrium if the rate Gin is large.

Furthermore, in order to sustain oscillations, the rate of plasma insulin production must be large

enough and sensitive to variation of glucose concentrations (i.e., large f ′1(C1Vg) = Rm/4a1Vg).

Analogously, oscillations are more likely to occur if the rate of liver glucose production stimulated

by insulin is large and sensitive to variations of insulin concentrations (i.e., large f ′5(C5Vp) =

Rgα/4Vp).

Engelborghs, Lemaire, Bélari, and Roose’s model. The model by Sturis et al was generalised in

Ref. [60] to describe glucose dynamics in patients affected by type-I diabetes undergoing insulin

infusion. Sturis’ model was initially simplified by removing the interstitial compartment for insulin,

and introducing a term τ2 to mimic the time delay between insulin production and hepatic glucose

release.

dI
dt = f1(G)− I

t1
, (6.37)

dG
dt = Gin − f2(G)− f3(G)f4(I) + f5(I(t− τ2)). (6.38)

Although simpler, this model is still able to capture the fundamental features of glucose dynamics

in healthy subjects, assuming a degradation time t1 = 6 min and a delay τ2 = 50 min.

The pathophysiology of diabetes is modelled by decreasing the internal insulin production and

replacing f1(G) by γf1(G), with 0 ≤ γ ≤ 1. The lower the γ, the worse the patient conditions.

External insulin infusion is assumed to compensate the decrease of pancreatic insulin production

(it is proportional to [1 − γ]) and to depend on plasma glucose concentration in much the same

way as insulin is produced by pancreas (proportional to f1(G)). Namely, the rate of insulin

infusion is adjusted according to variations in glucose concentration, with a certain delay τ1, which

parametrises the time required to measure the glucose concentration and change the rate of infusion

of the insulin pump. By modifying Eq. (6.37) according to these criteria, the system assumes the

following form, with two time delays τ1 and τ2:

dI
dt = γ f1(G)− I

t1
+ (1− γ)f1(G(t− τ1)), (6.39)

dG
dt = Gin − f2(G)− f3(G)f4(I) + f5(I(t− τ2)). (6.40)

This system is simple enough to allow for a semi-analytical study of its solutions. The properties of

its steady-state solutions can be determined by applying the techniques illustrated in Appendix B.
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The steady state (I∗, G∗) is the solution of

f1(G∗)− I∗

t1
= 0. (6.41)

Gin − f2(G∗)− f3(G∗)f4(I∗) + f5(I∗) = 0. (6.42)

The solution exists and is unique. From the first equation I can compute I∗ = t1f1(G∗) and replace

it in the second equation, which becomes

g(G∗) = 0, (6.43)

where

g(x) = Gin − f2(x)− f3(x)f4(t1f1(x)) + f5(t1f1(x)). (6.44)

For x = 0,

g(0) = Gin + f5(t1f1(0)) > 0, (6.45)

since f5 is always positive. For x→ +∞

lim
x→+∞

g(x) = −∞, (6.46)

since f2(x)→ Ub, f5(t1f1(x))→ f5(t1Rm), f4(t1f1(x))→ f4(t1Rm) > 0, and f3(x)→ +∞. Since

g is continuous there must exist at least one solution of g(x) = 0 in (0,∞). Furthermore, the

solution is unique because g is strictly monotonic and decreasing. Indeed,

g′(x) = −f ′2(x)− f ′3(x)f4(t1f1(x))− f3(x)f ′4(t1f1(x))t1f ′1(x) + f ′5(t1f1(x))t1f ′1(x) (6.47)

is negative for any x > 0, because ti > 0, fi > 0, f ′i > 0 for i = 1, 2, 3, 4, and f ′5 < 0 [see Eqs. (6.22),

(6.23), (6.24), (6.25) and (6.26)].

Following Appendix B, I linearise Eqs. (6.39) and (6.40) around (I∗, G∗). Defining y(t) =

(i(t), g(t)), with i(t) = I(t)− I∗ and g(t) = G(t)−G∗:

ẏ(t) =
2∑
i=0

Ai y(t− τi), (6.48)
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where τ0 = 0 and

A0 =

 −1/t1 γf ′1(G∗)

−f3(G∗)f ′4(I∗) −f ′2(G∗)− f ′3(G∗)f4(I∗)

 , (6.49)

A1 =

0 (1− γ)f ′1(G∗)

0 0

 , (6.50)

A2 =

 0 0

f ′5(I∗) 0

 . (6.51)

The corresponding characteristic equation [see Eq. (B.10)] is

λ2 +Aλ+B + C e−λ(τ1+τ2) +De−λτ1 + E e−λτ2 = 0, (6.52)

where

A = 1/t1 + f ′2(G∗) + f ′3(G∗)f4(I∗), (6.53)

B = f ′2(G∗)/t1 + f ′3(G∗)f4(I∗)/t1 + γf ′1(G∗)f3(G∗)f ′4(I∗), (6.54)

C = −(1− γ)f ′1(G∗)f ′5(I∗), (6.55)

D = f3(G∗)f ′4(I∗)(1− γ)f ′1(G∗), (6.56)

E = −γf ′1(G∗)f ′5(I∗). (6.57)

All these parameters are positive since f ′i > 0 for i = 1, 2, 3, 4, and f ′5 < 0. The fixed point is

unstable when the real part of the complex frequency λ becomes positive. The boundary between

the stable and unstable region is therefore defined by λ = iω, with ω ∈ R. For healthy people

C = D = 0 and the boundary condition reduces to

ω2 − iAω −B = Ee−iωτ2 . (6.58)

This is a complex equation for the two real variables ω and τ2. In the complex plane the solution

of this equation corresponds to the intersection of the curve expressed by the left-hand side with a

circle of radius E on the right-hand side. Taking the modulus squared of the equation one obtains

an equation for ω: (
ω2 −B2)2 +A2ω2 = E2. (6.59)
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Figure 6.2: Phase-space representation in the plane (Gin, τ2) of the solution of Eq. (6.52) for
a healthy individual with λ = 1. Solid lines represent the couples Gin, τ2 for which there are
purely imaginary eigenvalues λ = iω. The lowest curve separates the region where the stationary
solution (G∗, I∗) is stable (<(λ) > 0). The region outside the dashed lines (Gin = 57.2 mg/min and
Gin = 233.1 mg/min) is stable for any value of τ2. This plot has been constructed by reproducing
the calculations outlined in Ref. [60], using the values of Table 6.1.

Once ω is determined, the other unknown τ2 is obtained by solving


cos (ωτ2) = ω2 −B

E
,

sin (ωτ2) = A

E
ω.

(6.60)

In Fig. 6.2 the solid lines represent the couples of parameters Gin, τ2 for which Eq. (6.52) admits a

pure imaginary solution λ = iω. In the phase-space region below the lowest curve (grey area), the

stationary solution (G∗, I∗) is stable since all the eigenvalues λ have a negative real part. Above

this curve there are unstable solutions with a positive real part of λ. For Gin < 57.2 mg/min

and Gin > 233.1 mg/min all the stationary solutions are stable. When stationary solutions of the

form (G∗, I∗) are not stable, the solution of a system of delayed differential equations may show a

periodic behaviour, rotating around (G∗, I∗). The appearance of such solutions was discussed in

Ref. [60], using more sophisticated techniques.

Refinement of Sturis’ model The version of Sturis’ model simplified by Engelborghs et al [see

Eqs. (6.37) and (6.38)] was taken as the basis for further refinements. Li, Kuang, and Mason [112]

modified that system by explicitly introducing a time delay in Eq. (6.37) in the term describing
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Parameter Value Units
s 0.072 min−1

mb 60 min
di 0.065 min−1

C6 2300 mU/l

Table 6.2: Values of additional parameters in the model by Kissler et al [107] compared to Sturis’
model [177] (see Table 6.1).

pancreatic insulin production, partially mimicking Eq. (6.39):

dI
dt = f1(G(t− τ1))− diI, (6.61)

dG
dt = Gin − f2(G)− f3(G)f4(I) + f5(I(t− τ2)), (6.62)

where di is the insulin degradation constant. Wang, Li, and Kuang [199] further improved the

insulin equation by accounting for insulin administration and saturation effect in insulin degrada-

tion:
dI
dt = Iin + βf1(G(t− τ1))− f6(I), (6.63)

where Iin(t) is the rate of insulin administration and β pancreas efficiency (with 0 ≤ β ≤ 1).

Insulin degradation is described by the new function f8,

f6(I) = diC6

I/Vp + C6
I. (6.64)

When the insulin concentration is much less than the half-saturation concentration C6 (I/Vp �

C6), the insulin elimination term becomes proportional to the insulin concentration (diI), as in

Eq. (6.61). At high insulin concentrations I/Vp � C6, the elimination rate becomes insulin

independent saturating at diC6Vp.

Finally, Kissler, Cichowitz, Sankaranarayanan, and Bortz [107] adapted this model by modify-

ing the glucose equation (6.62) taking into account variations in muscle glucose uptake according

to physical activity

dG
dt = Gin − f2(G)− γ [1 + s (m−mb)] f3(G)f4(I) + f5(I(t− τ2)), (6.65)

where γ parametrises insulin tissue sensitivity, s the rate of increase of insulin sensitivity per minute

of exercise,m the daily minutes of physical activity, andmb the baseline minutes of physical activity.

In this analysis, the parameters values were chosen as in Table 6.1. Values of additional parameters

are reported in Table 6.2.
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6.4 Models for critically ill patients

In this section I briefly present some of the most interesting models proposed to describe the

kinetics of glucose and insulin in critically ill patients. However, some of these models, which

provide a good physiological description, are very complex and their mathematical and statistical

treatment is not simple. This makes it almost impossible to derive analytical results. Conversely,

other models, which offer a much easier and stable application (e.g., to data fitting), do not properly

reproduce the relevant physiological mechanisms.

For these reasons, in Chap. 7, I construct my model starting from the one illustrated in

Sec. 6.3.2. Although much simpler from a mathematical point of view, that model allows a faithful

and detailed physiological description of glucose regulation.

6.4.1 Glucose and insulin subsystems

In a series of papers, Hovorka et al, proposed [88], applied, and tested, also on a population

of critically ill patients [89, 14] a very complex model describing the coupled dynamics of glucose

and insulin through a set of eight differential equations: two represent the dynamics of the glucose

subsystem, three of the insulin one [90], and three the action of insulin on glucose. The equations

for the glucose subsystem are

dQ1(t)
d = −

[
F c01

VGG(t) + x1(t)
]
Q1(t) + k12Q2(t)− FR + UG(t) + EGP0 [1− x3(t)] (6.66)

dQ2(t)
dt = x1(t)Q1(t)− [k12 + x2(t)]Q2(t)y(t), (6.67)

where Q1 and Q2 are the masses of glucose in the accessible and non-accessible compartments, VG

the volume of the first compartment, G = Q1/VG the glucose concentration, EGP0 the endogenous

glucose production at zero insulin concentration, F c01 the insulin-independent glucose flux

F c01 = F01 ×

 1 ifG ≥ 4.5mmol/l,

G/(4.5mmol/l) otherwise,
(6.68)

and FR is the renal glucose clearance above G = 9 mmol/l

FR = F01 ×

 0.003 (G− 9mmol/l)VG ifG ≥ 9mmol/l,

0 otherwise.
(6.69)
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UG is glucose intake, expressed as

UG(t) = DGAGte
−t/tmax,G

t2max,G
, (6.70)

to model the gut absorption rate of glucose after meals.

The insulin subsystem is based on the three following equations:

dI(t)
dt = UI(t)

VI
− ke I(t), (6.71)

dS1(t)
dt = u(t)− S1(t)

tmax,I
, (6.72)

dS2(t)
dt = S1(t)

tmax,I
− S2(t)
tmax,I

. (6.73)

The first equation expresses the variation of plasma insulin concentration I, where VI is its distri-

bution volume, and ke the elimination rate. The form of UI , the insulin intake rate, is obtained

as the solution of Eqs. (6.72) and (6.73). S1 and S2 are two-compartment insulin concentrations

modelling absorption of fast insulin, u(t) represent intravenous infusion of insulin. Eventually, the

insulin absorption rate is obtained as UI(t) = S2(t)/tmax,I . The insulin-mediated glucose produc-

tion and the removal terms in Eqs. (6.66) and (6.67) are derived by solving a further series of

differential equations

dx1(t)
dt = −ka1x1(t) + kb1I(t), (6.74)

dx2(t)
dt = −ka2x2(t) + kb2I(t), (6.75)

dx3(t)
dt = −ka3x3(t) + kb3I(t), (6.76)

where x1, x2, and x3 represent the effect of insulin on glucose distribution between compartments,

disposal, and endogenous production.

