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ABSTRACT 

 

Reactive soils pose a technical challenge to geotechnical engineers around the world, as 

they can cause severe distress to the foundations upon moisture variation, leading to 

unacceptable structural damages. Stiffened slabs are the most common foundation 

technique used for reactive soils, which are adopted by most international and local 

standards. However, cracks and damages are still reported worldwide in lightweight 

structures supported on stiffened slabs, urging the need for a more profound investigation 

into the reliability and shortcomings of the current design practices of stiffened slab 

foundations into this type of soils.  

 

In this research, the current design methods of stiffened slab foundations on reactive soils, 

particularly those adopted by the Australian Standards AS2870, are presented, and their 

limitations are listed and discussed. New sophisticated three-dimensional (3D) hydro-

mechanical finite element (FE) models are developed, using the commercial software 

package ABAQUS, to address the major shortcomings of the available design methods. 

The constructed FE models simulate the complex shrink-swell responses of unsaturated 

soils, by incorporating a coupled flow-deformation analysis that represents realistic soil 

moisture changes, hence, generating a multi-dimensional transient flow that implements 

true time-dependent precipitation and evaporation conditions. The interaction between the 

stiffened slab foundations and the underlying reactive soils is simulated using contact 

elements, allowing the contact between the slab foundation and the supporting soil to be 

modelled according to the soil mounds resulted essentially by the moisture changes. A 

special subroutine is developed to simulate the unsaturated soil conditions realistically and 

to account for the soil modulus-suction dependency, which is explicitly expressed in 

ABAQUS as a user-defined model. 

 

The developed FE models are validated through comparisons with field observations 

reported in the literature. The FE modelling procedure is then used to perform an extensive 

parametric study involving a wide range of hypothetical stiffened slab foundations of 

various configurations. The outputs of the parametric study are compiled in the form of 
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design charts and equations, which now serve as a new, standalone design method for 

stiffened slab foundations on reactive soils. Finally, the research investigates numerically 

the design of stiffened slab foundations aided by a sand cushion as a means to reduce the 

slab thickness. This analysis explores the potential cost saving associated with 

implementing the sand cushion technique in the routine design of stiffened slab 

foundations. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

 
Foundations on reactive (or expansive)1 soils can be exposed to complex modes of 

deformations. Reactive soils swell and shrink by the increase and decrease of soil 

moisture, respectively, causing lightweight structures supported by shallow foundations 

to suffer from different levels of structural damage. The problems associated with reactive 

soils arise from the fact that the soil moisture can vary between the wet and dry seasons, 

causing soil volume changes and consequently foundation movements. Man-made soil 

moisture changes are even more significant than seasonal water precipitation or 

evaporation (Li et al. 2014); these changes may result from gardening, plantation, 

vegetation, poor drainage and pipe leakages. The problems associated with reactive soils 

have been haunting engineers from around the world, since these soils exist all over the 

globe, including Australia, the United States, Canada, China, India and the Middle East. 

The financial losses incurred due to the damages caused to structures built on reactive 

soils are alarming, estimated to be US$7 billion per year (Krohn and Slosson 1980). 

Nuhfer (1994) reported that the annual losses in the United States alone due to damages 

caused to houses and roads by swelling of reactive soils could reach up to US$11 billion. 

The American Society of Civil Engineers estimated that nearly 25% of all homes in the 

United States suffered some damage due to reactive soils, with financial losses exceeding 

those caused by natural disasters, such as earthquakes, floods, hurricanes and tornadoes 

combined (Wray 1995). Similarly, expansive soils cover roughly 20% of Australia, as 

illustrated in Figure 1.1, and these cause structural cracks to nearly 50,000 houses each 

year, forming about 80% of all housing insurance claims (Robert et al. 1984).  

 

Over the last 50 years or so, stiffened slab foundations have been used as a suitable 

foundation system for lightweight structures on reactive soils, and they have demonstrated 

                                                 
1 The terms ‘reactive’ and ‘expansive’ are used interchangeably throughout this thesis. 
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historical success, despite some inherent shortcomings. This kind of foundation is usually 

comprised of a concrete slab/raft/mat, typically 100 mm thick, stiffened with ground 

beams cast monolithically with the slab, and having a spacing of about 4.0 m apart. Both 

the dimensions of the ground ‘stiffening’ beams and amount of reinforcement depend on 

the estimated level of the soil movement. The low cost of stiffened slab foundations 

compared with other foundation types, such as piers and screw piles, made them the first 

choice for engineers, to reduce the foundation cost relative to the low cost of 

superstructures.  

  

 

Figure 1.1: Distribution of expansive soils (black batches) in Australia  

(Richards et al. 1983). 

 

Many traditional methods are available in the literature for the design of stiffened slab 

foundations on reactive soils, including the Building Research Advisory Board (BRAB) 

method (1968), Lytton method (Lytton 1970), Walsh method (Walsh 1974), Mitchell 

method (Mitchell 1980), Swinburne method (Holland et al. 1980), Wire Reinforcement 

Institute (WRI) method (1981; 1996) and Post Tensioning Institute (PTI) method (1996). 

Out of these methods, the Walsh (1974) and Mitchell (1980) methods are the most widely 

adopted by the Australian Standards AS2870 (2011). 
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The main premise underlying the abovementioned design methods of stiffened slab 

foundations is to adopt idealised typical patterns of the slab foundation movements caused 

by the soil heave (namely edge or centre), assuming that these two heave scenarios 

represent the worst loading cases among an infinite number of possible heave patterns, 

depending on the site boundary conditions. According to the extreme edge heave scenario, 

the stiffened slab foundation acts as a simple beam supported by the rising soil at the slab 

foundation edges, assuming that the centre of the slab foundation loses its contact with the 

soil [see Figure 1.2 (a)]. Conversely, in the centre heave scenario, the stiffened slab 

foundation acts as a double cantilever supported by the rising soil at the centre area while 

the edges of slab lose contact with the soil over a certain edge distance [see Figure 1.2 

(b)]. It is postulated that the edge heave beneath the slab footing edges is initiated by the 

rain water infiltration in the wet seasons, whereas the centre heave is initiated in the hot 

dry seasons by the moisture propagation from the hot area at the slab edges towards the 

cooler area beneath the centre (Chen 1988).  

 

(a) 

 

(b) 

Figure 1.2: Deformed footing and soil profile: (a) edge heave scenario; (b) 

centre heave scenario. 

Iterative analysis of the slab footing over the distorted soil mounds can enable the 

designers to obtain the required slab stiffness and corresponding internal forces that 

maintain the foundation differential movements within certain acceptable limits. To 
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address the complexity of the problem, existing design methods adopt the following 

simplifications as intrinsic assumptions in the design process: 

 
• Prediction of the distorted soil mound shapes is determined using predefined simple, 

specific empirical equations, based on the best fit of field observations. In reality, 

however, there is an infinite number of mound shapes depending on many factors 

including the soil suction, degree of saturation, permeability, site drainage conditions 

and irrigation/plantation.  

 
• The actual 3D distorted soil mounds are reduced to simplified 2D plane strain ones; the 

foundation is then analysed independently in each direction, and the maximum stiffness 

and internal forces resulting from each direction are adopted in the design.  

 
• The infinite number of foundation plan configurations is simplified by dividing the 

foundation surface into equivalent overlapped rectangles. Each rectangle is solved 

separately in both directions under the two heave scenarios, and the maximum stiffness 

and internal forces are then considered.  

 
• The various loading patterns are simplified into either: (i) a uniformly distributed load 

over the slab comprising the load of finishing materials, wall load and live load; or (ii) 

uniformly distributed load comprising the load of finishing materials, live load and 

partition load, in addition to the central and peripheral line loads representing the 

internal and edge walls, respectively. 

 
• The change of soil moisture around the footing is assumed to be symmetrical in each 

of the two modes: precipitation or evaporation; violating this assumption may result in 

unaccounted differential movements that may not be adequately resisted by the 

foundation or the superstructure.  

 

During the last few decades, several attempts have been made to enhance the well-

established traditional methods by implementing the numerical modelling techniques. 

However, available numerical modelling studies suffer from the same problem of the 

traditional methods (in terms of the uncertainty associated with the assumed soil mounds). 

In addition, none of the available numerical modelling studies were developed into a 
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general design procedure. In fact, the continual reporting of structural damages of 

lightweight structures caused by expansive soils reveal that there is an immense need to 

improve the current design practices, by investigating the intrinsic limitations and 

assumptions listed above, and this thesis fills out part of this gap. The readily ensuing 

conclusion is that there is a need to develop a more reliable design method that can closely 

mimic the real flow mechanism of soil moisture and the subsequent behaviour of stiffened 

slab foundations on reactive soils. 

 

1.2 OBJECTIVES AND SCOPE  

 
Inspired by the limitations set out earlier for available design methods, this research aims 

to critically investigate the behaviour of stiffened slab foundations on reactive soils 

through a sophisticated three dimensional (3D) hydro-mechanical finite element (FE) 

numerical modelling, using coupled flow-deformation analysis and implementing realistic 

precipitation and evaporation processes as well as realistic soil water characteristics. The 

outcomes of this research are synthesised into a set of design charts and equations that can 

be readily used by practitioners for routine design practices. The specific objectives of this 

research can thus be summarised as follows: 

 
1. To develop a sophisticated 3D hydro-mechanical FE numerical models capable of 

simulating realistically the behaviour of stiffened slab foundations on expansive soils 

under cycles of seasonal wetting and drying. The developed FE models are validated 

against field observations obtained from existing research results. 

 
2. To carry out a comprehensive parametric study based on the developed FE models, 

encompassing a wide range of footing slab configurations, construction types and soil 

parameters.  

 
3. To develop practical procedures for the design of stiffened slab foundations on 

reactive soils based on the results obtained from the abovementioned parametric 

study, enabling more realistic and reliable design for adoption by engineers.  

4. To investigate the effects of using a sand cushion in a hybrid solution with stiffened 

slab foundations on reactive soils, potentially enabling a reduction in the slab 

foundation thickness towards more economical design. 
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1.3 THESIS ARRANGEMENT 

 
This thesis is divided into six chapters. Chapter 1 provides an introduction on stiffened 

slab foundations for reactive soils, including the thesis objectives and arrangement.  

 

Chapter 2 covers a literature review on available design methods for stiffened slab 

foundations on reactive soils, including their assumptions and limitations. This chapter 

also presents a background on the governing factors affecting the soil mound distorted 

shapes, which in turn affect the design of stiffened slab foundations.  

 

Chapter 3 describes the development of sophisticated 3D hydro-mechanical FE numerical 

models that accurately simulate and predict the behaviour and performance of stiffened 

slab foundations on reactive soils. This chapter also includes verification of the developed 

FE models through comparisons with field observations and existing research studies.  

 

Chapter 4 comprises an extensive parametric study, using the 3D FE modelling procedure 

developed and verified in Chapter 3. The parametric study covers a wide range of 

hypothetical stiffened slab configurations, and the outputs are synthesised into a set of 

design charts and equations that can be readily used by practitioners for design purposes.  

 

Chapter 5 investigates the efficacy of using sand cushions, as an enhancing technique for 

slab foundations on expansive soils, and explores the impact of utilising this technique on 

the required inertia of stiffened slab foundations, aiming at decreasing the depth of 

stiffening beams and reinforcement, and in turn reducing the overall cost of slab 

foundations.  

 

Finally, Chapter 6 summarises the research conducted in this thesis and presents the 

research main contributions and limitations. The chapter also provides the research 

conclusions and recommendations for possible future work.  



CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

 
Stiffened slab foundations are the most common type of foundations used to support 

lightweight structures built on expansive soils. Unfortunately, these foundations are 

vulnerable to the swelling pressure induced by soil moisture increase, which is likely to 

exceed the weight of the supported structure. During the last 50 years or so, many design 

methods have been developed for stiffened slab foundations on expansive soils. Generally 

speaking, most of these methods are mainly derived from the Building Research Advisory 

Board (BRAB) method (1968) developed in the United States. 

  

The BRAB method was first generated based on field observations recorded for slab 

foundations over a decade. The method simplifies the complex distortion of the soil 

mounds beneath the foundation slab into two extreme scenarios, depending on the location 

of moisture variation. The first scenario occurs in winter, when the water precipitation 

causes the soil at the edge of the footing to swell, producing a dish shape soil mound. This 

scenario is known as the “edge heave scenario” and the foundation in this scenario is 

usually lifted at the edge over a certain support or contact distance. This distance depends 

on the footing stiffness and can lose its contact with the soil at the centre, producing a 

simple beam-like behaviour. Conversely, in summer the soil at the edge of the footing 

dries by evaporation and shrinks, causing the footing edge to settle or drop, producing a 

dome shape soil mound. This scenario is known as the “edge drop scenarios” or “centre 

heave scenario”, in which the footing loses its contact with the soil over a certain edge 

distance that depends on the footing stiffness. The footing in this scenario becomes 

supported on the soil over a certain contact distance at the centre, producing a double 

cantilever-like behaviour.  More on this method is presented in Section 2.3.1. 

 

Design of stiffened slab foundations on reactive soils is a soil structure interaction problem 

that can be solved as a footing resting on idealised mound shapes (formed by in-situ 
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changes in moisture condition after the footing construction). The key premise of all 

existing design methods of stiffened slab foundations on expansive soils is similar, which  

is to design footing slabs that are rigid enough to maintain the footing differential 

movements (and in turn the super-structure) under all possible movement scenarios within 

acceptable limits, depending on the super-structure type. 

 

In this chapter, a review of the most commonly used methods for the design of stiffened 

slab foundations is presented, including their main assumptions and limitations. The 

chapter starts with a discussion on the key design factors affecting the generation of the 

distorted soil surface, forming the basis of each available design method. Then, the chapter 

presents the most common traditional design methods that are widely used in practice, 

followed by the most recent studies that adopted numerical modelling. 

 

2.2 KEY FACTORS AFFECTING DESIGN OF SLAB FOUNDATIONS 

 
2.2.1 Active Zone 

The depth over which a reactive soil can endure a moisture variation (usually denoted as 

the “active zone”) is a fundamental parameter used to estimate the maximum amount of 

differential movement of the ensuing soil mound. The active zone can be defined as the 

depth to which the surface water can penetrate or the thickness of the soil zone considered 

in estimating the surface heave due to soil expansion at a particular point in time.  

 

An alternative definition of the active zone is proposed by the Australian Standards 

AS2870 (1996; 2011) as being the depth beyond which no significant change to the soil 

suction occurs as a result of the seasonal climate conditions. This definition is based on 

the work done by Mitchell (1984), who related the swelling behaviour to the suction 

properties, resulting in more accurate estimates of the soil heave. However, McKeen and 

Johnson (1990) stated that this definition of the active zone excludes the permanent 

changes in the soil moisture caused by the footing installation that prevents 

evapotranspiration. Nelson et al. (2001) summarised alternative definitions for the active 

zone, as follows: 
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1. Depth of Seasonal Moisture Fluctuation (or Suction Depth): The maximum depth of 

soil affected by moisture fluctuation due to climate change.  

2. Depth of Wetting: The maximum depth of soil to which the surface water penetrates. 

The surface water can be due to some external factors, including the capillary rise after 

elimination of evapotranspiration from the surface, infiltration due to plantation, 

irrigation or rainfall, leakage from broken water pipes, perched water tables and flow 

from water ponds formed due to bad drainage or site topography. 

 
3. Depth of Potential Heave: The depth to which the overburden vertical stress equals or 

exceeds the soil swelling pressure, which represents the maximum active zone depth 

that may occur. 

 

Chen (1988) indicated that the depth of seasonal moisture fluctuation (Hs) under the slab 

foundations can increase in the course of several years to reach the depth of desiccation 

(Hd), which is defined as the depth at which the moisture content below foundations 

equates that below the uncovered area (see Figure 2.1). The Australian Standards AS2870 

(1996) provides fixed values for Hs for different regions across Australia, but emphasised 

that Hs is not entirely fixed but climate dependent. Chen (1988) mentioned that the exact 

value of (Hd) cannot be determined, but it has lower and upper bounds between (Hs) and 

the depth of water table.  

 

Figure 2.1: Moisture variation with depth below ground surface  

(redrawn from Chen, 1988). 
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Since diffusion is time-dependent and because the water below a covered area is not 

affected by evapotranspiration, the soil below slab foundations uninterruptedly 

accumulates water due to seasonal precipitation in a successive manner until the soil 

below the footing reaches a ‘damaging’ saturation degree, resulting in the maximum 

heave, which typically occurs at the soil’s plastic limit. In fact, in the absence of any tree 

roots or vegetation excessive transpiration, the foundation movement shows persistent 

heave behaviour for most field observations until equilibrium is reached after a certain 

period (Fityus et al. 2004; Reins and Volz 2013). The time required to reach that 

equilibrium heave is site-specific, and it actually relies on many soil parameters, such as 

diffusion coefficient, permeability, moisture index and depth of the swelling layer. 

 

Overton et al. (2006) speculated that the depth of wetting should be related to the age of 

the overlying structure, but Kenneth et al. (2009) argued against this approach. In fact, the 

speculation made by Overton et al. (2006) agrees well with some field observations. For 

example, Bligh (1965) reported that the maximum heave was attained after 4 years from 

construction, while Masia et al. (2004) reported a corresponding three- to five-year period. 

In addition, the Foundation Performance Association (FPA) (2005) proposed a period of 

10 years to achieve the maximum swelling. By observing 149 sites in Colorado, Reins and 

Volz (2013) found that the a four-year period had the highest frequency (see Figure 2.2), 

yet they reported that the heave in some buildings continued for more than 20 years, as 

shown in Figure 2.3.  



Chapter 2: Literature Review 

 11   

 

 

Figure 2.2: Typical foundation movement versus time  

(redrawn from Reins and Volz 2013). 

 

Figure 2.3: Histogram of time for stabilisation of 149 sites with no underpinning 

(redrawn from Reins and Volz 2013).  

 

It should be noted that the depths of wetting for the two cases of covered and open surfaces 

are different. Based on the moisture content and movement records below footing slabs in 
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Maryland, Fityus et al. (2004) found that the design suction changes suggested by the 

Australian Standards AS2870 (1996) for open ground movement are not entirely 

appropriate for the wider Newcastle region. The results of that study suggested adopting 

a deeper active zone and a larger surface suction change for better estimation of the surface 

heave. Accordingly, in order to cover the worst heave scenario, it can be concluded that 

in estimating the characteristic surface heave, the fixed value Hs given by the Australian 

Standards AS2870 (2011) can be used successfully if the depth of the swelling soil layer 

does not exceed Hs or if the ground water table is encountered at a depth ≤ Hs. However, 

this rule should be used with caution for slab foundations resting on expansive soils that 

extend below the Hs values recommended by the Australian Standards AS2870 (2011), as 

the actual suction depth may exceed it over time, causing differential mound movement 

beyond the design values, and leading to cracks and damages in the footings and supported 

structures.  

 
2.2.2 Soil Surface Distortion 

As explained next, the Building Research Advisory Board (BRAB) (1968) assumes the 

loss of soil support at the foundation edge and centre to approximate the following 

conditions: edge heave; centre heave; edge settlement; and centre settlement, as shown in 

Figure 2.4. In fact, in terms of differential settlement, the structural effect of the edge 

heave is comparable to that of the centre settlement. Correspondingly, the centre heave is 

similar to the edge settlement. However, the cause of each deformation pattern is different, 

and it is essential to study the factors conducive to each, as this helps to guide the designer 

to determine the likelihood of occurrence of each pattern.  

 

 

Figure 2.4: Conditions of foundation losing support due to soil heave 

(Building Research Advisory Borad 1968). 
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Edge heave is caused by the soil moisture increase around the edges, which can be initiated 

by many factors; yet, the most common factor is the rainfall in wet seasons. Other man-

made factors, such as irrigation or pipe leakage, can have even more detrimental effects 

(Li 2006). Removal of trees can reduce the water transpiration from the soil, causing the 

moisture to increase, leading to an edge heave damage (Driscoll 1983). The edge heave 

due to rainfall is always associated with poor drainage of areas surrounding the footing 

slabs, causing the water to accumulate into ponds that represent a continuous source of 

water for the soil. However, as reported by Mitchell (1984), even with good drainage, the 

edge heave of footing slabs in rainy seasons can always be observed. 

