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A deep learning model for estimating story
points

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose, and Tim Menzies

Abstract—Although there has been substantial research in software analytics for effort estimation in traditional software projects, little
work has been done for estimation in agile projects, especially estimating the effort required for completing user stories or issues. Story
points are the most common unit of measure used for estimating the effort involved in completing a user story or resolving an issue. In
this paper, we propose a prediction model for estimating story points based on a novel combination of two powerful deep learning
architectures: long short-term memory and recurrent highway network. Our prediction system is end-to-end trainable from raw input
data to prediction outcomes without any manual feature engineering. We offer a comprehensive dataset for story points-based
estimation that contains 23,313 issues from 16 open source projects. An empirical evaluation demonstrates that our approach
consistently outperforms three common baselines (Random Guessing, Mean, and Median methods) and six alternatives (e.g. using
Doc2Vec and Random Forests) in Mean Absolute Error, Median Absolute Error, and the Standardized Accuracy.

Index Terms—software analytics, effort estimation, story point estimation, deep learning.

F

1 INTRODUCTION

Effort estimation is an important part of software project
management, particularly for planning and monitoring a
software project. Cost and schedule overruns have been
a common risk in software projects. Mckinsey and the
University of Oxford has conducted a study on 5,400 large
scale IT projects, and found that on average large soft-
ware projects run 66% over budget and 33% overtime [1].
A different study on 1,471 software projects [2] revealed
similar findings: one in six software projects has a budget
overrun of 200% and a schedule overrun of almost 70%.
Activities involving effort estimation forms a critical part in
planning and managing a software project to ensure it com-
plete in time and within budget [3–5]. Effort estimates may
be used by different stakeholders as input for developing
project plans, scheduling iteration or release plans, budget-
ing, and costing [6]. Hence, incorrect estimates may have
adverse impact on the project outcomes [3, 7–9]. Research in
software effort estimation dates back several decades and
they can generally be divided into model-based methods,
expert-based methods, and hybrid methods which combine
model-based and expert-based methods [10]. Model-based
approaches leverages data from old projects to make pre-
dictions about new projects. Expert-based methods rely on
human expertise to make such judgements. Most of the
existing work (e.g. [11–22]) focus on the effort required for
completing a whole project (as opposed to user stories or
issues). These approaches estimate the effort required for
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developing a complete software system, relying on a set
of features manually designed for characterizing a software
project.

In modern agile development settings, software is devel-
oped through repeated cycles (iterative) and in smaller parts
at a time (incremental), allowing for adaptation to changing
requirements at any point during a project’s life. A project
has a number of iterations (e.g. sprints in Scrum [23]). An
iteration is usually a short (usually 2–4 weeks) period in
which the development team designs, implements, tests and
delivers a distinct product increment, e.g. a working mile-
stone version or a working release. Each iteration requires
the completion of a number of user stories, which are a com-
mon way for agile teams to express user requirements. This
is a shift from a model where all functionalities are delivered
together (in a single delivery) to a model involving a series
of incremental deliveries.

There is thus a need to focus on estimating the effort
of completing a single user story at a time rather than
the entire project. In fact, it has now become a common
practice for agile teams to go through each user story and
estimate the effort required for completing it. Story points are
commonly used as a unit of effort measure for a user story
[24]. Currently, most agile teams heavily rely on experts’
subjective assessment (e.g. planning poker, analogy, and
expert judgment) to arrive at an estimate. This may lead to
inaccuracy and more importantly inconsistencies between
estimates [25].

To facilitate research in effort estimation for agile devel-
opment, we have developed a new dataset for story point
effort estimation. This dataset contains 23,313 user stories
or issues with ground truth story points. Note that ground-
truth story points refer to the actual story points that were
assigned to an issue by the team. We collected these issues
from 16 large open source projects in 9 repositories namely
Apache, Appcelerator, DuraSpace, Atlassian, Moodle, Lsst-
corp, Mulesoft, Spring, and Talendforge. To the best of our
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knowledge, this is the largest dataset (in terms of number of
data points) for story point estimation where the focus is at
the issue/user story level rather than at the project level as
in traditional effort estimation datasets.

We also propose a prediction model which supports a
team by recommending a story-point estimate for a given
user story. Our model learns from the team’s previous story
point estimates to predict the size of new issues. This pre-
diction system will be used in conjunction with (instead of a
replacement for) existing estimation techniques practiced by
the team. It can be used in an completely automated manner,
i.e. the team will use the story points given by the prediction
system. Alternatively, it could be used as a decision support
system and takes part in the estimation process. This is
similar to the notions of combination-based effort estimation
in which estimates come from different sources, e.g. a com-
bination of expert and formal model-based estimates [10].
The key novelty of our approach resides in the combination
of two powerful deep learning architectures: long short-term
memory (LSTM) and recurrent highway network (RHN).
LSTM allows us to model the long-term context in the
textual description of an issue, while RHN provides us
with a deep representation of that model. We named this
approach as Deep learning model for Story point Estimation
(Deep-SE).

Our Deep-SE model is a fully end-to-end system where
raw data signals (i.e. words) are passed from input nodes
up to the final output node for estimating story points,
and the prediction errors are propagated from the output
node all the way back to the word layer. Deep-SE au-
tomatically learns semantic features which represent the
meaning of user stories or issue reports, thus liberating
the users from manually designing and extracting features.
Feature engineering usually relies on domain experts who
use their specific knowledge of the data to create features
for machine learners to work. For example, the performance
of most of existing defect prediction models heavily relies
on the careful designing of good features (e.g. size of code,
number of dependencies, cyclomatic complexity, and code
churn metrics) which can discriminate between defective
and non-defective code [26]. Coming up with good features
is difficult, time-consuming, and requires domain-specific
knowledge, and hence poses a major challenge. In many
situations, manually designed features normally do not
generalize well: features that work well in a certain software
project may not perform well in other projects [27]. Bag-
of-Words (BoW) is a traditional technique to “engineer”
features representing textual data like issue description.
However, the BoW approach has two major weaknesses: it
ignores the semantics of words, e.g. fails to recognize the
semantic relations between “she” and “he”, and it ignore
the sequential nature of text. In our approach, features are
automatically learned, thus obviating the need for designing
them manually.

Although our Deep-SE is a deep model of multiple
layers, it is recurrent and thus model parameters are shared
across layers. Hence, the number of parameters does not
grow with the depth and consequently avoid overfitting.
We also employ a number of common techniques such
as dropout and early stopping combat overfitting. Our
approach consistently outperforms three common baseline

estimators: Random Guessing, Mean, and Median meth-
ods and six alternatives (e.g. using Doc2Vec and Random
Forests) in Mean Absolute Error, Median Absolute Error,
and the Standardized Accuracy. These claims have also been
tested using a non-parametric Wilcoxon test and Vargha and
Delaney’s statistic to demonstrate the statistical significance
and the effect size.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a background of the story point estimation
and deep neural networks. We then present the Deep-SE
model and explain how it can be trained in Section 3 and
Section 4 respectively. Section 5 reports on the experimental
evaluation of our approach. Related work is discussed in
Section 6 before we conclude and outline future work in
Section 7.

2 BACKGROUND

2.1 Story point estimation
When a team estimates with story points, it assigns a point
value (i.e. story points) to each user story. A story point
estimate reflects the relative amount of effort involved in
resolving or completing the user story: a user story that is
assigned two story points should take twice as much effort
as a user story assigned one story point. Many projects
have now adopted this story point estimation approach
[25]. Projects that use issue tracking systems (e.g. JIRA
[28]) record their user stories as issues. Figure 1 shows an
example of issue XD-2970 in the Spring XD project [29]
which is recorded in JIRA. An issue typically has a title (e.g.
“Standardize XD logging to align with Spring Boot”) and
description. Projects that use JIRA Agile also record story
points. For example, the issue in Figure 1 has 8 story points.

Fig. 1. An example of an issue with estimated story points

Story points are usually estimated by the whole team
within a project. For example, the widely-used Planning
Poker [30] method suggests that each team member pro-
vides an estimate and a consensus estimate is reached after
a few rounds of discussion and (re-)estimation. This practice
is different from traditional approaches (e.g. function points)
in several aspects. Both story points and function points
reflect an effort for resolving an issue. However, function
points can be determined by an external estimator based on
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a standard set of rules (e.g. counting inputs, outputs, and
inquiries) that can be applied consistently by any trained
practitioner. On the other hand, story points are developed
by a specific team based on the team’s cumulative knowl-
edge and biases, and thus may not be useful outside the
team (e.g. in comparing performance across teams). Since
story points represent the effort required for completing a
user story, an estimate should cover different factors which
can affect the effort. These factors include how much work
needed to be done, the complexity of the work, and any
uncertainty involving in the work [24].

In agile development, user stories or issues are com-
monly viewed as the first-class entity of a project since
they describe what has to be built in the software project,
forming the basis for design, implementation and testing.
Story point sizes are used for measuring a team’s progress
rate, prioritizing user stories, planning and scheduling for
future iterations and releases, and even costing and allocat-
ing resources. Story points are also the basis for other effort-
related estimation. For example, in our recent work [31],
they are used for predicting delivery capability for an on-
going iteration. Specifically, we predict the amount of work
delivered at the end of an iteration, relative to the amount
of work which the team has originally committed to. The
amount of work done in an iteration is then quantified in
terms of story points from the issues completed within that
iteration. To enable such a prediction, we have taken into
account both the information of an iteration and user stories
or issues involving in the iteration. Interaction between user
stories and between user stories and resources are captured
through extracting information related to the dependencies
between user stories and the assignment of user stories to
developers.

Velocity is the sum of the story-point estimates of the
issues that the team resolved during an iteration. For ex-
ample, if the team resolves four stories each estimated at
three story points, their velocity is twelve. Velocity is used
for planning and predicting when a software (or a release)
should be completed. For example, if the team estimates
the next release to include 100 story points and the team’s
current velocity is 20 points per 2-week iteration, then it
would take 5 iterations (or 10 weeks) to complete the project.
Hence, it is important that the team is consistent in their
story point estimates to avoid reducing the predictability
in planning and managing their project. A machine learner
can help the team maintain this consistency, especially in
coping with increasingly large numbers of issues. It does so
by learning insight from past issues and estimations to make
future estimations.

2.2 Long Short Term Memory

Long Short-Term Memory (LSTM) [32, 33] is a special vari-
ant of recurrent neural networks [34]. While a feedforward
neural network maps an input vector into an output vector,
an LSTM network uses a loop in a network that allows
information to persist and it can map a sequence into a
sequence (see Figure 2). Let w1, ..., wn be the input sequence
(e.g. words in a sentence) and y1, ..., yn be the sequence of
corresponding labels (e.g. the next words). At time step t,
an LSTM unit reads the input wt, the previous hidden state

ht−1, and the previous memory ct−1 in order to compute
the hidden state ht. The hidden state is used to produce an
output at each step t. For example, the output of predicting
the next word k in a sentence would be a vector of proba-
bilities across our vocabulary, i.e. softmax(Vkht) where Vk
is a row in the output parameter matrix Wout.

LSTM

wk

hk

c
LSTM

w1

h1
h1
c1

LSTM

w2

h2
h2
c2

LSTM

w3

h3
h3
c3

LSTM

w4

h4

… LSTM

wk

hk

Standardize XD logging to

XD logging to align

Fig. 2. An LSTM network

The most important element of LSTM is a short-term
memory cell – a vector that stores accumulated information
over time. The information stored in the memory is re-
freshed at each time step through partially forgetting old,
irrelevant information and accepting fresh new input. An
LSTM unit uses the forget gate f t to control how much
information from the memory of previous context (i.e. ct−1)
should be removed from the memory cell. The forget gate
looks at the the previous output state ht−1 and the current
word wt, and outputs a number between 0 and 1. A value
of 1 indicates that all the past memory is preserved, while
a value of 0 means “completely forget everything”. The
next step is updating the memory with new information
obtained from the current word wt. The input gate it is
used to control which new information will be stored in
the memory. Information stored in the memory cell will be
used to produce an output ht. The output gate ot looks at
the current code token wt and the previous hidden state
ht−1, and determines which parts of the memory should be
output.