This model provides a very detailed description of some microscopic physiological mechanisms

and implements delay effects with a cascade of coupled differential equations (see Appendix A).

However, it does not model saturation effects as well as the models illustrated in Sec. 6.3 and it

contains a huge number of parameters. From a mathematical perspective, it is extremely complex

and contains non-differentiable functions (F c01, FR). As a consequence, an analytical treatment is

more difficult in this model than, for instance, the one proposed in Ref. [177] and subsequently

refined by several authors (Sec. 6.3.2).
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6.4.2 Model for estimation of time-dependent parameters

Based on the minimal model [25, 24, 184] (see Sec. 6.2), Chase et al proposed a simple model

with the aim of estimating the fractional clearance of plasma glucose pG at basal insulin and the

insulin sensitivity SI , in an adaptive, time-dependent way [44, 79, 116, 43, 45, 42]. The model

consists of three differential equations

dG
dt = −pGG− SI (G+GE) Q

1 + αGQ
+ P (t), (6.77)

dQ
dt = kI − kQ, (6.78)

dI
dt = −n I

1 + αII
+ uex(t)

V
, (6.79)

where G is the difference between the concentration of plasma glucose and its equilibrium level

GE , I is the concentration of insulin resulting from exogenous administration uex, and Q is the

concentration of insulin bounded to interstitial sites. The Authors also implement a very interesting

method to fit the parameters in a time-dependent way. The model is very robust when fitted to

data and it was also implemented in an automatic controller to adjust insulin and nutrition input

in critically ill patients [207, 136, 98]. However it does not provide a good description of the

physiological processes at the basis of glucose dynamics. The first equation is indeed a sort of

linearisation around the equilibrium value GE , which must be estimated from data. Furthermore,

the endogenous production of insulin is not modelled.

6.4.3 Adaptive model with endogenous insulin production

Starting from the minimal model (Sec. 6.2), Van Herpe et al. developed a new simple model,

which, differently from the model illustrated in Sec. 6.4.2, includes a term representing endogenous

insulin production:

dG
dt = (P1 −X)G− P1Gb + FG

VG
, (6.80)

dX
dt = P2X + P3 (I1 − Ib) , (6.81)

dI1
dt = α max (0, I2)− n (I1 − Ib) + FI

VI
, (6.82)

dI2
dt = βγ (G− h)− nI2, (6.83)

where G and I1 are the glucose and insulin concentrations in plasma and X describes the effect

of insulin on glucose uptake. The variable I2 was introduced only for mathematical reasons and

interpreted a posteriori as the fraction of the available insulin from the endogenous insulin secretion.
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Thanks to its simplicity this model was implemented in an automatic control system [80,

192]. A single-centre randomised clinical trial showed that, compared with expert nursing, this

automatic system improved the efficacy of a tight glycaemic control without increasing the risk of

hypoglycaemia [194].

Although this model was able to produce important results, its formulation is not satisfactory

from a physiological and mathematical point of view. Equation (6.83) was introduced without

a clear physiological motivation. Furthermore, because of the presence of the term G − h in

Eq. (6.83), I2 can assume non-physical negative values. Eventually, a max function was introduced

in Eq. (6.82) to fix this issue. This, in turn, generates annoying mathematical complications in the

analytical treatment of the equations since the max function is not differentiable.
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Chapter 7

GLUCOSE–INSULIN–GLUCAGON DYNAMICS

A reliable mathematical model must be able, first of all, to reproduce realistic glucose dynamics

in healthy individuals. One expects that pathological dynamics can be described by adjusting the

system of equations introducing modifiers as β and γ in Eqs. (6.63) and (6.65), which parametrise

the efficiency of pancreatic insulin production and insulin tissue sensitivity, respectively. For in-

stance, a patient with type I diabetes will have β < 0, not being able to produce insulin as a healthy

subject. On the other hand, patients with type II diabetes are characterised by the inability to

respond to normal insulin levels. Hence, they are modelled by taking γ < 1. Similarly, one expects

to be able to reproduce the glucose dynamics in critically ill patients under severe stress condition

by just adapting the parameters of the system, once all the physiological mechanisms underlying

glucose regulation are properly taken into account by the model.

In this Chapter I shall test the models presented in Sec. 6.3 by performing a numerical analysis

on simulated healthy individuals. Then, I shall introduce a new model describing the coupled

dynamics of glucose, insulin, and glucagon and test its performance with analytical investigations,

simulations, and on measured data at single-patient level. The objective of this investigation is

to study the mathematical properties of this new model, to produce a phase-space analysis of the

stability of its solution and to discuss at a qualitative level the patho-physiological interpretation of

those results. No population model will be constructed because of the lack of frequent and robust

data, as explained in Sec. 7.5.
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Figure 7.1: Evolution of plasma glucose (left panel) and insulin (central panel) concentrations
and glucose-insulin phase-space plot (right panel) for a subject with τ1 = 5 min, τ2 = 4.5 min,
Gin = 54 mg/min, di = 0.06 min−1, with initial glucose and insulin concentrations of 105 mg/dl
and 30 mU/l, respectively. Values of other parameters as in Table 6.1. The results were obtained
integrating Eqs. (6.61) and (6.62) as in Fig. 4, left panel, of Ref. [112].

7.1 Glucose–insulin dynamics

I perform my test adopting the last model presented in Sec. 6.3.2. This model is compact, it

properly describes the interactions between the most important organs involved in the regulation

of the glucose level, and implements saturation and delay effects in explicit forms. Finally, all its

functions are analytical. This makes it possible to derive analytical results on the existence, unique-

ness, and stability of the solutions, which ensure the robustness of the model and the possibility

of performing numerical simulations and fitting.

I start from Eqs. (6.63) and (6.65), without accounting for physical exercise, namely,

dI
dt = Iin + βf1(G(t− τ1))− f6(I), (7.1)

dG
dt = Gin − f2(G)− γf3(G)f4(I) + f5(I(t− τ2)), (7.2)

First, I tested my code by reproducing the plots of Fig. 4 in Ref. [112], using a linear insulin

elimination rate di I and β = γ = 1, Gin = Iin = 0, and the plots of Fig. 11 in Ref. [107]. The

results of this preliminary analyses are reported in Figs 7.1 and 7.2, respectively. These results

correctly show ultradian oscillations with a period of about two hours, with insulin that follows

glucose after a few minutes. Accordingly, in the phase-space picture the solution is attracted to a

limit cycle.

To test the robustness of the two-compartment model of Eqs. (7.1) and (7.2), I simulated the

evolution of glucose concentration for a healthy subject (parameters in Tables 6.1 and 6.2) receiving

enteral nutrition.
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Figure 7.2: Evolution of plasma glucose (left panel) and insulin (central panel) concentrations and
glucose-insulin phase-space plot (right panel) for a subject with τ1 = 5 min, τ2 = 15 min, Gin = 0,
β = 0.4, γ = 0.55, with initial glucose and insulin concentrations of 150 mg/dl and 5 mU/l. Values
of other parameters as in Tables 6.1 and 6.2. The results were obtained integrating Eqs. (7.1)
and (7.2) as in Fig. 11 of Ref. [107].

G
in
(t)

t

τav τab

Figure 7.3: Rate of glucose intake for a meal. τav is the time needed to make the meal available
for absorption and τab is the time taken to absorb glucose.

The rate of glucose absorption is modelled with a standard absorption curve

Gin(t) = Gmeal

τab − τav

[
e−(t−tmeal)/τab − e−(t−tmeal)/τav

]
, (7.3)

where tmeal is the time at which the meal starts, τav is the time-scale needed to make the meal

available for absorption, and τab the time taken to absorb glucose (see Fig. 7.3). Thus, a total time

of the order τav + τab is needed by the whole process.

First I simulated a fasting healthy patient with parameters as in Tables 6.1 and 6.2, normal

pancreas efficiency (β = 1) and no insulin resistance (γ = 1). I started from initial glucose level of

90 mg/dl and insulin level of 20mU/l and prolonged the simulation until the stationary oscillating
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Figure 7.4: Evolution of plasma glucose (left panel) and insulin (central panel) concentrations and
glucose-insulin phase-space plot (right panel) for a subject with τ1 = 5 min, τ2 = 15 min, Gin = 0,
β = γ = 1, with initial glucose and insulin concentrations of 90 mg/dl and 20 mU/l. Values of other
parameters as in Tables 6.1 and 6.2. The results were obtained integrating Eqs. (7.1) and (7.2)
until the long-time oscillating state was attained.

state is eventually attained (see Fig. 7.4).

I then simulated the glucose dynamics for a subject receiving enteral nutrition, starting from

this stationary oscillating state to guarantee that the result of the simulation is not affected by

the choice of the initial condition. In Fig. 7.5, I plot the results of this simulation for a subject

receiving three meals at tmeal = 8 h, 13 h, 20 h. For each meal I assumed an intake of glucose of

20 g, 80 g, and 80 g, respectively, with absorption parameters τab = 60 min, while τav = 30 min for

lunch and dinner and τav = 15 min and for breakfast. The resulting rate of glucose administration

throughout a whole day is plotted in the top left panel. In the top right panel I represent the

phase-space co-evolution of glucose and insulin, while their time evolutions are pictured in the

bottom panels. This simulation still shows self-sustained oscillation during fasting. After meals

there are high peaks in glucose concentration, reaching values about 250mg/dl, followed by peaks

in insulin concentration. The delay between insulin production, insulin-stimulated glucose uptake,

and the consequent decrease in insulin concentration causes the appearance of mild hypoglycaemic

levels just after the hyperglycaemic peaks following glucose administration. After meals the glucose

concentration increases and stimulates insulin production. This causes the removal of glucose from

blood. However the insulin level remains quite high even after glucose has returned to a normal

value. As a consequence, the glucose level keeps decreasing eventually reaching a value just above

60mg/dl.

To test the robustness of this model for different types of meals, parametrised by different

absorption rates, I repeated the same simulation using τab = 36 min, and τav = 18 min for lunch

and dinner and τav = 7 min for breakfast. This corresponds to a meal with less lipids and proteins

and more sugars and carbohydrates. The results are shown in Fig. 7.6. Comparing these plots with

Fig. 7.5, one notes that the glucose peaks increased from 180mg/dl to about 230mg/dl, remaining
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Figure 7.5: Simulation of glucose dynamics for a healthy subject receiving three meals at time
tmeal = 8 h, 13 h, and 20 h, with an intake of glucose of 20 g, 80 g, and 80 g, respectively. Absorption
parameters τab = 60 min, while τav = 30 min for lunch and dinner and τav = 15 min and for
breakfast Upper left panel: glucose intake Gin(t) over time. Upper right panel: phase-space
solution. Lower panels: glucose and insulin time evolution.

quite well controlled by a relatively prompt insulin release. Indeed, insulin levels are more than

doubled with respect to Fig. 7.6. This yields the appearance of a deeper hypoglycaemic trough.

To further test the model, I simulated the scenario of an intravenous infusion of 20 g of glucose

in 60 s, the dose administered in a typical intravenous glucose tolerance test for a subject of about

70 kg [77]. This dose was administered at t = 7 h, starting from the stationary oscillating state

represented in Fig. 7.4. This simulation confirms the hypothesis formulated above. Although the

rate of glucose administration (20 000mg/min) is twenty times as high as in Fig. 7.6, the peak

glucose concentration is still around 250mg/dl and glucose levels go back to normal values very

rapidly. This proves that the physiological mechanisms that prevent hyperglycaemic states are

correctly modelled. However, insulin reaches a concentration of 500mU/l and its effects last for
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Figure 7.6: Simulation of glucose dynamics for a healthy subject receiving three meals as in Fig. 7.5.
Absorption parameters τab = 36 min, while τav = 18 min for lunch and dinner and τav = 7 min and
for breakfast Upper left panel: glucose intake Gin(t) over time. Upper right panel: phase-space
solution. Lower panels: glucose and insulin time evolution.
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Figure 7.7: Glucose (left panel) and insulin (central panel) time evolutions and phase-space picture
(right panel) for a healthy subject receiving an intravenous glucose bolus of 20 g at time t = 7 h.
Parameters as in Tables 6.1 and 6.2.
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several minutes after the glucose bolus. This causes glucose concentration to drop to zero. This

result is completely unrealistic and makes it apparent that this two-compartment model lacks a

mechanism preventing serious hypoglycaemia.