 

Centre heave of footing slabs has two main sources: thermo-osmosis and capillarity 

action. Thermo-osmosis is the moisture migration from the hot zone at the slab edges to 

the cooler area at the centre, especially in the hot seasons. A difference in temperature of 

1 oC is equivalent to a pressure head of 1 metre (Chen 1988). The capillarity action, on 

the other hand, causes the moisture to move upwards and accumulates under the footing 

slab. Other man-made sources of centre heave are also important and can be even more 

damaging to structures, such as pipe leakage (Li et al. 2014). 

 

The edge settlement of footing slabs can be theoretically caused by water evaporation in 

the hot dry seasons. However, evaporation from the soil surface slows down as the water 

available in the soil surface dries out. Hence, the actual drying rates from the soil by 

evaporation are significantly low (Blight 2004). As a result, the pores are progressively 

narrowed overtime, as the surface dries out, leading to a significant decrease in the 

permeability, hence, preventing the water outflow. Chen (1988) pointed out that there is 

little evidence of appreciable downward movements of foundations under covered areas 

in buildings due to shrinkage of swelling soils by evaporation; he also noted that shrinkage 

rarely causes any structural damage, thereby it can be deemed not to be critical. Moreover, 

Chen (1988) limited the reason for all structural damages to be due to the continuous 

increase of moisture content below footings. Fityus et al. (1999) compared the seasonal 

movement of some points at the edge of a flexible membrane and a point at the centre 

with other points on the uncovered area around the membrane. After 5 years of 
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observations, it was found that all points of open ground showed a seasonal rise-and-fall 

in levels, while the points within the covered area, even though on the edge, showed a 

continuous tendency to heave with no sign of settlement due to seasonal change. In this 

regard, it should be noted that the edge settlement was accused to be the cause of severe 

damages to many footings and superstructures based on several observations. However, 

these observations were always associated with the presence of trees in the vicinity of the 

footing slabs and the cause was always referred to the transpiration of tree roots (Biddle 

1979; Cameron and O'Malley 2002; Goldfinch 1995; Holtz 1983; Jaksa et al. 2002; 

McInnes 1986; McManus and Brown 1999; Mitchell 1984; Richards et al. 1983). By 

sucking the water from the soil, especially in the hot dry seasons, tree roots can seriously 

reduce the moisture in the soil below the footing edges, resulting in settlements that may 

exceed 300 mm in the case of a row of trees (Crawford 1965). Among 31 case studies of 

foundation movements on reactive soils in Australia, Mitchell (1984) found that all edge 

settlement cases were due to the presence of trees. House insurance claims show that trees 

are repeatedly quoted as the main cause of foundation problems due to root penetration 

that causes soil drying and shrinking within the tree root zone (Clarke and Smethurst 

2008). Some cases of edge settlement were caused by grass transpiration (Mitchell 1984). 

As mentioned by Blight (2005), the transpiration caused by grass and small bushes is 

comparable to that of trees.  

 

Centre settlement is more likely to be a theoretical structural design case rather than a 

realistic one. This is because the soil is completely covered below the centre of the footing 

slab, thus is not exposed to any source of moisture reduction by evaporation or plant 

transpiration. On the other hand, no cases of centre settlement have been observed in the 

literature to be the cause of any footing damage.  

 

It follows from the above discussion that, among the different design patterns of 

foundation movements on reactive soils, occurrence of both the edge heave and centre 

heave scenarios is inevitable. Conversely, the edge settlement scenario can be neglected, 

since its primary reason is the moisture reduction caused by the tree roots or grass 

transpiration. In such cases, the design standards recommend a definite safe distance 
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between the slab foundations and trees. As a rule of thumb, a safe distance equal to the 

expected mature height of the tree (Holland and Richards 1984). Satisfying this 

recommendation requires some knowledge and instructions for the property owners. 

Disallowing the edge settlement by the action of trees in the first place eliminates the need 

to consider the (inevitably) asymmetrical settlement of edges, which violates one of the 

fundamental assumptions of almost all existing design methods. The edge drop caused by 

transpiration of grass and small bushes can be avoided, by insulating about 3 metres 

around the slab foundations using PVC membrane or a concrete slab, then importing 

200 mm of grass plantation over the insulated areas for an aesthetic perspective. The idea 

of surrounding the building with a concrete flatwork is a known treatment to avoid 

moisture reduction by plantation (Day 1992).  

 

Based on the above review of the causes of moisture changes of reactive soils below slab 

foundations and the resulting soil mound shapes, the two common movement scenarios of 

the edge heave and centre heave must be considered in the design by practitioners. 

However, since numerical simulation of moisture migration due to thermos-osmosis is 

complicated, the case of the centre heave is simulated in this research as an edge drop due 

to evaporation. Therefore, the two main soil movement scenarios considered in this work 

are the edge lift induced by precipitation and the edge drop induced by evaporation. In the 

following section, most available traditional (empirical) design methods for the design of 

stiffened slab foundations on reactive soils are presented, followed by the most recent 

studies using numerical modelling techniques. 

 

 

2.3 TRADITIONAL DESIGN METHODS OF SLAB FOUNDATIONS 

 
2.3.1 Building Research Advisory Board (BRAB) Method 

 
As indicated earlier, the BRAB (1968) method was developed based on field observations 

of the performance of residential reinforced concrete slab foundations in the US; the main 

assumptions of this method are as follows: 

 
1. The total superstructure load is uniformly distributed over the entire slab area; and 
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2. After the supporting soil swells, the soil pressure is distributed evenly to the centre or 

at the ends of the slab foundation, as indicated in Figure 2.5. The value of the support 

index (C) is constant for all slab sizes. The support index (C) is the ratio of the 

supported area of the slab (i.e. contact area between the slab and underlying soil) to the 

area of the slab, depending on the climatic rating (Cw) and plasticity index (PI) of the 

soil. The relationships between C, Cw and PI are shown in Figure 2.6.    

 

Figure 2.5: Support modes assumed by BRAB method  

(Building Research Advisory Borad 1968). 

 

 

Figure 2.6: Determination of slab support index (C) by BRAB method 

(Building Research Advisory Borad 1968).  
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In the BRAB method, a slab foundation of irregular configuration is simplified into 

rectangular overlapping areas, each having a length (L) and a width (L') (when the design 

parameters in the short direction are determined, the terms L and L' are transposed). Each 

rectangle is analysed independently under the edge and centre heave scenarios. In the long 

direction, the design maximum bending moment (Mmax), maximum shear force (Vmax) and 

maximum differential deflection (Δmax) can be calculated as follows: 
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where; 

C  = support index, which varies from 0.6 to 1.0; 

w = uniformly distributed load (pressure); 

I  = equivalent moment of inertia of the stiffened slab cross-section; and 

E  = modulus of elasticity of the slab concrete. 

 

It should be noted that this method is based on the United States climate rating maps, and 

is thus not applicable elsewhere. The method of producing the curves in Figure 2.6 is not 

rational and depends mainly on engineering judgement. Moreover, both the soil and 

footing are assumed to be rigid with no soil structure interaction being considered. In 

addition, the assumption of a uniform pressure is not necessarily conservative in hogging 

distortion in the case of heavy perimeter wall loading (Lytton and Meyer 1971). 

 

2.3.2 Lytton Method 

In a major modification to the BRAB method, between 1970 and 1977, Lytton presented 

the first rational procedure for the design of slab foundations on expansive soils (Lytton 
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1970; 1970a; 1971; 1972; 1977; Lytton and Meyer 1971; Lytton and Woodburn 1973). 

Lytton and his co-workers solved the soil-footing interaction problem by simulating the 

problem as a beam on a curved mound; they implemented a coupled spring foundation 

model for the edge heave scenario and a Winkler foundation model for the centre heave 

scenario. The studies were carried out using the finite difference method in which a rigid 

beam on a Winkler foundation was considered to determine the one-dimensional 

maximum bending moment, shear forces and required stiffness of the strip footing system. 

The resulting one-dimensional forces were corrected for the two-dimensional action of 

the raft using empirical factors based on computer analysis. The differential equation used 

for the beam on the mound is as follows: 

 

  ( ) ( )
2 2

2 2

w
EI GhB w y kB w y q

x xx x

     
− − + − =        

         (2.4) 

 

where;  

w   = beam deflection; 

q  = load per unit length; 

EI  = beam flexural stiffness; 

Gh  = coupled spring stiffness of foundation soil; 

k = Winkler spring stiffness; 

B  = width of soil that contributes to supporting the beam; and 

yx,  = co-ordinates defining the mound shape. 

 

At the location where the beam loses its contact with the soil, the three terms (Gh), (k) and 

(B) turn into zero. A similar equation for the case of anisotropic elastic plate, which 

includes the effects of the soil shearing resistance on the same foundation type is given as 

follows: 

 

 ( ) ( )4
D w Gh w y k w y p −  − + − =            (2.5) 
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where; D and p are the plate flexure rigidity and pressure acting on the plate, respectively. 

The equation of the soil mound can be obtained as follows: 

 

my cx=             (2.6) 

 

where; 

y  = vertical displacement; 

x  = horizontal distance from the highest point; 

C = empirical constant; and  

m  = mound exponent. 

 

The soil mound exponent (m) is assumed to be the ratio of the footing length (L) to the 

depth of the soil active zone; it varies between 2 and 8 based on the best fitting curves of 

field observations of footing slabs that showed a flatter soil mound for a larger footing 

length. The soil mound equations thus produce convex and double convex shapes for the 

centre and edge heave scenarios, respectively, as shown in Figure 2.7. 

 

 

Figure 2.7: Soil mound shapes assumed by Lytton method (Li 1996). 

 

Similar to the BRAB method, the Lytton method uses the concept of overlapped 

rectangles, to simplify the complex foundation configurations. The loads on the footing 

slab is assumed to be as follows: (i) an edge load (qe) that accounts for the perimeter walls; 

(ii) a central line load (qc) that accounts for the partitions and roof support; and (iii) a 

uniform distributed load (wl) over the slab, consisting of the slab self-weight, finishes and 

live loads. The maximum bending moment is obtained in each direction using the 

following equations. 
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For the maximum positive moment in the case of edge heave: 
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For the maximum negative moment in the case of centre heave: 
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where; L and L′ are the length and width of each rectangle, respectively. The obtained 

moments are then reduced to account for the soil compressibility, as follows: 
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where; T is the total load on the rectangle, L is the length in the direction under 

consideration and C is the support index obtained from: 
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where; 

m  = mound exponent; 

A  = total rectangle area; 

k  = Winkler spring stiffness; and 

my  = maximum differential movement of the supporting soil. 

 

The Lytton method was used successfully in Australia for the design of many slab footings 

on highly expansive soils. However, the equation defining the mound shape exponent (m) 

is entirely empirical. In addition, the assumption of a rigid, uncracked foundation is 

unrealistic and usually leads to a very conservative design, since it produces higher 
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bending moments compared to the values produced in reality. Furthermore, as mentioned 

by Li (1996) the method can become conservative when the permissible footing deflection 

approaches the soil differential movement.  

 

2.3.3 Walsh Method 

Over a decade, Walsh (1974; 1978; 1978a; 1984) improved the rigid beam model of 

Lytton by analysing a flexible beam on a coupled Winkler foundation using the finite 

element analysis; he eventually developed a design method suitable for strip and raft 

footings. Walsh method uses the two extreme mound shapes of the edge heave and centre 

heave; both heave scenarios consist of a central flat section with parabolic edges 

(Figure 2.8). The method adopts the assumption of dividing the footing into overlapped 

rectangles and solving each rectangle separately.  

 

Figure 2.8: Soil mound shapes by Walsh method (Walsh 1974). 

 

According to Walsh method, the mound shapes are defined using two parameters: the 

footing differential movement (ym); and the edge distance (ed). The footing differential 

movement is expressed empirically in terms of the characteristic surface heave (ys), based 

on the work of Holland (1981), as follows: 

 

sm yy 7.0=    (for the centre heave)     (2.11) 
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0.5m sy y=    (for the edge heave)     (2.12) 

 

The edge distance (ed) is estimated as follows:  
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where; L is the span in meters and ym is in millimetres. For design purposes, the slab is 

divided into overlapping rectangles, then the rectangles are further idealised as single 

beams. These beams are solved in each direction separately as beams on coupled Winkler 

foundations using the following equation: 
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where; 

EI = beam stiffness per unit width; 

q  = loading per unit area; 

K  = footing stiffness; and 

bw  = co-operating width. 

 

When the beam loses its contact with the supporting soil, the above equation becomes: 
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The method proposes that the analysis is carried out in two phases: first by using a soft 

mound until one-eighth of the soil free swell remains; subsequently, the rest of the swell 

can be simulated as a hard mound. However, Walsh et al. (1986) developed a computer 

design package called CORD (Code Oriented Raft Design) in which a single value for the 

soil spring stiffness (k) was adopted. The value of (k) was proposed to be 100 times the 

average loading, but should not be less than 1000 kPa/m. In order to account for the effect 

of cracking on the required stiffness, the beam stiffness was calculated based on Branson’s 

formula (1963), as follows:  
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where; 

M  = maximum moment in the beam 

crM   = cracking moment of the beam section;  

crI     = transformed moment of inertia of the cracked section 

eI  = effective moment of inertia; and 

gI  = gross moment of inertia. 

 

The Walsh method was adopted by the Australian Standards AS2870 since 1990. 

However, similar to all previous methods, this method simplifies the 3D distorted slab 

foundation problem into a simplified 2D one. In addition, the coupled spring model 

adopted in this method does not reflect the  nature of the soil structure interaction process 

(Li 1996).  

 

2.3.4 Mitchell Method 

 
Mitchell (1980) developed a design method for stiffened slab foundations on expansive 

soils based on the finite difference analysis of a beam on an uncoupled Winkler spring 

foundation using constant spring stiffness. The method was incorporated into a computer 

program called Slab-on-Grade (SLOG) (Mitchell 1980). The beam in this method is 
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analysed on a pre-formed mound, having a concave shape for the edge heave and a convex 

shape for the centre heave, as shown in Figure 2.9. In this method, the maximum surface 

heave and the associated soil mound are estimated more accurately based on the analytical 

solution of the steady- state soil suction diffusion. The assumed mound shape equation is 

similar to that proposed by Lytton, as follows:  
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        (2.18) 

 

where; 

Y = maximum differential heave; 

L = Length of beam under consideration; and 

a  = depth of soil suction change. 

 

 

Figure 2.9: Soil mound shapes by Mitchell method (Mitchell 1984).  

 

In the computer program SLOG, a non-linear swell-pressure relationship is proposed, by 

defining the slope (k) of the pressure versus the soil swell curve, as follows: 

 

txyAk =           (2.19) 

 

where; A, x and t are soil constants. Mitchell (1990) suggested that a constant value of 

(k) = 1000 kPa/m could be used for routine design practice. Branson’s formula (1963) was 

first used in order to relate the inertia of the beam to the bending moment. In a latter 

development, the beam curvature was related to the moment through a multilinear curve. 
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Mitchell method is recommended in the Australian Standards AS2870 (2011) for 

residential slabs and footings. However, the method has similar limitations to those of 

previous methods in terms of simplifying the actual 3D problem into a simple 2D one. In 

addition, the use of the simple Winkler spring model is less rigorous than the coupled 

(connected) spring model. The method also uses a pre-formed soil mound neglecting the 

load path and the effects of loading and suction changes on the soil stiffness.  

 

2.3.5 Swinburne Method 

 
In the Swinburne Institute of Technology method, Holland et al. (1980) and Pitt (1982) 

modified the FOCALS program, originally developed by Fraser and Wardle (1975), in 

order to generate design charts for routine design of house footings on expansive clays. 

The method calculates the moments, deflections and slab thickness for assumed values of 

maximum differential heave (ym), edge distance (ed), concrete strength and number and 

width of the underlying cross-beams. The method also uses the concept of overlapped 

rectangles. The design soil mound shape adopted in this method has a flat top with 

parabolic convex edges over an edge distance (ed) for the centre heave (see Figure 2.10a), 

while it has flat edges over the edge distance (ed) which turn into a convex parabola at the 

centre for the edge heave (see Figure 2.10b).  

 
 

 

Figure 2.10: Soil mound shapes assumed by Swinburne method  

(Holland et al. 1980). 

The proposed mound shapes in the Swinburne method provide much better support to the 

footing slab under the edge heave condition than for the centre heave. Therefore, the centre 
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heave is predominant in this method. However, this shape is not consistent with field 

observations made for covered shapes (Jackson 1980). Figure 2.11 shows a typical 

example of the developed design charts depicting the centre heave bending moment in the 

Swinburne method.  

 

Figure 2.11: Centre heave bending moments by Swinburne method (Pitt 1982). 

 

Holland et al. (1980) proposed a relationship between the edge distance (ed) and 

magnitude of the mound heave (ym) based on experiments performed on covered cases, as 

summarised in Table 2.1. However, as mentioned by Mitchell (1984), the proposed 

relationship is very approximate. Another important limitation of the Swinburne method 

is that the design charts were developed for a single storey brick veneer loading, despite 

the authors’ claims that the method can also be used for two-storey brick veneer loading. 

This assumption was criticised by Wray (1980) and Mitchell (1984), and even rejected by 

Pidgeon (1983) who stated that this assumption is unsound and could lead to under-

designing of  stiffened slabs. Moreover, the method uses a unique value for the soil 

modulus while it is actually suction dependant. The Swinburne method presumes that the 

centre heave controls the design, based on aa proposed edge heave mound shape that is 

not consistent with field observations (Jackson 1980). In fact, the proposed edge heave 
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mound shape provides a large soil support to the footing slab, resulting in reduced internal 

forces. 

Table 2.1: Relative values of e and ym in the Swinburne method (after Pitt 1982) 

Edge distance, ed (m) Differential movement, ym (mm) 

0.0 to 0.5 0 to 20 

0.5 to 1.0 10 to 40 

1.0 to 1.5 20 to 60 

1.5 to 2.0 30 to 80 

2.0 to 2.5 40 to 100 

2.5 to 3.0 60 to 120 

 

 
2.3.6 Post Tensioning Institute (PTI) Method 

Through a three dimensional finite element analysis of a slab resting on a heaving elastic 

soil, Wray (1978) developed design equations for raft footings, which were later 

manipulated to develop the Post Tensioning Institute (PTI) method (1996) in which the 

moment, shear and required stiffness of the raft can be calculated for the edge and centre 

heave scenarios. The soil mound shapes, as shown in Figure 2.12, were determined by a 

computer simulation for the moisture propagation beneath the slab edges. The mound 

shape is defined in terms of the edge distance (ed) over which the moisture is propagated 

and the movement occurs; a prior knowledge for the value of (e) is required. 

 

The edge distance (ed) is empirically related to the climate pattern only as measured by 

the Thornthwaite Moisture Index (TMI). Therefore, the modified PTI (2004) method was 

introduced in which the edge distance (ed) was adjusted by introducing the soil fabric 

factor which depends on the soil profile content of the roots, soil layers and fractures or 

joints. This method has the same disadvantage of other previous methods in terms of 

uncoupling the problem using a pre-defined soil mound and simplified 2D analysis.  
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Figure 2.12: Soil mound shapes assumed by the Post Tensioning Institute (1980). 

 

Similar to the previously presented methods, this method uses the concept of overlapping 

rectangles for irregular slab shapes. In the case of centre heave, the moment in the long 

direction (Mlc) and short direction (Msc) for e > 1.5 m, mound movement (Y) and 

differential deflection (Δ), with an edge load (P), sub-beam spacing (S), and depth (d), can 

be calculated as follows:  
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For the edge heave, the bending moment in the long direction (Mle), short direction (Mse) 

and deflection (Δ) can be calculated as follows:  
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2.3.7 Wire Reinforcement Institute (WRI) Method 

 
The Wire Reinforcement Institute (WRI) method (1996) can be considered as a modified 

version of the BRAB method. It is empirically derived by developing and modifying the 

design equations to best match field observations. The method uses the same climate 

rating index (Cw) and support index (C) of the BRAB method. The cantilever length (lc) 

is obtained from Figure 2.13, which is then modified for the long- and short-directions (L 

and L′) using the modification factor (k) shown in Figure 2.14. The beam spacing (S) is 

obtained from Figure 2.15. By determining the cantilever length (lc) in each direction and 

knowing the applied loads, the bending moments and shear forces are calculated 

analytically and the associated required beam depth and reinforcement determined. The 

WRI method has the same main limitations of the BRAB method, being applicable only 

in the US, for which the climate rating index map was generated. 
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Figure 2.13: Determination of the cantilever length by WRI method  

(redrawn from Wire Reinforcement Institute 1981). 