*

ct

ft

ct-1 *

it

ot*

ht

wt

ht-1

wt

ht-1

wt

ht-1

wt ht-1

Fig. 3. The internal structure of an LSTM unit

This mechanism allows LSTM to effectively learn long-
term dependencies in text. Consider trying to predict the last
word in the following text extracted from the description of
issue XD-2970 in Figure 1: “Boot uses slf4j APIs backed by
logback. This causes some build incompatibilities .... An additional
step is to replace log4j with .”. Recent information suggests
that the next word is probably the name of a logging library,
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but if we want to narrow down to a specific library, we need
to remember that “logback” and “log4j” are logging libraries
from the earlier text. There could be a big gap between
relevant information and the point where it is needed, but
LSTM is capable to learn to connect the information. In
fact, LSTM has demonstrated ground-breaking results in
many applications such as language models [35], speech
recognition [36] and video analysis [37].

The reading of the new input, writing of the output,
and the forgetting (i.e. all those gates) are all learnable.
As an recurrent network, LSTM network shares the same
parameters across all steps since the same task is performed
at each step, just with different inputs. Thus, comparing
to traditional feedforward networks, using an LSTM net-
work significantly reduces the total number of parameters
which we need to learn. An LSTM model is trained using
many input sequences with known actual output sequences.
Learning is done by minimizing the error between the actual
output and the predicted output by adjusting the model
parameters. Learning involves computing the gradient of
L(θ) during the backpropagation phase, and parameters are
updated using a stochastic gradient descent. It means that
parameters are updated after seeing only a small random
subset of sequences. We refer the readers to the seminal
paper [32] for more details about LSTM.

3 APPROACH

Our overall research goal is to build a prediction system
that takes as input the title and description of an issue
and produces a story-point estimate for the issue. Title and
description are required information for any issue tracking
system. Hence, our prediction system is applicable to a wide
range of issue tracking systems, and can be used at any time,
even when an issue is created.

We combine the title and description of an issue report
into a single text document where the title is followed by the
description. Our approach computes vector representations
for these documents. These representations are then used
as features to predict the story points of each issue. It
is important to note that these features are automatically
learned from raw text, hence removing us from manually
engineering the features.

Figure 4 shows the Deep learning model for Story
point Estimation (Deep-SE) that we have designed for the
story point prediction system. It is composed of four com-
ponents arranged sequentially: (i) word embedding, (ii)
document representation using Long Short-Term Memory
(LSTM) [32], (iii) deep representation using Recurrent High-
way Net (RHWN) [38]; and (iv) differentiable regression.
Given a document which consists of a sequence of words
s = (w1, w2, ..., wn), e.g. the word sequence (Standardize,
XD, logging, to, align, with, ....) in the title and description of
issue XD-2970 in Figure 1.

We model a document’s semantics based on the principle
of compositionality: the meaning of a document is deter-
mined by the meanings of its constituents (e.g. words) and
the rules used to combine them (e.g. one word followed
by another). Hence, our approach models document rep-
resentation in two stages. It first converts each word in a
document into a fixed-length vector (i.e. word embedding).

pooling

Embedding	
word	vector

LSTM

story	point	
estimate

W1 W2 W3 W4 W5 W6

Recurrent	Highway	NetRegression

Standardize XD logging to align with

document	representation

h1 h2 h3 h4 h5 h6

….

….

….

….

Embedding	matrix	M

Fig. 4. Deep learning model for Story point Estimation (Deep-SE).
The input layer (bottom) is a sequence of words (represented as filled
circles). Words are first embedded into a continuous space, then fed into
the LSTM layer. The LSTM outputs a sequence of state vectors, which
are then pooled to form a document-level vector. This global vector is
then fed into a Recurrent Highway Net for multiple transformations (See
Eq. (1) for detail). Finally, a regressor predicts an outcome (story-point).

These word vectors then serve as an input sequence to the
Long Short-Term Memory (LSTM) layer which computes a
vector representation for the whole document.

After that, the document vector is fed into the Recurrent
Highway Network (RHWN), which transforms the docu-
ment vector multiple times, before outputting a final vector
which represents the text. The vector serves as input for
the regressor which predicts the output story-point. While
many existing regressors can be employed, we are mainly
interested in regressors that are differentiable with respect to
the training signals and the input vector. In our implemen-
tation, we use the simple linear regression that outputs the
story-point estimate.

Our entire system is trainable from end-to-end: (a) data
signals are passed from the words in issue reports to the
final output node; and (b) the prediction error is propagated
from the output node all the way back to the word layer.

3.1 Word embedding

We represent each word as a low dimensional, continuous
and real-valued vector, also known as word embedding. Here
we maintain a look-up table, which is a word embedding
matrix M ∈ Rd×|V | where d is the dimension of word
vector and |V | is vocabulary size. These word vectors are
pre-trained from corpora of issue reports, which will be
described in details in Section 4.1.
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3.2 Document representation using LSTM

Since an issue document consists of a sequence of words, we
model the document by accumulating information from the
start to the end of the sequence. A powerful accumulator
is a Recurrent Neural Network (RNN) [34], which can be
seen as multiple copies of the same single-hidden-layer
network, each passing information to a successor. Thus,
recurrent networks allow information to be accumulated.
While RNNs are theoretically powerful, they are difficult to
train for long sequences [34], which are often seen in issue
reports (e.g. see the description of issue XD-2970 in Figure
1). Hence, our approach employs Long Short-Term Memory
(LSTM), a special variant of RNN (see Section 2 for more
details of how LSTM work).

LSTM

Standardize

[0.1 0.3 ‐0.2]

XD

[‐1 ‐2.1 0.5]

logging

[1.5 0.5 ‐1.2]

XD logging to

[1 ‐0.5 ‐3] [‐1.3 0 2] [‐0.5 ‐0.5 ‐1]

[‐0.27 ‐0.33 ‐0.67]

LSTMLSTM
Sequence embedding

Word embedding

Output states

Fig. 5. An example of how a vector representation is obtained for issue
reports

After the vector output state has been computed for ev-
ery word in the input sequence, the next step is aggregating
those vectors into a single vector representing the whole
document. The aggregation operation is known as pooling.
There are multiple ways to perform pooling, but the main
requirement is that pooling must be length invariant. In
other words, pooling is not sensitive to variable length of
the document. For example, the simplest statistical pooling
method is mean-pooling where we take the sum of the
state vectors and divide it by the number of vectors. Other
pooling methods are such as max pooling (e.g. choose the
maximum value in each dimension), min pooling and sum
pooling. From our experience in other settings, a simple but
often effective pooling method is averaging, which we also
employed here [39].

3.3 Deep representation using Recurrent Highway Net-
work

Given that vector representation of an issue report has been
extracted by the LSTM layer, we can use a differentiable
regressor for immediate prediction. However, this may be
sub-optimal since the network is rather shallow. Deep neu-
ral networks have become a popular method with many
ground-breaking successes in vision [40], speech recogni-
tion [41] and NLP [42, 43]. Deep nets represent complex
data more efficiently than shallow ones [44]. Deep models
can be expressive while staying compact, as theoretically
analysed by recent work [45–49]. This have been empirically
validated in recent record-breaking results in vision, speech
recognition and machine translation. However, learning
standard feedforward networks with many hidden layers

is notoriously difficult due to two main problems: (i) the
number of parameters grows with the number of layers,
leading to overfitting; and (ii) stacking many non-linear
functions makes it difficult for the information and the
gradients to pass through.

To address these problems, we designed a deep repre-
sentation that performs multiple non-linear transformations
using the idea from Highway Networks. Highway Nets are
the latest idea that enables efficient learning through those
many non-linear layers [50]. A Highway Net is a special
type of feedforward neural networks with a modification to
the transformation taking place at a hidden unit to let infor-
mation from lower layers pass linearly through. Specifically,
the hidden state at layer l is defined as:

hl+1 = αl ∗ hl + (1−αl) ∗ σl (hl) (1)

where σl is a non-linear transform (e.g., a logistic or a
tanh) and αl = logit(hl) is a linear logistic transform
of hl. Here αl plays the role of a highway gate that lets
information passing from layer l to layer l+1 without loss of
information. For example, αl → 1 enables simple copying.

We need to learn a mapping from the raw words in an
issue description to the story points. A deep feedforward
neural network like Highway Net effectively breaks the
mapping into a series of nested simple mappings, each
described by a different layer of the network. The first
layer provides a (rough) estimate, and subsequent layers
iteratively refine that estimate. As the number of layers
increase, further refinement can be achieved. Comparing to
traditional feedforward networks, the special gating scheme
in Highway Net is highly effective in letting the information
and the gradients to pass through while stacking many non-
linear functions. In fact, earlier work has demonstrated that
Highway Net can have up to a thousand layers [50], while
traditional deep neural nets cannot go beyond several layers
[51].

We have also modified the standard Highway Network
by sharing parameters between layers, i.e. all the hidden
layers having the same hidden units. In other words, all the
hidden layers to have the same hidden units. This is similar
to the notion of a recurrent network, and thus we called it
a Recurrent Highway Network. Our previous work [38] has
demonstrated the effectiveness of this approach in pattern
recognition. This key novelty allows us to create a very
compact version of Recurrent Highway Network with only
one set of parameters in αl and σl. This clearly produces
a great advantage of avoiding overfitting. We note that
the number of layers here refers to the number of hidden
layers of a Recurrent Highway Network, not the number of
LSTM layers. The number of LSTM layers is the same as the
number of words in an issue’s description.

3.4 Regression
At the top-layer of Deep-SE, we employ linear activation
function in a feedforward neural network as the final re-
gressor (see Figure 4) to produce a story-point estimate. This
function can be defined as follows.

y = b0 +
n∑

i=1

bixi (2)
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where y is the output story point , xi is an input signal
from RHWN layer, bi is trained coefficient (weight), and n
is the size of embedding dimension.

4 MODEL TRAINING

4.1 Pre-training

Pre-training is a way to come up with a good parame-
ter initialization without using the labels (i.e. ground-truth
story points). We pre-train the lower layers of Deep-SE (i.e.
embedding and LSTM), which operate at the word level.
Pre-training is effective when the labels are not abundant.
During pre-training, we do not use the ground-truth story
points, but instead leverage two sources of information: the
strong predictiveness of natural language, and availability
of free texts without labels (e.g. issue reports without story
points). The first source comes from the property of lan-
guages that the next word can be predicted using previous
words, thanks to grammars and common expressions. Thus,
at each time step t, we can predict the next word wt+1 using
the state ht, using the softmax function:

P (wt+1 = k | w1:t) =
exp (Ukht)∑
k′ exp (Uk′ht)

(3)

where Uk is a free parameter. Essentially we are building a
language model, i.e., P (s) = P (w1:n), which can be factor-
ized using the chain-rule as: P (w1)

∏n
t=2 P (wt+1 | w1:t).

We note that the probability of the first word P (w1) in
a sequence is the number of sequences in the corpus which
has that word w1 starting first. At step t, ht is computed by
feeding ht−1 and wt to the LSTM unit (see Figure 2). Since
wt is a word embedding vector, Eq. (3) indirectly refers to
the embedding matrix .

The language model can be learned by optimizing the
log-loss− logP (s). However, the main bottleneck is compu-
tational: Equation (3) costs |V | time to evaluate where |V | is
the vocabulary size, which can be hundreds of thousands for
a big corpus. For that reason, we implemented an approx-
imate but very fast alternative based on Noise-Contrastive
Estimation [52], which reduces the time to M � |V |, where
M can be as small as 100. We also run the pre-training
multiple times against a validation set to choose the best
model. We use perplexity, a common intrinsic evaluation
metric based on the log-loss, as a criterion for choosing
the best model and early stopping. A smaller perplexity
implies a better language model. The word embedding
matrixM∈ Rd×|V | (which is first randomly initialized) and
the initialization for LSTM parameters are learned through
this pre-training process.