7.2 The glucose-insulin-glucagon model

In the previous section I tested the performance of the system of Eqs. (7.1) and (7.2) in re-

producing the coupled glucose-insulin dynamics in realistic simulated scenarios. I observed that

this model is able to reproduce the physiological mechanisms preventing hyperglycaemic states,

but not hypoglycaemia. In the case of a rapid intravascular glucose infusion, the glucose peak was

followed by a deep non-physiological hypoglycaemic trough.

This model must be completed by adding a third compartment that implements the action of

counter-regulatory hormones, primarily glucagon. Such hormones stimulate endogenous glucose

production in response to a decrease of glucose concentration below physiological values. I propose

the following system of equations

dI
dt = Iin + βIf1(G(t− τ1))− f6(I), (7.4)

dL
dt = βLf7(G)− dl L, (7.5)

dG
dt = Gin − f2(G)− γIf3(G)f4(I) + f5(I(t− τ2)) + γLf8(L). (7.6)

With respect to Eqs. (7.1) and (7.2), I have introduced the variable L, representing the amount of

glucagon in plasma and the term γLf8(L) in the glucose equation. The new functions

f7(G) = Rl
1 + e(G/Vg−C7)/a2

(7.7)

and

f8(L) = Rgl
1 + e−αL(L/Vp−C8) (7.8)

describe the rate of glucagon production by pancreas and the rate of glucagon-stimulated glucose

production. To model pathological situations I have introduced βL and γL, which parametrise the

efficiency of pancreas glucagon production and the efficiency of liver glucagon-stimulated glucose

release. Both parameters vary from 0 to 1 and are equal to 1 in healthy subjects.

Thanks to this new formulation of the glucose-insulin-glucagon dynamics, the endogenous glu-

cose production depends on plasma concentrations of both insulin and counter-regulatory hormones

(mainly glucagon, see Secs. 6.1), with two very different time scales. The old f5(I) term represents
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Parameter Value Units
Rl 120 ng/min
C7 920 mg/l
a2 100 mg/l
dl 0.2 min−1

Rgl 750 mg/min
C8 180 ng/l
αL 0.1 ng/l

Table 7.1: Values of additional parameters introduced in the glucose-insulin-glucagon model of
Eqs. (7.4), (7.5), and (7.6).

slow and delayed glucose release, which contributes to maintaining glucose homoeostasis during

fasting periods (in the following simulations I have used τ1 = 5 min and τ2 = 15 min as in Secs. 7.1).

The new term f8(L) represents instead fast and high-rate glucose release (mainly by liver, but also

by kidneys) stimulated by counter-regulatory hormones. This terms provides the necessary glu-

cose supply in situations of intense physical activity or to counteract hypoglycaemia. The term

f3(G)f4(I) still represents in a very general way all the processes that remove glucose from blood

in a hormone-dependent way (e.g., liver or muscle insulin-stimulated uptake).

Finally, in Eq. (7.5) I have introduced a term to model glucagon removal proportional to the

amount of glucagon. This term is simplified with respect to the expression for insulin degradation

in Eq. (7.4). Although the two hormones are degraded similarly, the knowledge of the mechanisms

at the basis of glucagon elimination is less precise (see Sec. 6.1.2 and 6.1.3). For this reason I have

chosen a rougher approximation with respect to insulin.

The shapes of the new functions f7 and f8 and the values of their parameters (see Table 7.1)

were chosen to mimic the observed behaviour for pancreas glucagon release and liver glucose

production [148, 70, 145, 114]. The values of the other parameters have been maintained as in

Tables 6.1 and 6.2.

7.3 Stability analysis

I investigated the stability analysis of the solutions of the system of Eqs. (7.4), (7.5), and (7.6)

following the semi-analytical approach illustrated in Sec. 6.3.2 [60]. First, I have proven that the

system always admits one unique steady-state solution (I∗, L∗, G∗), satisfying

Iin + βIf1(G∗)− f6(I∗) = 0, (7.9)

βLf7(G∗)− dl L∗ = 0, (7.10)

Gin − f2(G∗)− γIf3(G∗)f4(I∗) + f5(I∗) + γLf8(L∗) = 0. (7.11)
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Since the function f6 is monotonically increasing [see Eq. (6.64)], one can write

I∗ = h(βI f1(G∗)), (7.12)

with

h(x) = C6Vp
diC6Vp/ (Iin + x)− 1 . (7.13)

Thus, Eq. (7.9) admits a positive solution of I∗ only if h is positive, that is if diC6Vp > Iin + x.

Since βI f1 is always smaller than Rm [see Eq. (6.22)] h is positive for patients not receiving insulin

administration (Iin = 0), for realistic values of the parameters di, C6, and Vp (see Tables 6.1

and 6.2). Furthermore, using the chosen values of the system parameters, h is positive also if

Iin < diC6Vp −Rm ≈ 240 mU/min. (7.14)

When these conditions are satisfied, one can proceed to solve the system. Equation (7.10) gives

L∗ = βL
dl
f7(G∗). (7.15)

Replacing those values of I∗ and L∗ in Eq. (7.11) reads

g(G∗) = 0, (7.16)

with

g(x) = Gin − f2(x)− γIf3(x)f4(h(βI f1(x))) + f5(h(βI f1(x))) + γLf8(βL f7(x)/dl). (7.17)

Following the same steps as in Sec. 6.3.2, it is easy to prove that Eq. (7.16) always admits a

solution, if Eq. (7.14) is satisfied.

First, I note that

g(0) = Gin + f5(h(βI f1(0))) + γLf8(βL f7(0)/dl) > 0, (7.18)

since, f2(0) = f3(0) = 0, while f5 and f8 are always positive for any values of their arguments.

Moreover

lim
x→+∞

g(x) = −∞, (7.19)
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because, for x→ +∞, f3 → +∞ all the other functions fi, i 6= 3, are bound and, in particular,

lim
x→+∞

f4(h(βI f1(x))) = f4(h(βI Rg)) > 0, (7.20)

under condition (7.14).

Hence, g admits a solution for x > 0 because all the involved functions are continuous for x > 0.

The solution is also unique because g is monotonically decreasing. Indeed,

g′(x) = −f ′2(x)− γIf ′3(x)f4(h(βI f1(x)))− γIf3(x)f ′4(h(βIf1(x)))h′(βIf1(x))βIf ′1(x)

+ f ′5(h(βIf1(x)))h′(βIf1(x))βIf ′1(x) + γLf
′
8(βLf7(x)/dl)βLf ′7(x)/dl (7.21)

is negative for any x > 0 since fi > 0, h′ > 0, f ′i < 0 for i = 5, 7 and f ′i > 0 otherwise.

I then linearise Eqs. (7.4), (7.5), and (7.6) around the stationary solution x∗ = (I∗, L∗, G∗),

using the method presented in Appendix B. Defining y(t) = (i(t), l(t), g(t)), with i(t) = I(t)− I∗,

l(t) = L(t)− L∗, and g(t) = G(t)−G∗,

ẏ(t) =
2∑
i=0

Ai y(t− τi), (7.22)

where I have defined τ0 = 0, and

A0 =


−f ′6(I∗) 0 0

0 −dl βLf
′
7(G∗)

−γIf3(G∗)f ′4(I∗) γLf
′
8(L∗) −f ′2(G∗)− γIf ′3(G∗)f4(I∗)

 , (7.23)

A1 =


0 0 βIf

′
1(G∗)

0 0 0

0 0 0

 , (7.24)

A2 =


0 0 0

0 0 0

f ′5(I∗) 0 0

 . (7.25)

Equation (7.22) admits solutions of the form y = <
(
eλtv

)
, with v ∈ C and v ∈ C3. These solutions

are non-trivial if

det
[
λI −

2∑
i=0

Aie
−λτi

]
= 0. (7.26)

The corresponding characteristic equation is

λ3 +Aλ2 +Bλ+ C +Dλe−λτ1 + Ee−λτ1 + Fλe−λ(τ1+τ2) +Ge−λ(τ1+τ2), (7.27)
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with

A = f ′6(I∗) + dl + f ′2(G∗) + γIf
′
3(G∗)f4(I∗) + βLf

′
7(G∗), (7.28)

B = f ′6(I∗) [dl + f ′2(G∗) + γIf
′
3(G∗)f4(I∗) + βLf

′
7(G∗)]

+ dl [f ′2(G∗) + γIf
′
3(G∗)f4(I∗)]− βLγLf ′7(G∗)f ′8(L∗), (7.29)

C = f ′6(I∗) [dlf ′2(G∗) + dlγIf
′
3(G∗)f4(I∗)− βLγLf ′7(G∗)f ′8(L∗)] , (7.30)

D = βIγIf
′
1(G∗)f3(G∗)f ′4(I∗), (7.31)

E = βIγIf
′
1(G∗)f3(G∗)f ′4(I∗)dl, (7.32)

F = −βIf ′1(G∗)f ′5(I∗), (7.33)

G = −βIf ′1(G∗)f ′5(I∗)dl. (7.34)

All the above coefficients are positive since all the terms fi and f ′i are positive, except f ′5 and f ′7

which are negative. The fixed point x∗ is stable when the perturbation y exponentially decreases

with time, that is when <(λ) < 0, and is unstable otherwise. Thus, the boundary of the stability

region is given by the configurations that admit solutions with <(λ) = 0, namely λ = iω, with

ω ∈ R. One must then solve the complex equation

− iω3 −Aω2 + iBω + C + iDωe−iωτ1 + Ee−iωτ1 + iFωe−iω(τ1+τ2) +Ge−iω(τ1+τ2) = 0. (7.35)

This system is equivalent to two real equations that fix the solution ω and describe an (n − 1)-

dimensional manifold in the n-dimensional parameter space.

It is convenient to isolate the e−iωτ1 term as

iω3 +Aω2 − iBω − C
iDω + E + (iFω +G)e−iωτ2

= e−iωτ1 . (7.36)

The right-hand side describes a unit circle in the complex plane (see, dashed circle in Fig. 7.8) that

is covered infinite times as ω runs from 0 to ∞. The left-hand side is instead a spiral (solid curve)

starting at ω = 0 at the real point −C/(E +G) (open dot), whose shape and speed of covering by

varying ω depends on the values of the parameters of the system. Let me define η as the vector

of the system parameters excluding τ1. The left-hand side is a complex function R(ω, η) of ω and

η, which does not depend on τ1. Thus, for any values of η, I can take the squared modulus of

Eq. (7.36), which gives a real equation for ω, given the values of η:

|R(ω, η)|2 = 1. (7.37)
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Figure 7.8: Graphical representation of Eq. (7.36) in the complex plane λ. The solid curve is the
left-hand side, covered by the real parameter ω from 0 to +∞. The dashed circle represents the
right-hand side of the equation. The angle is the product ωτ1.

Once all the m solutions ωj , with j = 1, . . . ,m of this equation are determined (closed dot in

Fig. 7.8, there m = 1), one may find the corresponding values of τ1j that solve Eq. (7.36).


cos (ωjτ1j) = <(R(ω, η)),

sin (ωjτ1j) = −=(R(ω, η)).
(7.38)

Defining τ (0)
1j , the smallest τ1j that solves the above system, there is a countable set of solutions

τ
(k)
1j = τ

(0)
1j + 2π

ωj
, k ∈ N, (7.39)

for each ωj . Varying the values of η, the solutions
(
η, τ

(k)
1j

)
describe a countable set (for j =

1, . . . ,m and k ∈ N) of (n − 1)-dimensional manifolds in the n-dimensional space of parameters

over which there are oscillating, non-damped, and non-growing solutions of Eq. (7.22).