  

 

Figure 2.14: Slab length modification factor by WRI method  

(redrawn from Wire Reinforcement Institute 1981). 

 

 

Figure 2.15: Determination of beam spacing by WRI method  

(redrawn from Wire Reinforcement Institute 1981). 
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2.3.8 Australian Standards Method 

Australian Standards AS2870 (2011) recommend the use of one of the two following 

design pathways: (i) deemed-to-comply design method; and (ii) design by engineering 

principles using either Walsh method or Mitchell method.  

 

In the deemed-to-comply design method, the Australian Standards provide typical design 

tables to be readily used by practitioners without the need to carry out any calculations, as 

follows. First, the soil characteristic surface (free) heave (ys) is calculated by integrating 

the soil movement of all soil layers from layer 1 to layer N within the depth at which a 

significant change of soil suction occurs. Thus, the characteristic surface heave can be 

calculated, as follows: 

 


=

=
N

n

npts huIy
1

).(
100

1
                                                               (2.29) 

 

where: 

sy  = characteristic surface movement (in millimetres); 

ptI  = instability index (in % pF); 

u    = soil suction change averaged over the thickness of the layer (pF);                   

h = thickness of layer under consideration (in millimetres); and 

N = number of soil layers within the design depth of the suction change (Hs). 

 

The depth of suction change in this context is the depth of the soil at which no significant 

change in suction occurs by seasonal conditions. The Australian Standards provide values 

for the depth of suction change and expected surface suction change for different locations 

across Australia, as shown in Table 2.2. By estimating the characteristic surface heave 

(ys), the soil class can be specified according to Table 2.3. Knowing the site class and slab 

dimensions, the beam depth, reinforcements, beam spacing and slab mesh can be obtained 

from typical design tables provided by the Australia Standards, depending on the type of 

construction of the superstructure and associated allowable differential movement, as 
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shown in Table 2.4. The deemed-to-comply design tables are provided for rafts, strip 

footings, waffle slabs and stiffened slabs. Typical example of the deemed-to-comply 

design cases are shown in Table 2.5 and Figure 2.16. Although the deemed-to-comply 

method is easy to use, the Australian Standards restrict its applicability to the following 

cases:  

 
(i) class E sites;  

(ii) buildings longer than 30 m;  

(iii) slabs containing permanent joints (e.g. contraction or control joints);  

(iv) buildings incorporating wing walls or masonry arches unless specially detailed;  

(v) construction of three or more storeys;  

(vi) single leaf-earth or stone masonry walls greater than 3 m in height; and 

(vii) construction using concrete strength ≥ 32 MPa.  

 

Table 2.2: Profile of soil suction change for certain locations in Australia 

(Australian Standard AS2870 2011). 

Location 
Ratio of change in soil 

suction, u (pF) 

Depth of design soil suction 

change, Hs (m) 

Adelaide 1.2 4.0 

Albury/Wodonga 1.2 3.0 

Brisbane/ Ipswich 1.2 1.5-2.3 * 

Gosford 1.2 1.5-1.8 * 

Hobart 1.2 2.3-3.0 * 

Hunter Valley 1.2 1.8-3.0 * 

Launceston 1.2 2.3-3.0 * 

Melbourne 1.2 1.8-2.3 * 

Newcastle 1.2 1.5-1.8 * 

Perth 1.2 1.8 

Sydney 1.2 1.5-1.8 * 

Toowoomba 1.2 1.8-2.3 * 

*Note: The variation in Hs depends largely on the climate changes. 
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Table 2.3: Site classification by the characteristic surface movement  

(Australian Standard AS2870 2011). 

Characteristic surface 

movement, ys (mm) 

Site 

class 
Site classification 

0 < ys  < 20 S 

Slightly reactive clay sites, which may experience 

only slight ground movement from moisture 

changes 

20 < ys  < 40 M 

Moderately reactive clay or silt site, which may 

experience moderate ground movement from 

moisture changes 

40 < ys  < 60 H1 
Highly reactive clay sites, which may experience 

high ground movement from moisture changes  

60 < ys  < 75 H2 
Highly reactive clay sites, which may experience 

very high ground movement from moisture changes 

ys  > 75 E 

Extremely reactive sites, which may experience 

extremely ground movement from moisture 

changes 

 

 

Table 2.4: Maximum design differential footing deflection for design of footings 

and rafts by Australian Standards AS 2870 (2011). 

Type of construction 

Maximum differential 

deflection, as a function of 

the span (mm) 

Maximum differential 

deflection (mm) 

Clad frame L/300 40 

Articulated masonry veneer L/400 30 

Masonry veneer L/600 20 

Articulated full masonry L/800 15 

Full masonry L/1000 10 
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Table 2.5: Deemed-to-comply design for stiffened slab foundations by Australian 

Standards AS2870 (2011). 
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Figure 2.16: Stiffened raft design for site classes A, S, M, M-D, H1, H2, H1-D, H2-D 

by Australian Standards AS2870 (2011). 

 

The Australian Standards AS2870 (2011) did not clarify the reason behind all of the 

abovementioned restrictions imposed on the deemed-to-comply method; however, it may 

be attributed to the boundaries assumed in producing the design tables. In fact, when using 

the deemed-to-comply method, the designers are confronted with an issue of professional 

responsibility and legal liability, since no design calculations are carried out and the 

designer is required to just lookup  the provided design tables. Moreover, the method does 

not adequately consider the effect of the superstructure size and dead load values. For 

instance, the method gives identical design configurations for a “4 m × 3 m” garden shed 

or a “24 m × 15 m” double storey house (Frank 2000), when designed for the same soil 

class and construction type, which is quite alarming. In fact, practitioners should be aware 

that this method might lead to a non-conservative design in some cases, particularly for 

heavily loaded stiffened slabs used for double storey structures. 

 

2.3.9 Design Comparison among Traditional Design Methods 

 
Mitchell (1984) compared the design outputs obtained from Walsh, Mitchell, Lytton, 

Swinburne and PTI methods for a single storey brick veneer house (10 m2), having a slab 

foundation stiffened with a grillage of sub beams 3.3 m apart. The design parameters were 

the same for all methods. Comparison of the design output showed that, for the centre 
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heave case, the Swinburne, PTI and Mitchel methods gave very close bending mode at the 

lower level of the heave, while for the higher heave values the results showed considerable 

scatter. The variation was much greater for the edge heave case. Mitchell (1984) indicated 

that the difference in the results is attributed to the difference in the initial mound shape 

and assumed load distribution.  

 

Abdelmalak (2007) compared the beam depth calculated by the three methods: WRI, PTI 

(as the most common methods used in the US) and AS 2870 method (as the most common 

method used in Australia). A number of 27 cases were designed, comprising three simple 

rectangular stiffened slabs built on three different shrink-swell soils and loaded with 

uniform pressure and perimeter line load and subjected to three different weather patterns. 

Among the 27 cases, only one case gave identical beam depth using the three selected 

design methods. The WRI and PTI methods produced the closest results while the PTI 

and AS2870 showed the poorest correlation. Abdelmalak (2007) highlighted that the large 

scatter in the design outputs raises the need for more observations and comparisons with 

field data.  

 

In light of the above comparisons, it is obvious that there is a need for more reliable design 

methods that can overcome the limitations of existing methods. One way of achieving this 

is by tackling the intrinsic assumptions of the existing methods, using complex numerical 

analysis. Some of the major efforts spent for solving the problem of slab foundations on 

expansive soils using numerical modelling are presented and discussed below.  

 

2.4 DESIGN OF SLAB FOUNDATIONS USING NUMERICAL MODELLING 

 
As indicated in the previous section, although existing traditional design methods of 

stiffened slab foundations on expansive soils showed some degree of success, the 

magnitude of damage is still alarming. Therefore, during the last few decades, many 

attempts have been made to enhance existing methods by implementing the numerical 

modelling techniques. For example, Fraser and Wardle (1975) carried out a three 

dimensional (3D) finite element (FE) analysis for stiffened rafts on a semi-infinite elastic 

soil, using a program called FOCALS. The worst and only loading condition was assumed 
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to be the centre heave. The footing was analysed iteratively on a pre-formed soil mound 

based on Walsh method, in order to define the areas where the soil loses contact with the 

footing. The approach produced smaller sections than any of the previously described 

methods. However, the method of analysis had the same problem of the traditional 

methods in terms of the uncertainty associated with the proposed soil mounds; moreover, 

the method was not developed into a general raft design procedure.  

 

Poulos (1983) used the mound shapes proposed by the Lytton method in the analysis and 

design of strip footings and beams using the finite element method. Through his 

investigation, it was found that the use of a lower value of the mound exponent (m) results 

in large bending moments and a more conservative design. The mound exponent was 

considered to be 2, producing a parabolic mound shape. The soil was modelled as an 

isotropic homogeneous elastic half-space with a soil modulus (E) that was considered to 

vary along the length of the strip footing. Both concentrated and distributed loads were 

considered in the analysis. The method was developed to be used only for analysis of strip 

footings and was not deemed suitable as a general design procedure for rafts.  

 

Sinha and Poulos (1996) carried out a study using a 3D FE technique addressing the 

importance of the stiffening beams on slab foundations. Again, the soil mound equations 

proposed by Lytton method were adopted in the analysis with a mound shape exponent 

(m) equal 2, resulting in a conservative parabolic soil mound in all directions, as shown in 

Figure 2.17. The analysis was carried out for different values of surface movement under 

edge drop and edge lift scenarios considering the twisting effect from the 3D analysis for 

a stiffened and unstiffened 10 m × 10 m slab, as shown in Figure 2.18. The effect of 

separation between the soil and raft, and the local yielding of the soil underneath the raft 

were included in the analysis. The relative raft stiffness was calculated as follows: 
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where; 
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RE  and sE   = concrete and soil moduli, respectively; 

Rt   = raft thickness; 

RL  and RB    = raft length and width, respectively; and 

s   = Poisson’s ratio of the soil. 

 

Figure 2.17: Soil modelling of heave formation by Sinha and Poulos (1996). 

 

 
 

 

Figure 2.18: Stiffened and unstiffened slab configurations by Sinha & Poulos 

(1996). 



Chapter 2: Literature Review 

 39   

 

Figure 2.19 presents a typical example of the output charts derived from the study. It is 

obvious that the increase in the beam depth causes a reduction in the differential settlement 

and an increase in the maximum moment. The notations used in the curves shown in 

Figure 2.19 are as follows: 

st  = differential settlement between the centre and corner of the stiffened raft; 

s  = differential settlement of the unstiffened raft; 

sM  = maximum moment of the unstiffened raft; 

stM  = maximum moment of the stiffened raft;  

bT  = stiffened beam thickness; and 

sT  = raft slab thickness.  

 

In general, the study did not develop a generalised design method but rather focused on 

the benefits of stiffening the raft and emphasised its settlement restrictive features. 

 

Li (1996) adopted a thermo-mechanical analogy for the moisture diffusion and soil shrink-

swell movement. This was based on the fact that the diffusion equation is identical to the 

general governing equation in the heat transfer analysis, and the transient diffusion of the 

soil suction was numerically solved in both 2D and 3D set-up analyses. The behaviour of 

the expansive soil was modelled as a function of both the soil suction and structural loads. 

The non-linear behaviour of the reinforced concrete was also taken into account. The 

change in suction over time and depth considered in the analysis were calculated through 

the thermal diffusion model and were found to compare well with Mitchell’s (1980) 

analytical diffusion equation. The results showed that the instability index, lateral swell 

pressure, skin friction and edge beam depth had noticeable effects on the slab 

performance, while the influence of the elastic modulus of concrete and elastic modulus 

and Poisson's ratio of the soil were relatively small and could be ignored. Li (1996) also 

found that the perimeter load had a larger influence on the footing behaviour than the 

uniformly distributed load and highlighted that the current two-dimensional design 

methods are inadequate for the U shape slab geometry. The study did not provide general 

design charts or tables, yet it introduced the coupled thermo-mechanical analogy as an 
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acceptable and relatively accurate methodology that can be utilised to simulate coupled 

2D and 3D seepage and stress analyses, with consideration of many factors affecting the 

performance of the slab foundations on expansive soils, such as the skin friction along the 

beam sides as induced by the lateral swelling. 

 
          Centre Heave            Edge Heave 

 
Figure 2.19: Typical example of output charts in study by Sinha and Poulos (1996). 
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El-Garhy and Wray (2004) and Wray et al. (2005) used an uncoupled modelling approach 

to calculate the suction distribution over time and the corresponding volume change and 

surface movement of expansive soils. This work estimated, to a certain accuracy, the edge 

moisture change distance but no stress analysis or soil structure interaction was involved. 

The analysis was based on two steps: (i) calculating the suction distribution based on the 

3D diffusion equation of Mitchell (1980); and (ii) using the suction data over the soil mass 

at a certain time, the soil vertical surface heave was calculated from Wray method (1997), 

which is based on the soil suction. No precipitation or evaporation wa modelled; instead, 

a sinusoidal suction change over time was applied. A FORTRAN computer program 

named SUCH was written, utilising the finite difference technique to solve the transient 

suction diffusion equation in 3D. The program was able to predict the suction distribution 

and the corresponding volumetric change of expansive the soils. 

 

Fredlund et al. (2006) carried out a 2D FE uncoupled analysis to evaluate the separation 

distance under the footing edge in the case of the edge drop scenario. The seepage analysis 

was carried out using the program SVFLUX (2001), utilising an estimated soil water 

characteristic curve that relates the soil saturation with the suction profile and hydraulic 

conductivity. The output of the final pore pressure distribution over a certain time 

increment was then utilised in a stress analysis using a program called SVSOLID (2002). 

The footing was assumed initially to have no separation from the soil; an iterative 

procedure was then suggested to evaluate the tensile zone under the footing slab. The 

tensile zone was then simulated as a gap between the footing and soil in a stress analysis 

step (see Figure 2.20).  

 

 

Figure 2.20: Illustration of the separation between the soil and concrete slab 

foundation in the study by Fredlund et al. (2006). 
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This study provided a methodology to estimate the edge moisture variation distance (e), 

which is the distance from the footing slab edge beyond which the change in both suction 

and deformation are negligible. It was concluded that the edge moisture variation distance 

can be estimated from the seepage analysis, and that it depends on the rate of precipitation, 

duration of precipitation and unsaturated soil properties. The proposed methodology to 

design the footing focused on the edge drop only. The method requires the use of FE 

modelling in an iterative, uncoupled procedure, which made it difficult to be used as a 

routine design method.  

 

By considering an exponential decay suction distribution under the cover edge, 

Abdelmalak (2007) modified Mitchell’s diffusion equation (1980) to derive a new 

solution for the suction distribution under cover. The new equation was proposed to 

estimate a more realistic mound shape under cover for soils subjected to cyclic weather 

patterns. The distribution of the suction change was integrated with the depth to derive the 

distorted mound shape. This mound shape was adopted in a parametric study as a 

predefined soil mound under a flat foundation in an iterative 2D FE simulation in order to 

obtain the footing deflection and the associated internal forces. The following slab 

foundation parameters were examined in the parametric study: slab lengths (L) = 4 m, 6 

m, 8 m, 10 m and 12 m; slab beam depth = 0.3 m, 0.6 m, 0.9 m, 1.2 m and 1.5 m; with 

beam width = 0.3 m; beam spacing = 4 m (these beam depth values provide stiffness 

values equivalent to that of a flat slab with thicknesses = 0.127 m, 0.253 m, 0.3795 m, 

0.506 m and 0.633 m, respectively); slab total imposed area loads = 2 kPa, 2.75 kPa, 3.5 

kPa, 4.25 kPa and 5 kPa; slab concrete modulus of elasticity = 20, GPa. Based on the 

equivalent cantilever length (Leqv) shown in Figure 2.21, the output of the parametric study 

was used to develop the design charts in Figure 2.22.  

 

The design charts proposed by Abdelmalak (2007) in Figure 2.22 were limited to uniform 

loadings over the footing slab length; therefore, Magbo (2014) extended the above design 

method to account for the line loads at the slab edge for simulating the wall loads, and he 

developed the design charts presented in Figure 2.23 plus a spreadsheet called TAMU-

SLAB (Briaud et al. 2016) to automate the design calculations. This design procedure 
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accounted only for the edge drop and edge lift cantilever moments, shear and deflections, 

(without considering the general case of the edge lift that may result in loss of support 

beneath the footing centre, producing a simply supported beam pattern). Moreover, the 

mound shape adopted was a pre-defined soil distorted surface without considering the 

normal loading history that involves the footing construction and its loading before the 

development of the soil mounds, a common disadvantage in most of the existing design 

methods. 

 

 

Figure 2.21: Sketch of slab foundation on curved mounds by Abdelmalak (2007). 

[em = edge moisture distance; ym = vertical movement; Leqv = equivalent cantilever length (i.e. length of slab 

that gives the slab maximum bending moment when used with the formula Mmax = qLeqv
2/2); Lgap = 

unsupported length (i.e. length of slab without the soil support underneath); Δmax = difference in elevation 

between the slab centre and slab edge; Mmax = maximum bending moment of the slab foundation; and Vmax 

= maximum shear force in the slab] 
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Figure 2.22: Typical example of design charts developed by Abdelmalak (2007). 

[H = depth of active zone; ΔU0 = change in suction; Iss = shrink-swell index; q = total slab foundation loads 

(including self-weight and imposed loads); Leqv = equivalent cantilever length; Δmax = difference in elevation 

between the slab centre and slab edge; FΔmax = maximum deflection factor = qLeqv
4/Δmax EI; and FV  = 

maximum shear factor = Vmax/q Leqv]. 
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Figure 2.23: Typical example of design charts developed by Briaud et al. (2016). 

 

Dafalla et al. (2011) proposed a simplified design concept for a rigid substructure 

foundation in the form of an inverted-T of a two-storey concrete frame structure on 

expansive soils. The upheaval forces of the swelling soils was determined through a one-

dimensional odometer test and was then reduced by a factor of 3, as suggested by Al 

Shamrani et al. (2002), to account for the effect of lateral restraint. These forces were 

applied on the corner bays of the foundation grids in order to induce the edge heave 

scenario, as shown in Figure 2.24. The centre heave scenario was omitted from the 
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analysis, since the concept was developed for a two-storey building and the authors 

believed that the dead load of the central columns can overcome the swelling forces. The 

structural analysis of the inverted-T beams grid could be carried out using an ordinary 

commercial finite element software in order to get the corresponding internal forces. This 

rigid design methodology has certain limitations. It was recommended only for sites 

indicating a swelling pressure of less than 300 kPa. In addition, the edge and corner bays 

on which the swelling pressure is applied, should have limited spans in order to get 

reasonable bending moments and shear forces, thus, restricting the geometry of the 

foundations. Moreover, the centre heave scenario was not considered in this approach 

despite its high potential of occurrence, since the internal columns loads are unlikely to 

cause stresses on the soil exceeding the proposed design limit of 300 kPa.  

 

Figure 2.24: Distribution of swelling pressure on corner bays of a foundation grid 

as developed by Dafalla et al. (2011) 

 

Zhang et al. (2015) carried out a coupled 3D FE transient analysis for isolated footings on 

expansive soils by adopting the thermal analogy. In this study, the climate and vegetation 

factors were included to determine the boundary conditions of the problem. The work did 

not provide a design methodology but rather focused on the prediction of soil movement 

due to the evapotranspiration of grass roots and crops, assuming all infiltration is 

intercepted by plantation and utilising the FAO 56 PM method (Allen et al. 1998). The 

predicted movement of the isolated footing studied agreed well with field observations 



Chapter 2: Literature Review 

 47   

 

made over two years. However, it should be mentioned that the use of the FAO 56 PM 

equation requires specific vegetation data, which in most cases would not be available to 

geotechnical engineers. This work is somehow robust, but the proposed analysis mainly 

tackles the effect of evapotranspiration caused by the grass, trees or crops, hence, it 

requires thorough vegetation and agriculture knowledge in order to accurately predict the 

input parameters controlling the evapotranspiration. In addition, the account for 

evapotranspiration for the tree or grass roots in the calculation of the reactive soil 

deformations increases the likelihood of violating the symmetrical application of loads, 

which is a fundamental assumption in the design of slab footings on reactive soils. In fact, 

a safe distance between the tree roots and foundation is the most feasible solution to avoid 

their detrimental effects on the slab footing deformations. Unfortunately, the method was 

not generalised into an engineering design methodology. 