4.2 Training Deep-SE

We have implemented the Deep-SE model in Python using
Theano [53]. To simplify our model, we set the size of the
memory cell in an LSTM unit and the size of a recurrent
layer in RHWN to be the same as the embedding size.
We tuned some important hyper-parameters (e.g. embed-
ding size and the number of hidden layers) by conducting
experiments with different values, while for some other

hyper-parameters, we used the default values. This will be
discussed in more details in the evaluation section.

Recall that the entire network can be reduced to a pa-
rameterized function defined, which maps sequences of raw
words (in issue reports) to story points. Let θ be the set of
all parameters in the model. We define a loss function L(θ)
that measures the quality of a particular set of parameters
based on the difference between the predicted story points
and the ground truth story points in the training data. A
setting of the parameters θ that produces a prediction for an
issue in the training data consistent with its ground truth
story points would have a very low loss L. Hence, learning
is achieved through the optimization process of finding the
set of parameters θ that minimizes the loss function.

Since every component in the model is differentiable,
we use the popular stochastic gradient descent to perform
optimization: through backpropagation, the model parame-
ters θ are updated in the opposite direction of the gradient
of the loss function L(θ). In this search, a learning rate η
is used to control how large of a step we take to reach a
(local) minimum. We use RMSprop, an adaptive stochastic
gradient method (unpublished note by Geoffrey Hinton),
which is known to work best for recurrent models. We tuned
RMSprop by partitioning the data into mutually exclusive
training, validation, and test sets and running the training
multiple times. Specifically, the training set is used to learn a
useful model. After each training epoch, the learned model
was evaluated on the validation set and its performance was
used to assess against hyperparameters (e.g. learning rate in
gradient searches). Note that the validation set was not used
to learn any of the model’s parameters. The best performing
model in the validation set was chosen to be evaluated on
the test set. We also employed the early stopping strategy
(see Section 5.4), i.e. monitoring the model’s performance
during the validation phase and stopping when the perfor-
mance got worse. If the log-loss does not improve for ten
consecutive runs, we than terminate the training.

To prevent overfitting in our neural network, we have
implemented an effective solution called dropout in our
model [54], where the elements of input and output states
are randomly set to zeros during training. During testing,
parameter averaging is used. In effect, dropout implicitly
trains many models in parallel, and all of them share the
same parameter set. The final model parameters represent
the average of the parameters across these models. Typically,
the dropout rate is set at 0.5.

An important step prior to optimization is parameter
initialization. Typically the parameters are initialized ran-
domly, but our experience shows that a good initialization
(through pre-training of embedding and LSTM layers) helps
learning converge faster to good solutions.

5 EVALUATION

The empirical evaluation we carried out aimed to answer
the following research questions:

• RQ1. Sanity Check: Is the proposed approach suitable
for estimating story points?
This sanity check requires us to compare our Deep-
SE prediction model with the three common baseline
benchmarks used in the context of effort estimation:
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Random Guessing, Mean Effort, and Median Effort.
Random guessing is a naive benchmark used to
assess if an estimation model is useful [55]. Random
guessing performs random sampling (with equal
probability) over the set of issues with known story
points, chooses randomly one issue from the sample,
and uses the story point value of that issue as the
estimate of the target issue. Random guessing does
not use any information associated with the target
issue. Thus any useful estimation model should out-
perform random guessing. Mean and Median Effort
estimations are commonly used as baseline bench-
marks for effort estimation [19]. They use the mean
or median story points of the past issues to estimate
the story points of the target issue. Note that the
samples used for all the naive baselines (i.e. Random
Guessing, Mean Effort, and Median Effort) were from
the training set.

• RQ2. Benefits of deep representation: Does the use
of Recurrent Highway Nets provide more accurate story
point estimates than using a traditional regression tech-
nique?
To answer this question, we replaced the Recur-
rent Highway Net component with a regressor for
immediate prediction. Here, we compare our ap-
proach against four common regressors: Random
Forests (RF), Support Vector Machine (SVM), Auto-
matically Transformed Linear Model (ATLM), and
Linear Regression (LR). We choose RF over other
baselines since ensemble methods like RF, which
combine the estimates from multiple estimators, are
an effective method for effort estimation [20]. RF
achieves a significant improvement over the decision
tree approach by generating many classification and
regression trees, each of which is built on a random
resampling of the data, with a random subset of
variables at each node split. Tree predictions are then
aggregated through averaging. We used the issues
in the validation set to fine-tune parameters (i.e. the
number of tress, the maximum depth of the tree,
and The minimum number of samples). For SVM,
it has been widely use in software analytics (e.g.
defect prediction) and document classification (e.g.
sentiment analysis) [56]. SVM is known as Support
Vector Regression (SVR) for regression problems. We
also used the issues in the validation set to find the
kernel type (e.g. linear, polynomial) for testing. We
used the Automatically Transformed Linear Model
(ATLM) [57] recently proposed as the baseline model
for software effort estimation. Although ATLM is
simple and requires no parameter tuning, it performs
well over a range of various project types in the
traditional effort estimation [57]. Since LR is the top
layer of our approach, we also used LR as the imme-
diate regressor after LSTM layers to assess whether
RHWN improves the predictive performance. We
then compare the performance of these alternatives,
namely LSTM+RF, LSTM+SVM, LSTM+ATLM, and
LSTM+LR against our Deep-SE model.

• RQ3. Benefits of LSTM document representation:
Does the use of LSTM for modeling issue reports provide

more accurate results than the traditional Doc2Vec and
Bag-of-Words (BoW) approach?
The most popular text representation is Bag-of-
Words (BoW) [58], where a text is represented as
a vector of word counts. For example, the title and
description of issue XD-2970 in Figure 1 would be
converted into a sparse binary vector of vocabulary
size, whose elements are mostly zeros, except for
those at the positions designated to “standardize”,
“XD”, “logging” and so on. However, BoW has two
major weaknesses: they lose the sequence of the
words and they also ignore semantics of the words.
For example, “Python”, “Java”, and “logging ” are
equally distant, while semantically “Python” should
be closer to “Java” than “logging”. To address this
issue, Doc2vec [59] (i.e. alternatively known as para-
graph2vec) is an unsupervised algorithm that learns
fixed-length feature representations from texts (e.g.
title and description of issues). Each document is
represented in a dense vector which is trained to
predict next words in the document.
Both BoW and Doc2vec representations however ef-
fectively destroys the sequential nature of text. This
question aims to explore whether LSTM with its ca-
pability of modeling this sequential structure would
improve the story point estimation. To answer this
question, we feed three different feature vectors: one
learned by LSTM and the other two derived from
BoW technique and Doc2vec to the same Random
Forrests regressor, and compare the predictive per-
formance of the former (i.e. LSTM+RF) against that
of the latter (i.e. BoW+RF and Doc2vec+RF).We used
Gensim1, a well-known implementation for Doc2vec
in our experiments.

• RQ4. Cross-project estimation: Is the proposed ap-
proach suitable for cross-project estimation?
Story point estimation in new projects is often dif-
ficult due to lack of training data. One common
technique to address this issue is training a model
using data from a (source) project and applying it to
the new (target) project. Since our approach requires
only the title and description of issues in the source
and target projects, it is readily applicable to both
within-project estimation and cross-project estima-
tion. In practice, story point estimation is however
known to be specific to teams and projects. Hence,
this question aims to investigate whether our ap-
proach is suitable for cross-project estimation. We
have implemented Analogy-based estimation called
ABE0, which were proposed in previous work [60–
63] for cross-project estimation, and used it as a
benchmark. The ABE0 estimation bases on the dis-
tances between individual issues. Specifically, the
story point of issues in the target project is the
mean of story points of k-nearest issues from the
source project. We used the Euclidean distance as a
distance measure, Bag-of-Words of the title and the
description as the features of an issue, and k = 3.

• RQ5. Normalizing/adjusting story points: Does our

1. https://radimrehurek.com/gensim/models/doc2vec.html
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approach still perform well with normalized/adjusted story
points?
We have ran our experiments again using the new la-
bels (i.e. the normalized story points) for addressing
the concern that whether our approach still performs
well on those adjusted ground-truths. We adjusted
the story points of each issue using a range of infor-
mation, including the number of days from creation
to resolved time, the development time, the number
of comments, the number of users who commented
on the issue, the number of times that an issue had
their attributes changed, the number of users who
changed the issue’s attributes, the number of issue
links, the number of affect versions, and the number
of fix versions. These information reflect the actual
effort and we thus refer to them as effort indicators.
The values of these indicators were extracted after
the issue was completed. The normalized story point
(SPnormalized) is then computed as the following:

SPnormalized = (0.5)SPoriginal + (0.5)SPnearest

where SPorginal is the original story point, and
SPnearest is the mean of story points from 10 nearest
issues based on their actual effort indicators. Note
that we use K-Nearest Neighbour (KNN) to find the
nearest issues and the Euclidean metric to measure
the distance. We ran the experiment on the new la-
bels (i.e SPnormalized) using our proposed approach
against all other baseline benchmark methods.

• RQ6. Compare against the existing approach: How
does our approach perform against existing approaches in
story point estimation?
Recently, Porru et. al. [64] also proposed an esti-
mation model for story points. Their approach uses
the type of an issue, the component(s) assigned to
it, and the TF-IDF derived from its summary and
description as features representing the issue. They
also performed univariate feature selection to choose
a subset of features for building a classifier. By
contrast, our approach automatically learns seman-
tic features which represent the actual meaning of
the issue’s report, thus potentially providing more
accurate estimates. To answer this research question,
we ran Deep-SE on the dataset used in Porru et.
al, re-implemented their approach, and performed
a comparison on the results produced by the two
approaches.

5.1 Story point datasets

To collect data for our dataset, we looked for issues that
were estimated with story points. JIRA is one of the few
widely-used issue tracking systems that support agile de-
velopment (and thus story point estimation) with its JIRA
Agile plugin. Hence, we selected a diverse collection of nine
major open source repositories that use the JIRA issue track-
ing system: Apache, Appcelerator, DuraSpace, Atlassian,
Moodle, Lsstcorp, MuleSoft, Spring, and Talendforge. We
then used the Representational State Transfer (REST) API
provided by JIRA to query and collected those issue reports.
We collected all the issues which were assigned a story point

measure from the nine open source repositories up until
August 8, 2016. We then extracted the story point, title and
description from the collected issue reports. Each repository
contains a number of projects, and we chose to include in
our dataset only projects that had more than 300 issues
with story points. Issues that were assigned a story point
of zero (e.g., a non-reproducible bug), as well as issues with
a negative, or unrealistically large story point (e.g. greater
than 100) were filtered out. Ultimately, about 2.66% of the
collected issues were filtered out in this fashion. In total, our
dataset has 23,313 issues with story points from 16 differ-
ent projects: Apache Mesos (ME), Apache Usergrid (UG),
Appcelerator Studio (AS), Aptana Studio (AP), Titanum
SDK/CLI (TI), DuraCloud (DC), Bamboo (BB), Clover (CV),
JIRA Software (JI), Moodle (MD), Data Management (DM),
Mule (MU), Mule Studio (MS), Spring XD (XD), Talend Data
Quality (TD), and Talend ESB (TE). Table 1 summarizes
the descriptive statistics of all the projects in terms of the
minimum, maximum, mean, median, mode, variance, and
standard deviations of story points assigned used and the
average length of the title and description of issues in each
project. These sixteen projects bring diversity to our dataset
in terms of both application domains and project’s char-
acteristics. Specifically, they are different in the following
aspects: number of observation (from 352 to 4,667 issues),
technical characteristics (different programming languages
and different application domains), sizes (from 88 KLOC to
18 millions LOC), and team characteristics (different team
structures and participants from different regions).