Following the value of an eigenvalue λj(η) of Eq. (7.22) along a curve Cη in the parameter

space, by varying η, the real part of λj changes sign whenever one crosses a surface
(
η, τ

(k)
1j

)
.

Accordingly, the solution y switches from stable to unstable or vice versa. A steady-state solution

x∗ is stable in the parameter region S where all λj have a negative real part. The boundary of S

is then built by pieces of manifolds
(
η, τ

(k)
1j

)
.

I investigated the stability of the solution x∗ in a cross-section of the parameter space (τ1, τ2),
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Figure 7.9: Stability diagram of the steady-state solution of the system of Eqs. (7.4), (7.5), and (7.6)
in the plane τ1 and τ2 for Gin = Iin = 0 and βI = βL = γI = γL = 1. Solid lines represent the
parameter surfaces where the real part of an eigenvalue of the linear equation Eq. (7.22) is zero.
The grey area represents the region where the steady-state solution is stable, that is where every
eigenvalue λj has a negative real part. Left panel: zoom on the region τ1 < 18 min, τ2 < 18 min.
The evolution of (I, L,G) for the parameters represented by dots τ1 = 0, 5, and 10min, and τ2 = 0,
7.5, and 15min has been numerically integrated and the results are shown in Figs. 7.16 and 7.17.

by fixing the values of all the other parameters as in Tables 6.1, 6.2, and 7.1, and for a fasting

healthy subject with Gin = Iin = 0 and βI = βL = γI = γL = 1. I solved Eq. (7.37) for ωj by

varying τ2. Then, I derived the corresponding values of τ (0)
1j from Eq. (7.38) and eventually plot

the corresponding curves in the plane (τ1, τ2) in Fig. 7.9 (left panel: plane region τ1 < 100 min

and τ1 < 180 min; right panel: zoom on region τ1 < 18 min and τ1 < 18 min). These curves

divide the plane in several regions. By passing from one region to another, the sign of the real

part of at least one eigenvalue λj changes sign. Conversely, if one moves inside a region, the

real parts of all eigenvalue maintains their own signs. Thus, it is enough to compute the sign of

the real parts of all λj in one point per region to know their signs in all the phase space. The

regions where the solutions are stable are those where all the real parts of λj are negative (grey

area). For the adopted parameter values, the steady-state solution (I∗, L∗, G∗) is stable only in

an approximately triangular region with τ1 + τ2 . 15 min. Outside the solution is expected to

converge to a limit circle, as observed in Sec. 7.1 for the glucose-insulin system, corresponding to

physiological ultradian oscillations (see Sec. 7.4).

I analysed several phase-space sections by varying different parameters (Gin, Iin, βI , γI , βL and

γL). For each parameter p I plotted the stability diagram in the plane (p, τ1) for three sections

corresponding to τ2 = 0, 7.5, and 15 min (dashed lines, right panel, Fig. 7.9). The results of this

investigation are reported in Figs. 7.10–7.15. In each figure, the left, central, and right panels refer

to the three values of τ2 = 0, 7.5, and 15 min. The lower panels are a zoom of the diagrams on
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the physiologically-relevant region τ1 < 40 min. As in Fig. 7.9, the real part of λ vanishes on the

solid curves and the grey area is the region where the solution is stable. The dashed line, where

present, indicates the boundary of the region where the solution is always stable independently of

the value of τ1.

Following Ref. [60], I first considered how the rate of glucose intake Gin affects the stability of

the solution (Fig. 7.10). For values Gin > 1646 mg/min, the solution is always stable. For lower

values of Gin, the stability region has quite a peculiar shape. There is a narrow region, around

Gin = 250mg/min where the solution is always stable up to very high values of τ1 (τ1 . 35 mg/min).

On the left and on the right of this strip, I can find unstable solutions at lower values of τ1, down

to τ1 ≈ 12 mg/min around Gin = 600 mg/min. On the left side (corresponding to a quasi-fasting

condition), the boundary of the stability region strongly depends on τ2, becoming deeper for higher

vales of τ2.

In Fig. 7.11, the solution becomes stable as soon as a patient receives insulin administration.

Indeed, a continuous infusion rate Iin & 0.91 mU/min, corresponding to 1.3U/day is sufficient to

make the solution stable and halt oscillations. To maintain the physiological ultradian oscillations,

it would be necessary to make intermittent insulin administrations with a suitable frequency.

In Figs. 7.12 and 7.13 I investigated how pathological conditions correlated to the insulin-

regulatory mechanisms affect the stability of the system. The solution becomes stable when either

the pancreas is not able to react to increased glucose concentrations (βI � 1, Fig. 7.12), as in

patients affected by type-I diabetes, or tissues become resistant to insulin (γI � 1, Fig. 7.13). The

latter scenario is typical of type-II-diabetic patients or of critically ill patients developing acute

insulin resistance. A relatively small reduction of tissue insulin sensitivity (γI . 0.77) suffices to

make the solution stable.

Finally, the stability diagrams in the planes (βL, τ1) and (γL, τ1) are reported in Figs. 7.14

and 7.15, respectively. These plots show that the stability of the system is almost independent of

pathological conditions associated with dysfunctions in the release of glucagon by the pancreas (βL)

or in the endogenous glucagon-stimulated glucose production (γL). This result is coherent with my

choice of introducing Eq. (7.5) and the last term in Eq. (7.6) to model the prompt physiological

reaction to very low glucose concentrations. Accordingly, the behaviour of the stationary state in

fasting conditions mildly depends on glucagon dynamics.

The results of this stability analysis show that the solution tends to be stable when the system is

forced by the presence of the administration of either glucose or insulin. From a physiological point

of view, when there is a significant and constant intake of glucose, the pancreas stops producing

glucagon and keeps releasing insulin to stimulate liver and other tissues to uptake glucose from the

bloodstream. In this scenario, the system does not oscillate. Similarly, when there is a significant
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Figure 7.10: Stability diagrams of the steady-state solution of the system of Eqs. (7.4), (7.5),
and (7.6) in the plane τ1 and Gin for τ2 = 0, 7.5, 15 min (left, central, and right panels, respectively)
for Iin = 0 and βI = βL = γI = γL = 1. The bottom panels are a zoom for τ1 < 40 min. Solid lines
represent the surfaces where an eigenvalue of Eq. (7.22) is imaginary. The grey area represents the
region where the steady-state solution is stable. The dashed line corresponds to the value of Gin
(Gin ≈ 1646 mg/min) above which the steady-state solution is stable for any value of τ1.
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Figure 7.11: Stability diagrams of the steady-state solution of the system of Eqs. (7.4), (7.5),
and (7.6) in the plane τ1 and Iin for τ2 = 0, 7.5, 15 min (left, central, and right panels, respectively)
for a subject with Gin = 0 and βI = βL = γI = γL = 1. The bottom panels are a zoom for
τ1 < 40 min. When Iin & 0.91 mU/min, the steady-state solution is stable for any value of τ1.

197



7.3. STABILITY ANALYSIS CHAPTER 7. GLUCOSE–INSULIN–GLUCAGON

0.0 0.4 0.8

0
50

10
0

20
0

βI

τ 1
 (

m
in

)

0.0 0.4 0.8
0

50
10

0
20

0
βI

τ 1
 (

m
in

)
0.0 0.4 0.8

0
50

10
0

20
0

βI

τ 1
 (

m
in

)
0.0 0.4 0.8

0
10

20
30

40

βI

τ 1
 (

m
in

)

0.0 0.4 0.8

0
10

20
30

40

βI

τ 1
 (

m
in

)

0.0 0.4 0.8

0
10

20
30

40
βI

τ 1
 (

m
in

)

Figure 7.12: Stability diagrams of the steady-state solution of the system of Eqs. (7.4), (7.5),
and (7.6) in the plane τ1 and βI for τ2 = 0, 7.5, 15 min (left, central, and right panels, respectively)
for a subject with Gin = Iin = 0 and βL = γI = γL = 1. The bottom panels are a zoom on the
region τ1 < 40 min. When βI . 0.18, the steady-state solution is stable for any value of τ1.
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Figure 7.13: Stability diagrams of the steady-state solution of the system of Eqs. (7.4), (7.5),
and (7.6) in the plane τ1 and γI for τ2 = 0, 7.5, 15 min (left, central, and right panels, respectively)
for a subject with Gin = Iin = 0 and βI = βL = γL = 1. The bottom panels are a zoom on the
region τ1 < 40 min. When γI . 0.77, the steady-state solution is stable for any value of τ1.
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Figure 7.14: Stability diagrams of the steady-state solution of the system of Eqs. (7.4), (7.5),
and (7.6) in the plane τ1 and βL for τ2 = 0, 7.5, 15 min (left, central, and right panels, respectively)
for a subject with Gin = Iin = 0 and βI = γI = γL = 1. The bottom panels are a zoom on the
region τ1 < 40 min.
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Figure 7.15: Stability diagrams of the steady-state solution of the system of Eqs. (7.4), (7.5),
and (7.6) in the plane τ1 and γL for τ2 = 0, 7.5, 15 min (left, central, and right panels, respectively)
for a subject with Gin = Iin = 0 and βI = βL = γI = 1. The bottom panels are a zoom on the
region τ1 < 40 min.
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infusion of insulin, organs all cooperate to remove glucose and no oscillation is present.

Oscillations also disappear when either the pancreas efficiency in producing insulin (βI) or the

liver efficiency in releasing glucose (γI) is reduced. The reduction of time variability of physiological

parameters is a typical signature of pathological condition [38].

7.4 Numerical simulations

I tested the new model introduced in Sec. 7.2 by simulating the dynamics of glucose, insulin,

and glucagon in a subject with βI = βL = γI = γL = 1 for all the values of (τ1, τ2) represented by

dots in Fig. 7.9 and in the scenarios studied in Sec. 7.1: fasting (Fig. 7.4), three daily meals with

either long- or short- absorption time (Figs. 7.5 and 7.6), and IVGTT (Fig. 7.7). The former set of

simulations allows one to investigate the model from a mathematical perspective and confirms the

results of the stability analysis performed in Sec. 7.3. The latter simulations show that my model

overcomes the limitations of glucose-insulin models illustrated in Sec. 7.1.

In Figs. 7.16 and 7.17 I report the results of the integration of Eqs. (7.4), (7.5) and (7.6) in the

planes (G, I) and (L, I), respectively, for τ1 = 0, 5, and 10min (lower, central, and upper panels)

and τ2 = 0, 7.5, and 15min (left, central, and right panels). All the trajectories with τ2 = 0 (left

panels) or τ1 = 0 (lower panels) plus the trajectory with τ1 = 5 min and τ2 = 15 min converge to

a steady-state point. Those solutions correspond indeed to phase-space points in the grey area of

Fig. 7.9. The other three solutions, corresponding to points outside the grey area, are attracted to

a limit circle.

The results of the simulations of a subject in a fasting condition or receiving different meals

are reported in Fig. 7.18, 7.19, 7.20, and 7.21. In each figure I plot the time evolution of glucose,

insulin, and glucagon concentrations (top panels) and the corresponding phase-space pictures in

the glucose-insulin and glucose-glucagon planes (bottom left and central panels) and in the three-

dimensional glucose-insulin-glucagon space (bottom right panel).

The simulation in the fasting condition (Fig. 7.18) shows that the model still reproduces ultra-

dian oscillations on a time scale of about 100min and the solution orbits on a three-dimensional

limit-cycle in phase space. In this regime the endogenous glucose production is dominated by

fluctuations in insulin concentration and glucagon release oscillates around the basal level.

The organism reaction to enteral glucose intake is reported in Figs. 7.19 and 7.19, starting

from the stationary limit-cycle of the fasting condition. The phase-space path is quite complex.

After glucose absorption, the pancreas starts to produce insulin while glucagon release is inhib-

ited. Endogenous glucose production is halted and insulin-stimulated glucose uptake is maximum.
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Figure 7.16: Trajectories in the plane (G, I) for τ1 = 0, 5, and 10min (lower, central, and upper
panels) and τ2 = 0, 7.5, and 15min (left, central, and right panels), corresponding to the dots
in Fig. 7.9. In all panels βI = βL = γI = γL = 1 and the system parameters were chosen as in
Tables 6.1, 6.2, and 7.1.

Glucose concentration never reaches hypoglycaemic level. Indeed, when glucose concentration goes

below the normal level, a prompt release of glucagon stimulates endogenous glucose release. Insulin

excess is eventually eliminated and a normal oscillatory state is restored.