 

2.5 DISCUSSION 

 
The review presented above concerning the traditional method used for designing 

stiffened slab foundations on expansive soils reveals the following common limitations: 

 
• The slab foundation is usually analysed using pre-formed mound shapes, which 

neglects the influence of the actual stress path, since the soil mound is formed after 

the footing is constructed and loaded (Li 1996). In fact, the mound configuration 

should reflect the influence of the coupled deformation flow that captures the 

realistic soil moisture changes. 

 
• The complex, irregular and unsymmetrical soil mounds as well as the loading and 

boundary conditions that are usually experienced in practice, are all overly 

simplified.  

 
• The use of simple 2D mound shapes to simulate the behaviour of a rather 

complicated 3D problem is conservative (Kay and Mitchell 1990). 

• Adoption of the overlapping rectangles approach by most design methods may 

cause underestimation of the slab foundation movement and the associated internal 

forces, especially for the U-shape foundation configurations (Li 1996). 
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• Determination of the mound shapes in all methods is based primarily on 

empiricism without scientific guidance, leaving the designer to his/her own 

experience or available field observations.  

 
• The soil structure interaction problem is normally simulated using a constant soil 

modulus of subgrade reaction, while in reality this interaction is more complicated 

and the soil modulus actually varies with the evolving soil suction.  

 

Studying the performance of stiffened slab foundations on reactive soils using numerical 

modelling or thermal analogy produced promising results. However, most published 

studies did not provide generic design methodologies and were mainly based on 

uncoupled approaches implementing pre-defined soil mound shapes, which misrepresents 

reality.  

 

The above discussion indicates clearly that there is still a need for more reliable and 

advanced methods for the design of stiffened slab foundations on reactive soils that can 

overcome the limitations of the existing methods. In this regard, sophisticated 3D FE 

models can be used to develop an advanced design methodology that is capable of 

implementing 3D transient coupled hydro-mechanical modelling involving both the 

seepage and stress calculations, so that the moisture and suction distribution beneath the 

slab foundation can be accurately simulated. The following features should be considered 

along the proposed 3D analysis: 

• The method should be generalisable by adopting realistic and representative 

unsaturated soil properties, including the soil moisture-swell dependency, 

hydraulic conductivity and soil-water characteristic curves (SWCC); 

• The seepage analysis should be based on realistic climate precipitation and 

evaporation conditions, so that the distorted soil mound beneath the slab footings 

can be calculated rather than estimated (a shortcoming in all previous design 

methods);  

• The external loads should  be applied before carrying out the flow analysis to 

produce a more realistic distorted profile;  
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• The method should be integrated into the standards requirements with respect to 

the allowable footing deformations and soil expansiveness classes; and  

•  Finally, the method should be easy to use by engineers and practitioners for 

routine design practices.  

 

2.6 SUMMARY  

 

This chapter presented and discussed the existing traditional methods of the design of 

stiffened slab foundations on expansive soils. In addition, the recent research and design 

development using the numerical modelling were also highlighted. The assumptions used 

in the existing design methods were summarised and their limitations were critically 

discussed. Careful review of the broad range of relevant literature showed that the existing 

methods along with the recent design development lack the following two major aspects: 

(i) using realistic 3D simulation of the problem (rather than using a simplified 2D 

approach); and (ii) implementing a coupled flow-deformation and stress analysis approach 

that allows the soil mound to be determined through a seepage process that involves the 

soil suction and moisture-swell characteristics. The current practice of using uncoupled 

approach in which the slab foundation is analysed using a pre-defined soil mound is prone 

to misjudgement and inaccuracy. In order to resolve these two main shortcomings, 

sophisticated 3D finite element hydro-mechanical models are developed and presented in 

Chapter 3, along with relevant seepage and deformation parameters. The FE numerical 

modelling set-up is calibrated and validated against field observations. The general 

features of the proposed modelling methods were discussed in Section 2.5. 

 



CHAPTER 3 

NUMERICAL MODELLING OF THE BEHAVIOUR OF STIFFENED 

SLABS ON REACTIVE SOILS USING THE FINITE ELEMENT 

METHOD 

 

3.1 INTRODUCTION 

 
As described in Chapter 1, the main objective of this research is to enhance the current 

design practice of stiffened slab foundations on reactive soils using advanced numerical 

modelling. Chapter 2 revealed that a major assumption adopted by almost all existing 

design methods of stiffened slab foundations on reactive soils is that the real case of three-

dimensional (3D) moisture flow can be reduced to a simple two-dimensional (2D) 

problem, resulting in deformation incompatibility between the soil mound and supported 

footing. In addition, most existing methods implement uncoupled approaches in which the 

footing is designed for stress analysis using a pre-defined soil mound obtained from a 

separate seepage analysis, with no consideration to the effect of the slab loading on the 

formation of the soil mound. In this chapter, an advanced 3D finite element (FE) numerical 

modelling is pursued to simulate the complex behaviour of stiffened slab foundations, 

which otherwise are not captured by the currently available design methods. Through a 

hydro-mechanical approach, the resulting FE modelling is capable of simulating the true 

performance of stiffened slab foundations on reactive soils, by involving a coupled flow-

deformation analysis based on realistic moisture flow and suction evolution, which lead 

to formation of a realistic soil mound beneath the footing. As a precursor to the 3D 

modelling process, the following section presents some modelling aspects relating to 

unsaturated soils and the corresponding associated parameters are presented and 

discussed. This will be followed by development of the FE numerical model and its 

verification through three case studies.    
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3.2 MODELLING ASPECTS FOR UNSATURATED SOILS 

3.2.1. Coupled versus Uncoupled Analysis  

 

Design of stiffened slab foundations on reactive soils is typically a moisture transient, 

unsaturated soil problem (Fredlund et al. 2006). Most of the studies carried out on this 

topic usually adopt uncoupled approaches in which the problem is solved via two phases, 

as follows. The first phase comprises an independent transient seepage analysis to obtain 

the distribution of the degree of saturation and/or soil suction within the soil mass, for a 

certain time increment; the soil movement is then estimated using one of the available 

theories listed in Table 3.1, so that the soil distorted mound can be determined. In the 

second phase, a separate stress-deformation analysis is carried out for the soil structure 

interaction problem, by analysing the footing slab using the pre-calculated distorted soil 

mound obtained from the first phase. Although this approach is generally acceptable, the 

accuracy of the results depends on the duration of the selected time increment. In addition, 

the actual soil distorted mound and the corresponding maximum differential movement 

are greatly affected by the stresses induced by the loaded footing, an aspect ignored in the 

seepage phase. Moreover, the soil in the stress phase is most often assumed to be 

homogeneous; however, unsaturated soil properties are highly nonlinear and depend on 

the moisture variation and the ensuing suction changes. Additionally, unlike in the fully 

coupled flow-deformation analysis, the excess pore water pressure developed due to 

application of the external load cannot be simulated in the uncoupled analysis (Zhang and 

Briaud 2015). Formation of the soil distorted mound underneath the slab foundation in the 

coupled approach directly accounts for the combined effect of the suction evolution and 

the stresses induced by the footing loading. The abovementioned limitations of the 

uncoupled analysis indicate clearly that it oversimplifies the real situation compared with 

the coupled approach, and this compromise can inevitably lead to inaccurate design. To 

circumvent these limitations, this thesis adopts a robust, fully coupled flow-deformation 

transient analysis for simulating the problem of stiffened slab foundations on reactive 

soils.  
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3.2.2. Mechanism of Soil Volume Change 

 

Fredlund et al. (1976) described the volume change constitutive relations of an 

unsaturated, linear, elastic, isotropic s, as follows: 

  

11

1

1

)(
)2(

)(

H

uu
u

EE

u wa

wzy

wx

x

−
+−+−

−
= 


        (3.1) 

 

where:  

ɛx = normal strain in the x -direction;  

E1 = elastic modulus with respect to the change in effective stress )( wu− ;  

1         = Poisson’s ratio with respect to the relative strains in x, y and z directions;  

H1 = elastic modulus with respect to the change in soil suction )( wa uu − ;  

  = total normal stress; 

au  = air pressure; and 

wu  = water pressure.  

 

Similar equations can be written in the y- and z-directions. The soil volumetric strain is 

equal to the sum of the normal strain components, calculated as follows: 

 

)()(. waawtv uuCuC −+−=              (3.2) 

 

where: 

tC  = soil compressibility with respect to the change in effective stresses; and 

aC  = soil compressibility with respect to the change in soil suction.  

 

Equation 3.2 shows that the volume change in unsaturated soils is induced by the soil 

compressibility due to the change in the net stress caused by both loading and suction.  

Because suction within a soil mass results in a volumetric change, it can be simulated 

mechanically in the FE modelling as an equivalent mean effective stress (compressive). 
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Many researchers assume a constant value for the air pressure during flow-deformation 

analysis (e.g. Gay 1993; Wray 1978; Zhang and Briaud 2015), and the same approach is 

adopted in the current study.  

 

It should be noted that most available FE studies on the topic of simulating the volume 

change of expansive soils are based only on the suction and stress variations, with no 

consideration to the soil mineralogy (e.g. Briaud et al. 2010; Li 1996; Wray et al. 2005; 

Zhang and Briaud 2015). However, the influence of the mineralogy of a particular clay 

should be included in any robust analysis, as the swelling potential is a direct function of 

the soil’s mineralogy. For example, clayey soils without highly swelling minerals in the 

form of montmorillonite are of no danger when exposed to a high suction variation. This 

is evident from the volumetric shrinkage strain tests performed by Puppala et al. (2013) 

on clay samples from Texas; these tests showed that a clay with a high content of 

montmorillonite experienced a volumetric shrinkage strains that is twice that experienced 

by a clay of a lower montmorillonite content. In fact, only a few studies accounted for the 

effect of minerals on the volume change of reactive soils, as the main focus of these studies 

was directed to the suction variation and not on the compressibility per se. However, a 

recent study carried out by Pulat et al. (2014) suggests that suction is independent of the 

soil mineralogy and cannot be used alone to accurately  predict the volume change of 

reactive soils.  

 

To account for the effect of suction and mineralogy on the volume change of expansive 

soils, sorption and moisture-swell models are introduced in the FE analyses performed in 

this thesis to relate the volumetric strain with r, the degree of saturation (Williams 1982). 

The sorption model is represented by the soil-water characteristic curve (SWCC), which 

simulates the suction changes within the soil matrix with respect to the change in the 

degree of saturation. The moisture-swell model, on the other hand, defines the volumetric 

swelling-saturation dependency of the soil matrix during the partially saturated flow 

condition, and it requires volumetric strain data with respect to the changes in the degree 

of saturation. The SWCC and moisture-swell models are discussed in detail below. 
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3.2.3. Input Parameters for the Coupled Flow-Deformation Analysis 

 

3.2.3.1 Soil-water characteristic curve (SWCC) 

 
The soil water characteristic curve (SWCC) is one of the primary soil properties required 

for the transient seepage analysis in unsaturated soils. As mentioned earlier, the SWCC 

defines the suction-saturation dependency within the soil matrix. The soil suction may be 

matric or total. The matric suction is the capillary pressure exerted by the soil on its 

surroundings (i.e. ua -uw; where ua is the pore-air pressure and uw is the pore-water 

pressure). The total suction is the sum of the matric suction and osmotic suction (arising 

from the salt content of the soil pore fluid). At high suction values > 1500 kPa, the total 

suction equates the matric suction (Fredlund and Xing 1994). Figure 3.1 shows a typical 

example of a soil-water characteristic curve for a silty soil. In this figure, the air-entry 

value is the soil matric suction in which the air starts to enter the largest pores of the soil. 

The residual water content is the water content below which the extraction of water from 

the soil requires a very high suction change. 

 

 

Figure 3.1:  Typical example of a soil-water characteristic curve for a silty soil 

(Fredlund and Xing 1994). 

 

Numerous empirical equations were proposed in the literature to generate different forms 

of SWCC based on laboratory test results. The following equation suggested by Fredlund  

et al. (1994) is an example:  
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where: 

    = volumetric water content; 

s    = saturated volumetric water content; 

    = soil suction; and  

a, m and n   = empirical fitting parameters. 

 

Figures 3.2a to 3.2c show the effect of changing the empirical parameters (a, m and n) on 

the shape of the SWCC for a soil with a volumetric water content = 0.5 and a saturated 

volumetric water content = 0.5. Fredlund et al. (1994) reported that the parameter (a) 

determines the air entry value, whereas the parameters (m) and (n) control the slope of the 

curve (i.e. the degree of soil diffusion). As mentioned earlier, the SWCC is deemed 

essential for the hydro-mechanical FE numerical modelling as an indirect means to 

account for the clay mineralogy. A representative, idealised SWCC is thus proposed 

(called herein ISWCC) to describe the saturation-suction relationship of unsaturated 

swelling clays; the following section describes the way the ISWCC is constructed.  

 

Based on field suction data taken from the north-east of Adelaide, South Australia, Li 

(1996) found that the surface suction could be assumed to vary in a sinusoidal manner in 

response to the climate cycles, as follows: 

 

( )tntu 2cos0.4),0( +=                                        (3.4) 

 

where: 

u  = surface suction in pico-Farad (pF) [logarithm to the base 10 of the pressure in 

centimetres of water]; 

n = climate frequency (cycle/year); and  

t = time variable (in months).   
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Figure 3.2: Effect of changing fitting parameters (a, m and n) in Equation (3.3) on 

the shape of the SWCC [modified after Fredlund and Xing (1994)]. 
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Equation 3.4 indicates that the SWCC should cover the range of the expected suction 

values between 3.0 and 5.0 pF, which are equivalent to 100 and 100,000 kPa for the dry 

and wet conditions, respectively. Therefore, based on these limits, the fitting parameters 

(a) and (m) are fixed to 1000 and 1.25, respectively, to produce an ISWCC covering the 

required seasonal suction fluctuation range. In fact, the soil aggregation (structure) and 

initial moisture have no influence on the SWCC in the high ranges of suction greater than 

20,000 kPa (Vanapafli et al. 1999). Moreover, suction values less than < 100 kPa are 

considered negligible. For soil surfaces exposed directly to water, Mitchell (1984) 

suggested that the suction value should be 2.75 pF.  

 

The fitting parameter (n) is assumed to be 1.0 in this study. Therefore, ISWCC fitting 

parameters (a), (m) and (n) are chosen to be 1000, 1.25 and 1.0, respectively. These values 

are chosen so that the ISWCC produces the least expected suction of 100 kPa at a 

reasonably high degree of saturation of about 95% and also the maximum expected 

suction of 10,000 kPa at a respectively low degree of saturation of about 30%. The 

proposed ISWCC is compared with field data obtained from five different sites, and the 

comparison is shown Figure 3.3.  

 

Figure 3.3: Idealised soil-water characteristic curve (ISWCC) for empirical 

parameters: a = 1000, m = 1.25 and n = 1. 

[Site 1: Paris Soil (Puppala et al., 2013); Site 2: Houston Soil (Puppala et al., 2013); Site 3: Regina Clay 

(Fredlund et al., 1994); Site 4: Fort Worth Soil (Pupalla et al., 2013); Site 5: Kidd Greek Tailings (Fredlund 

et al., 1994)] 
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It can be seen from Figure 3.3 that the proposed ISWCC reasonably predicts the 

relationship between the degree of saturation and suction for many swelling soils obtained 

from different sites. Consequently the ISWCC shown in Figure 3.3 will be used with 

reasonable accuracy in the cases where site data is not available. It should be noted that, 

in the course of estimating the characteristic surface heave ( sy ), the Australian Standards 

AS2870 (1996; 2011) do not recommend using a definitive SWCC, but rather proposes 

design values of suction changes (maximum of 1.2 pF). However, Mitchell (2008) 

recommends higher values up to 1.8 pF for the suction change in arid regions.  

 

 

3.2.3.2 Moisture-swell model 

The moisture-swell model relates the volumetric swelling of porous soil materials to the 

degree of saturation of the wetting liquid in the partially saturated flow condition. A 

partially saturated condition is postulated when the pore liquid pressure is negative. A 

typical example of a moisture-swell model is represented by the curve shown in Figure 3.4 

in which the moisture-swell strain (
ms

ii ) in any single direction can be calculated with 

reference to the initial saturation, as follows (ABAQUS User's Manual 2014): 

 

( ))()(
3

1 Imsms

ii

ms

ii ssr  −=     (no sum on i)                                (3.5) 

 

where:  

)(sms   = volumetric swelling strain at the current saturation; 

)( Ims s  = volumetric swelling strain at the initial saturation; and  

rii = represents the ratios ( 11r ), ( 22r ) and ( 33r ), which allow for anisotropic 

swelling. 

 

A few moisture-swell curves are found in the literature and an example is shown in 

Figure 3.5, for a very high expansive clay from Soko-Ngawi region in Indonesia. The soil 

used to develop such curves had a liquid limit (LL) = 101%, a plasticity index (PI) = 71.3% 

http://ivt-abaqusdoc.ivt.ntnu.no:2080/v6.11/books/usb/pt05ch25s06abm67.html#cmoistureswell-vol-vs-sat


Chapter 3: Numerical Modelling of the Behaviour of Stiffened Slabs on Reactive Soils using the 

Finite Element Method 

 60   

 

and a montmorillonite mineral content = 49.7%. A modified oedometer apparatus was 

used to develop the curves where the ring supporting the soil samples was replaced by a 

calibrated rubber to allow for the soil lateral swell. The soil samples were allowed to swell 

with no applied seating loads. More details about the tests conducted and the reading 

procedures can be found in Sudjianto et al. (2011).  

 

 

Figure 3.4: A typical example of the moisture-swell model implemented in 

ABAQUS User's Manual (2014) . 

 

 

Figure 3.5: Moisture-swell curves for a clay soil obtained from Soko-Ngawi region 

in Indonesia (Sudjianto et al. 2011). 
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Tripathy et al. (2002) carried out a study on cyclic swelling and shrinkage paths for 

compacted expansive soil specimens, and Figure 3.6 shows the moisture-swell curves 

obtained from the study. The results show the following features: 

  
(i) The swell-shrink path is reversible once the specimen reaches an equilibrium 

condition where the vertical deformation during swelling and shrinkage are equal. 

This generally occurred after about four swell–shrink cycles;  

 
(ii) The swell–shrink path represents a curve of an S-shape (i.e. three phases) for soil 

specimens subjected to cycles of swelling and full shrinkage. For specimens 

subjected to cycles of full swelling and partial shrinkage, the path comprises only 

two phases (i.e. a curvilinear phase and a linear normal phase); and  

 
(iii) Almost 80% of the total volumetric strain occurred in the linear portion of the S-

shape curve. The linear portion is found within a degree of saturation that ranges 

between 50–80%. It should be noted that the soil vertical deformation shown in 

Figure 3.6 is relatively high, since the readings were obtained from a normal 

oedometer apparatus.  

 

Figure 3.6: Moisture-swell curves developed by Tripathy et al. (2002). 

 

Kodikara and Choi (2006) showed that the relationship between the volumetric shrinkage 

or swell strain ( shrinkswellvol /, ) and the reduction in the compaction moisture content (Δw) 
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observed during shrinkage tests follow a linear correlation that is valid for slurry and 

compacted clayey specimens. This relationship can be expressed as follows (Kodikara and 

Choi 2006):  

 

, /
w

vol swell shrink
 =                      (3.6) 

 

where: (α) is the volumetric swell/shrinkage coefficient. The value of (α) is reported as 

0.7 and 0.6 for the case of swelling and shrinkage, respectively. In terms of the degree of 

saturation for highly plastic clays, these values are 0.26 and 0.24, respectively. The results 

obtained by Tripathy et al. (2002) show a value of (α) of about 0.4 for both the swell and 

shrinkage volumetric strains, in terms of the degree of saturation. On the other hand, Al-

Shamrani and Dhowian  (2002) show that (α) = 0.18 from the triaxial compression test, 

which corresponds to a value of 0.5 for the oedometer test. In the current research, (α) = 

0.15 is used, which is close to the value reported by Al-Shamrani  and Dhowian (2002), 

for the linear section of the moisture-swell curve.    