Since story points rate the relative effort of work between
user stories, they are usually measured on a certain scale
(e.g. 1, 2, 4, 8, etc.) to facilitate comparison (e.g. a user
story is double the effort of the other) [25]. The story points
used in planning poker typically follow a Fibonacci scale,
i.e. 1, 2, 3, 5, 8, 13, 21, and so on [24]. Among the projects
we studied, only seven of them (i.e. Usergrid, Talend ESB,
Talend Data Quality, Mule Studio, Mule, Appcelerator Stu-
dio, and Aptana Studio followed the Fibonacci scale, while
the other nine projects did not use any scale. When our
prediction system gives an estimate, we did not round it
to the nearest story point value on the Fibonacci scale.
An alternative approach (for those project which follow a
Fibonacci scale) is treating this as a classification problem:
each value on the Fibonacci scale represents a class. The
limitations of this approach is that the number of classes
must be pre-determined and that it is not applicable to
projects that do not follow this scale. We however note that
the Fibonacci scale is only a guidance for estimating story
points. In practice, teams may follow other common scales,
define their own scales or may not follow any scale at all.
Our approach does not rely on these specific scales, thus
making it applicable to a wider range of projects. It predicts
a scalar value (regression) rather than a class (classification).

5.2 Experimental setting

We performed experiments on the sixteen projects in our
dataset – see Table 1 for their details. To mimic a real
deployment scenario that prediction on a current issue is
made by using knowledge from estimations of the past
issues, the issues in each project were split into training set
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TABLE 1
Descriptive statistics of our story point dataset

Repo. Project Abb. # issues min SP max SP mean SP median SP mode SP var SP std SP mean TD length LOC

Apache Mesos ME 1,680 1 40 3.09 3 3 5.87 2.42 181.12 247,542+

Usergrid UG 482 1 8 2.85 3 3 1.97 1.40 108.60 639,110+

Appcelerator Appcelerator Studio AS 2,919 1 40 5.64 5 5 11.07 3.33 124.61 2,941,856#

Aptana Studio AP 829 1 40 8.02 8 8 35.46 5.95 124.61 6,536,521+

Titanium SDK/CLI TI 2,251 1 34 6.32 5 5 25.97 5.10 205.90 882,986+

DuraSpace DuraCloud DC 666 1 16 2.13 1 1 4.12 2.03 70.91 88,978+

Atlassian Bamboo BB 521 1 20 2.42 2 1 4.60 2.14 133.28 6,230,465#

Clover CV 384 1 40 4.59 2 1 42.95 6.55 124.48 890,020#

JIRA Software JI 352 1 20 4.43 3 5 12.35 3.51 114.57 7,070,022#

Moodle Moodle MD 1,166 1 100 15.54 8 5 468.53 21.65 88.86 2,976,645+

Lsstcorp Data Management DM 4,667 1 100 9.57 4 1 275.71 16.61 69.41 125,651*

Mulesoft Mule MU 889 1 21 5.08 5 5 12.24 3.50 81.16 589,212+

Mule Studio MS 732 1 34 6.40 5 5 29.01 5.39 70.99 16,140,452#

Spring Spring XD XD 3,526 1 40 3.70 3 1 10.42 3.23 78.47 107,916+

Talendforge Talend Data Quality TD 1,381 1 40 5.92 5 8 26.96 5.19 104.86 1,753,463#

Talend ESB TE 868 1 13 2.16 2 1 2.24 1.50 128.97 18,571,052#

Total 23,313
SP: story points, TD length: the number of words in the title and description of an issue, LOC: line of code
(+: LOC obtained from www.openhub.net, *: LOC from GitHub, and #: LOC from the reverse engineering)

(60% of the issues), development/validation set (i.e. 20%),
and test set (i.e. 20%) based on their creation time. The issues
in the training set and the validation set were created before
the issues in the test set, and the issues in the training set
were also created before the issues in the validation set.

5.3 Performance measures

There are a range of measures used in evaluating the accu-
racy of an effort estimation model. Most of them are based
on the Absolute Error, (i.e. |ActualSP − EstimatedSP |).
where AcutalSP is the real story points assigned to an issue
and EstimatedSP is the outcome given by an estimation
model. Mean of Magnitude of Relative Error (MRE) or Mean
Percentage Error and Prediction at level l [65], i.e. Pred(l),
have also been used in effort estimation. However, a number
of studies [66–69] have found that those measures bias
towards underestimation and are not stable when compar-
ing effort estimation models. Thus, the Mean Absolute Error
(MAE), Median Absolute Error (MdAE), and the Standardized
Accuracy (SA) have recently been recommended to compare
the performance of effort estimation models [19, 70]. MAE is
defined as:

MAE =
1

N

N∑
i=1

|ActualSPi − EstimatedSPi|

where N is the number of issues used for evaluating
the performance (i.e. test set), ActualSPi is the actual story
point, and EstimatedSPi is the estimated story point, for
the issue i.

We also report the Median Absolute Error (MdAE) since
it is more robust to large outliers. MdAE is defined as:

MdAE = Median{|ActualSPi − EstimatedSPi|}

where 1 ≤ i ≤ N .
SA is based on MAE and it is defined as:

SA =

(
1− MAE

MAErguess

)
× 100

where MAErguess is the MAE of a large number (e.g.
1000 runs) of random guesses. SA measures the comparison

against random guessing. Predictive performance can be
improved by decreasing MAE or increasing SA.

We assess the story point estimates produced by the
estimation models using MAE, MdAE and SA. To com-
pare the performance of two estimation models, we tested
the statistical significance of the absolute errors achieved
with the two models using the Wilcoxon Signed Rank Test
[71]. The Wilcoxon test is a safe test since it makes no
assumptions about underlying data distributions. The null
hypothesis here is: “the absolute errors provided by an
estimation model are not different to those provided by
another estimation model”. We set the confidence limit at
0.05 and also applied Bonferroni correction [72] (0.05/K,
where K is the number of statistical tests) when multiple
testing were performed.

In addition, we also employed a non-parametric effect
size measure, the correlated samples case of the Vargha and
Delaney’s ÂXY statistic [73] to assess whether the effect
size is interesting. The ÂXY measure is chosen since it is
agnostic to the underlying distribution of the data, and is
suitable for assessing randomized algorithms in software
engineering generally [74] and effort estimation in particular
[19]. Specifically, given a performance measure (e.g. the
Absolute Error from each estimation in our case), the ÂXY

measures the probability that estimation model X achieves
better results (with respect to the performance measure)
than estimation model Y . We note that this falls into the
correlated samples case of the Vargha and Delaney [73]
where the Absolute Error is derived by applying different
estimation methods on the same data (i.e. same issues). We
thus use the following formula to calculate the stochastic
superiority value between two estimation methods:

ÂXY =
[#(X < Y ) + (0.5×#(X = Y ))]

n
,

where #(X < Y ) is the number of issues that the Absolute
Error from X less than Y , #(X = Y ) is the number of
issues that the Absolute Error from X equal to Y , and n
is the number of issues. We also compute the average of
the stochastic superiority measures (Aiu) of our approach



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2792473, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

against each of the others using the following formular:

Aiu =

∑
k 6=iAik

l − 1
,

where Aik is the pairwise stochastic superiority values
(ÂXY ) for all (i, k) pairs of estimation methods, k = 1, ..., l,
and l is a number of estimation methods, e.g. variable i
refers to Deep-SE and l = 4 when comparing Deep-SE
against Random, Mean and Median methods.

5.4 Hyper-parameter settings for training a Deep-SE
model

We focused on tuning two important hyper-parameters: the
number of word embedding dimensions and the number of
hidden layers in the recurrent highway net component of
our model. To do so, we fixed one parameter and varied
the other to observe the MAE performance. We chose to test
with four different embedding sizes: 10, 50, 100, and 200,
and twelve variations of the number of hidden layers from
2 to 200. The embedding size is the number of dimensions of
the vector which represents a word. This word embedding
is a low dimensional vector representation of words in the
vocabulary. This tuning was done using the validation set.
Figure 6 shows the results from experimenting with Apache
Mesos. As can be seen, the setting where the number of
embeddings is 50 and the number of hidden layers is 10
gives the lowest MAE, and thus was chosen.
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Fig. 6. Story point estimation performance with different parameter.

For both pre-training we trained with 100 runs and the
batch size is 50. The initial learning rate in pre-training
was set to 0.02, adaptation rate was 0.99, and smoothing
factor was 10−7. For the main Deep-SE model we used
1,000 epoches and the batch size wass set to 100. The initial
learning rate in the main model was set to 0.01, adaptation
rate was 0.9, and smoothing factor was 10−6. Dropout rates
for the RHWN and LSTM layers were set to 0.5 and 0.2
respectively. The maximum sequence length used by the
LSTM is 100 words, which is the average length of issue
description.

5.5 Pre-training

In most repositories, we used around 50,000 issues without
story points (i.e. without labels) for pre-training, except the
Mulesoft repository which has much smaller number of
issues (only 8,036 issues) available for pre-training. Figure
7 show the top-500 frequent words used in Apache. They

are divided into 9 clusters (using K-means clustering) based
on their embedding which was learned through the pre-
training process. We used t-distributed stochastic neighbor
embedding (t-SNE) [75] to display high-dimensional vectors
in two dimensions.

We show here some representative words from some
clusters for a brief illustration. Words that are semantically
related are grouped in the same cluster. For example, words
related to networking like soap, configuration, tcp, and load
are in one cluster. This indicates that to some extent, the
learned vectors effectively capture the semantic relations be-
tween words, which is useful for the story-point estimation
task we do later.
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Fig. 7. Top-500 word clusters used in the Apache’s issue reports

The pre-training step is known to effectively deal with
limited labelled data [76–78]. Here, pre-training does not
require story-point labels since it is trained by predicting
the next words. Hence the number of data points equals to
the number of words. Since for each project repository we
used 50,000 issues for pre-training, we had approximately 5
million data points per repository for pre-training.

5.6 The correlation between the story points and the
development time
Identifying the actual effort required for completing an issue
is very challenging (especially in open source projects) since
in most cases the actual effort was not tracked and recorded.
We were however able to extract the development time
which was the duration between when the issue’s status
was set to “in-progress” and when it was set to “resolved”.
Thus, we have explicitly excluded the waiting time for being
assigned to a developer or being put on hold. The develop-
ment time is the closest to the actual effort of completing the
issue that we were able to extract from the data. We then
performed two widely-used statistical tests (Spearman’s
rank and Pearson rank correlation) [79] for all the issues in
our dataset. Table 2 shows the Spearman’s rank and Pearson
rank correlation coefficient and p-value for all projects. We
have found that there is a significantly (p < 0.05) positive
correlation between the story points and the development
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TABLE 2
The coefficient and p-value of the Spearman’s rank and Pearson rank

correlation on the story points against the development time

Spearman’s rank Pearson correlation
Project coefficient p-value coefficient p-value

Appcelerator Studio 0.330 <0.001 0.311 <0.001
Aptana Studio 0.241 <0.001 0.325 <0.001
Bamboo 0.505 <0.001 0.476 <0.001
Clover 0.551 <0.001 0.418 <0.001
Data Management 0.753 <0.001 0.769 <0.001
DuraCloud 0.225 <0.001 0.393 <0.001
JIRA Software 0.512 <0.001 0.560 <0.001
Mesos 0.615 <0.001 0.766 <0.001
Moodle 0.791 <0.001 0.816 <0.001
Mule 0.711 <0.001 0.722 <0.001
Mule Studio 0.630 <0.001 0.565 <0.001
Spring XD 0.486 <0.001 0.614 <0.001
Talend Data Quality 0.390 <0.001 0.370 <0.001
Talend ESB 0.504 <0.001 0.524 <0.001
Titanium SDK/CLI 0.322 <0.001 0.305 <0.001
Usergrid 0.212 0.005 0.263 0.001

time across all 16 project we studied. In some projects (e.g.
Moodle) there was a strong correlation with the coefficients
was around 0.8. This positive correlation demonstrates that
the higher story point, the longer development time, which
suggests that a correlation between an issue’s story points
and its actual effort.