This mechanism protecting against hypoglycaemia is even more active after a sudden intra-

venous administration of 20 g of glucose, as shown in Fig. 7.18. In this scenario, the insulin release

is huge to counteract hyperglycaemia. As a consequence glucose goes down to a hypoglycaemic

level. However, this state lasts for a very short time, since the glucagon release stimulates a strong

endogenous production of glucose, which reaches its maximum rate (as in a regime of intense phys-

ical activity) and promptly restores the normal state. Using the full model of Eqs. (7.4), (7.5),

and (7.6) the glucose concentration never approaches zero as in the simulation of Fig. 7.7, based

on Eqs. (7.1) and (7.2).
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Figure 7.17: Trajectories in the plane (G,L) for τ1 = 0, 5, and 10min (lower, central, and upper
panels) and τ2 = 0, 7.5, and 15min (left, central, and right panels), corresponding to the dots
in Fig. 7.9. In all panels βI = βL = γI = γL = 1 and the system parameters were chosen as in
Tables 6.1, 6.2, and 7.1.

7.5 Model fitting

The aim of the analysis presented in this Section is to study whether data available in the

electronic health record MargheritaTre are informative enough to estimate the parameters of the

model developed in this Chapter and to appreciate differences with previous models. Only two

examples are reported for illustrative purposes and no population models will be constructed.

Diabetic patient

First, I tested my model on a diabetic patient for whom measurements of glucose concentrations

were available with higher frequency (one measure every 5min) with respect to data collected with
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Figure 7.18: Evolution of plasma glucose, insulin, and glucagon concentrations (top panels) and
phase-space plots in glucose-insulin and glucose-glucagon planes (bottom left and central panels)
and three-dimensional glucose-insulin-glucagon space (bottom right panel) for a subject with τ1 =
5 min, τ2 = 15 min, Gin = 0, βI = γI = βL = γL = 1, with initial glucose, insulin, and glucagon
concentrations of 90 mg/dl, 20 mU/l, and 115 pg/ml. Values of other parameters as in Tables 6.1,
6.2, and 7.1. The results were obtained integrating Eqs. (7.4), (7.5), and (7.2) until the long-time
oscillating time was attained.

MargheritaTre. The patient received four meals a day, whose carbohydrate content is recorded

and converted into amount of intaken glucose: 50 g for breakfast, 80 g for lunch and dinner, and

20 g for mid-afternoon snack. The absorption curve is modelled as in Eq. (7.3) (see also Fig. 7.3),

with different time scales for main meals (longer for lunch and dinner) and small meals (shorter

for breakfast and mid-afternoon snack).

The patient also received two types of insulin administrations: regular short-acting human

insulin (Actrapid R©) and long-acting insulin glargine (Lantus R©). Regular human insulin has an

onset of action at 30 to 60 minutes from administration, a peak at between 1 and 2 hours, and

a duration of action of more or less 3 to 5 hours [65]. Insulin glargine has instead a duration of

about 24 h without a marked peak [141]. The former is administered about 30min before meals,

the latter once a day. I modelled the rate of absorption of insulin adapting Eq. (7.3) to reproduce

the measured absorption curves of both insulin types. The resulting curves are plotted in Fig. 7.22,

where I have chosen τav = 60 min and τab = 120 min as the values of availability and absorption

times for regular insulin (solid line) and τav = 6 h and τab = 12 h for insulin glargine (dashed line).

In Fig. 7.23 the values of measured glucose concentration are plotted in a time window of
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Figure 7.19: Simulation of glucose dynamics for a healthy subject receiving three meals in one day
with long absorption time as in Fig. 7.5. See captions of Fig. 7.18 for the panel description.
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Figure 7.20: Simulation of glucose dynamics for a healthy subject receiving three meals in one day
with short absorption time as in Fig. 7.6. See captions of Fig. 7.18 for panel description.
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Figure 7.21: Simulation of glucose dynamics for a healthy subject undergoing an intravenous
glucose bolus of 20 g as in Fig. 7.7. See captions of Fig. 7.18 for panel description.

2000min (dots). Solid vertical lines represent meals whose glucose intake, measured in grams, is

reported below each line. Dashed and dotted lines represent regular insulin and insulin glargine,

respectively. The amount of insulin administered in international units is reported above each

line. In spite of regular intakes of glucose and administrations of insulin, the amplitude of fluc-

tuations of glucose concentrations is extremely variable. For t < 500 min glucose concentrations

vary from 150mg/dl to less than 250mg/dl. From t = 500 min to 1200min variations are wider

(100− 350mg/dl) and, eventually, glucose concentration peaks beyond the maximum measurable

concentration (400mg/dl). This suggests that the patient’s condition was not stable during the

observation window. I thus expect that a dynamical model with constant coefficients will be able

to fit the data only when applied to a narrow window t < 500 min, where all the parameters remain

reasonably constant. For larger windows the quality of the fit becomes worse.

This is exactly what I observed using either the glucose-insulin model [Eqs. 7.1 and (7.2)] or the

complete glucose-insulin-glucagon model [Eqs. (7.4), (7.5), and (7.6)]. The results of this analysis

are reported in Figs. 7.24 and 7.25, respectively, where I fitted the two models to data of Fig. 7.23

in three different time-windows, from t = 0 to tmax = 500, 1000, and 2000min (left, central, and

right panels). Dots indicate measured concentrations. The solid line is the result of the fit. In

Fig. 7.24 and in the top row of Fig. 7.25, I have estimated, as free parameters, the initial conditions

I0, G0 (and L0 in Fig. 7.25), the patient parameters β, γ, Rg (mg/min), plus the time scales of
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Figure 7.22: Absorption curve of regular insulin (solid line) and insulin glargine (dashed line)
insulin for a single dose of insulin D modelled through Eq. (7.3) with τav = 60 min, τab = 120 min
and τav = 6 h, τab = 12 h, respectively. The rate of insulin absorption Iin is measured in units D/h.
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Figure 7.23: Values of measured values of glucose concentrations (dot), meals (solid lines) with
glucose content in grams reported below, and administration of regular insulin (dashed lines) and
insulin glargine (dotted lines), with amount of administered insulin in international units reported
above.

the meal absorption curves τ slow
av , τ slow

ab , τ fast
av , and τ fast

ab , for main meals and snacks, respectively.

In the bottom row of Fig. 7.25 I also left as a free parameter the value of βL which parametrises

pancreas efficiency in releasing glucagon. The final values of the fitted parameters are reported in

Tables 7.2 and 7.3 for glucose-insulin and glucose-insulin-glucagon models, respectively.

I have highlighted the estimates obtained by fitting the model on the narrowest time window

(500min). Those values are similar for all fits (glucose-insulin model, glucose-insulin-glucagon

model without or with free parameter γI), indicating that for such time windows all the models
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Figure 7.24: Measured glucose concentrations (dots) and fitted glucose-insulin model [solid line,
Eqs. (7.1) and (7.2)] for a diabetic patient receiving meals and insulin administrations (see
Fig. 7.23). The fit was performed on three different time windows, from t = 0 min to tmax = 500,
1000, and 2000min (left, central, and right panels). Values of fitted parameters are reported in
Table 7.2.
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Figure 7.25: Measured glucose concentrations (dots) and fitted glucose-glucagon-insulin model
[solid line, Eqs. (7.4), (7.5), and (7.6)] for the same patient of Fig. 7.25 in the same time windows.
The fits of the first row were performed leaving the same free parameters as in Fig. 7.25. In the
second row also βL was let free. Values of fitted parameters are reported in Table 7.3.

provide similar results. Conversely, in the other columns, corresponding to time windows of 1000

and 2000 min, the fitted values of the parameters are much more variable and assume very large

non-physiological values. This confirms the observation that the patient’s condition varies too

much to fit a model with constant coefficients on such long time windows.

Focusing on the grey columns (tmax = 500 min), the addition of the glucagon term to the

dynamical system does not significantly improve the model. In this patient the effect of the
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tmax (min) 500 1000 2000
τ slow
av 24 1 1
τ slow
ab 137 229 663
τ fast
av 7 29 1
τ fast
ab 58 253 130
I0 (mU/l) 32 113 67
G0 (mg/dl) 182 203 274
β 0.02 0.08 0.17
γ 0.17 0.08 0.04
Rg (mg/min) 76 0 6

Table 7.2: Values of the fitted parameters for the glucose-insulin model [Eqs. (7.1) and (7.2)],
corresponding to the curves plotted in Fig. 7.24.

fixed βL = 1 free βL
tmax (min) 500 1000 2000 500 1000 2000
τ slow
av 34 0 0 25 0.00 0.00
τ slow
ab 112 211 815 131 211 504
τ fast
av 30 98 53 6 70 7
τ fast
ab 30 229 95 58 259 113
I0 (mU/l) 114 167 309 32 116 10
L0 (pg/ml) 322 263 153 189 216 5522
G0 (mg/dl) 188 9 34 180 197 95
βI 0.00 0.00 0.20 0.01 0.01 0.19
γI 0.20 0.10 0.03 0.18 0.10 0.04
Rg (mg/min) 78 18 228 76 0 50
βL – – – 0.95 0.93 2.

Table 7.3: Values of the fitted parameters for the glucose-glucagon-insulin model [Eqs. (7.4), (7.5),
and (7.6)], corresponding to the curve plotted in Fig. 7.25.

glucagon equation cannot be appreciated since glucagon release is negligible as a consequence of

the high glycaemic level. Furthermore, pancreas is almost unable to produce insulin (βI . 0.02)

and tissue insulin resistance is high (γI ≈ 0.2), coherently with the condition of severe diabetes.

The values of the initial conditions I0, L0, and G0 are somehow irrelevant when fitting delay

differential equations. To integrate the equations I must impose initial conditions on a whole

segment t ∈ [−max (τ1, τ2) , 0], by making very arbitrary assumptions. I decided to impose constant

conditions, namely

I(t < 0) = I0, L(t < 0) = L0, G(t < 0) = G0. (7.40)

In order to compensate for this choice, the initial condition may prove non-physical at t = 0.

However, the solution soon becomes independent of the assumptions made for t < 0. Thus, one

can safely rely on the quality of the model as long as the predicted values agree with the first

measured concentrations, as observed in the left panels of Figs. 7.24 and 7.25.

The parameters τ slow/fast
av/ab were fitted as free parameters because it is practically impossible

208



CHAPTER 7. GLUCOSE–INSULIN–GLUCAGON 7.5. MODEL FITTING

to determine a priori how fast a meal is absorbed and glucose enters the systemic circulation. I

just observe that the estimated values τ slow/fast
av/ab are realistic and compatible, from a physiological

perspective, with the time needed to absorb full meals and snacks, respectively.

Critically ill patient

Blood glucose levels are commonly measured in ICUs through blood gas analysis. This test is usu-

ally performed about three or four times a day, but, for very few patients, the sampling frequency

may be increased up to once every two hours. I have shown above that a good fit is possible only if

measurements are performed very frequently and for a time period in which the patient’s condition

is almost stable, so that model coefficients can be reasonably assumed to be constant.

Furthermore, to avoid complications associated with the estimate of absorption time-scales I

decided to first test my model on a patient receiving only parenteral nutrition. In this case, it is

quite simple to compute the precise rate of glucose intake as a function of time.

Thus, I selected from the database of MargheritaTre a patient who satisfied the following

requirements:

1. a long ICU stay with purely parenteral nutrition;

2. slowly evolving conditions;

3. relatively frequent measures of blood glucose concentrations;

4. no insulin administration.

I tested the performance of the model on a few patients satisfying the above conditions. However,

for the sake of simplicity, here I present in detail the results relating to a single patient. The results

obtained for the other patients are qualitatively analogous.

I identified a 29-year-old epileptic patient affected by bowel obstruction, that prevented en-

teral nutritions for about 7 days. The last condition was required to appreciate the physiological

hormone-mediated interactions between the pancreas and the other organs in the absence of spu-

rious exogenous effects. Blood glucose concentration was measured 49 times, with an average

frequency of about once every 3.5 h.