 

Chen (1988) reported that very dry clays having a moisture content less than 15% can 

absorb moisture of as high as 35%, resulting in swelling that can cause damages to 

structures. On the other hand, a moisture content of more than 30% in a clay indicates that 

most of the swelling already took place. Thakur et al. (2005) carried out volumetric strain 

oedometer tests on montmorillonite and bentonite mineral samples at different 

compaction water contents; the maximum potential volumetric strain of reported was 

about 25%. Al-Shamrani and Dhowian (2002) showed that field measurements of surface 

heave are best predicted by data obtained from the triaxial compression test; they reported 

that the actual surface heave is about one-third of that obtained from the traditional 

oedometer test. From the facts above,  a maximum volumetric strain of 8 % is considered 

in the present research, which is approximately equivalent to one-third of the maximum 

free swell value obtained by Thakur et al. (2005) for the maximum range he measured for 

swelling clays.  
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By integrating the range of parameters discussed above, an idealised moisture-swell curve 

(IMSC) can be constructed, in which the full swelling takes place at a water content of say 

30%, following an S-shape curve as obtained by Tripathy et al. (2002). For a highly plastic 

clay of a porosity ranging from 0.4 to 0.6, the degree of saturation corresponding to a 30% 

moisture content is about 90%. Therefore, the moisture-swell function can be constructed 

to satisfy 100% swelling at a degree of saturation of about 90%. The slope of the linear 

portion of the S-shape curve can be considered to be 0.15, as described earlier, and the 

maximum volumetric swell strain can be limited to 8%. The constructed IMSC is shown 

in Figure 3.7, which also presents the curve prepared on Soko-Ngawi region clay for 

comparison, and a good agreement is evinced.  

 

Figure 3.7: Idealised moisture-swell curve (IMSC) of the current study. 

 

It should be noted that the original data of the volumetric strain in Figure 7 for the Soko-

Ngawi clay (measured using odemeter tests) are divided by 3.0 to account for the 

equivalent triaxial test data, as recommended by Al-Shamrani and Dhowian (2002). It 

should also be noted that the IMSC shown in Figure 3.7 is representative of unsaturated 

clays with high contents of montmorillonite. Other moisture-swell curves can be 

constructed for clays having less montmorillonite minerals in the same manner, but with 

different values of the maximum expected volumetric strains to be used for better surface 

heave simulation. This means that, in order to predict the surface heave for any site, an 

individual moisture-swell curve for this specific site should be constructed.  
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3.2.3.3 Soil permeability and flow duration 

Soil permeability is an important parameter in the calculation of seepage and, in turn, 

formation of the soil distorted surface (i.e. the soil mound). In the coupled flow-

deformation analysis, the partial differential equation governing the seepage flow of 

unsaturated soils is calculated as follows (Fredlund and Rahardjo 1993):  
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where:  

h  = total pressure head; 

xk   = soil permeability in the x-direction; 

yk   = soil permeability in the y-direction;  

w   = unit weight of water; and 

2

wm   = slope of the soil-water characteristic curve (SWCC).  

 

Unlike the constant permeability premise used in saturated soils, the permeability of 

unsaturated soils shown in Equation 3.7 is not constant but dependant on the degree of 

saturation or soil suction (Fredlund and Rahardjo 1993; Richards 1967). According to 

Forchheimer (1901), the permeability of unsaturated soils is dependent on the fluid flow 

velocity, and can be calculated as follows:  

 



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



−
==

])/[( gxu

q
kkk w

su



         (3.8) 

 

where: 

uk   = permeability of unsaturated soils;  

k   = permeability of fully saturated soils; 

sk   = dependence factor of permeability on the saturation; 
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q   = volumetric flow rate of the wetting liquid per unit area of the soil;  

w   = unit weight of the wetting liquid; 

xu  /  = change in pore water pressure with the unit length in x-direction; 

ρ  = density of fluid; and 

g  = magnitude of gravitational acceleration. 

 

At low flow velocity, as in the case of unsaturated soils, the term (ρg) in Equation 3.8 

(known as the Forchheimer’s term) approaches zero, and the permeability function is thus 

reduced to: 

 



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
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==
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kkk w

su


          (3.9) 

 

Mitchell et al. (1965) proposed that dependence factor of permeability (ks) on the degree 

of saturation (S) can be calculated as follows: 

 

3Sk s =             (3.10) 

 

3.2.3.4 Stiffness of soil mound 

The stiffness of the soil mound influences the soil-structure interaction between the soil 

and the slab footing at the contact surface. The lower the soil mound stiffness (i.e. higher 

compressibility) the more ability of the footing to punch through the soil, and vice versa. 

The most frequently used soil-structure interaction model that represents the soil mound 

stiffness is the Winkler foundation model. However, this model has a major shortcoming 

in that it accounts only for the normal stiffness of the soil (i.e. the form of vertical springs), 

with no consideration to the lateral friction (which is inevitably mobilised) between the 

soil and the footing. Another problem associated with this model is that the springs support 

both compressive and tensile stresses, and this does not allow for the expected separation 

that should occur under tension between the soil and the footing (as in the case of the slab 

foundations on expansive soils under different edge movement scenarios). One way to 
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circumvent this limitation is to adopt an iterative procedure for the simulation of the 

separation distance that may develop between the footing and the supporting soil mound. 

This can be achieved (for example) by using the elastic half-space foundation model, 

which is more advanced than Winkler’s model for the soil-structure interaction problems. 

However, this model is limited to soil mounds with a constant stiffness profile over depth. 

But in reality, the soil modulus is greatly affected by both the applied stresses (from the 

footing) and the evolving matric suction (Zhang and Briaud 2015). Contact elements is 

another advanced approach that can be used successfully to simulate the complex soil-

structure interaction problems. This approach is used in this research to simulate the soil-

structure interaction between the soil mound and stiffened slab foundation. The approach 

allows for the soil-structure separation under tensile stresses and can simulate both the 

vertical support and lateral friction. Penetration of the footing slab into swelling soil can 

also be simulated with this approach.  

 

According to the Australian Standards AS2870 (2011), the maximum design value of the 

mound stiffness (Ks) is 100q, where (q) is the total building load force divided by the area 

of slab foundation, with a minimum value equal to 1,000 kPa. For shrinking soils, being 

dry and hard, the Australian Standards proposes a minimum value of 5,000 kPa for Ks. In 

light of this recommendation, the Ks values assumed in the current study are 5,000 kPa 

for the edge drop and 1,000 kPa for the edge lift. The footing-soil separation is allowed 

under tensile stresses and the friction between the soil and footing is simulated using a 

coefficient of friction equal to 0.35.  

 

3.2.3.5 Soil modulus and Poisson’s ratio 

The stress-strain relationship of an expansive soil is nonlinear  and highly dependent on 

the soil suction (Richards and Gordon 1972). As expected, triaxial compression tests 

carried out on Black Earth expansive clay from Australia indicated that the both the soil 

strength and modulus (E) are proportional to the soil suction, as shown in Figure 3.8. In 

fact, the soil modulus (E) has a significant impact on the amount of surface heave in FE 

numerical modelling, since the suction change is simulated as a change in the mean 

effective stresses within the soil mass, producing vertical strains as described in 
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Section 3.2.2.the suction has a dual effect, as it can both increase/decrease the soil 

modulus and also causes compressive/extensional volumetric strain in a complex 

constitutive manner. The effect of the in-situ confining pressure on (E) is also important 

in foundation problems involving soil-structure interaction. However, the effect of the in-

situ confining pressure on (E) is usually marginal compared with the effect of soil suction 

resulting from a reduced degree of saturation, as experimentally confirmed by Hangge et 

al. (2015). The concept of considering the reliance of (E) on the soil suction for reactive 

soils and neglecting the effect of the overburden confining pressure was previously 

adopted by many researches (e.g. Briaud et al. 2016; Li 1996; Li et al. 2014; Wray et al. 

2005; Zhang and Briaud 2015). As an additional confirmation on this matter, a case study 

discussed later in Section 3.3.1 is modelled, with and without the effect of the confining 

pressure on (E), and the difference is found to be relatively small (refer to Case study No 

3). Consequently, in this thesis, it is decided to consider only the effect of the soil suction 

on (E) and omit the effect of the confining pressure. The user-defined subroutine 

(USDFLD) is specifically developed to express the soil modulus – suction dependency 

implemented in the ABAQUS models constructed in this thesis. In this subroutine, the 

soil modulus, as a material property, is related to the soil suction (negative pore water 

pressure) through the dependency relationship shown in Table 3.2, based on the study 

reported by Li (1996). The negative pore water pressure represents the output of the 

equilibrium phase of the combined stages of the initial moisture condition and water 

precipitation event. The subroutine is generated using Intel Visual Fortran, and a copy is 

provided in Appendix-A.  

 

Figure 3.8: Variation of stress-strain curves of black earth clay with suction in 

triaxial compression test (Li et al. 1992). 
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Table 3.2: Soil modulus-suction dependency (Li 1996). 

Soil modulus, E 

(MPa) 

Soil suction, u  

(pF) (kPa) 

11 3.0 100 

20 3.4 250 

30 3.8 650 

40 4.2 1,600 

50 4.6 3,900 

 

By definition, Poisson’s ratio (μ) contributes to the volumetric strain in unsaturated soils as 

shown earlier in Equation 3.1. The effect of μ on the deflection of footings was reported to 

be negligible by some researchers (e.g. Pidgeon 1980). However, Li (1995) opposed this 

assumption and proved through FE analyses that the vertical displacement of slab 

foundations increases with higher values of μ. He attributed this to the fact that, as the value 

of μ increases, a larger proportion of the otherwise lateral swelling strain (which is 

suppressed by the adjacent soil mass) is transferred into vertical swelling strain, increasing 

the slab foundation movement in the vertical direction (i.e. in a 1-D manner). It is the view 

of the author that, although the value of μ has a direct impact on the absolute deformation 

of footings, its effect on the differential mound or footing movement is negligible. Some 

values of μ found in the literature for unsaturated clays are given in Table 3.3; a constant 

value of μ = 0.3 is reasonably assumed for the swelling soil modelled in this research.  

 
Table 3.3: Poisson’s ratio suggested by different researchers for unsaturated clays. 

Study Poisson’s ratio (μ) 

Wallace and Lytton (1992) 0.20-0.35 

Linveh et al. (1973) 0.25 

Richards (1979) 0.40 

Poulous (1984) 0.30 

Wray (1978) and Pitt (1982) 0.40 

Zhang et al.(2015) 0.40 
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3.3 FINITE ELEMENT MODELLING OF STIFFENED SLAB FOUNDATIONS 

 
It is critically prudent to ensure that the process of finite element (FE) numerical modelling 

adopted in this thesis is capable of providing reliable outcomes. To this end, the proposed 

advanced FE modelling performed in this thesis is verified against three different stages 

of case studies. Firstly, the 3D FE modelling is applied to a case study involving field 

observations of a soil mound formation for a flexible cover membrane. This stage of 

modelling verification is meant to confirm the capability of the adopted hydro-mechanical 

approach used in the FE modelling to generate realistic soil distorted mound shapes. 

Secondly, the efficiency of the FE modelling in simulating the water diffusion and suction 

changes through the soil medium is verified against another case study of corresponding 

field observations. Thirdly, the FE modelling is applied to a hypothetical case study of a 

stiffened slab foundation on reactive soil, and the results are compared with those obtained 

from Mitchell’s method.  

 

As mentioned earlier, FE models developed in this thesis are carried out using the 

commercial software package ABAQUS. This particular software is used due to its ability 

to conduct a coupled flow-deformation analysis using a hydro-mechanical moisture-swell 

model capable of relating the soil reactivity to its degree of saturation and the ensuing 

suction. In this way, the soil distorted mound (a fundamental factor in the design of 

stiffened slab foundations on reactive soils) is intuitively calculated rather than pre-

assumed, a weakness intrinsic to most current available design methods. The calculation 

of the soil distorted mound in the current FE modelling is based on accurate moisture 

contours initiated from a transient seepage analysis. The moisture contours generate the 

corresponding water pore pressure (following the soil-water characteristic curve utilised 

in the analysis), thereby the volumetric strain simulating the soil heave or shrinkage is 

readily generated. 

 

3.3.1. Case Study 1: Formation of a Mound for a Soil with a Flexible Cover Membrane  

In this case study, a 3D FE model is developed and verified against field measurements 

of soil mound formation for a flexible cover membrane resting on an expansive soil in 

Maryland, Near Newcastle, Australia. This case study involves a field monitoring program 
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carried out by Fityus et al. (1999) for the soil movement over a period of 5 years. 

Figure 3.9 shows the field test configuration and distribution of the monitored points 

located at the edge and centre of the flexible cover membrane. Similar to the site set-up, a 

peripheral beam of 300 mm × 500 mm is generated in the model and a load equivalent to 

100 mm of sand is applied on top of the surface of the membrane. The study did not reveal 

any data for the average seasonal rainfall and evaporation at the site; therefore, these 

missing data are obtained from the Bureau of Meteorology of Australia 

(www.bom.gov.au) and shown in Figure 3.10.  The geotechnical profile of the site is 

shown in Figure 3.11. The soil profile is comprised of 250-350 mm of silty topsoil 

underlain by high plasticity clay to a depth of approximately 1.0 m, followed by medium 

plasticity silty clay to a depth of approximately 2.3 m where highly to extremely 

weathered siltstone is encountered. There is no water table up to 5 m depth. The site is 

classified as highly expansive (H-class), following the Australian Standards AS 2870 

(1996), with a characteristic surface heave (ys) that ranges from 40 mm to 70 mm. In the 

3D FE model, the active zone is taken to be 2.5 m, based on the soil stratification. As 

mentioned previously, the numerical analysis involves invoking the developed user 

defined subroutine USDFLD to achieve the soil modulus and suction dependency. 

Figure 3.12 shows variation of the suction profile and moisture content over the 

monitoring period.  

 

Figure 3.9: Plan and cross section of the monitored flexible cover membrane in 

Maryland, Near Newcastle, Australia (Fityus et al. 1999). 
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Figure 3.10: Rainfall and evaporation rates of Newcastle, Australia 

(www.bom.gov.au). 

 

 

Figure 3.11: Geotechnical profile of the field site in Maryland, Near Newcastle, 

Australia (Fityus et al. 1999). 
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Figure 3.12: Profile of the total soil suction and water content of the field site in 

Maryland, Near Newcastle, Australia (Fityus et al. 1999).  

 

There is no SWCC available in the geotechnical data, but based on the measured suction 

and gravitational water content data shown in Figure 3.12, some points in the SWCC could 

be predicted by considering a soil specific gravity (Gs) of 2.7 and a soil void ratio (e) of 

1.2. The ISWCC proposed in Section 3.2.3.1 is then found to match the measured data 

fairly well, as shown in Figure 3.13, and is thus used in the FE analysis.  

 

The moisture-swell information are also not available in the geotechnical data and the 

IMSC proposed in Section 3.2.3.2 with a maximum volumetric strain equal to 3% is thus 

used, as shown in Figure 3.14. For better prediction of the surface movement, the IMSC 

is adjusted to obtain a maximum volumetric strain at saturation values between 40-70 %. 

 

The initial condition of the saturation is set according to the data obtained from the field 

tests, with a uniform suction over the whole depth of the soil mass equal to 4.70 pF and a 

degree of saturation of 40% following the ISWCC. The simulation is carried out in two 

steps as follows. Firstly, a geostatic analysis is performed in order to generate the in-situ 

stresses and nullify the soil deformation caused by the initial suction condition. Secondly, 

a transient flow-deformation analysis is conducted by applying a time dependent surface 
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load of precipitation and evaporation following the amplitude curve presented in Figure 

3.10, repeated for a period of 5 years. It should be noted that the precipitation value is 

reduced to 30% owing to the presence of grass and trees in the site, which usually absorb 

70% of the rainfall. A similar approach was adopted by Zhang et al. (2015) who estimated 

that the precipitation is usually absorbed by plants. A linear elastic model is used, since 

there is no need to consider plasticity in such analysis when the focus is on the mound 

formation. The soil mass is simulated using an 8-node brick, trilinear displacement, 

trilinear pore pressure element. Figure 3.15 shows a snapshot of the FE mesh used in this 

case study, including the soil mass and the ground perimeter beam; a double symmetry 

condition is used in the model (i.e. one-quarter of the model is used).   

 

Figure 3.13: Proposed ISWCC used in Case Study (1). 
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Figure 3.14: Idealised moisture-swell curve used in Case Study (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Snapshot of the finite element mesh and area of moisture change 

around the flexible cover membrane of Case Study (1).  
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In simulating the seepage numerically, the FE size, model boundaries and time increment 

have to be selected carefully to ensure accuracy of the results. Particularly critical is the 

choice of the initial time increment in the transient partially saturated flow problem to 

avoid spurious solution oscillations. The criterion used for a minimum usable time 

increment in the partial-saturation conditions is expressed as follows:  

 

( )2

6


du

ds

kk

n
t

s

o
                                       (3.11) 

 

where:  

   = specific weight of the wetting liquid; 

on   = initial porosity of the soil; 

k  = permeability of the fully saturated soil; 

ks  = permeability-saturation influence factor;  

ds/du = rate of change of saturation with respect to pore pressure as defined in 

the suction profile of the soil; and 

Δℓ  = typical element dimension. 

 

In general, the size of the model (total soil mass) should be selected so that the boundary 

conditions have minimal effects on the output results. In this case study, the soil mass plan 

dimensions is selected with a clear length of 5.0 m away from each edge of the footing. 

The boundary conditions are set so that the bottom of the soil mass is restrained against 

the vertical movement, while the sides are restrained horizontally, allowing only for 

vertical strains. Since swelling can cause significant deformation with respect to the 

element size, geometric nonlinearity is adopted to account for the effect of large strains 

on the stiffness matrix formulation; this way the stiffness matrix is adjusted at every time 

increment when large deformation occurs with respect to the tolerance limits. Interaction 

properties are defined between the perimeter ground beams and surrounding soil, allowing 

for a friction contact with a penalty friction coefficient equal to 0.3.  
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Figure 3.16 shows a comparison between the field observations and FE results, for the 

movement of two points: one at the centre and another at the edge. It can be seen that the 

FE results are in relatively good agreement with the field observations. The two selected 

points experience continuous heave over time, with low tendency to settle even during the 

dry season, but the points show less tendency to heave towards the end of the observation 

period. It can also be seen that the point at the centre, being the least affected by the 

moisture change, suffered the least heave compared to that at the edge, which one would 

expect. This is attributed to the fact that the water propagates with time towards the centre 

of the membrane, and the heave at the centre approaches that of the edge at the end of the 

5-year period. The difference in the heave values between the field observations and FE 

results may be due to the actual precipitation rates which may differ from the average rate 

used in the FE analysis.  

 

Figure 3.16: FE results showing movement with time for some selected points on 

the flexible cover membrane of Case Study (1). 

 

Figures 3.17 shows the progress of the measured mound formation over the 5-year 

observation period, whereas Figure 3.18 shows the predicted mound formation obtained 
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from the FE analysis. It can be seen from Figure 3.17 that the ground outside the 

membrane undergoes repeated shrinkage and heave cycles due to seasonal variations. On 

the other hand, the area beneath the cover incurred consistent heave until the initial dry 

soil becomes wet and approaches its equilibrium water content. Figure 3.18 shows that 

the FE results are in general agreement with the field observations; the mound shapes have 

a prominent dish shape under all climate conditions. In the FE model, the water 

accumulated beneath the cover membrane cause progressive heave during the course of 

the 5-year observation period. Numerically, the mound profile shows a drop at the location 

of the perimeter beams (Figure 3.18). According to Fityus et al. (1999), the reduction in 

the swelling at the beam location is due to the reduction of the thickness of the welling 

soil mass by the depth of the perimeter beams, resulting in a reduction of the final surface 

heave at these locations.  

 

The FE model reveals that the differential mound movement between the centre and edges 

continuously decreases due to the progressive soil wetting beneath the cover. The points 

located outside the cover membrane are exposed and therefore experience cycles of heave 

and shrinkage; however, their overall dominant movement is heave (Figures 3.17 and 

3.18). The discrepancies between the FE results and field observations for the points 

located away from the cover in terms of the higher tendency to shrinkage in the dry season 

for the field data is most probably due to the presence of trees in the site. This greatly 

increases the suction and causes much higher shrinkage in the uncovered area than what 

is achieved using the evaporation only in the FE analysis; this phenomenon was discussed 

in detail in Chapter 2 (Section 2.2.2). In fact, the large settlements in the open areas cannot 

be achieved without the transpiration of the tree roots, which is not considered in the FE 

model.   
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Figure 3.17: Observed mound formation with time for the flexible cover membrane 

of Case Study (1) (redrawn from Fityus et al., 1999). 