5.7 Results

We report here the results in answering research questions
RQs 1–6.
RQ1: Sanity check

TABLE 3
Evaluation results of Deep-SE, the Mean and Median method (the best
results are highlighted in bold). MAE and MdAE - the lower the better,

SA - the higher the better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME Deep-SE 1.02 0.73 59.84 JI Deep-SE 1.38 1.09 59.52
mean 1.64 1.78 35.61 mean 2.48 2.15 27.06
median 1.73 2.00 32.01 median 2.93 2.00 13.88

UG Deep-SE 1.03 0.80 52.66 MD Deep-SE 5.97 4.93 50.29
mean 1.48 1.23 32.13 mean 10.90 12.11 9.16
median 1.60 1.00 26.29 median 7.18 6.00 40.16

AS Deep-SE 1.36 0.58 60.26 DM Deep-SE 3.77 2.22 47.87
mean 2.08 1.52 39.02 mean 5.29 4.55 26.85
median 1.84 1.00 46.17 median 4.82 3.00 33.38

AP Deep-SE 2.71 2.52 42.58 MU Deep-SE 2.18 1.96 40.09
mean 3.15 3.46 33.30 mean 2.59 2.22 28.82
median 3.71 4.00 21.54 median 2.69 2.00 26.07

TI Deep-SE 1.97 1.34 55.92 MS Deep-SE 3.23 1.99 17.17
mean 3.05 1.97 31.59 mean 3.34 2.68 14.21
median 2.47 2.00 44.65 median 3.30 2.00 15.42

DC Deep-SE 0.68 0.53 69.92 XD Deep-SE 1.63 1.31 46.82
mean 1.30 1.14 42.88 mean 2.27 2.53 26.00
median 0.73 1.00 68.08 median 2.07 2.00 32.55

BB Deep-SE 0.74 0.61 71.24 TD Deep-SE 2.97 2.92 48.28
mean 1.75 1.31 32.11 mean 4.81 5.08 16.18
median 1.32 1.00 48.72 median 3.87 4.00 32.43

CV Deep-SE 2.11 0.80 50.45 TE Deep-SE 0.64 0.59 69.67
mean 3.49 3.06 17.84 mean 1.14 0.91 45.86
median 2.84 2.00 33.33 median 1.16 1.00 44.44

Table 3 shows the results achieved from Deep-SE, and
two baseline methods: Mean and Median method (See
Appendix A.1 for the distribution of the Absolute Error).

The analysis of MAE, MdAE, and SA suggests that the
estimations obtained with our approach, Deep-SE, are better
than those achieved by using Mean, Median, and Random
estimates. Deep-SE consistently outperforms all these three
baselines in all sixteen projects.

Our approach improved between 3.29% (in project MS)
to 57.71% (in project BB) in terms of MAE, 11.71% (in MU)
to 73.86% (in CV) in terms of MdAE, and 20.83% (in MS) to
449.02% (in MD) in terms of SA over the Mean method. The
improvements of our approach over the Median method
are between 2.12% (in MS) to 52.90% (in JI) in MAE, 0.50%
(in MS) to 63.50% (in ME) in MdAE, and 2.70% (in DC) to
328.82% (in JI) in SA. Overall, the improvement achieved by
Deep-SE over the Mean and Median method is 34.06% and
26.77% in terms of MAE, averaging across all projects.

We note that the results achieved by the estimation
models vary between different projects. For example, our
Deep-SE achieved 0.64 MAE in the Talend ESB project
(TE), while it achieved 5.97 MAE in Moodle (MD) project.
The distribution of story points may be the cause of this
variation: the standard deviation of story points in TE is
only 1.50, while that in MD is 21.65 (see Table 1).

TABLE 4
Comparison on the effort estimation benchmarks using Wilcoxon test

and ÂXY effect size (in brackets)

Deep-SE vs Mean Median Random Aiu

ME <0.001 [0.77] <0.001 [0.81] <0.001 [0.90] 0.83
UG <0.001 [0.79] <0.001 [0.79] <0.001 [0.81] 0.80
AS <0.001 [0.78] <0.001 [0.78] <0.001 [0.91] 0.82
AP 0.040 [0.69] <0.001 [0.79] <0.001 [0.84] 0.77
TI <0.001 [0.77] <0.001 [0.72] <0.001 [0.88] 0.79

DC <0.001 [0.80] 0.415 [0.54] <0.001 [0.81] 0.72
BB <0.001 [0.78] <0.001 [0.78] <0.001 [0.85] 0.80
CV <0.001 [0.75] <0.001 [0.70] <0.001 [0.91] 0.79
JI <0.001 [0.76] <0.001 [0.79] <0.001 [0.79] 0.78

MD <0.001 [0.81] <0.001 [0.75] <0.001 [0.80] 0.79
DM <0.001 [0.69] <0.001 [0.59] <0.001 [0.75] 0.68
MU 0.003 [0.73] <0.001 [0.73] <0.001 [0.82] 0.76
MS 0.799 [0.56] 0.842 [0.56] <0.001 [0.69] 0.60
XD <0.001 [0.70] <0.001 [0.70] <0.001 [0.78] 0.73
TD <0.001 [0.86] <0.001 [0.85] <0.001 [0.87] 0.86
TE <0.001 [0.73] <0.001 [0.73] <0.001 [0.92] 0.79

Table 4 shows the results of the Wilcoxon test (together
with the corresponding ÂXY effect size) to measure the
statistical significance and effect size (in brackets) of the
improved accuracy achieved by Deep-SE over the base-
lines: Mean Effort, Median Effort, and Random Guessing.
In 45/48 cases, our Deep-SE significantly outperforms the
baselines after applying Bonferroni correction with effect
sizes greater than 0.5. Moreover, the average of the stochas-
tic superiority (Aiu) of our approach against the baselines is
greater than 0.7 in the most cases. The highest Aiu achieving
in the Talend Data Quality project (TD) is 0.86 which can be
considered as large effect size (ÂXY > 0.8).

We note that the improvement brought by our approach
over the baselines was not significant for project MS. One
possible reason is that the size of the training and pre-
training data for MS is small, and deep learning techniques
tend to perform well with large training samples.

Our approach outperforms the baselines, thus passing the
sanity check required by RQ1.
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RQ2: Benefits of deep representation

TABLE 5
Evaluation results of Deep-SE, LSTM+RF, LSTM+SVM, LSTM+ATLM,

and LSTM+LR (the best results are highlighted in bold). MAE and
MdAE - the lower the better, SA - the higher the better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME Deep-SE 1.02 0.73 59.84 JI Deep-SE 1.38 1.09 59.52
lstm+rf 1.08 0.90 57.57 lstm+rf 1.71 1.27 49.71
lstm+svm 1.07 0.90 58.02 lstm+svm 2.04 1.89 40.05
lstm+atlm 1.08 0.95 57.60 lstm+atlm 2.10 1.95 38.26
lstm+lr 1.10 0.96 56.94 lstm+lr 2.10 1.95 38.26

UG Deep-SE 1.03 0.80 52.66 MD Deep-SE 5.97 4.93 50.29
lstm+rf 1.07 0.85 50.70 lstm+rf 9.86 9.69 17.86
lstm+svm 1.06 1.04 51.23 lstm+svm 6.70 5.44 44.19
lstm+atlm 1.40 1.20 35.55 lstm+atlm 9.97 9.61 16.92
lstm+lr 1.40 1.20 35.55 lstm+lr 9.97 9.61 16.92

AS Deep-SE 1.36 0.58 60.26 DM Deep-SE 3.77 2.22 47.87
lstm+rf 1.62 1.40 52.38 lstm+rf 4.51 3.69 37.71
lstm+svm 1.46 1.42 57.20 lstm+svm 4.20 2.87 41.93
lstm+atlm 1.59 1.30 53.29 lstm+atlm 4.70 3.74 35.01
lstm+lr 1.68 1.46 50.78 lstm+lr 5.30 3.66 26.68

AP Deep-SE 2.71 2.52 42.58 MU Deep-SE 2.18 1.96 40.09
lstm+rf 2.96 2.80 37.34 lstm+rf 2.20 2.21 38.73
lstm+svm 3.06 2.90 35.26 lstm+svm 2.28 2.89 37.44
lstm+atlm 3.06 2.76 35.21 lstm+atlm 2.46 2.39 32.51
lstm+lr 3.75 3.66 20.63 lstm+lr 2.46 2.39 32.51

TI Deep-SE 1.97 1.34 55.92 MS Deep-SE 3.23 1.99 17.17
lstm+rf 2.32 1.97 48.02 lstm+rf 3.30 2.77 15.30
lstm+svm 2.00 2.10 55.20 lstm+svm 3.31 3.09 15.10
lstm+atlm 2.51 2.03 43.87 lstm+atlm 3.42 2.75 12.21
lstm+lr 2.71 2.31 39.32 lstm+lr 3.42 2.75 12.21

DC Deep-SE 0.68 0.53 69.92 XD Deep-SE 1.63 1.31 46.82
lstm+rf 0.69 0.62 69.52 lstm+rf 1.81 1.63 40.99
lstm+svm 0.75 0.90 67.02 lstm+svm 1.80 1.77 41.33
lstm+atlm 0.87 0.59 61.57 lstm+atlm 1.83 1.65 40.45
lstm+lr 0.80 0.67 64.96 lstm+lr 1.85 1.72 39.63

BB Deep-SE 0.74 0.61 71.24 TD Deep-SE 2.97 2.92 48.28
lstm+rf 1.01 1.00 60.95 lstm+rf 3.89 4.37 32.14
lstm+svm 0.81 1.00 68.55 lstm+svm 3.49 3.37 39.13
lstm+atlm 1.97 1.78 23.70 lstm+atlm 3.86 4.11 32.71
lstm+lr 1.26 1.16 51.24 lstm+lr 3.79 3.67 33.88

CV Deep-SE 2.11 0.80 50.45 TE Deep-SE 0.64 0.59 69.67
lstm+rf 3.08 2.77 27.58 lstm+rf 0.66 0.65 68.51
lstm+svm 2.50 2.32 41.22 lstm+svm 0.70 0.90 66.61
lstm+atlm 3.11 2.49 26.90 lstm+atlm 0.70 0.72 66.51
lstm+lr 3.36 2.76 21.07 lstm+lr 0.77 0.71 63.20

Table 5 shows MAE, MdAE, and SA achieved from
Deep-SE using Recurrent Highway Networks (RHWN) for
deep representation of issue reports against using Ran-
dom Forests, Support Vector Machine, Automatically Trans-
formed Linear Model, and Linear Regression Model cou-
pled with LSTM (i.e. LSTM+RF, LSTM+SVM, LSTM+ATLM,
and LSTM+LR). The distribution of the Absolute Error is
reported in Appendix A.2. When we use MAE, MdAE,
and SA as evaluation criteria, Deep-SE is still the best ap-
proach, consistently outperforming LSTM+RF, LSTM+SVM,
LSTM+ATLM, and LSTM+LR across all sixteen projects.

Using RHWN improved over RF between 0.91% (in MU)
to 39.45% (in MD) in MAE, 5.88% (in UG) to 71.12% (in CV)
in MdAE, and 0.58% (in DC) to 181.58% (in MD) in SA. The
improvements of RHWN over SVM are between 1.50% (in
TI) to 32.35% (in JI) in MAE, 9.38% (in MD) to 65.52% (in
CV) in MdAE, and 1.30% (in TI) to 48.61% (in JI). In terms
of using ATLM, RHWN improved over it between 5.56% (in
MS) to 62.44% (in BB) in MAE, 8.70% (in AP) to 67.87% (in
CV) in MdAE, and 3.89% (in ME) to 200.59% (in BB) in SA.
Overall, RHWN improved , in terms of MAE, 9.63% over
SVM, 13.96% over RF, 21.84% over ATLM, and 23.24% over
LR, averaging across all projects.