Measured concentrations (dots) and the results of the fits (solid curve) are compared in Fig. 7.26

for the glucose-insulin model over the full observation period (upper panel, see Table 7.4, for the

estimated values of the fitted parameters). In the fit procedure I0, G0, β, γ, Rg (mg/min) were

estimated as free parameters. The predicted curve shows ultradian oscillations and is able to

recognise the difference in the average glucose level before and after t = 2000 min, when the amount

of administered glucose was increased. However, it is not able to faithfully follow the measured
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Figure 7.26: Measured concentrations (dots) and predictions of the glucose-insulin model (solid
curve) for a 29-year-old epileptic patient affected by bowel obstruction. The fit was performed with
parameters I0, G0, β, γ, Rg (mg/min) on three different time-windows: full observation time (upper
panel), from t = 0 to t = 2880 min (two days, left panel), and from t = 4300 min to t = 10 060 min
(four days, right panel). The values of the fitted parameters are reported in Table 7.4.

tmin (min) 0 0 4300
tmax (min) 10722 2440 10 060
time-window (days) 7.4 2 4
I0 (mU/l) 28 28 1.4
G0 (mg/dl) 70 55 168
β 0.48 0.54 0.49
γ 0.64 0.61 0.62
Rg (mg/min) 230 220 253

Table 7.4: Values of the fitted parameters for the glucose-insulin model, corresponding to the curve
plotted in Fig. 7.26.
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tmin (min) 0 0 4300
tmax (min) 10722 2440 10 060
time-window (days) 7.4 2 4
I0 (mU/l) 36 31 40
L0 (pg/ml) 407 1424 570
G0 (mg/dl) 4 55 166
βI 0.87 0.98 0.65
γI 0.29 0.19 0.51
Rg (mg/min) 228 184 233
βL 0.83 0.87 0

Table 7.5: Values of the fitted parameters for the glucose-glucagon-insulin model, corresponding
to the curve plotted in Fig. 7.27.

observations. The period of the oscillations is indeed shorter than the average temporal distance

between two consecutive observations. It is thus impossible for the model to reproduce the shape

of the oscillations. Furthermore, for t > 2000, the average blood glucose level decreases, although

the nutritional regime remains constant and the patient does not receive insulin administrations.

This means that the patient’s condition evolved during this period (about 5.5 days) and the model,

whose parameters are constant, should not be fitted on such a wide time-window.

In the lower panels of Fig. 7.26 the model was fitted on shorter time-windows, from t = 0 to

t = 2880 min (two days, left panel), and from t = 4300 min to t = 10 060 min (four days, right panel)

on 15 and 24 observations, respectively. The results are qualitatively similar to the upper panel.

In both plots, the agreement between observations and predictions has only slightly improved with

respect to the upper panel. This confirms my interpretation and proves that even reducing the

time-windows to 2 or 4 days is not enough to ensure a good fit, since the patient’s condition

evolves on shorter time scales. However, because of the lack of frequent data in MargheritaTre, it

is impossible to perform a fit on shorter time windows.

As a last test, I fitted my model to the data of this patient, including the glucagon term and

leaving as a free parameter βL, which parametrises pancreas efficiency in releasing glucagon. The

results are shown in Fig. 7.27 and the final estimated values of the fitted parameters are reported

in Table 7.5. When applied to the full observation period, the quality of the fit is quantitatively

as poor as for the simpler glucose-insulin model, because of the very low frequency of available

data. However, this fit shows interestingly qualitative features.

First, ultradian oscillations are present only for t < 2000 min. When the rate of glucose

administration is higher, they disappear (t < 2000 min). This result is coherent with the result of

my theoretical investigation of Sec. 7.3, where it was shown that oscillations are suppressed when

the system is dominated by intense glucose administrations.

Second, the fit on the smallest initial time-window (lower left plot) is qualitatively better than

in Fig. 7.26. Compared to the model without glucagon, the average predicted values of glucose con-
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Figure 7.27: Measured concentrations (dots) and predictions of the complete glucose-insulin-
glucagon model (solid curve) for the same patient as Fig. 7.26. The fit was performed with
parameters I0, G0, L0, βI , γI , βL Rg (mg/min) on three different time-windows: full observation
time (upper panel), from t = 0 to t = 2880 min (two days, left panel), and from t = 4300 min to
t = 10 060 min (four days, right panel). Fitted values in Table 7.5.

centration in the first region t < 2000 min are much smaller than in the second region t < 2000 min,

and the amplitude of oscillations for t < 2000 min is also reduced. This suggests that the complete

model discriminates better between the two dosage regimens of parenteral nutrition. Indeed for

t < 2000 min, glucose concentration reaches quite low values (about 70mg/dl), where glucagon

starts to play an important role in the maintenance of glucose homoeostasis. Interestingly, the

estimated value of parameter βL, corresponding to the efficiency of pancreas glucagon production,

vanishes when the fit is performed on the third time-window (third column of Table 7.5). With

this nutritional regimen, the concentration of glucose remains so high (above 100mg/dl) that the

effect of glucagon cannot be appreciated.
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The low frequency of available data is not sufficient to properly estimate model parameters and

to appreciate differences between models at a quantitative level.

7.6 Conclusions and future perspectives

In this second Part I reviewed several mathematical models of glucose metabolism. Starting

from a critical analysis of their features I selected one model that best described glucose-insulin

dynamics. By means of numerical simulations I revealed that the model was not robust against too

rapid variations of glucose concentrations. In particular, non-physiological hypoglycaemic levels

were reached soon after rapid and abundant glucose administrations because of consequent intense

insulin release. Such models would not be able to reliably predict the evolution of the glucose level

in critically ill patients whose conditions often vary very rapidly and in very wide ranges.

To overcome these limitations I proposed a more complete model involving the contribution of

counter-regulatory hormones. This model explicitly accounts for the prompt release of glucagon

when a hypoglycaemic condition is approached, counteracting the effect of insulin. Using semi-

analytical techniques I investigated the stability of the steady-state solutions by varying the system

parameters. This analysis revealed important features of my equations, suggesting that the glucose

dynamics were properly modelled. The main results, derived in Secs. 7.3 and 7.4, prove that the

proposed model provides a good physiological description of glucose metabolism and has a robust

mathematical structure, that allows one to derive semi-analytical solutions.

First, this model preserves the appearance of ultradian oscillations during fasting periods,

an important prediction of glucose-insulin models. I also observed that the system converges to

stable-steady states in three interesting scenarios:

• The system is driven by intense glucose administrations. The body reacts with an almost

continuous release of insulin and oscillations are halted.

• The system is driven by insulin administrations. Even small amounts of exogenous insulin,

administered at a constant rate, are sufficient to stop self-sustained oscillations.

• In patients with low pancreas efficiency or insulin resistance. Time variability is a typical

condition of healthy subjects and is maintained by the cooperation among several organs. If

one element contributing to this fragile equilibrium is damaged, oscillations are halted and

the solution of the system converges to a constant value.

I also showed with numerical simulations that both hyperglycaemia and hypoglycaemia are

avoided by this new model thanks to the introduction of the double feedback mechanism based on
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insulin and glucagon. This allows finer, more stable control of the glycaemic level.

Finally I tested the performance of both the glucose-insulin model and the glucose-insulin-

glucagon model on real data from a patient affected by severe diabetes and a critically-ill patient.

In the first case, measured concentrations were available with very high frequency (once every five

minutes). Both models were able to fit the data well, provided that the patient’s condition did

not vary in the considered time-window. On this patient, the model including glucagon did not

give any apparent advantage over the simpler glucose-insulin model because blood glucose always

remained at very high levels, above which glucagon is not significantly released.

Data from MargheritaTre had a much lower frequency (once every 3.5 hours). Consequently, I

had to extend the time-window to several days. The quality of the fit was very poor for two reasons:

the time-separation of observed data was too wide to describe the evolution of a phenomenon that

varies on time scales of a few minutes. The patient’s condition was not stable in the considered

time-window. Analyses of data from other patients yield analogous results. With available data in

MargheritaTre it is not possible to test the model and to estimate model parameters as functions of

patient covariates in a population model as done in the previous part of the Thesis for vancomycin

pharmacockinetics (see Chap. 5).

At a theoretical physiological level, my model properly describes the dynamics of glucose in

very extreme conditions, as those faced by critically ill patients. However current MargheritaTre

data are not suitable to develop models describing glucose metabolism. The long-term objective of

this project is to realise a bedside simulator of glucose dynamics starting from the model developed

and analytically studied in this Thesis. However the experience acquired during this Thesis work

showed that ad hoc data should be prospectively collected to test the model and fit its parameters.

Thus, I have designed a new pilot study GluDyPS (Glucose Dynamics: a Pilot Study) on 20

patients in a single ICU, at San Giovanni Bosco Hospital, Turin. The study protocol has been just

finalised and will be submitted for Ethical Review.

In this study we shall measure:

• subcutaneous glucose concentration once every 5min;

• blood glucose concentration through blood gas analysis four times a day;

• concentration of C-peptide (see Sec. 6.1.1) twice a day.

By measuring blood glucose concentration a few times a day through standard techniques, I shall

calibrate the subcutaneous concentration measured in the interstitial fluid on the corresponding

blood concentration. Furthermore, the measurement of C-peptide will allow us to calibrate the

endogenous production of insulin on each patient. In this way, the power of the fit procedure will

be increased, since information will be collected not only on glucose variations [Eq. (7.6)] but also
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on insulin variations due to endogenous production [Eq. (7.4)], whereas exogenous insulin is known

from MargheritaTre data.

With this project I shall be able to test my model, compare its performance against other

models, and, if needed, improve its structure. With the acquired data it will be possible to construct

stochastic simulations to test the predictive performance of the model [116, 136, 98]. Indeed,

to provide realistic results, those simulations needs to be fed with observation-based probability

distributions that cannot be currently constructed out of available data.

Furthermore, I shall estimate the feasibility of a larger observational study with the aim of

constructing a population model, similar to the one built to describe antimicrobial kinetics in

Chap. 5. With such a model, glucose dynamics would be simulated as a function of patient

conditions since the parameters of Eqs. (7.4), (7.5), and (7.6) would become functions of patient

covariates. Hence, it would be possible to reproduce glucose variations even with evolving patient

conditions.
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Electronic health records are invaluable mines of data that can be exploited to conduct epi-

demiological analyses, pathophysiological investigations, analyses of decision processes, and clinical

studies. Since 2008, GiViTI has been developing MargheritaTre (M3), an EHR designed to collect

data for research purposes and to support clinical practice in ICUs. It is currently installed in

about 40 ICUs and its database contains about 65 000 patient records. Unlike standard EHRs for

general hospital wards, M3 is highly specialised software designed in collaboration with clinicians

and researchers to describe the complexity of critically ill patients, ease the effort of data input

and, at the same time, guarantee a high-quality standardised data collection. Thus, only a few

features of M3 are customisable by the users and most of the information is collected in structured

form. For instance, clinical notes contain both free text and keywords chosen from a dictionary.

This makes data extraction simpler and reduces the need for preprocessing.

The ultimate aim of these research projects is to support clinical practice, improve the quality

of care and patient outcomes. The results of the projects will be delivered to clinicians directly

through M3. Indeed, this EHR offers the possibility to implement expert systems to support clinical

decisions, for instance, in the diagnosis of diseases or in the design of therapeutic treatments.

For this Thesis, I implemented the informatics tools required to extract data from the M3

database, preprocess and analyse them. I then investigated two clinical aspects associated with

the treatment of critically ill patients: the administration of antimicrobial drugs and the control of

the glycaemic level. For both topics I reviewed the most relevant physiological mechanisms and the

literature of some among the most important existing models. On the basis of these preliminary

analyses, I have formulated new mathematical models to describe antibiotic kinetics and glucose

dynamics. However, for the latter project I had to adopt much more complex techniques. For this

reason, with available data, I was able to push the development of those models to two different
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levels.

For the former project, I built one- and two-compartment linear models of vancomycin pharma-

cokinetics and, for both models, I estimated the pharmacokinetic parameters as functions of patient

covariates using multilevel regression on a set of 141 patients from a single unit participating in

the M3 project. The predictive performance of the two models is similar. Furthermore I simulated

single-patient dynamics, showing that concentration curves can be used, on the one hand, to pre-

dict future vancomycin concentrations and, on the other hand, to critically review administration

strategies. The result of the fit revealed that drug clearance was well characterised in terms of

patient conditions, whereas the correlation of the distribution volume with patient variables was

poorer. Thanks to large amount of clinical data available in M3, the model presented in this Thesis

is richer than previous models [54, 117, 150, 156, 27] in terms of patient covariates. Thus, it is

able to better follow the evolution of the patient’s condition. Its predictive performance is fair but

the uncertainty of the predictions is still too wide for implementation in a bedside simulator of

pharmacokinetics.