 

 

Figure 3.18: Variation of FE predicted mound formation with time for the flexible 

cover membrane of Case Study (1).  
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3.3.2. Case Study 2: Suction Simulation  

In this section, the 3D model developed in this chapter is used to investigate the evolution 

of soil diffusion and suction variation with depth in response to the surface suction change, 

and the results are verified against field observations for a case study in Amarillo site, 

Texas. Description of the site conditions is provided by Wray (1990). The different soil 

strata identified in the site are shown in Figure 3.19. The third light grey silty clay stratum 

is underlain by another very similar light grey clay that extends to at least 27.5 ft (9.1 m) 

depth; this stratum is slightly sandy and less plastic. The active zone, below which no 

suction change is observed, is reported to be 13 ft (4.3 m). The mean values determined 

from multiple Atterberg limits tests, percent passing sieve No. 200, and the clay content 

for the site (determined by the hydrometer test) are reported for each foot in Table 3.4. 

The SWCC shown in Figure 3.20 is used in the FE modelling for this site. The SWCC is 

developed based on best fit for the measured data. Based on the site specific data listed in 

Table 3.4, the soil in this site is not highly reactive. Therefore, the IMSC curve is used for 

a maximum volumetric strain of 1.5%, as shown in Figure 3.21. The site has a covered 

area of 11.0 m × 15.8 m, and the model dimensions are extended to a distance of 5.0 m 

outside the cover membrane. The suction change over the 5-year period using Equation 

3.4 is applied around the covered area, with an initial uniform suction of 4.5 pF. The 

double symmetry is again used in the FE model. Figure 3.22 shows the 3D FE model after 

highlighting the area of the surface suction change.  

 

Figure 3.19: Stratigraphy and soil profile at Amarillo site, Texas (Wray 1990). 
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Table 3.4: Soil Properties at various depths at Amarillo site, Texas (Wray 1990).

 

 

 

 

Figure 3.20: SWCC used in the FE modelling for Amarillo site, Texas, of Case 

Study (2). 

 

 

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1,000 10,000 100,000 1,000,000

D
eg

re
e 

o
f 

sa
tu

ra
ti

o
n

 (
%

)

Suction, u (kPa)

Measured

Proposed



Chapter 3: Numerical Modelling of the Behaviour of Stiffened Slabs on Reactive Soils using the 

Finite Element Method 

 81   

 

 

Figure 3.21: IMSC used in the FE modelling for Amarillo site, Texas, of Case 

Study (2).  

 

 

Figure 3.22: FE mesh and boundary of surface suction change used for modelling 

Amarillo site, Texas, of Case Study (2). 
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Figures 3.23 and 3.24 present results of the predicted and measured suction variation with 

time for points located at 0.9 m outside the covered area and 3.0 m inside the covered area, 

along the long dimension of the cover membrane, at depths of 0.9 m (points A and C) and 

2.1 m (points B and D), respectively (shown in the model of Figure 3.22). In general, the 

predicted values of the suction change with time agree reasonably well with the measured 

data (the suction change diminishes over time and with depth), despite the fact that the 

measured values are slightly higher, presumably due to the presence of grass and cracks 

in the site. It should be noted that grass evapotranspiration increases the suction while 

cracks provide easy access for the surface water into the soil, hence, affecting the amount 

of diffusion. These factors contribute to the difference in the results between measured 

and predicted suction values at the points investigated.  

 

Figure 3.23: Measured versus FE predicted suction change at Amarillo site, Texas, 

for Case Study (2), for points located at 0.9 m outside the covered area at depths: 

(a) 0.9 m; and (b) 2.10 m. 
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Figure 3.24: Measured versus FE predicted suction change at Amarillo site, Texas, 

of Case Study (2), for point located at 3.0 m inside the covered area at depths: (a) 

0.9 m; and (b) 2.10 m. 
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measured data. Again, this difference may be due to the presence of grass around the 

cover, which absorbs the excess water from the seasonal rainfall, thereby, preventing the 

moisture to accumulate below the cover and keeping the soil dry with higher suction 

values and less movement. However, despite this discrepancy, the general trend of 

movement outside and inside the cover is almost similar, showing a continuous tendency 

of heave and suction reduction over time. 

 

 

 

Figure 3.25: Measured versus FE predicted surface movements at Amarillo site, 

Texas, of Case Study (2), for points located: (a) 1.8 m outside the covered area 

along the longitudinal axis; (b) 1.8 m outside the covered area along the short axis; 

and (c) 0.6 m from the cover centre along the longitudinal axis.  
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3.3.3    Case Study 3: Hypothetical Stiffened Slab Foundation 

 

In this section, the efficacy of the FE coupled flow-deformation analysis in simulating the 

behaviour of stiffened slab foundations for light-weight structures on expansive soils is 

investigated. To this end, the results of the FE modelling are compared with those obtained 

using Mitchell’s method, which is one of the most commonly used design methods 

currently adopted by the Australian Standards AS2870 (2011). Since Mitchell’s method 

adopts 2D analysis, a 2D FE model is firstly generated for verification with Mitchell’s 

method, then a more realistic 3D FE model is developed for the purpose of comparison 

with the 2D analysis. 

 

A hypothetical slab stiffened foundation of dimensions (16 m × 8 m) is assumed to support 

an articulated masonry veneer of a single storey building. The footing slab is 100 mm 

thick and stiffened with ground beams spaced at 4 m  in each direction (i.e. a total of 5 

beams having 8 m span and 3 beams having 16 m span). Each beam has a width of 300 

mm; the question is to determine the depth that can sustain the internal forces induced by 

the volumetric change resulting from the moisture variation. The footing slab is resting on 

4.0 m highly reactive soil of class H-D, following the classification of the Australian 

Standards AS 2870 (2011), with an expected surface characteristic heave (ys) of 70 mm. 

The footing slab is subjected to a uniform load comprising the finishing and long term live 

loads of 1.5 kPa. An edge load of 6.0 kN/m is applied on the perimeter, simulating the 

combined loads from the edge walls and roof. For the articulated masonry veneer, the 

Australian Standards AS 2870 (2011) allow for a maximum footing differential movement 

equal to L/400 ≤ 30 mm (where: L is the footing dimension in the direction under 

consideration). The differential mound movement (ym) is considered in accordance with 

the Australian Standards AS2870 (2011) to be 70% of the characteristic surface heave (i.e. 

ym = 0.7 ys = 49 mm). A normal stiffness values of 1,000 kPa and 5,000 kPa are assumed 

to simulate the soil mound under the edge lift and edge drop, respectively, following the 

recommendation of the Australian Standards AS2870 (2011).  

 

The footing stiffness (EI) required to limit the differential movement according to the 

standards is first calculated using Mitchell’s method. By considering a concrete elastic 
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modulus = 15 GPa, the required beam depth of the stiffened footing is calculated. In the 

design of the stiffening beam for the case of edge heave (i.e. slab in compression), a T-

section is considered with an equivalent flange width = 0.1 L, whereas for the case of edge 

settlement (i.e. slab in tension) a rectangular section for the stiffened beam is considered. 

The calculation is carried out for the edge lift and edge drop for the footing two spans (i.e. 

16.0 m and 8.0 m) separately. Table 3.5 summarises the required equivalent footing slab 

thickness (having same inertia as the stiffened slab) calculated from Mitchell’s method. 

 

Table 3.5: Summary results of Mitchell’s method, Case Study (3). 

Heave scenario 
Footing equivalent rectangular thickness (m) 

Long span Short span 

Edge lift 0.350 0.175 

Edge drop 0.270 0.220 

 

The same footing slab stiffness obtained from Mitchell’s method are then used in the 2D 

FE model. In real design, the maximum inertia would be used; however, in this study the 

same slab inertia calculated by Mitchell’s method for each heaving scenario is utilised for 

the purpose of comparison with the FE modelling. A linear elastic material is used for 

both the footing slab and the swelling clay layer, since the focus is on the volumetric 

response due to swelling (refer to Table 3.6). This assumption is reasonable, because light-

weight structures are expected to produce stresses that are relatively low anyway. The 

permeability of the clay layer and rate of precipitation are assumed to be 1.0 × 10-9 m/s 

and 3.8 × 10-8 m/s (about 100 mm/month), respectively.  
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Table 3.6: Finite element modelling parameters of Case Study (3). 

Material Element type of FE mesh 
Elastic modulus, E  

(GPa) 

Poisson’s 

ratio, µ 

Swelling 

Clay 

C3D8P: An 8-node brick, 

trilinear displacement, trilinear 

pore pressure element 

Following user 

subroutine USDFLD 

(refer to Appendix A) 

0.30 

Footing 

Slab 

S4R: a 4-node doubly curved 

shell element 
15 0.16 

 

The initial void ratio of the swelling clay is taken as 1.2. The idealised moisture-swell 

curve (IMSC) shown earlier in Figure 3.7 is used in the FE modelling. The flow period 

for the edge lift and the evaporation period for the edge drop are imposed to achieve the 

target differential mound movement (i.e. my  = 49 mm), based on the pre-calculated slab 

thickness using Mitchell’s method. The boundary conditions of the FE model are set to 

restrict the vertical displacement at the bottom of the model, while no lateral movement is 

allowed at the vertical sides. The initial saturation and suction conditions are set following 

the idealised soil-water characteristic curve (ISWCC) shown earlier in Figure 3.3, so that 

the initial conditions of the edge lift are set to be dry (i.e. saturation = 40 % and uniform 

suction = 4.69 pF) over the depth of the soil mass, whereas these conditions for the edge 

drop are set to be wet (i.e. saturation = 95% and uniform suction = 3.0 pF). 

 

The time increment is chosen to allow for monitoring the mound formation and capturing 

the time required to achieve the target differential mound movement (i.e. ym = 49 mm). 

The geometric nonlinearity is considered as explained in the previous sections. The 

modelling is performed in 3 steps. In the first step, a geostatic analysis is carried out as in 

the previous validation examples (Case Study 2) to eliminate the deformation of the initial 

suction and generate in-situ stresses. In the second step, the loading of the slab foundation 

is applied, including all uniform loads, edge line loads and self-weight. In the third step, 

the flow or evaporation inducing the edge lift or edge drop is activated. It should be noted 

that the self-weight of the slab foundation, which is simulated as a plate of uniform 

thickness, is adjusted to consider the actual self-weight of an equivalent stiffened slab 
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having the same inertia. Figures 3.26 and 3.27 show the deformed shape of the 2D FE 

model in the long and short footing slab dimensions under the edge lift and edge drop 

scenarios, respectively.  

 

 

 

 

Figure 3.26: 2D FE model of Case Study (3) showing the soil and footing 

movements in the long span: (a) edge lift scenario; and (b) edge drop scenario 

(legend values in metres). 
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Figure 3.27: 2D FE model of Case Study (3) showing the soil and footing 

movements in the short span: (a) edge lift scenario; and (b) edge drop scenario 

(legend values in metres). 

 

In reality, the mound shape forms a complicated three-dimensional surface (Pile 1984; 

Walsh and Walsh 1986). This particular feature highlights the power of the FE modelling 

in reproducing and carrying out a more realistic coupled 3D flow-deformation and stress 

analysis. This feature can overcome the 2D major assumption adopted by most existing 

methods, eliminating the need to undertake the analysis of the footing slab in each 

direction separately, which invariably violates the deformation compatibility of the soil 
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and footing. For instance, if a rectangular slab is analysed using 2D simulation, the 

analysis would consider different values for the maximum differential mound movement 

(ym) in each direction, being the difference between the soil beneath the centre of the 

footing and the soil beneath the edge of the footing. However, under the more realistic 3D 

analysis, the footing would be analysed as a plate resting on a 3D mound having a 

maximum differential mound movement (ym) as being the difference between the soil 

beneath the centre of the footing and the soil beneath the corner of the footing. 

Consequently, for the deformation compatibility, the maximum differential mound 

movement between the centre and edges (either in the long or short span) would be much 

less than the target (ym) used in the 2D analysis and accordingly the required inertia that 

limits the deformation would thus be reduced.  

 

In the 3D FE analysis, the same case study used in the 2D FE analysis, with the same 

maximum differential mound movement, is considered. However, the maximum 

differential mound movement is defined to be the difference in movement between the 

soil beneath the centre of the footing and the soil beneath the corner of the footing, as 

mentioned above. Figure 3.28 shows a snapshot of the 3D FE model.   

 

Figure 3.28: 3D FE model used of Case Study (3). 

 

Under both the edge lift and edge drop scenarios, the maximum allowable footing 

movement (i.e. L/400 ≤ 30 mm) is achieved by using a slab foundation of uniform 

thickness = 200 mm. Compared with the maximum thickness obtained from the 2D FE 

analysis (i.e. 350 mm), the 200 mm slab thickness obtained from the 3D represents a 



Chapter 3: Numerical Modelling of the Behaviour of Stiffened Slabs on Reactive Soils using the 

Finite Element Method 

 91   

 

considerable reduction in the slab foundation thickness for the loading conditions used. 

Figure 3.29 demonstrates the deformed shapes of the soil and footing in the 3D FE 

analysis. 

 

(a) 

 

(b) 

Figure 3.29: Deformed shapes of 3D FE model of Case Study (3): (a) edge drop 

scenario; (b) edge heave scenario (legend values in metres). 
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A comparison is made in Figures 3.30-3.37 between the output obtained from Mitchell’s 

method and the 2D and 3D FE analyses for a 1.0 m strip parallel to the flow direction, for 

both the edge lift and edge drop scenarios. It can be seen from all the figures that the 

overall results of the 2D FE analysis and Mitchell’s method agree fairly well. Under the 

edge lift scenario, in the long footing span, the soil mound is flatter in the 2D FE analysis 

than in Mitchell’s method, while in the short footing span both methods produced similar 

soil movements. The footing slab thicknesses calculated by Mitchell’s method showed 

similar footing deformation to that of the 2D FE analysis. The bending moment obtained 

from Mitchell’s method in the long direction slightly exceeds that obtained from the 2D 

FE due to the difference in the soil mound, which provided less support to the footing in 

Mitchell’s method. Similar to the bending moment, the shear forces of the 2D FE analysis 

are very close to those obtained from Mitchell’s method, for both the edge lift and edge 

drop scenarios. 

 

The soil mound differential movements obtained from the 3D FE analysis are significantly 

less than those obtained from both the 2D FE analysis and Mitchell’s method. This is 

attributed to the way the 3D FE analysis handles the differential movement between the 

centre and edges in each case, as mentioned above. In other words, the reason is due to 

the lack of compatibility in Mitchell’s method and 2D FE analysis, compared with the 3D 

FE analysis. The compatibility effect is expressed in the slab spatial bending that 

distributes the acting loads rather than in one direction as in the 2D FE analysis and 

Mitchell’s method. The end result is less internal forces for the 3D analysis under the edge 

lift and edge drop scenarios, as shown in the bending moment and shear force diagrams.  
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Figure 3.30: Comparison between Mitchell’s method, and 2D/3D FE soil movement 

results of Case Study (3) in the long footing span: (a) edge lift scenario; and (b) 

edge drop scenario. 
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Figure 3.31: Comparison between Mitchell’s method, and 2D/3D FE soil movement 

results of Case Study (3) in the short footing span: (a) edge lift scenario; and (b) 

edge drop scenario. 
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Figure 3.32: Comparison between Mitchell’s method, and 2D/3D FE footing 

deformation results of Case Study (3) in the long footing span: (a) edge lift 

scenario; and (b) edge drop scenario. 
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Figure 3.33: Comparison between Mitchell’s method, and 2D/3D FE footing 

deformation results of Case Study (3) in the short footing span: (a) edge lift 

scenario; and (b) edge drop scenario. 
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Figure 3.34: Comparison between Mitchell’s method, and 2D/3D FE bending 

moment results of Case Study (3) in long footing span: (a) edge lift scenario; and 

(b) edge drop scenario. 
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Figure 3.35: Comparison between Mitchell’s method, and 2D/3D FE bending 

moment results of Case Study (3) in the short footing span: (a) edge lift scenario; 

and (b) edge drop scenario. 
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Figure 3.36: Comparison between Mitchell’s method, and 2D/3D FE shear force 

results of Case Study (3) in the long footing span: (a) edge lift scenario; and (b) 

edge drop scenario. 
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Figure 3.37: Comparison between Mitchell’s method, and 2D/3D FE shear force 

results of Case Study (3) in the short footing span: (a) edge lift scenario; and (b) 

edge drop scenario. 
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3.4 EFFECT OF FLOW-DEFORMATION PARAMETERS ON SOIL MOUND 

 
The idealised soil-water characteristic curve (ISWCC) and moisture-swell curve (IMSC) 

were used in some of the previous case studies assuming that they can logically describe 

the behaviour of unsaturated clays. However, it is believed that the use of different SWCC 

and MSC than the idealised ones may have an impact on the formation of the soil mound 

with time and the corresponding final soil movement and footing internal forces. 

Consequently, in this section, the effect of using different SWCC and MSC on the mound 

shape and behaviour of slab foundation is investigated for the slab foundation presented 

in Case Study 3 (Section 3.3.3). For this purpose, this case study is re-analysed using 

different curves of SWCC (refer to Figure 3.38) and MSC (refer to Figure 3.39) than the 

idealised ones previously used in Section 3.3.3, and the difference is presented and 

discussed. The analysis using the new curves (i.e. Figures 3.38 and 3.39) is denoted herein 

as Group 1 (G1), whereas the analysis using the idealised curves (Figures 3.3 and 3.7) is 

denoted as Group 2 (G2). Table 3.7 shows the different flow-deformation group 

parameters used for the comparison. 

 

Figure 3.38: SWCC used for analysis of Group 1. 
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Figure 3.39: Moisture-swell curve used for analysis of Group 1. 

 

 

Table 3.7: Flow-deformation parameters used in the comparison. 

Group SWCC MSC 
ksat 

(m/s) 

Initial 

suction, u 

(Pf) 

Initial 

saturation, S 

(%) 

G1 

(edge drop) 
Figure 3.38 Figure 3.39 5×10-8 2.7 89 

G1 

(edge lift) 
Figure 3.38 Figure 3.39 1×10-8 4 15 

G2 

(edge drop) 
Figure 3.3 Figure 3.7 5×10-10 3.4 90 

G2 

(edge lift) 
Figure 3.3 Figure 3.7 1×10-9 4.7 41 
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The initial conditions of the soil degree of saturation and suction are modified in the new 

analysis following the new SWCC. As can be seen in Table 4.1, the soil permeability (ksat) 

has to be changed since the new SWCC has a different slope from that of the ISWCC, 

which has a direct effect on the equation of flow (refer to Section 3.2.3.3). Therefore, in 

order to achieve the same target (ym) of 49 mm used in Case Study 3, the saturated 

permeability is changed. It has to be noted that the ideal value of (ksat) is the one that 

maintains the initial conditions of the degree of saturation and soil suction beneath the 

centre of the slab foundation nearly unchanged, for a complete cycle of the edge lift or 

edge drop. If the soil beneath the centre of the footing suffers a significant change in the 

initial conditions of moisture and suction, it means that the permeability used is too high, 

which can be reflected in the soil movement at the centre of slab foundation. For example, 

a differential mound movement of ±50 mm can be achieved if the soil movement at the 

corner of the slab foundation is ±100 mm, while the soil movement at the centre of the 

slab foundation is only ±50 mm. Similarly, a differential mound movement of ±50 mm 

can also be achieved if the movement at the corner of slab foundation is 52 mm, while the 

movement at the centre is ±2 mm. Although both cases achieve the target differential 

mound movement of ±50 mm, the first approach would have large deformation at the 

centre, indicating that the used permeability is too high and the mound shape produced is 

thus not representative. On the contrary, for the second case, the soil beneath the centre of 

the footing would move by a small amount, indicating a successful choice of the value of 

soil permeability.    

 

By re-analysing the 3D FE model of the slab foundation of Section 3.6 using the 

parameters in Group 1 (G1), the 200 mm footing thickness is found to be satisfactory in 

limiting the footing differential movement to 30 mm, similar to the findings obtained from 

the parameters in Group 2 (G2), with an accuracy of ± 6%. Figure 3.40 shows the progress 

of the soil and footing diagonal differential movement with time, measured between the 

centre and corner of the slab footing for the edge lift scenario (Figure 3.40a) and edge 

drop scenario (Figure 3.40b), for G1 and G2. It should be noted that the time required to 

achieve the target differential mound movement (ym = 49 mm) is highly dependent on the 

flow-deformation input parameters, mainly the saturated permeability and the slope of the 
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SWCC (refer to Equation 3.3). However, when the target (ym = 49 mm) is achieved, the 

soil movement beneath the centre of the footing is found to be minimum for both groups, 

indicating successful simulation of the problem despite the difference in the transient 

flow-deformation data. This can be seen in the change in suction with time for points at 

the corner and at the centre of the slab foundation, as shown in Figure 3.41, for both G1 

and G2. The change in suction beneath the footing centre is minor with respect to the 

amount of suction change beneath the footing corner, starting from the beginning of the 

analysis until a time at which the target mound movement is achieved. This trend is 

applicable for both the edge lift and edge drop scenarios. 