In addition, the results for the Wilcoxon test to compare
our approach (Deep-SE) against LSTM+RF, LSTM+SVM,
LSTM+ATLM, and LSTM+LR is shown in Table 6. The

improvement of our approach over LSTM+RF, LSTM+SVM,
and LSTM+ATLM is still significant after applying p-value
correction with the effect size greater than 0.5 in 59/64 cases.
In most cases, when comparing the proposed model against
LSTM+RF, LSTM+SVM, LSTM+ATLM, and LSTM+LR, the
effect sizes are small (between 0.5 and 0.6). A major part of
those improvement were brought by our use of the deep
learning LSTM architecture to model the textual description
of an issue. The use of highway recurrent networks (on top
of LSTM) has also improved the predictive performance, but
not as large effects as the LSTM itself (especially for those
projects which have very small number of issues). However,
our approach, Deep-SE, achieved Aiu greater than 0.6 in the
most cases.

TABLE 6
Comparison between the Recurrent Highway Net against Random

Forests, Support Vector Machine, Automatically Transformed Linear
Model, and Linear Regression using Wilcoxon test and Â12 effect size

(in brackets)

Deep-SE vs LSTM+RF LSTM+SVM LSTM+ATLM LSTM+LR Aiu

ME <0.001 [0.57] <0.001 [0.54] <0.001 [0.59] <0.001 [0.59] 0.57
UG 0.004 [0.59] 0.010 [0.55] <0.001 [1.00] <0.001 [0.73] 0.72
AS <0.001 [0.69] <0.001 [0.51] <0.001 [0.71] <0.001 [0.75] 0.67
AP <0.001 [0.60] <0.001 [0.52] <0.001 [0.62] <0.001 [0.64] 0.60
TI <0.001 [0.65] 0.007 [0.51] <0.001 [0.69] <0.001 [0.71] 0.64

DC 0.406 [0.55] 0.015 [0.60] <0.001 [0.97] 0.024 [0.58] 0.68
BB <0.001 [0.73] 0.007 [0.60] <0.001 [0.84] <0.001 [0.75] 0.73
CV <0.001 [0.70] 0.140 [0.63] <0.001 [0.82] 0.001 [0.70] 0.71
JI 0.006 [0.71] 0.001 [0.67] 0.002 [0.89] <0.001 [0.79] 0.77

MD <0.001 [0.76] <0.001 [0.57] <0.001 [0.74] <0.001 [0.69] 0.69
DM <0.001 [0.62] <0.001 [0.56] <0.001 [0.61] <0.001 [0.62] 0.60
MU 0.846 [0.53] 0.005 [0.62] 0.009 [0.67] 0.003 [0.64] 0.62
MS 0.502 [0.53] 0.054 [0.50] <0.001 [0.82] 0.195 [0.56] 0.60
XD <0.001 [0.63] <0.001 [0.57] <0.001 [0.65] <0.001 [0.60] 0.61
TD <0.001 [0.78] <0.001 [0.68] <0.001 [0.70] <0.001 [0.70] 0.72
TE 0.020 [0.53] 0.002 [0.59] <0.001 [0.66] 0.006 [0.65] 0.61

The proposed approach of using Recurrent Highway Net-
works is effective in building a deep representation of
issue reports and consequently improving story point
estimation.

RQ3: Benefits of LSTM document representation
To study the benefits of using LSTM in representing

issue reports, we compared the improved accuracy achieved
by Random Forest using the features derived from LSTM
against that using the features derived from BoW and
Doc2vec. For a fair comparison we used Random Forests as
the regressor in all settings and the result is reported in Table
7 (see the distribution of the Absolute Error in Appendix
A.3). LSTM performs better than BoW and Doc2vec with
respect to the MAE, MdAE, and SA measures in twelve
projects (e.g. ME, UG, and AS) from sixteen projects. LSTM
improved 4.16% and 11.05% in MAE over Doc2vec and
BoW, respectively, averaging across all projects.

Among those twelve projects, LSTM improved over BoW
between 0.30% (in MS) to 28.13% (in DC) in terms of MAE,
1.06% (in AP) to 45.96% (in JI) in terms of MdAE, and 0.67%
(in AP) to 47.77% (in TD) in terms of SA. It also improved
over Doc2vec between 0.45% (in MU) to 18.57% (in JI) in
terms of MAE, 0.71% (in AS) to 40.65% (in JI) in terms of
MdAE, and 2.85% (in TE) to 31.29% (in TD) in terms of SA.

We acknowledge that BoW and Doc2vec perform better
than LSTM in some cases. For example, in the Moodle
project (MD), D2V+RF performed better than LSTM+RF
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TABLE 7
Evaluation results of LSTM+RF, BoW+RF, and Doc2vec+RF (the best
results are highlighted in bold). MAE and MdAE - the lower the better,

SA - the higher the better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME lstm+rf 1.08 0.90 57.57 JI lstm+rf 1.71 1.27 49.71
bow+rf 1.31 1.34 48.66 bow+rf 2.10 2.35 38.34
d2v+rf 1.14 0.98 55.28 d2v+rf 2.10 2.14 38.29

UG lstm+rf 1.07 0.85 50.70 MD lstm+rf 9.86 9.69 17.86
bow+rf 1.19 1.28 45.24 bow+rf 10.20 10.22 15.07
d2v+rf 1.12 0.92 48.47 d2v+rf 8.02 9.87 33.19

AS lstm+rf 1.62 1.40 52.38 DM lstm+rf 4.51 3.69 37.71
bow+rf 1.83 1.53 46.34 bow+rf 4.78 3.98 33.84
d2v+rf 1.62 1.41 52.38 d2v+rf 4.71 3.99 34.87

AP lstm+rf 2.96 2.80 37.34 MU lstm+rf 2.20 2.21 38.73
bow+rf 2.97 2.83 37.09 bow+rf 2.31 2.54 36.64
d2v+rf 3.20 2.91 32.29 d2v+rf 2.21 2.69 39.36

TI lstm+rf 2.32 1.97 48.02 MS lstm+rf 3.30 2.77 15.30
bow+rf 2.58 2.30 42.15 bow+rf 3.31 2.57 15.58
d2v+rf 2.41 2.16 46.02 d2v+rf 3.40 2.93 12.79

DC lstm+rf 0.69 0.62 69.52 XD lstm+rf 1.81 1.63 40.99
bow+rf 0.96 1.11 57.78 bow+rf 1.98 1.72 35.56
d2v+rf 0.77 0.77 66.14 d2v+rf 1.88 1.73 38.72

BB lstm+rf 1.01 1.00 60.95 TD lstm+rf 3.89 4.37 32.14
bow+rf 1.34 1.26 48.06 bow+rf 4.49 5.05 21.75
d2v+rf 1.12 1.16 56.51 d2v+rf 4.33 4.80 24.48

CV lstm+rf 3.08 2.77 27.58 TE lstm+rf 0.66 0.65 68.51
bow+rf 2.98 2.93 29.91 bow+rf 0.86 0.69 58.89
d2v+rf 3.16 2.79 25.70 d2v+rf 0.70 0.89 66.61

TABLE 8
Comparison of Random Forest with LSTM, Random Forests with BoW,

and Random Forests with Doc2vec using Wilcoxon test and ÂXY

effect size (in brackets)

LSTM vs BoW Doc2Vec Aiu

ME <0.001 [0.70] 0.142 [0.53] 0.62
UG <0.001 [0.71] 0.135 [0.60] 0.66
AS <0.001 [0.66] <0.001 [0.51] 0.59
AP 0.093 [0.51] 0.144 [0.52] 0.52
TI <0.001 [0.67] <0.001 [0.55] 0.61

DC <0.001 [0.73] 0.008 [0.59] 0.66
BB <0.001 [0.77] 0.002 [0.66] 0.72
CV 0.109 [0.61] 0.581 [0.57] 0.59
JI 0.009 [0.67] 0.011 [0.62] 0.65

MD 0.022 [0.63] 0.301 [0.51] 0.57
DM <0.001 [0.60] <0.001 [0.55] 0.58
MU 0.006 [0.59] 0.011 [0.57] 0.58
MS 0.780 [0.54] 0.006 [0.57] 0.56
XD <0.001 [0.60] 0.005 [0.55] 0.58
TD <0.001 [0.73] <0.001 [0.67] 0.70
TE <0.001 [0.69] 0.005 [0.61] 0.65

in MAE and SA – it achieved 8.02 MAE and 33.19 SA.
This could reflect that the combination between LSTM and
RHWN significantly improves the accuracy of the estima-
tions.

The improvement of LSTM over BoW and Doc2vec is
significant after applying Bonferroni correction with effect
size greater than 0.5 in 24/32 cases and Aiu being greater
than 0.5 in all projects (see Table 8).

The proposed LSTM-based approach is effective in au-
tomatically learning semantic features representing issue
description, which improves story-point estimation.

TABLE 9
Mean Absolute Error (MAE) on cross-project estimation and

comparison of Deep-SE and ABE0 using Wilcoxon test and ÂXY effect
size (in brackets)

Source Target Deep-SE ABE0 Deep-SE vs ABE0

(i) within-repository
ME UG 1.07 1.23 <0.001 [0.78]
UG ME 1.14 1.22 0.012 [0.52]
AS AP 2.75 3.08 <0.001 [0.67]
AS TI 1.99 2.56 <0.001 [0.70]
AP AS 2.85 3.00 0.051 [0.55]
AP TI 3.41 3.53 0.003 [0.56]
MU MS 3.14 3.55 0.041 [0.55]
MS MU 2.31 2.64 0.030 [0.56]

Avg 2.33 2.60

(ii) cross-repository
AS UG 1.57 2.04 0.004 [0.61]
AS ME 2.08 2.14 0.022 [0.51]
MD AP 5.37 6.95 <0.001 [0.58]
MD TI 6.36 7.10 0.097 [0.54]
MD AS 5.55 6.77 <0.001 [0.61]
DM TI 2.67 3.94 <0.001 [0.64]
UG MS 4.24 4.45 0.005 [0.54]
ME MU 2.70 2.97 0.015 [0.53]

Avg 3.82 4.55

RQ4: Cross-project estimation
We performed sixteen sets of cross-project estimation

experiments to test two settings: (i) within-repository: both
the source and target projects (e.g. Apache Mesos and
Apache Usergrid) were from the same repository, and pre-
training was done using only the source projects, not the
target projects; and (ii) cross-repository: the source project
(e.g. Appcelerator Studio) was in a different repository from
the target project Apache Usergrid, and pre-training was
done using only the source project.

Table 9 shows the performance of our Deep-SE model
and ABE0 for cross-project estimation (see the distribution
of the Absolute Error in Appendix A.4). We also used a
benchmark of within-project estimation where older issues
of the target project were used for training (see Table 3).
In all cases, the proposed approach when used for cross-
project estimation performed worse than when used for
within-project estimation (e.g. on average 20.75% reduction
in performance for within-repository and 97.92% for cross-
repository). However, our approach outperformed the cross-
project baseline (i.e. ABE0) in all cases – it achieved 2.33
and 3.82 MAE in within and cross repository, while ABE0
achieved 2.60 and 4.55 MAE. The improvement of our
approach over ABE0 is still significant after applying p-
value correction with the effect size greater than 0.5 in 14/16
cases.

These results confirm a universal understanding [25] in
agile development that story point estimation is specific to
teams and projects. Since story points are relatively mea-
sured, it is not uncommon that two different same-sized
teams could give different estimates for the same user story.
For example, team A may estimate 5 story points for user
story UC1 while team B gives 10 story points. However,
it does not necessarily mean that team B would do more
work for completing UC1 than team A. It more likely means
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that team’B baselines are twice bigger than team A’s, i.e. for
“baseline” user story which requires 5 times less the effort
than UC1 takes, team A would give it 1 story point while
team B gives 2 story points. Hence, historical estimates
are more valuable for within-project estimation, which is
demonstrated by this result.

Given the specificity of story points to teams and projects,
our proposed approach is more effective for within-project
estimation.