To collect high-quality data in order to build pharmacokinetic models of four molecules among

the most used in ICUs, we have started a new multicentric observational study, AbioKin. Sample

collection for one of the four molecules (piperacillin-tazobactam) has concluded. In the following

months we shall proceed with the measurement of drug concentration and the building of phar-

macokinetic models. The models constructed with AbioKin will serve to develop a simulator of

drug kinetics which will be implemented in M3 to support clinicians in the design of personalised

dosage regimens.

Regarding the project on glycaemic control, the main objective of this Thesis was to identify

a new model providing good physiological description, with a robust mathematical structure, and

whose solutions where realistic also in extreme conditions of critically ill patients. We also required

that the structure of the equations ensured an analytical treatment. I improved the physiological

accuracy of existing models, by taking into account the role played by glucagon in maintaining

glucose homoeostasis. This new model is based on a system of three delayed differential equations

and includes sophisticated non-linear effects.

The main results of this Thesis are the mathematical proofs of the existence and uniqueness of

stationary solutions and the study of their stability properties with an analytical approach. Such

a theoretical analysis, which is often overlooked, is important to ensure that all the solutions are

well-behaved and to prevent unexpected features when the model is implemented in automatic

predictive algorithms.

Furthermore, I performed numerical simulations to test the behaviour of the model in realistic

scenarios. Finally, I tested its performance in fitting real data. I showed that the model is able
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to reproduce observed dynamics for a time-window as large as a few hours and for a sampling

frequency of once every five minutes. Accordingly, I was not able to obtain reliable results when

the model was fitted to data of critically ill patients collected with M3. Indeed, in ICUs glucose

plasma concentration is typically measured by blood gas analysis, with a sampling frequency of

about once every three or four hours.

Although this analysis has shown that my dynamical model provides a good physiological

description, including in extreme conditions, it also suggests that data currently available in M3

are not sufficient to estimate the model parameters as functions of the patient’s condition, as done,

for instance, in the construction of the pharmacokinetic model. To collect the required data, I am

starting a new pilot study to measure glucose concentrations in critically ill patients, combining

subcutaneous measurements and blood gas analysis.

On the one hand, the results obtained in this Thesis indicate that M3 is a promising tool to con-

duct advanced research projects and that mathematical modelling and simulations based on ICU

data may provide new insight in clinical research. On the other hand, they also show some limita-

tions in the projects that can be pursued with purely retrospective data. Although the amount of

information is huge, the frequency and the quality of data collected mainly for clinical purposes is

not always adequate for the construction of sophisticated mathematical models. Both studies have

shown indeed similar limitations, connected with the low number and frequency of measurements

of plasma vancomycin concentration and of blood glucose concentration, respectively.

These limitations may be overcome only through the integration of data recorded in every-

day clinical practice with new ad-hoc data collected for specific projects. EHRs facilitate the

realisation of such prospective observational studies. The additional effort required to clinicians to

input extra-data or to perform additional laboratory tests is minimised since the majority of the

required information is already present in the EHR.

The findings of this Thesis have stimulated the modification of M3, whose interface and data

structure have been adapted to the requirements of our research projects. A specific module

has been developed to guide clinicians in the protocol of the AbioKin study. Furthermore, data

recorded with M3 still have relatively low sample frequencies, allowing one to study phenomena

with time scales of hours, but no shorter. To fill this gap we have been considering the possibility

of importing more frequent data.

New analytical techniques should also be implemented to deal with a source of data collected

with the primary aim of clinical documentation. In this Thesis I analysed only structured data, such

as drug administration, vital signs and laboratory tests. However a large amount of information is

present in non-structured form, for instance as free text in clinical notes. More advanced techniques

should be adopted to extract and analyse both unstructured information [68, 180] and the newly
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acquired quasi-continuous data in the form of complex time series [210, 181].

Finally, M3 data are still available for analysis only to the GiViTI coordinating centre. To

fully exploit the potential of an EHR, its data must be available to external groups interested in

exploring new research lines and strategies of analysis. The experience of MIMIC-III [103] shows,

for instance, that a collaborative approach may boost both clinical and methodological research.

Furthermore, the availability of databases such as MIMIC and M3 sharing similar structures and

containing analogous information allows one to test reproducibility of research analyses on different

data. It would be interesting, for instance, to reproduce the analyses performed in this Thesis with

other databases.
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EFFECTIVE DELAY FROM ORDINARY LINEAR

EQUATIONS

To implement an effective time delay td between a time-dependent variable s(t) and output

variable xn, it is enough to link s and xn through a cascade of linear ordinary equations

ẋ1 = κ(s− x1), (A.1)

ẋ2 = κ(x1 − x2), (A.2)

. . .

ẋn = κ(xn−1 − xn), (A.3)

where the dot denotes time derivative.

The solution of a single equation of the form

ẋ = κ(y − x) (A.4)

is

x(t) =
∫ t

−∞
dt1 G1(t− t1)y(t1), (A.5)

where the Green function G1 is

G1(τ) = κ e−κτ . (A.6)

Therefore, the solution for x1 is

x1(t) =
∫ t

−∞
dt1 G1(t− t1)s(t1) (A.7)
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t2t

t1

Figure A.1: Domain of integration of the double integral of Eq. (A.9) Fixing t2 the integral with
respect to t1 is performed along the blue integration path. If the order of the integrals is exchanged,
the integral with respect to t2 is performed along the red path at fixed t1.

and for x2 is

x2(t) =
∫ t

−∞
dt2 G1(t− t2)

∫ t2

−∞
dt1 G1(t2 − t1)s(t1). (A.8)

By replacing G1 with its explicit form of Eq. (A.6):

x2(t) = κ2
∫ t

−∞
dt2
∫ t2

−∞
dt1 e−κ(t−t1)s(t1). (A.9)

The integral in t2 can be worked out after exchanging the integration order as illustrated in Fig. A.1:

x2(t) = κ2
∫ t

−∞
dt1
∫ t

t1

dt2 e−κ(t−t1)s(t1), (A.10)

which gives

x2(t) =
∫ t

−∞
G2 (t− t1) s(t1)dt1, G2(τ) = κ2τ e−κτ . (A.11)

Analogously,

x3(t) =
∫ t

−∞
dt2 G1(t− t2)

∫ t2

−∞
dt1 G2(t2 − t1)s(t1). (A.12)

Integration with respect to t2 is performed after switching the integration order:

x3(t) =
∫ t

−∞
G3 (t− t1) s(t1)dt1, G3(τ) = 1

2κ
3τ2 e−κτ . (A.13)
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By inspection of the solutions for x1, x2, and x3, Eqs (A.7), (A.11), and (A.13), and of the

definition of the respective Green functions G1, G2, and G3, one may argue that the general solution

for xn is

xn(t) =
∫ t

−∞
Gn (t− t1) s(t1)dt1, (A.14)

with

Gn(τ) = κn

(n− 1)! τ
n−1 e−κτ . (A.15)

For n = 1 these equations reduce to Eqs. (A.7) and (A.6). The proof for a generic n > 1 is given by

induction, assuming that Eqs. (A.14) and (A.15) are valid for n− 1 and verifying that xn satisfies

the recurrence relation Eq. (A.3). Differentiating Eq. (A.14) with respect to time,

ẋn(t) = Gn(0)s(t) +
∫ t

−∞
G′n (t− t1) s(t1)dt1. (A.16)

From Eq. (A.15), Gn(0) = 0 for n > 1 and

G′n(τ) = κn

(n− 2)! τ
n−2 e−κτ − κn+1

(n− 1)! τ
n−1 e−κτ = κ [Gn−1(τ)− Gn(τ)] . (A.17)

Inserting this in Eq. A.16, I obtain

ẋn(t) = κ

[∫ t

−∞
Gn−1 (t− t1) s(t1)dt1 −

∫ t

−∞
Gn (t− t1) s(t1)dt1

]
= κ (xn−1(t)− xn(t)) , (A.18)

which coincides with the recurrence relation Eq. (A.3).

Normalisation and moments of the Green function The value of the variable xn(t) at time t is

the weighted-average of the past of the signal s at time t1 < t with weight Gn(t− t1). The Green

function Gn is indeed a probability density, being always non-negative and normalized to 1. The

generic moment of order m of Gn is

µm =
∫ ∞

0
dτ τm Gn(τ) =

∫ ∞
0

dτ κn

(n− 1)! τ
m+n−1 e−κτ = κ−m

(n− 1)!

∫ ∞
0

dy ym+n−1 e−y

= κ−m

(n− 1)!Γ(m+ n) = (m+ n− 1)!
(n− 1)! κ−m. (A.19)

The normalisation of Gn is given by the moment of order 0, µ0 = 1. The average time τ̄ over which

the average of s is performed is the first order moment

τ̄ = µ1 = n

κ
(A.20)
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The variance σ2
τ of τ is given by

σ2
τ = µ2 − µ2

1 = (n+ 1)n
κ2 − n2

κ2 = n

κ2 . (A.21)

In terms of the average time τ̄ the standard deviation is

στ = τ̄√
n
. (A.22)

The higher the number n of auxiliary variables, the narrower the width of the kernel Gn, around

its mean value τ̄ = κ/n.
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DELAY DIFFERENTIAL EQUATIONS

A delay differential equation (DDE) is a differential equation of the form [60]

ẋ(t) = f (x(t), x(t− τ1), . . . , x(t− τm), η) , (B.1)

where x(t) ∈ Rn, f : Rn×(m+1)+k → Rn, and η ∈ Rk.

Due to the explicit dependence on the past of t (x(t−τi)), a solution is not defined by an initial

condition x(t0) at some time t0. Instead, an initial solution segment x0 must be specified over an

interval of length τ = maxi=1,...,m {τi}, where x0 ∈ C = C ([−τ, 0],Rn), the infinite-dimensional

function space of continuous function segments from [−τ, 0] to Rn. Similarly, for all t, the function

segment xt ∈ C, with xt(θ) = x(t+θ), θ ∈ [−τ, 0], identifies the state of the systems which uniquely

determines the solution x in the future of t. This implies that the set of solutions of Eq. (B.1) is

infinite-dimensional, unlike ordinary differential equations, whose set of solutions is n-dimensional.

As a consequence, a DDE can exhibit periodic, quasi-periodic and even-chaotic solutions.

Functional analysis formulation Equation (B.1) can be written in a more formal fashion by in-

troducing the nonlinear operator Sf (t;x0) : R× C → C, which maps the initial function segment

x0 onto its image under the time evolution defined by Eq. (B.1):

φ̇ = Aφ, φ ∈ D(A), (B.2)

where A is the infinitesimal generator of the semigroup of the operators Sf , defined by

(Aφ)(θ) = dφ(θ)
dθ , −τ ≤ θ ≤ 0. (B.3)

225



. APPENDIX B. DELAY DIFFERENTIAL EQUATIONS

The domain D(A) of A is the set of continuous and differentiable segment functions, with initial

conditions satisfying Eq. (B.1):

D(A) =
{
φ ∈ C : φ̇ ∈ C, φ̇(0) = f (φ(0), φ(−τ1), . . . , φ(−τm), η)

}
. (B.4)

By working in a functional analysis setting, this abstract formulation allows to apply techniques

developed for non-delayed differential equations to study the properties of DDE.

Steady state The steady state solution x∗ of Eq. (B.1) can be found by solving

f(x∗, x∗, . . . , x∗, η) = 0. (B.5)

Its stability can be investigated by linearising Eq. (B.1), around x(t) around x∗

ẏ(t) =
m∑
i=0

Ai(x∗, η)y(t− τi), (B.6)

where τ0 = 0,

x(t) = x∗ + y(t), (B.7)

and Ai(x∗, η) is the matrix of derivatives of f with respect to all the n components of its i-th

argument

Ai(x∗, η) = ∂f(z0, z1, . . . , zm, η)
∂zi

∣∣∣∣
zi=x∗

(B.8)

evaluated in zi = x∗.