 

 

 

 

Figure 3.40: Soil and footing diagonal differential movement progress with time of 

flow-deformation data for group G1 and G2: (a) edge lift; and (b) edge drop. 
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Figure 3.41: Suction change with time for soil at the centre and corner of the 

footing, for flow-deformation data group G1 and G2: (a) edge lift; and (b) edge 

drop. 
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movement in the longitudinal and transverse footing direction (between the centre and the 

edges of the slab foundation in both directions) are much less for both seepage data groups, 

as shown in Figure 3.42. For the edge drop scenario, the soil and footing movements in 

the longitudinal direction are almost identical, while in the transverse direction the 

seepage data group G2 produced more parabolic mound shape, which is more 

conservative with respect to the flatter mound shape produced by G1. The similarity of 

the soil and footing movements in the longitudinal direction resulted in similar footing 

internal forces, while the parabolic mound shape of G2 resulted in slightly higher bending 

moments and shear forces than those obtained from G1, as shown in Figures 3.43 and 

3.44. However, despite these differences, the design forces of the footing are very similar 

for both seepage data groups. For the edge lift scenario, clear similarity in the soil and 

footing movements is observed, for both seepage data groups, as shown in Figure 3.45, 

and this resulted in similar footing internal forces, as shown in Figures 3.46 and 3.47. 

  

The results of the above comparison reflect the robustness of the hydro-mechanical 

simulations. The seepage input parameters are interconnected; if they are changed within 

a logical range, there will be no major differences in the resulting footing design forces 

for a certain target differential soil movement in the edge lift or edge drop scenario. The 

logical range of the seepage input data is the one that can achieve the target differential 

soil movement without causing major disturbance to the saturation and suction initial 

conditions of the soil beneath the centre of the footing in the edge lift or edge drop 

scenario. Selecting the seepage input data based on this guideline guarantees successful 

simulations of the problem at hand and yields realistic outputs in terms design forces of 

slab foundation. From the above study, it can be concluded that changing the SWCC and 

the MSC data can have a considerable impact on the amount of slab movement with time; 

however, it has little impact on the differential mound movement and the corresponding 

internal forces. Therefore, in the parametric study presented in Chapter 4 the ISWCC and 

IMSC presented earlier in Chapter 3, are used to represent the seepage and deformation 

parameters in the numerical modelling.   
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Figure 3.42: Comparison between soil and footing movement for G1 and G2 for the 

edge drop scenario: (a) longitudinal direction; and (b) transverse direction. 
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Figure 3.43: Comparison between footing bending moments for flow-deformation 

data of group G1 and G2 for the edge drop scenario: (a) longitudinal direction; and 

(b) transverse direction. 
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Figure 3.44: Comparison between footing shear forces for flow-deformation data of 

group G1 and G2 for edge drop scenario: (a) longitudinal direction; and (b) 

transverse direction. 
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Figure 3.45: Comparison between soil and footing movement for flow-deformation 

data group G1 and G2 for edge lift scenario: (a) longitudinal direction; and (b) 

transverse direction. 

-5

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

M
o
v
em

en
t 

(m
m

)

Distance from footing edge (m)

(a)

Soil movement (G1)

Soil movement (G2)

Footing movement (G1)

Footing movement (G2)

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8

M
o
v
em

en
t 

(m
m

)

Distance from footing edge (m)

(b)

Soil movement (G1)

Soil movement (G2)

Footing movement (G1)

Footing movement (G2)



Chapter 3: Numerical Modelling of the Behaviour of Stiffened Slabs on Reactive Soils using the 

Finite Element Method 

 111   

 

 

 

 

Figure 3.46: Comparison between footing bending moments of flow-deformation 

data group G1 and G2 for edge lift scenario: (a) longitudinal direction; and (b) 

transverse direction. 
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Figure 3.47: Comparison between footing shear forces for flow-deformation data of 

group G1 and G2 for edge lift scenario: (a) longitudinal direction and (b) 

transverse direction. 
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3.5 SUMMARY 

 

The behaviour of stiffened slab foundations on expansive soils (including formation of a 

mound from the distorted soil surface beneath the footing) due to moisture precipitation 

or evaporation depends on many parameters, such as the soil-water suction characteristics 

(called here the SWCC), moisture-swell characteristics, soil permeability/duration of 

flow, initial saturation/suction conditions, soil modulus and footing loads. In this chapter, 

an advanced FE modelling using a hydro-mechanical approach and a coupled flow-

deformation analysis was performed, with due consideration of the abovementioned 

parameters, which is the thrust of the current research. The proposed FE modelling was 

verified through three cases studies. The first case study involved field observations of a 

soil mound formation of a flexible cover membrane resting on a highly expansive soil 

over a period of 5 years in Newcastle, Australia. The mound formation over the course of 

observations was found to be reasonable predicted by the FE analysis. This stage of 

modelling confirmed the reliability of the developed FE modelling procedure in 

generating realistic soil distorted mound shapes. The second case concerned testing the 

ability of the FE model to reproduce the results obtained from field observations of the 

suction change and soil movement for a site in Amarillo, Texas. The results of the FE 

modelling agreed fairly well with the field observations, which verified the efficiency of 

the FE modelling in simulating the water diffusion and suction change through a soil 

medium. The third case study involved a hypothetical stiffened slab foundation on reactive 

soil, which was designed by the 3D FE modelling approach developed in this chapter and 

compared with both Mitchell’s method and a dependent 2D analysis. The 2D FE analysis 

showed good agreement with Mitchell’s method. However, the 3D FE analysis produced 

more realistic mound shapes and achieved deformation compatibility; a matter usually 

disregarded in the 2D analysis adopted by most existing design methods. 

 

The effect of using different SWCCs and MSCs from the idealised ones adopted by default 

in this Chapter is investigated, and the results showed that changing the flow parameters 

associated with the construction of these curves affect the amount of transient movement; 

with only little effect on the differential movement and the corresponding internal slab 
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forces. Since the excess differential movement is responsible for most of structural 

damage of stiffened slab foundations on reactive soils, it is decided to use the idealised 

models (i.e. ISWCC and IMSC) in the parametric study presented next in Chapter 4.  

 

The results presented in this chapter provided insights into the capability of the proposed 

3D coupled flow-deformation and stress analysis in realistically simulating the behaviour 

of stiffened slab foundations on expansive soils, overcoming some major limitations 

inherent in most existing design methods. These include: (i) realistic formation of the 

spatial (3D) soil mounds, based on coupled seepage and deformation analyses, rather than 

the pre-defined 2D soil mounds adopted in the exiting; and (ii) simultaneous stress 

analysis and transient seepage, by involving the effect of suction change on the soil 

stiffness and implementing representative contact elements for the soil-footing 

interaction. In the next chapter, a comprehensive parametric study involving different slab 

foundation dimensions (using the same 3D FE set-up developed in this chapter) will be 

carried out with the intention to develop design charts and procedures that can be readily 

used for design purposes by engineers and practitioners. 

 

 



CHAPTER 4 

NEW DESIGN METHOD FOR STIFFENED SLAB FOUNDATIONS 

ON REACTIVE SOILS 

4.1 INTRODUCTION 

 
In Chapter 3, an advanced 3D finite element (FE), hydro-mechanical numerical model 

was developed for the analysis of stiffened slab foundations on reactive soils. The 

proposed modelling method was presented and verified against three case studies, 

involving surface moisture change, surface suction change and design comparison of a 

hypothetical stiffened slab foundation. The results proved very promising, demonstrating 

the ability of the proposed modelling method to accurately simulate the behaviour of 

stiffened slab foundations on reactive soils.  

 

In this chapter, an extensive parametric study is carried out utilising the 3D FE modelling 

approach developed in Chapter 3, aiming to produce data that can be incorporated into a 

new design method for routine use by practitioners. The new design method is believed 

to be more reliable than the methods available in the literature, since it is based on 

advanced 3D FE coupled flow-deformation and stress analyses, addressing the three 

salient weaknesses reported previously for the existing methods, namely: (1) using an ad-

hoc soil mound that is independent of the processes and parameters affecting its 

characteristics; (2) using an uncoupled approach for the slab/soil interaction; and (3) 

oversimplifying the inherently spatial problem by adopting a 2D model. 

 

4.2 PARAMETRIC STUDY AND DEVELOPMENT OF THE NEW DESIGN 

METHOD 

 

In this section, the sophisticated 3D FE hydro-mechanical model that was developed 

earlier in Chapter 3 is used to perform a parametric study to develop a set of design charts 

and equations that form the core of a new ‘standalone’ design method for stiffned slab 

foundations on reative soils. This section presents the process leading to the development 
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of the new design method; the input is a limting differential movement and a certain soil 

class, and the output is the required slab foundation stiffness that can satisfy these input 

requirements and the internal forces associated.  The limits adopted in the parametric study 

are those used by the Australian Standards AS2870 (2011), with respect to the soil classes 

and allowable deformations (refer to Tables 2.3 and 2.4 in Chapter 2). The site class (S), 

which is classified as a slightly reactive site, is not considered in the current analysis, since 

it is unlikely to cause damage to footings or structures. Moreover, the construction type 

involving a full masonry is also omitted from the current analysis, postulating that it 

involves an old fashion construction technique that is hardly used nowadays.  

 

The process of developing the design charts is carried out by generating 3D FE hydro-

mechanical models for several plan dimensions of slab foundations. Each model is 

analysed with a set of different foundation thicknesses, under both the edge drop and edge 

lift scenarios, for a period of time that is long enough to generate the soil mound 

differential movement (ym) that defines a specific soil class. For each ym, an equivalent 

rectangular thickness (Teq) is calculated to produce an adequate stiffened slab inertia that 

can successfully limit the footing deformation; the corresponding internal forces of the 

designed slab foundation are then obtained and recorded. The internal forces are then used 

in a design procedure involving the cracked inertia of the slab foundation, in order to 

obtain the final stiffened slab configurations including the slab thickness, the depth of the 

stiffening beams, the stiffening beams grid spacing in each direction, and the required 

reinforcement for both flexure and shear. The above-mentioned steps are integrated into 

a simple design computer program called Slab Foundations on Reactive Soils (SFORS), 

which will be described later. This program can perform the required design calculations, 

without the need for the design charts, by defining simple input data including the slab 

dimensions, the configurations of the stiffening beams, the construction type (allowable 

slab foundation deformation limit, Δall) and the soil movement (ym).   

 

Figure 4.1 shows a typical example of the 3D FE model used in the parametric study, 

generated for one of the slab foundation plan dimensions. Details about the size of the 

mesh used in the FE model and the corresponding boundary conditions were explained 
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earlier in Chapter 3 (Section 3.3.1). Conveniently, the depth of the swelling clay is 

selected to be 4.0 m, corresponding to the maximum suction depth recommended by the 

Australian Standards AS2870 (2011). This depth is found to be sufficient for the formation 

of the different mound movements (ym) up to ± 84 mm without significant distortion of 

the elements of the FE model. In order to omit the effect of the lower boundary on the 

swelling soil movement, the swelling clay layer is followed by a non-swelling clay soil of 

1.0 m thickness. The idealised soil water characteristic curve (ISWCC) and the idealised 

moisture-swell curve (IMSC) presented in Chapter 3 are assigned for the swelling soil in 

the present parametric study. An elastic soil model is used for the swelling soil with a 

suction-dependent soil modulus through the user defined subroutine explained earlier in 

Chapter 3. The soil element used is an 8-node brick, trilinear displacement, trilinear pore 

pressure element (C3D8P). The double symmetry is used in the generated FE models to 

save the computation time.  

 

For the concrete slab foundation, an elastic model is also used, with a concrete modulus 

of 15 GPa and a unit weight of 25 kN/m3. The slab foundation is simulated using a 4-node 

double curved shell element (S4R). The mound stiffness is considered to be 1,000 and 

5,000 kPa for the case of the edge lift and edge drop, respectively, as recommended by 

the Australian Standards AS2870 (2011). Contact elements are used to allow for a footing-

soil separation according to the generated soil mound. The initial conditions are set to be 

dry with high suction and low saturation for the case of the edge lift scenario, while they 

are set to be saturated with low suction and high degree of saturation for the case of the 

edge drop scenario.  

 

The analysis of each model starts with a geostatic step, in which the soil deformation 

caused by the initial suction is nullified and the gravity loads are then activated by 

considering the slab self-weight. Finally the stage of infiltration or evaporation (according 

to the edge movement scenario) is activated with a rate of ± 100 mm/month. This final 

analysis stage is extended until all the design mound movements of the different assigned 

soil classes are achieved.  
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Figure 4.1: Typical 3D finite element model used in the parametric study. 

 

4.2.1 Assumptions and conditions of the parametric study and the new design method  

 
The FE analysis concerning the parametric study, and in turn the ensuing new design 

method, are based on certain assumptions and a range of parameters, as follows: 

1. The analysis is mainly developed for the design of slab foundations of single storey 

houses subjected to a uniform service area load comprising the finishes, internal 

partitions (single leaf walls), utilities, live loads and roof loading, not exceeding 4.5 

kPa, as shown in Table 4.1. In addition, a perimeter line load of 6.0 kN/m representing 

the external walls corresponding to 2.50 m high double leaf wall, and no central line 

loads are considered. The loads shown in Table 4.1 do not include the self-weight of 

the slab, which is taken into consideration in the FE modelling. 

 

Table 4.1: Uniform loads used in the parametric study based on AS1170.1 (2002). 

Load type Load (kPa) 

Internal wall loads  2.6 

Roof: 0.8 mm steel sheet 0.1 

10 mm plasterboard 0.083 

12 mm hardwood T and G lining 0.126 

Insulation wiring fittings and battens 0.058 

Flooring: 13 mm clay tiling 0.27 

live load (permanent)   1.25 

Total service load on slab foundation 4.50 
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2. The differential soil mound movement (ym) beneath the slab foundation is taken as 

70% of the characteristic surface heave (ys), as per the Australian Standards AS2870 

(2011). The maximum characteristic surface heave considered in this method is 

120 mm.  

3. The top slab thickness is fixed to 100 mm and the spacing of the stiffened beams 

should not be less than 3.0 m and not more than 4.0 m, so that they do not exceed the 

self-weight of the stiffened slab foundations considered in the study. 

   
4. The method is developed for slab foundations with rectangular plan dimensions; 

however, the concept of overlapped rectangles can be adopted for the L and U-shape 

foundation plans. Note that, even with this limitation the design method would still 

produce results that are more reliable than the existing methods that use the same 

assumption, because the spatial nature of the problem is still taken into consideration 

in the 3D modelling from which the charts and the design software were derived. 

 
5. The analysis is based on a symmetrical precipitation or evaporation around the slab 

foundation, without consideration to the suction change induced by any nearby trees 

or plant roots; a safe separation between the slab foundation and the trees equal to the 

mature height of the tree is recommended in this regard.  

 
6. The soil mound stiffness is considered to be equal to 1,000 kPa for the edge lift 

scenario and 5,000 kPa for the edge drop scenario, and the soil modulus is considered 

to be a suction-dependent parameter (refer to Chapter 3).  

 
7. For ductility, the ratio of the flexural capacity (Mu) of the stiffening beam section and 

cracking moment (Mcr) should be at least 1.2, as per the Australian Standards AS2870 

(2011).  

 
8. Branson’s equation (1963) is used to calculate the effective inertia (Ieff) of the 

stiffening beams (refer to Chapter 2). 

 
9. In the edge lift scenario and under the uncracked conditions, the stiffening beams act 

as T-sections, with part of the 100 mm top slab acting as a flange, according to the 

recommendations in Section 4.4 (Clause e) of the Australian Standards AS 2870 

(2011), which states that “the flange width to be the minimum of half the distance 
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between the sub-beams centrelines and Bw + 0.2 L (where: Bw is the stiffening beam 

web width and L is the sub-beams span for the direction under consideration). 

 
10. In order to calculate the cracking moments used in the effective inertia of the stiffening 

beams, the tensile stress of concrete taken as 
'4.0 cf for the edge drop and 

'6.0 cf

for the edge lift, in accordance with the Australian Standards AS2870 (2011). The 

concrete grade (f’c) is fixed to 20 MPa and the concrete modulus for the slab 

foundation is fixed to 15 GPa. 

11.  The minimum inertia of the slab foundation considered in this method is equivalent 

to the inertia of a 200 mm thick slab. Table 4.2 lists the different parameters used in 

the parametric study. 

Table 4.2: Range of parameter values used in the parametric study. 

Parameter Values used 

Rectangular slab foundation dimension, L (m) 6, 10, 14, 18, 22 and 26 

Rectangular slab foundation dimension, B (m) 6, 10, 14, 18, 22 and 26 

Thickness of equivalent rectangular section of 

stiffened slab foundation (m) 

0.200, 0.225, 0.250, 0.275, 0.300, 325, 0.350, 

0.375, 0.400, 0.425, 0.450, 0.500, 0.550, 

0.600, 0.650, 0.700, 0.750, 0.800, 0.850, 

0.900, 0.950, 1.000, 1.100 and 1.200 

Differential soil mound movement, ym (mm), 

corresponding to soil class 

28.0 ‒ Class (M) 

42.0 ‒ Class (H1) 

52.5 – Class (H2) 

70.0 – Class (E1)* 

84.0 – Class (E2)* 

Maximum allowable differential movement of 

slab foundation, Δall, corresponding to the 

construction type  

Ld/300 ≤ 40 mm (Clad frame)** 

Ld/400 ≤ 30 mm (Articulated masonry 

veneer)** 

Ld/600 ≤ 20 mm (Masonry veneer)** 

Ld/800 ≤ 15 mm (Articulated full masonry)** 

*The extremely expansive soil as per Australia Standards AS2870 is divided in this study into two categories, E1 and E2,   

  for the sake of interpolation refinement.  

**Dimension Ld is measured between the corners of the foundation slab. 
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4.2.2 Discussion of the outputs obtained from the parametric study 

The outputs obtained from the parametric study are compiled in the form of design charts, 

as shown in Appendix (B). Figures 4.2 and 4.3 are typical samples of these design charts, 

for a slab having a length (L) of 18.0 m and different width dimensions (B) varying from 

6.0 m to 26.0 m. The slab is also subjected to different mound movements (ym) 

corresponding to different soil classes (i.e. M, H1, H2, E1 and E2). The limits of the slab 

foundation differential movement (Δall) based on the required inertia are calculated as 

Ld/300, Ld/400, Ld/600 and Ld/800, corresponding to the different codified construction 

types referred to in Table 4.2. The samples of the design charts in Figures 4.2 and 4.3 are 

for an allowable movement of Ld/800. The data provided on the top left side of each design 

chart represent the parameters considered in the design, including loading, dimension of 

the slab foundation in one direction (L), type of edge movement (i.e. edge lift or edge 

drop) and the allowable slab foundation differential movement, Ld/Δall.  
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Slab foundation main span, L (m) 18.00 

Edge movement scenario EL 

Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads, Wint (kPa) 2.6 

Roof: 0.80 mm steel sheet, R (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load, q (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall line load (kN/m) 6.00 

*Exclude slab/beams self-weight 
  

  

  
Figure 4.2: Sample design charts for and edge lift scenario: 

L = 18 m and Ld/Δall = 800 (different soil classes: M, H1, H2, E1, E2). 
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Slab foundation  main span, L (m) 18.00 

Edge movement scenario ED 

Span to deflection ratio (Ld/Δall) 800 
Service Loads: 

Internal wall loads, Wint (kPa) 2.6 

Roof: 0.80 mm steel sheet, R (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load, q (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall line load (kN/m) 6.00 

*Exclude slab/beams self-weight 
 

 

  

  

Figure 4.3: Sample design charts for and edge drop scenario: 

L = 18 m and Ld/Δall = 800 (different soil classes: M, H1, H2, E1, E2). 
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Note that the bending moment presented in the chart represents the design values needed 

to calculate the reinforcement in the slab/beam system. In the following section, many 

affecting factors are extracted from the parametric study through the design charts; these 

factors are discussed below.  