RQ5: Adjusted/normalized story points
Table 10 shows the results of our Deep-SE and the

other baseline methods in predicting the normalized story
points. Deep-SE performs well across all projects. Deep-SE
improved MAE between 2.13% to 93.40% over the Mean
method, 9.45% to 93.27% over the Median method, 7.02% to
53.33% over LSTM+LR, 1.20% to 61.96% over LSTM+ATLM,
1.20% to 53.33% over LSTM+SVM, 4.00% to 30.00% over
Doc2vec+RF, 2.04% to 36.36% over BoW+RF, and 0.86% to
25.80% over LSTM+RF. The best result is obtained in the
Usergrid project (UG), it is 0.07 MAE, 0.01 MdAE, and 93.50
SA. We however note that the adjusted story points benefits
all methods since it narrows the gap between minimum and
maximum value and the distribution of the story points.

Our proposed approach still outperformed other tech-
niques in estimating the new adjusted story points.

RQ6: Compare Deep-SE against the existing approach
We applied our approach, Deep-SE, and the Porru et.

al.’s approach on their dataset consisted of eight projects.
Table 11 shows the evaluation results in MAE and the
comparison of Deep-SE and the Porru et. al.’s approach. The
distribution of the Absolute Error is reported in Appendix
A.5. Deep-SE outperforms the existing approach in all cases.
Deep-SE improved between 18.18% (in TIMOB) to 56.48%
(in DNN) in terms of MAE. In addition, the improvement
of our approach over the Porru et. al.’s approach is still
significant after applying p-value correction with the effect
size greater than 0.5 in all cases. Especially, the large effect
size (ÂXY > 0.7) of the improvement is obtained in the
DNN project.

Our proposed approach outperformed the existing tech-
nique using TF-IDF in estimating the story points.

5.8 Training/testing time
Deep learning models are known for taking a long time for
training. This is an important factor in considering adopting
our approach, especially in an agile development setting.
If training time takes longer than the duration of a sprint
(e.g. one or two weeks), the prediction system would not
be useful in practice. We have found that the training time
of our model was very small, ranging from 13 minutes to
40 minutes with an average of 22 minutes across the 16
projects (see Table 12). Pre-training time took much longer
time, but it was done only once across a repository and took
just below 7 hours at the maximum. Once the model was

TABLE 10
Evaluation results on the adjusted story points (the best results are
highlighted in bold). MAE and MdAE - the lower the better, SA - the

higher the better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME Deep-SE 0.27 0.03 76.58 JI Deep-SE 0.60 0.51 63.20
lstm+rf 0.34 0.15 70.43 lstm+rf 0.74 0.79 54.42
bow+rf 0.36 0.16 68.82 bow+rf 0.66 0.53 58.99
d2v+rf 0.35 0.15 69.87 d2v+rf 0.70 0.53 56.99
lstm+svm 0.33 0.10 71.20 lstm+svm 0.94 0.89 41.97
lstm+atlm 0.33 0.14 70.97 lstm+atlm 0.89 0.89 45.18
lstm+lr 0.37 0.21 67.68 lstm+lr 0.89 0.89 45.18
mean 1.12 1.07 3.06 mean 1.31 1.71 18.95
median 1.05 1.00 8.87 median 1.60 2.00 1.29

UG Deep-SE 0.07 0.01 93.50 MD Deep-SE 2.56 2.29 31.83
lstm+rf 0.08 0.00 92.59 lstm+rf 3.45 3.55 8.24
bow+rf 0.11 0.01 90.31 bow+rf 3.32 3.27 11.54
d2v+rf 0.10 0.01 91.22 d2v+rf 3.39 3.48 9.70
lstm+svm 0.15 0.10 86.38 lstm+svm 3.12 3.07 16.94
lstm+atlm 0.15 0.08 86.25 lstm+atlm 3.48 3.49 7.41
lstm+lr 0.15 0.08 86.25 lstm+lr 3.57 3.28 4.98
mean 1.04 0.98 4.79 mean 3.60 3.67 4.18
median 1.06 1.00 2.64 median 2.95 3.00 21.48

AS Deep-SE 0.53 0.20 69.16 DM Deep-SE 2.30 1.43 31.99
lstm+rf 0.56 0.45 67.49 lstm+rf 2.83 2.59 16.23
bow+rf 0.56 0.49 67.39 bow+rf 2.83 2.63 16.33
d2v+rf 0.56 0.46 67.37 d2v+rf 2.92 2.80 13.80
lstm+svm 0.55 0.32 68.34 lstm+svm 2.45 1.78 27.56
lstm+atlm 0.57 0.46 66.87 lstm+atlm 2.83 2.57 16.28
lstm+lr 0.57 0.49 67.12 lstm+lr 2.83 2.57 16.28
mean 1.18 0.79 31.89 mean 3.27 3.41 3.25
median 1.35 1.00 21.54 median 2.61 2.00 22.94

AP Deep-SE 0.92 0.86 21.95 MU Deep-SE 0.68 0.59 63.83
lstm+rf 0.99 0.87 16.23 lstm+rf 0.70 0.55 63.01
bow+rf 1.00 0.87 15.33 bow+rf 0.70 0.57 62.79
d2v+rf 0.99 0.86 15.94 d2v+rf 0.71 0.57 62.17
lstm+svm 1.12 0.92 5.26 lstm+svm 0.70 0.62 62.62
lstm+atlm 1.03 0.84 12.63 lstm+atlm 0.93 0.74 50.77
lstm+lr 1.17 1.05 1.14 lstm+lr 0.79 0.61 58.00
mean 1.15 0.64 2.49 mean 1.21 1.51 35.86
median 0.94 1.00 20.29 median 1.64 2.00 12.80

TI Deep-SE 0.59 0.17 56.53 MS Deep-SE 0.86 0.65 56.82
lstm+rf 0.72 0.56 46.22 lstm+rf 0.91 0.76 54.37
bow+rf 0.73 0.58 46.10 bow+rf 0.89 0.93 55.48
d2v+rf 0.72 0.56 46.17 d2v+rf 0.90 0.69 54.66
lstm+svm 0.73 0.62 45.74 lstm+svm 0.94 0.78 52.91
lstm+atlm 0.73 0.57 45.86 lstm+atlm 0.99 0.87 50.45
lstm+lr 0.73 0.56 45.77 lstm+lr 0.99 0.87 50.45
mean 1.32 1.56 1.57 mean 1.23 0.62 38.49
median 0.86 1.00 36.04 median 1.44 1.00 27.83

DC Deep-SE 0.48 0.48 55.77 XD Deep-SE 0.35 0.08 80.66
lstm+rf 0.49 0.49 55.02 lstm+rf 0.44 0.37 75.78
bow+rf 0.49 0.48 54.76 bow+rf 0.45 0.38 75.33
d2v+rf 0.50 0.50 53.59 d2v+rf 0.45 0.32 75.31
lstm+svm 0.49 0.43 55.24 lstm+svm 0.38 0.20 79.16
lstm+atlm 0.53 0.47 51.02 lstm+atlm 0.92 0.76 49.05
lstm+lr 0.53 0.47 51.02 lstm+lr 0.45 0.40 75.33
mean 1.07 1.49 1.29 mean 1.03 1.28 43.06
median 0.58 1.00 46.76 median 0.75 1.00 58.74

BB Deep-SE 0.41 0.12 72.00 TD Deep-SE 0.82 0.64 53.36
lstm+rf 0.43 0.38 70.37 lstm+rf 0.84 0.68 52.65
bow+rf 0.45 0.40 69.33 bow+rf 0.88 0.65 50.30
d2v+rf 0.49 0.45 66.34 d2v+rf 0.86 0.70 51.46
lstm+svm 0.42 0.21 71.21 lstm+svm 0.83 0.62 53.24
lstm+atlm 0.47 0.41 67.53 lstm+atlm 0.83 0.58 52.82
lstm+lr 0.47 0.41 67.53 lstm+lr 0.90 0.74 48.88
mean 1.15 0.76 20.92 mean 1.29 1.42 27.20
median 1.39 1.00 4.50 median 0.99 1.00 44.17

CV Deep-SE 1.15 0.79 23.29 TE Deep-SE 0.40 0.05 74.58
lstm+rf 1.16 1.05 22.55 lstm+rf 0.47 0.46 70.39
bow+rf 1.22 1.10 18.95 bow+rf 0.48 0.48 69.52
d2v+rf 1.20 1.09 20.30 d2v+rf 0.48 0.48 69.41
lstm+svm 1.22 1.15 18.77 lstm+svm 0.45 0.41 71.77
lstm+atlm 1.47 1.28 2.22 lstm+atlm 0.49 0.48 69.14
lstm+lr 1.47 1.28 2.22 lstm+lr 0.49 0.48 69.14
mean 1.27 1.11 15.18 mean 0.99 0.60 37.28
median 1.29 1.00 13.92 median 1.39 1.00 12.09
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TABLE 11
Mean Absolute Error (MAE) and comparison of Deep-SE and the

Porru’s approach using Wilcoxon test and ÂXY effect size (in brackets)

Proj Deep-SE Porru Deep-SE vs Porru

APSTUD 2.67 5.69 <0.001 [0.63]
DNN 0.47 1.08 <0.001 [0.74]
MESOS 0.76 1.23 0.003 [0.70]
MULE 2.32 3.37 <0.001 [0.61]
NEXUS 0.21 0.39 0.005 [0.67]
TIMOB 1.44 1.76 0.047 [0.57]
TISTUD 1.04 1.28 <0.001 [0.58]
XD 1.00 1.86 <0.001 [0.69]

avg 1.24 2.08

TABLE 12
The pre-training, training, and testing time at 50 embedding dimensions

of our Deep-SE model

Repository Pre-training time Proj. Training time Testing time

Apache 6 h 28 min ME 23 min 1.732 s
UG 15 min 0.395 s

Appcelerator 5 h 11 min AS 27 min 2.209 s
AP 18 min 0.428 s
TI 32 min 2.528 s

Duraspace 3 h 34 min DC 18 min 1.475 s
Jira 6 h 42 min BB 15 min 0.267 s

CV 14 min 0.219 s
JI 13 min 0.252 s

Moodle 6 h 29 min MD 15 min 1.789 s
Lsstcorp 3 h 26 min DM 40 min 5.293 s
Mulesoft 2 h 39 min MU 21 min 0.535 s

MS 17 min 0.718 s
Spring 5 h 20 min XD 40 min 2.774 s
Talendforge 6 h 56 min TD 19 min 1.168 s

TE 16 min 0.591 s

trained, getting an estimation from the model was very fast.
As can be seen from Table 12, the time it took for testing all
issues in the test sets was in the order of seconds. Hence,
for a given new issue, it would take less than a second for
the machinery to come back with an story point estimation.
All the experiments were run on a MacOS laptop with 2.4
GHz Intel Core i5 and 8 GB of RAM and the embedding
dimensions of 50. Hence, this result suggests that using our
proposed approach to estimate story points is applicable in
practice.

5.9 Verifiability

We have created a replication package and made
it available at http://www.dsl.uow.edu.au/sasite/index.
php/storypoint/. The package contains the full dataset and
the source code of our Deep-SE model and the benchmark
models (i.e. the baselines, LSTM+RF, Doc2vec+RF, BoW+RF,
LSTM+SVM, and LSTM+ATLM). On this website, we also
provide detailed instructions on how to run the code and
replicate all the experiments we reported in this paper so
that our results can be independently verified.

5.10 Threats to validity

We tried to mitigate threats to construct validity by using
real world data from issues recorded in large open source

projects. We collected the title and description provided
with these issue reports and the actual story points that were
assigned to them. We are aware that those story points were
estimated by human teams, and thus may contain biases
and in some cases may not be accurate. We have mitigated
this threats by performing two set of experiments: one on
the orgianal story points and the other on the adjusted nor-
malized story points. We further note that for story points,
the raw values are not as important as the relative values
[80]. A user story that is assigned 6 story points should be
three times as much as a user story that is assigned 2 story
points. Hence, when engineers determine an estimate for a
new issue, they need to compare the issue to other issues
in the past in order to make the estimation consistently.
The problem is thus suitable for a machine learner. The
trained prediction system works in a similar manner as
human engineers: using past estimates as baselines for new
estimation. The prediction system tries to reproduce an
estimate that human engineers would arrive at.