As usual, it is convenient to write the real solutions of a linear system with real coefficients,

= (Ai(ξ∗, η)) = 0, as the real part of its complex solutions. With this notation, Eq. (B.6) exhibits

exponential complex solutions of the form eλtv, where v ∈ Cn and λ ∈ C, satisfying

[
λI −

n∑
i=0

Ai(x∗, η)e−λτi

]
v = 0, (B.9)

where I is the n× n identity matrix. Non-trivial solutions appear when λ satisfies the non linear

eigenvalue equation

det
[
λI −

m∑
i=0

Ai(x∗, η)e−λτi

]
= 0. (B.10)

The steady state solution x∗ is stable if the real part of all the roots of Eq. (B.10) are negative. It

is unstable if at least one root has a positive real part. A branch of periodic solutions appears at

a Hopf bifurcation when one root acquires a non-negative imaginary part.
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CODE STRUCTURE

C.1 Database synchronisation and restoring

The class structure of the daemon that imports and restoresMargheritaTre databases is pictured

in Fig. C.1.

daemon takes care of interacting with the operative system to properly forking the process, decou-

pling it from the parent environment, creating a PID file, and running the script. It declares

an abstract run method that has to be implemented by the class defining the script.

lockManager provides the methods to check, create, and delete locks in a database to prevent the

daemon from interfering with the script that creates views.

importManager is the core class of the daemon. It inherits from daemon and lockManager and

defines the run method. This method creates an instance of downloadManager and cre-

ationManager, by means of which it checks for new updated database dumps, downloads

and restores them.

downloadManager implements the methods to communicate with the web service that manages the

synchronisation of databases from ICU servers. It provides methods to check if new databases

are available, to download them, and to notify the web service of the success/failure of the

download and restoration.

creationManager implements the methods to create a new database on the local PostgreSQL

server, to unzip and restore database dumps. Furthermore, the method createViews calls

some bash scripts to re-create some basic views in the newly restored database.
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daemon

path

pidfile

uid

__init__

__daemonize

start

run

lockManager

engine

locks

session

__init__

addLock

existLock

deleteLock

commit

importManager

__init__

__createPaths

rundownloadManager

block_sz

url

user

passwd

file

dest

filename

__init__

__setFileName

getOpener

getDb

getFileName

mvFile

downloadDb

sendStatus

creationManager

filename

backupfile

dest

dbname

hostconf

engine

txtfile

sqlfile

__init__

createDb

unpackDb

importDb

createViews

clean

mergeManager

__init__

run

Figure C.1: Class structure of the Python daemon importing and restoring databases from ICU
servers. The class mergeManager in the dashed box is not used by the daemon, but by a script
that merges all MargheritaTre tables in a single database.

C.2 Creation of views

After databases are restored, data are cast in a more convenient form for analysis by joining

several tables from the original dataset. Furthermore data from all centres are copied in a single

database. Every night crontab run a Python script which contains the class mergeManager, that

inherits from lockManager and implements a single run method (see Fig. C.1). After getting a
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lock from ensuring that databases are no longer restored, this method executes a series of bash

scripts that recreate views and merge them together.

The merge scripts are executed in the following order.

db_replacement fixes isolated errors.

configcode checks the list of ICU databases present on the server and creates a list in a configu-

ration database with their centre ID.

updatetablesprontfar normalises the format of string variables in the database of drugs.

createviewsprontvar creates a view in the database of drugs by joining the tables containing

commercial names, active ingredients, and other details.

updatetables normalises the format of string variables in the M3 database of every ICU.

createftables creates in every ICU database a series of foreign tables pointing to configuration

tables in common external databases (e.g. codification of drug names, laboratory tests, vital

signs, etc...)

createviews creates a series of views in every ICU database. Each view contains information on

a specific aspect, such as demographic details, pathologies, infections, comorbidities, reason

for admission, drug administrations, laboratory tests, vital signs, clinical notes.

createallftables creates in a unique database a series of foreign tables pointing to each view in

each ICU database.

createallviews creates union views by pasting together the view of all ICUs through the for-

eign tables created by the previous script. These views are materialised to speed up query

execution.
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LIST OF ABBREVIATIONS AND SYMBOLS

List of abbreviations and symbols by chapter where they are defined and used for the first time.

Introduction

ICU Intensive Care Unit

M3 MargheritaTre – Electronic Health Record

GiViTI Italian Group for the Evaluation of Intervention in Intensive Care Medicine

MIC minimum inhibitory concentration

Cmax maximum plasma drug concentration

TMIC time above MIC

TDM Therapeutic Drug Monitoring

Chapter 1

EHR Electronic Health Record

MIMIC Medical Information Mart for Intensive Care

GICU General ICU

SICU Surgical ICU

CICU Cardiosurgical ICU

NICU Neurosurgical ICU
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HDU High Dependency Unit

WBC White blood cell count

PCT Procalcitonin
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Chapter 2

PK Pharmacokinetics

PD Pharmacodynamics

F flux of molecules crossing a membrane

Ci molecule concentration in region i

d diffusion coefficient

S membrane surface

Ka acid drug dissociation constant

Kb basis drug dissociation constant

fua non-ionised fraction of acids

fub non-ionised fraction of bases

Kw water dissociation constant

Q total drug amount

Vp plasma volume

Cp plasma drug concentration

Vt,i volume of tissue i

Ct,i drug concentration in tissue i

Vtot total volume

rc ratio between tissue and plasma concentrations

fu fraction on unbound drug

fb fraction drug bound to plasma proteins

Cu plasma concentration of unbound drug

Cb plasma concentration of drug bound to proteins

K association constant

Pu unbound protein concentration

Pb bound protein concentration
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Pp total plasma protein concentration

ftu fraction of unbound drug in tissues

Pt protein concentration in tissues

Kt association constant in tissue

Ctu un bound drug concentration in tissue

Va apparent distribution volume

FB blood flow

CA arterial drug concentration

CV venous drug concentration

Qt amount of drug in tissues

κperf
e perfusion-limited exit rate

κp perfusion rate

τperf perfusion-limited filling half-time

κperm
e permeability-limited exit rate

τperm permeability-limited filling half-time

k clearance

kdrug drug clearance

re drug extraction ration

kliver hepatic drug clearance

kkidneys renal drug clearance

ku clearance for unbound drug

Cs saturation concentration

kbile biliary clearance

Cbile bile drug concentration

Fbile bile flow

GFR glomerular filtration rate
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kGFR glomerular filtration rate – mathematical symbol

kfiltration clearance associated with renal filtration

fua,p non-ionised fraction of acid drug in plasma

fua,U non-ionised fraction of acid drug in urine

CU drug concentration in urine

pHB urine pH

pHB blood pH

FU urine flow

RRT Renal Replacement Therapy

CB blood drug concentration

CD dialysate drug concentration

vB blood flow

vD dialysate flow

γ blood-dialysate diffusion coefficient

CBi initial blood drug concentration

CBf final blood drug concentration

κ decay constant

L filter length

kHD haemodialysis clearance

Cpre pre-filter drug concentration

Fpre flow of pre-dilution fluid

Sc filter sieving coefficient

h haematocrit

CUF ultrafiltrate drug concentration

kHF haemofiltration clearance

Fpost flow of post-dilution fluid
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∆ fluid balance

fpre fraction of pre-dilution fluid

Cmin minimum therapeutic concentration

T>Cmin time for which drug

AUC Area Under the Concentration-time curve

AUC0−−24 Area Under the Concentration-time curve in 24 h

AC AUC – mathematical symbol

C̄T mean concentration in the time interval T

D drug dosage

I infusion rate

Qi drug amount in compartment i

Ci drug concentration in compartment i

Vi volume of compartment i

κe elimination rate

κ12 diffusion rate from the first to the second compartment

κ21 diffusion rate from the second to the first compartment

κcrea creatinine clearance

ddial dialysis dose

θi parameters in compartmental models

Chapter 3

a age

Calb albumin concentration

s Apache II Score

kLcrea creatine clearance estimated with Levey’s formula [111]

w body weight
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kvanco vancomycin clearance

Vc volume of central compartment

Vp volume of peripheral compartment

kCG
crea creatinine clearance estimated with Cockroft–Gault formula [50]

kint intercompartmental clearance

ηi random effect on pharmacokinetic parameters (i = k, V , clearance, distribution vol-

ume, respectively)

ε residual variability

S body surface area

Chapter 4

κ elimination rate

Dopt optimal loading dose

Copt target optimal concentration

Iopt optimal infusion rate

λi decay rates in two-compartment model i = 1, 2

tmin time at which the central-compartment concentration reaches its minimum

Qmin minimum drug amount

tflex time at which the central-compartment concentration has an inflection point

Qflex drug amount at inflection point

Dcons loading dose in conservative administration strategy

Dagg loading dose in aggressive administration strategy

θ vector of structural model parameters

Ω covariance matrix of ηi

σ standard deviation of ε

ψ full vector of model parameters
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L likelihood function

L logarithm of likelihood function

S(ψ) sum of squared residuals

Γ gradient of S(ψ)

∆ Hessian of S(ψ)

x̂ best-fit estimated value of x

E(x) expected value of x

Chapter 5

LIS Laboratory Information System

VIS Vasoactive Inotropic Score

EVID Event type

DV Measured value of the dependent variable

AMT Amount of administered drug

EBE Empirical Bayes Estimate

NPDE Normalised predicted distribution error

CWRES Conditional Weighted Residuals

VPC Visual Predictive Checks

OFV Objective Function Value

δCRRT CRRT treatment – binary variable

Qc drug amount in the central compartment

Qp drug amount in the peripheral compartment

CALT concentration of alanine transaminase

δSEX sex – binary variable

W Wilcoxon test

KS Kolmogorov–Smirnov test
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SW Shapiro–Wilk test

Chapter 6

GLUT Glucose transporter

SGLT Sodium-coupled glucose cotransporters

CNS Central Nervous System

K glucose tolerance index

G blood glucose amount

I blood insulin amount

X auxiliary function – insulin in a distant compartment

Ib baseline insulin level

Gb baseline glucose level

G Green function

Ip insulin amount in plasma

Ii insulin amount in intercellular space

Vp plasma volume

Vi intercellular space volume

tp insulin degradation time constant in plasma

Vi insulin degradation time constant in intercellular space

E insulin transfer rate

Vg glucose distribution volume

Gin rate of glucose intake

td implicit response delay

Rm scale factor of pancreatic insulin production rate

C1 threshold glucose concentration for pancreatic insulin production

C2 threshold glucose concentration for CNS glucose uptake
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Ub maximum rate of CNS glucose uptake

C3 scale factor of glucose concentration in glucose utilisation by muscle and adipose

tissue

U0 minimum rate of insulin dependent glucose uptake

Um maximum rate of insulin dependent glucose uptake

Rg scale factor of rate of hepatic glucose production

C5 threshold insulin concentration for hepatic glucose production

f1 pancreatic insulin production rate

f2 CNS glucose uptake

f3 · f4 Muscle- and adipose-tissue glucose uptake

f5 hepatic glucose production

f6 insulin degradation rate

di insulin-degradation scale factor

C6 half-saturation insulin concentration in insulin concentration rate

τ explicit response delay

τ1 pancreatic response delay to glucose stimulus

τ2 hepatic response delay to insulin stimulus

x∗ steady state solution of variable x

EGP0 endogenous glucose production at zero insulin concentration

F c01 insulin-dependent glucose flux

FR renal glucose clearance

Chapter 7

Gmeal meal glucose amount

tmeal meal initial time

τab glucose absorption time
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τav glucose availability time

L amount of glucagon in plasma

f7 pancreatic glucagon production rate

f8 hepatic glucagon production rate stimulated by glucagon

dl glucagon elimination constant

Rl scale factor of glucagon production

C7 glucose concentration threshold in pancreatic glucose production

Rgl scale factor of glucagon-stimulated glucose production rate

C8 glucagon concentration threshold in glucagon-stimulated glucose production

βI pancreatic efficacy of insulin production

βL pancreatic efficacy of glucagon production

γI efficacy of insulin dependent glucose uptake

γL efficacy of glucagon dependent glucose release

Iin insulin intake
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