However, since we aim to mimic the team’s capability
in effort estimation, the current set of ground-truths suf-
ficiently serves this purpose. When other sets of ground-
truths become available, our model can be easily retrained.
To minimize threats to conclusion validity, we carefully se-
lected unbiased error measures, applied a number of statis-
tical tests, and applied multiple statistical testing correction
to verify our assumptions [81]. Our study was performed on
datasets of different sizes. In addition, we carefully followed
recent best practices in evaluating effort estimation models
[55, 57, 74] to decrease conclusion instability [82].

The original implementation of Porru et. al.’s method
[64] was not released, thus we have re-implemented our
own version of their approach. We strictly followed the
described provided in their work, however we acknowledge
that our implementation may not reflect all the implemen-
tation details in their approach. To mitigate this threat, we
have tested our implementation using the dataset provided
in their work. We have found that our results were consis-
tent with the results reported in their work.

To mitigate threats to external validity, we have con-
sidered 23,313 issues from sixteen open source projects,
which differ significantly in size, complexity, team of devel-
opers, and community. We however acknowledge that our
dataset would not be representative of all kinds of software
projects, especially in commercial settings (although open
source projects and commercial projects are similar in many
aspects). One of the key differences between open source
and commercial projects that may affect the estimation of
story points is the nature of contributors, developers, and
project’s stakeholders. Further investigation for commercial
agile projects is needed.

5.11 Implications

In this section, we discuss a number of implications of our
results.

What do the results mean for the research on effort
estimation? Existing work on effort estimation mainly focus
on estimating the whole project with a small number of data
points (see the datasets in the PROMISE repository [83] for
example). The fast emergence of agile development demand
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more research on estimation at the issue or user story
level. Our work opens a new research area for the use of
software analytics in estimating story points. The assertion
demonstrated by our results is that our current method
works and no other methods has been demonstrated to
work at this scale of above 23,000 data points. Existing
work in software effort estimation have dealt with a much
smaller number of observations (i.e. data points) than our
work did. For example, the China dataset has only 499
data points, Desharnais has 77, and Finish has 38 (see the
datasets for effort estimation on the PROMISE repository)
– these are commonly used in existing effort estimation
work (e.g. [19, 84]). By contrast, in this work we deal with
the scale of thousands of data points. Since we make our
dataset publicly available, further research (e.g. modeling
the codebase and adding team-specific features into the
estimation model) can be advanced in this topic, and our
current results can serve as the baseline.

Should we adopt deep learning? To the best of our
knowledge, our work is the first major research in using
deep learning for effort estimation. The use of deep learning
has allowed us to automatically learn a good representation
of an issue report and use this for estimating the effort of
resolving the issue. The evaluation results demonstrates the
significant improvement that our deep learning approach
has brought in terms of predictive performance. This is a
powerful result since it helps software practitioners move
away from the manual feature engineering process. Feature
engineering usually relies on domain experts who use their
specific knowledge of the data to create features for machine
learners to work. In our approach, features are automatically
learned from a textual description of an issue, thus obviating
the need for designing them manually. We of course need
to collect the labels (i.e. story points assigned to issues)
as the ground truths used for learning and testing. Hence,
we believe that the wide adoption of software analytics in
industry crucially depends on the ability to automatically
derive (learn) features from raw software engineering data.

In our context of story point estimation, if the number of
new words is large, transfer learning is needed, e.g. by using
the existing model as a strong prior for the new model.
However, this can be mitigated by pre-training on a large
corpus so that most of the terms are covered. After pre-
training, our model is able to automatically learn semantic
relations between words. For example, words related to
networking like “soap”, “configuration”, “tcp”, and “load”
are in one cluster (see Figure 7). Hence, even when a user
story has several unique terms (but already pre-trained),
retraining the main model is not necessary. Pre-training may
however take time and effort. One potential research direc-
tion is therefore building up a community for sharing pre-
trained networks, which can be used for initialization, thus
reducing training times (similar to Model Zoo [85]). As the
first step towards this direction, we make our pre-trained
models publicly available for the research community.

We acknowledged that the explainability of a model is
important for full adoption of machine learning techniques.
This is not a unique problem only for recurrent networks
(RNN), but also for many powerful modern machine learn-
ing techniques (e.g. Random Forests and SVM). However,
RNN is not entirely a black-box as it seems (e.g. see [86]). For

example, word importance can be credited using various
techniques (e.g., using gradient with respect to word value).
Alternatively, there are model agnostic technique to explain
any prediction [87]. Even with partly interpretable RNN, if
the prediction is accurate, then we can still expect a high
level of adoption.

What do the results mean for project managers and
developers?

Our positive results indicate that it is possible to build a
prediction system to support project managers and develop-
ers in estimating story points. Our proposal enables teams
to be consistent in their estimation of story points. Achieving
this consistency is central to effectively leveraging story
points for project planning. The machine learner learns
from past estimates made by the specific team which it is
deployed to assist. The insights that the learner acquires
are therefore team-specific. The intent is not to have the
machine learner supplant existing agile estimation practices.
The intent, instead, is to deploy the machine learner to
complement these practices by playing the role of a decision
support system. Teams would still meet, discuss user stories
and generate estimates as per current practice, but would
have the added benefit of access to the insights acquired
by the machine learner. Teams would be free to reject the
suggestions of the machine learner, as is the case with any
decision support system. In every such estimation exercise,
the actual estimates generated are recorded as data to be
fed to the machine learner, independent of whether these
estimates are based on the recommendations of the machine
learner or not. This estimation process helps the team not
only understand sufficient details about what it will take to
to resolve those issues, but also align with their previous
estimations.

6 RELATED WORK

Existing estimation methods can generally be classified into
three major groups: expert-based, model-based, and hybrid
approaches. Expert-based methods rely on human expertise
to make estimations, and are the most popular technique
in practice [88, 89]. Expert-based estimation however tends
to require large overheads and the availability of experts
each time the estimation needs to be made. Model-based ap-
proaches use data from past projects but they are also varied
in terms of building customized models or using fixed mod-
els. The well-known construction cost (COCOMO) model
[11] is an example of a fixed model where factors and their
relationships are already defined. Such estimation models
were built based on data from a range of past projects.
Hence, they tend to be suitable only for a certain kinds
of project that were used to build the model. The cus-
tomized model building approach requires context-specific
data and uses various methods such as regression (e.g. [12,
13]), Neural Network (e.g. [14, 90]), Fuzzy Logic (e.g. [15]),
Bayesian Belief Networks (e.g.[16]), analogy-based (e.g. [17,
18]), and multi-objective evolutionary approaches (e.g. [19]).
It is however likely that no single method will be the
best performer for all project types [10, 20, 91]. Hence, some
recent work (e.g. [20]) proposes to combine the estimates
from multiple estimators. Hybrid approaches (e.g. [21, 22])



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2792473, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

combine expert judgements with the available data – simi-
larly to the notions of our proposal.

While most existing work focuses on estimating a whole
project, little work has been done in building models specif-
ically for agile projects. Today’s agile, dynamic and change-
driven projects require different approaches to planning and
estimating [24]. Some recent approaches leverage machine
learning techniques to support effort estimation for agile
projects. Recently, the work in [64] proposed an approach
which extracts TF-IDF features from issue description to
develop an story-point estimation model. The univariate
feature selection technique are then applied on the extracted
features and fed into classifiers (e.g. SVM). In addition, the
work in [92] applied Cosmic Function Points (CFP) [93] to
estimate the effort for completing an agile project. The work
in [94] developed an effort prediction model for iterative
software development setting using regression models and
neural networks. Differing from traditional effort estimation
models, this model is built after each iteration (rather than
at the end of a project) to estimate effort for the next
iteration. The work in [95] built a Bayesian network model
for effort prediction in software projects which adhere to the
agile Extreme Programming method. Their model however
relies on several parameters (e.g. process effectiveness and
process improvement) that require learning and extensive
fine tuning. Bayesian networks are also used in [96] to model
dependencies between different factors (e.g. sprint progress
and sprint planning quality influence product quality) in
Scrum-based software development project in order to de-
tect problems in the project. Our work specifically focuses
on estimating issues with story points using deep learning
techniques to automatically learn semantic features repre-
senting the actual meaning of issue descriptions, which is
the key difference from previous work. Previous research
(e.g. [97–100]) has also been done in predicting the elapsed
time for fixing a bug or the delay risk of resolving an issue.
However, effort estimation using story points is a more
preferable practice in agile development.

LSTM has shown successes in many applications such
as language models [35], speech recognition [36] and video
analysis [37]. Our Deep-SE is a generic in which it maps text
to a numerical score or a class, and can be used for other
tasks, e.g. mapping a movie review to a score, or assigning
scores to essays, or sentiment analysis. Deep learning has re-
cently attracted increasing interests in software engineering.
Our previous work [101] proposed a generic deep learning
framework based on LSTM for modeling software and its
development process. White et. al. [102] has employed re-
current neural networks (RNN) to build a language model
for source code. Their later work [103] extended these RNN
models for detecting code clones. The work in [104] also
used RNNs to build a statistical model for code completion.
Our recent work [105] used LSTM to build a language
model for code and demonstrated the improvement of this
model compared to the one using RNNs. Gu et. al. [106]
used a special RNN Encoder–Decoder, which consists of an
encoder RNN to process the input sequence and a decoder
RNN with attention to generate the output sequence. This
model takes as input a given API-related natural language
query and returns API usage sequences. The work in [107]
also uses RNN Encoder–Decoder but for fixing common

errors in C programs. Deep Belief Network [108] is another
common deep learning model, which has been used in
software engineering, e.g. for building defection prediction
models [109, 110].

7 CONCLUSION

In this paper, we have contributed to the research com-
munity the dataset for story point estimations, sourcing
from 16 large and diverse software projects. We have also
proposed a deep learning-based, fully end-to-end prediction
system for estimating story points, removing the users from
manually designing features from the textual description of
issues. A key novelty of our approach is the combination
of two powerful deep learning architectures: Long Short-
Term Memory (to learn a vector representation for issue
reports) and Recurrent Highway Network (for building a
deep representation).

The proposed approach has consistently outperformed
three common baselines and four alternatives according to
our evaluation results. Compared against the Mean and
Median techniques, the proposed approach has improved
34.06% and 26.77% respectively in MAE averaging across
16 projects we studied. Compared against the BoW and
Doc2Vec techniques, our approach has improved 23.68%
and 17.90% in MAE. These are significant results in the
literature of effort estimation. A major part of those im-
provement were brought by our use of the deep learning
LSTM architecture to model the textual description of an
issue. The use of highway recurrent networks (on top of
LSTM) has also improved the predictive performance, but
not as significantly as the LSTM itself (especially for those
project which have very small number of issues).

Our future work would involve expanding our study to
commercial software projects and other large open source
projects to further evaluate our proposed method. We also
consider performing team analytics (e.g. features character-
izing a team) to model team changes over time and feed it
into our prediction model. We also plan to investigate how
to learn a semantic representation of the codebase and use
it as another input to our model. Furthermore, we will look
into experimenting with a sliding window setting to explore
incremental learning. In addition, we will also investigate
how to best use the issue’s metadata (e.g. priority and type)
and still maintain the end-to-end nature of our entire model.
Our future work also involve comparing our use of the
LSTM model against other state-of-the-art models of natural
language such as paragraph2vec [59] or Convolutional Neu-
ral Network [111]. We have discussed (informally) our work
with several software developers who has been practising
agile and estimating story points. They all agreed that our
prediction system could be useful in practice. However, to
make such a claim, we need to implement it into a tool and
perform a user study. Hence, we would like to evaluate
empirically the impact of our prediction system for story
point estimation in practice by project managers and/or
software developers. This would involve developing the
model into a tool (e.g. a JIRA plugin) and then organising
trial use in practice. This is an important part of our future
work to confirm the ultimate benefits of our approach in
general.
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