 

4.2.2.1 Effect of slab dimensions and soil class 

In the parametric study performed here, each soil class is represented by an upper bound 

soil mound differential movement (ym), as referred to in Table 4.2. The slab inertia is 

represented by an equivalent slab thickness (Teq), which is the thickness of a rectangular 

cross section slab having an inertia per unit metre equal to that of a stiffened slab with a 

T-shape cross section consisting of a 100 mm thick slab and one stiffening beam. Figure 

4.4 shows the effect of varying the slab dimension and soil movement on the equivalent 

slab thickness. Figure 4.4 is generated considering an allowable slab foundation 

movement (Δall) of Ld/800; similar figures with similar trends can be generated for the 

other allowable slab foundation deformations included in the parametric study (refer to 

Table 4.2). It can be seen from Figure 4.4 that the equivalent slab thickness has a 

continuous tendency to increase by increasing both the slab area and soil mound 

movement (ym), for both the edge lift and edge drop scenarios. It can also be seen that the 

slab inertia (or equivalent thickness) is more sensitive to the increase of the mound 

movement than the slab area. It is moreover evident that the extremely expansive site 

classes (E1 and E2) corresponding to mound movements (ym) of 70 mm and 84 mm, 

respectively, require much stiffer slab foundations than the other (less reactive) site 

classes. Another interesting aspect derived from Figure 4.4 is that the increase in the 

required equivalent slab foundation thickness (Teq) with the increase of the soil mound 

(ym) becomes almost linear starting from a soil mound value of 52.5 mm corresponding to 

the H2 soil class, for both the edge lift and edge drop scenarios. 

 

Figures 4.5 to 4.8 show the effect of slab dimension and soil movement on the internal 

forces (i.e. bending moments and shear forces) of the slab foundation, considering an 

allowable foundation differential movement Δall of Ld/800, for the case of the edge drop 

and edge lift scenarios. It can be seen that the bending moments and shear forces in the 



Chapter 4: New Design Method for Stiffened Slab Foundations on Reactive Soils 

 125   

 

short and long spans of the slab foundation increase with the increase in the slab 

dimensions and soil mound movement. It can also be seen that, in general, the internal 

forces are more sensitive to the increase of the mound movement than to the increase of 

slab dimension. It should be noted that, unlike the structure of the two-way slab supported 

at its edges where the dimensions are more significant than the loading on the slab bending 

moments, the slab foundation resting on swell-shrink soils is a soil-structure interaction 

problem in which the bending moment is generated according to the way the soil supports 

or loses its contact with the slab as well as the final soil support pattern at the time when 

the design mound movement is achieved.   
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Figure 4.4: Effect of slab foundation dimensions and soil mound movements on the 

equivalent slab foundation thickness, Teq, for Δall = Ld/800 

(a) edge drop scenario; and (b) edge lift scenario. 
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Figure 4.5: Effect of slab foundation dimensions and soil mound movements on the 

internal forces of the slab foundation long span for Δall = Ld/800 and edge drop 

scenario: (a) bending moments; and (b) shear forces. 
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Figure 4.6: Effect of slab foundation dimensions and soil mound movements on the 

internal forces of the slab foundation short span for Δall = Ld/800 and edge drop 

scenario: (a) bending moments; and (b) shear forces. 
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Figure 4.7: Effect of slab foundation dimensions and soil mound movements on the 

internal forces of the slab foundation long span for Δall = Ld/800 and edge lift 

scenario: (a) bending moments; and (b) shear forces. 
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Figure 4.8: Effect of slab foundation dimensions and soil mound movements on the 

internal forces in the slab foundation short span for Δall = Ld/800 and edge lift 

scenario: (a) bending moments; and (b) shear forces. 

0

20

40

60

80

100

120

140

160

180

200

28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

B
en

d
in

g
 m

o
m

en
ts

 i
n

 s
h

o
rt

 s
p

a
n

 (
k

N
.m

/m
)

Soil mound movement, ym (mm)

(a)
L x B = 18 m x 6 m

L x B = 18 m x 10 m

L x B = 18 m x 14 m

L x B = 18 m x 18 m

L x B = 18 m x 22 m

L x B = 18 m x 26 m

0

5

10

15

20

25

30

35

40

28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

S
h

ea
r 

fo
rc

es
 i

n
 s

h
o
rt

 s
p

a
n

 (
k

N
/m

)

Soil mound movement, ym (mm)

(b)L x B = 18 m x 6 m

L x B = 18 m x 10 m

L x B = 18 m x 14 m

L x B = 18 m x 18 m

L x B = 18 m x 22 m

L x B = 18 m x 26 m



Chapter 4: New Design Method for Stiffened Slab Foundations on Reactive Soils 

 131   

 

4.2.2.2 Effect of the type of soil movement: edge lift versus edge drop  

 

The overall results of the parametric study revealed that the edge drop scenario is in 

general more critical in the design than the edge lift scenario. For example, for the same 

slab foundation dimensions, loading conditions and soil mound (ym), the edge drop 

scenario requires an equivalent slab foundation thickness (Teq) that is higher than that 

required for the edge lift scenario. Moreover, the internal forces in the slab foundation that 

govern the design result from the edge drop scenario. The above results are in agreement 

with the recommendations by the Swinburne’s method (Holland 1981), although other 

researchers argued that the mound shape used in the Swinburne’s method is not adequate 

(refer to Chapter 2). In the current study, however, the mound shapes used in both the 

edge drop and edge lift scenarios are obtained from a thorough 3D FE hydro-mechanical 

modelling that lends itself to more robust analysis, as explained earlier. In effect, the 

reason behind the edge lift scenario being less critical is due to the lower value of the 

mound stiffness used in the edge lift scenario with respect to that used in the edge drop 

scenario. [As mentioned earlier, the mound stiffness in the case of the edge lift scenario is 

logically assumed to be only 1,000 kPa, since under the heave condition (i.e. edge lift 

scenario) the soil is softened due to loss of suction, while under the shrinkage condition 

(i.e. edge drop scenario) the soil becomes drier and stiffer, warranting a higher stiffness 

value of say 5,000 kPa]. The low mound stiffness value in the case of the edge lift allows 

the slab foundation to penetrate inside the swelling soil at the beginning of the mound 

formation, thus, delaying the slab uplift and allowing water to infiltrate beneath the slab 

by a larger edge moisture distance. This provides a larger supportive area beneath the slab 

foundation and a smaller free span of the slab, which consequently reduces both the 

required thickness and resulting internal forces.  

 

Another important reason why the edge drop scenario is more critical than the edge lift 

scenario in the design is the consideration of the perimeter wall loads (in the former: ED) 

and neglecting the central line loads (in the latter: EL). In the current study, it is assumed 

that the edge loads simulating the external walls are relatively heavy and serve as an 

indispensable requirement in construction of houses; on the other hand, the internal 
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partition loads can be light and may be included in the distribution of the wall loads over 

the slab foundations. 

 

For both the edge lift and edge drop scenarios, the bending moments do not necessarily 

increase with the increase in the slab foundation dimensions, unlike the equivalent slab 

thickness. This is because the slab foundation becomes more flexible for large dimensions, 

allowing for edge deformation while maintaining large contact with soil at the slab centre. 

Therefore, the bending moment patterns for the edge drop and edge lift scenarios tend to 

be different from those of the double cantilever-like or simple beam-like  in ordinary slabs 

with small cantilevers, which are relatively more rigid. Consequently, for the edge drop 

scenario, instead of having a central support area, as in the small rigid slab, a larger slab 

will have two symmetrical support areas, resulting in two cantilevers at the edges and a 

continuous beam at the central span, as shown in Figure 4.9. Similarly, in the case of the 

edge lift, instead of having a simple beam-like structure with full soil supports at the edges 

and loss of soil support at the centre as in small rigid footings, larger slabs tend to have a 

two-span beam structure with support area at the edges and centre of the slab, as shown 

in Figure 4.10. 

 

 

 
Figure 4.9: Typical mound shape, footing shape and bending moment for flexible 

slab foundation with large dimensions in the edge drop scenario. 
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Figure 4.10: Typical mound shape, footing shape and bending moment for flexible 

slab foundation with large dimensions in the edge lift scenario. 

 

4.2.2.3 Effect of construction type 

 

In the parametric study, the effect of the construction type is expressed through the ratio 

of the diagonal length of the slab foundation to the allowable differential movement 

(Ld/Δall), where (Δall) has limits corresponding to specific construction types. Figure 4.11 

shows the effect of the allowable slab foundation differential movement (Δall) 

(construction type) on the equivalent slab thickness (Teq), for different slab dimensions. It 

can be seen that the equivalent slab thickness (Teq) is inversely proportional to the 

deformation limits of the slab foundation, for both the edge lift and edge drop scenarios. 

Logically speaking, more slab inertia (i.e. thickness) is required to reduce the slab 

foundation differential movement in response to the soil deformation. It can also be seen 

that the equivalent slab thickness is more sensitive to the construction type than to the slab 

dimensions, as illustrated in Figure 4.11.   

 

Figure 4.12 shows that the bending moment of the slab foundation increases by decreasing 

the allowable movement or increasing the ratio (Ld/Δall). This is attributed to the fact that 

a rigid construction with a small margin of allowable movement requires rigid slab 

configurations, thus, increasing the self-weight of the slab and in turn increasing the 

generated bending moments induced by the ground movement. In addition, the internal 

forces induced by the mound movement are generally high for rigid slab foundations.  
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Figure 4.11: Effect of allowable slab foundation movement (Δall) on the equivalent 

slab foundation thickness (Teq) for soil class (E) and ym = 70 mm; (a) edge drop 

scenario; and (b) edge lift scenario. 
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Figure 4.12: Effect of allowable slab foundation movement (Δall) on the bending 

moments of slab foundation for soil class (E) and ym = 70 mm; (a) edge drop 

scenario; and (b) edge lift scenario. 
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4.3 DEVELOPMENT OF DESIGN EQUATIONS 

 

As explained in Section 4.2, a computer program called SFORS is developed to perform 

all required design calculations. In order to reduce the inaccuracy associated with the 

linear interpolation of data obtained from the design charts and to reduce the complexity 

of integrating the design charts into this computer program, an alternative set of design 

equations using artificial intelligence (AI) are developed and used instead of the design 

charts. Details of the AI models are described below, followed by a description of how 

these design equations are integrated into a new design method. An illustrative numerical 

example is then presented to show how the new design method can be used in practice, 

and the results obtained are compared with 3D FE analysis and Mitchell’s method.  

 

4.3.1 Artificial intelligence for modelling design equations  

In this section, the outputs obtained from the parametric study are compiled to form a 

database for deriving design equations using artificial intelligence (AI) techniques. These 

techniques are practically amenable to modelling many complex geotechnical engineering 

problems and have been applied successfully other authors for the design of foundations 

(e.g. Shahin 2010; 2014; 2015; Shahin and Jaksa 2006; Shahin et al. 2002). The most 

commonly used AI techniques in geotechnical engineering include (Shahin 2013): 

artificial neural networks (ANNs), genetic programming (GP), evolutionary polynomial 

regression (EPR), and support vector machines (SVM). Of these, EPR is becoming more 

popular and frequently used in geotechnical engineering; it will be the focus of the current 

work. Particularly, the EPR technique is used herein as it can provide simple symbolic 

forms, as usually defined in the mathematical literature, from presented trained 

information (data). Details of the EPR models developed for the new design method of 

stiffened slab foundations are described below.   

 

4.3.2 Overview of Evolutionary Polynomial Regression (EPR) 

Evolutionary polynomial regression (EPR) is a hybrid regression technique that is based 

on evolutionary programming, developed by Giustolisi and Savic (2006). The EPR 

technique was applied since then to some civil engineering problem and already has a 
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record of success (e.g. Ahangar-Asr et al. 2011; Berardi et al. 2008; Savic et al. 2006; 

Shahin and Elchalakani 2014). A detailed description of the EPR technique is beyond the 

scope of this research and can be found elsewhere  (e.g. Giustolisi and Savic 2006). 

 

Briefly, the EPR technique constructs symbolic models by integrating the soundest 

features of numerical regression, with genetic programming and symbolic regression 

(Koza 1992). It involves two main steps that roughly describe its underlying features. In 

the first step, the selection of exponents for polynomial terms is carried out, using an 

evolutionary searching strategy by means of genetic algorithms (Goldberg 1989). In the 

second step, a numerical regression step using the least square method is conducted to 

obtain the parameters of the previously selected polynomial terms. The general form of 

expression in EPR can be presented by the following equation (Savic et al. 2006):  

 

( )
1

, ( ),
m

j o

j

y F X f X a a
=

= +           (4.1) 

     

where, (y) is the estimated vector of output of the process; (m) is the number of terms of 

the target expression; (F) is a function constructed by the process; (X) is the matrix of 

input variables; (f) is a function defined by the user; and (aj) is a constant. A typical 

example of EPR pseudo-polynomial expression that belongs to the class of Eq. (1) is as 

follows (Giustolisi and Savic 2006): 
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where, (𝑌̂) is the vector of target values; (m) is the length of the expression; (aj) is the 

value of the constants; (Xi) is the vector(s) of the (k) candidate inputs; (ES) is the matrix 

of exponents; and ( f ) is a function selected by the user. 

 

The EPR method uses two features for modelling physical phenomena (Savic et al. 2006): 

(i) introduction of prior knowledge about the physical system/process – to be modelled at 
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three different times (i.e. before, during and after EPR modelling calibration); and (ii) 

production of symbolic formulas, enabling data mining to discover patterns that can 

describe the desired parameters. In EPR feature (i) above, the modeller (before the 

construction of the EPR model) selects the relevant inputs and arranges them in a suitable 

format according to their physical meaning. During construction of the EPR model, the 

model structures are determined following some user-defined settings, such as the general 

polynomial structure, user-defined functions (e.g. natural logarithms, exponentials, and 

tangential hyperbolics) and searching strategy parameters. EPR starts from true 

polynomials and at the same time allows for the development of non-polynomial 

expressions containing user-defined functions (e.g. natural logarithms). The user’s 

physical insight and engineering judgement can also be incorporated into the EPR model 

by making hypotheses on the elements and structure of the selected objective functions, 

enabling refinement of the final models (Giustolisi and Savic 2006). After calibrating the 

EPR model, an optimum model can be selected from among the series of returned models; 

the optimum model is then selected based on the modeller’s judgement, as well as the 

statistical performance indicators (e.g. coefficient of correlation). The strategy used herein 

for assessing the best models out of several generated models is that: (i) the model 

performs well in the validation set; (ii) the model’s performance in the validation set is 

consistent with that of the training set; and (iii) the model has a simple structure with a 

minimum number of model parameters.  

 

4.3.3 Development of EPR models for design of stiffened slab foundations 

In this study, the EPR models are developed using the computer-based software package 

EPR TOOLBOX Version 2.0 (Laucelli et al. 2009). The modelling steps are as follows. 

The data used to calibrate and validate the EPR models are obtained from the outcomes 

of the parametric study. The available data are divided into two sets: a training set (the 

extreme values of the data are included in this set) for model calibration and an 

independent validation set for model verification. In total, a number of 389 data cases are 

compiled from the parametric study for the edge drop scenario, whereas 248 data cases 

are collected for the edge heave scenario. In both scenarios, 90% of the available data are 

used for model training and 10% for model validation. The data division is carried out in 
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such a way that the training and validation sets are statistically consistent and thus 

represent the same statistical population. Therefore, the training and the validation sets 

had close averages and standard deviations. The inputs include the slab foundation breadth 

(B), the slab foundation length (L), the maximum soil mound differential movement (ym), 

the allowable slab deformation (Δall), and the equivalent rectangular slab foundation 

thickness (Teq). The outputs include the slab foundation differential movement (δ), which 

involves the construction type, the service bending moment in the short direction of slab 

foundation (Ms), the service bending moment in the long direction of slab foundation (Ml), 

the service shear force in short direction of slab foundation (Vs), and the service shear 

force in the long direction of the slab foundation (Vl). It should be noted that the EPR 

modelling is carried out separately for each of the abovementioned inputs using the same 

inputs, for both the edge lift and edge drop scenarios, leading to ten derived equations to 

be used in the new design method, as explained later.  

 

Following the data division, the input and output variables are presented to the EPR for 

model training and a set of internal model parameters are tried in an attempt to arrive at 

an optimal model, by selecting the related internal parameters for evolving the model. The 

optimization phase is undertaken as follows. Before presenting the data to the EPR for 

training, the input and output variables were pre-processed by scaling them between 0.0 

and 1.0 for normalisation and to ensure that all variables receive equal weight during 

training. The polynomial structure of the EPR is assumed in such a way that each 

regression term consists of elements from X that are raised to pre-specified power values; 

the assumed range of possible exponents of terms from X was (-2; -1; -0.5; 0; 0.5; 1; 2).  

As explained by Giustolisi et al. (2007), the exponent 0 is useful for deselecting the non-

necessary inputs, the exponents (-0.5 and 0.5) smooth the effect of the inputs, the 

exponents (-1 and 1) produce a linear effect of the inputs and the exponents (- 2 and 2) 

amplify the inputs. The maximum length of the polynomial structure is assumed to be 5 

terms and the bias term is assumed to be zero. Finally, the least square search is performed 

for positive coefficients only (i.e. aj > 0), and is obtained using the singular value 

decomposition based solver (Giustolisi and Savic 2006).  
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Once the training phase is accomplished successfully, the performance of the trained 

models is verified using the validation set. Performance of the proposed EPR models in 

the training and validation sets is evaluated using the coefficient of correlation, r, which 

is a measure used to determine the relative correlation between the predicted and observed 

outputs. It is the most commonly used measure to examine the performance of AI models. 

The developed EPR equations are shown below, along with their graphical representation 

performance (i.e. Figures 4.13 to 4.22): 

 

For the edge lift scenario (EL): 
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Likewise for the edge drop scenario (ED): 

 

2

2
0.097655 7.0882 8.6118 64.182 33.8095

m eq eq

m

m eq eq

y T T B B
y

L y LT LT
 = − − + − +          (4.8) 

 

2 5 2 8 2 2 0.5

2

0.00019037 3.9791 10 1.9208 10

0.0026711 0.00027428 3.296

B

s eq m eq m

m eq m eq

M T y T L y e

y T B B y T

− −= −  + 

+ − +
       (4.9) 

 

6 20.0038785 3.4044 10l m eq m eqM y T y L BT−= −                   (4.10) 

 

2 2

1
126.1764    0.017714 0.31019

0.0018124  10.5604 

m eqm
s m eq

eq

m

y Ty
V y T

B L B

T
By

L

= − +

− −

     (4.11) 

 

5 20.35345 0.0088593 5.1508 10 9.9742l m eq m eq eqV y T BLy T BL T−= − +  −   (4.12) 

    

 

 

 

 

 

 

 

 



Chapter 4: New Design Method for Stiffened Slab Foundations on Reactive Soils 

 142   

 

 

 

Figure 4.13: Graphical performance of the EPR model of Equation 4.3 regarding 

deflection : (a) Training set; and (b) Validation set. 
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Figure 4.14: Graphical performance of the EPR model of Equation 4.4 regarding 

Ms: (a) Training set; and (b) Validation set. 
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Figure 4.15: Graphical performance of the EPR model of Equation 4.5 regarding 

Ml : (a) Training set; and (b) Validation set. 
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Figure 4.16: Graphical performance of the EPR model of Equation 4.6 regarding 

Vs: (a) Training set; and (b) Validation set. 
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Figure 4.17: Graphical performance of the EPR model of Equation 4.7 regarding 

Vl: (a) Training set; and (b) Validation set. 
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Figure 4.18: Graphical performance of the EPR model of Equation 4.8 regarding 

deflection : (a) Training set; and (b) Validation set. 
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Figure 4.19: Graphical performance of the EPR model of Equation 4.9 regarding 

Ms: (a) Training set; and (b) Validation set. 
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Figure 4.20: Graphical performance of the EPR model of Equation 4.10 regarding 

Ml : (a) Training set; and (b) Validation set. 
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Figure 4.21: Graphical performance of the EPR model of Equation 4.11 regarding 

Vs: (a) Training set; and (b) Validation set. 
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Figure 4.22: Graphical performance of the EPR model of Equation 4.12 regarding 

Vl: (a) Training set; and (b) Validation set. 
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4.4 NEW DESIGN METHOD EXPLAINED VIA NUMERICAL EXAMPLE 

 

The steps of the new design method and how it can be used in practice are best explained 

through an illustrative numerical example. The example postulates that an arbitrary slab 

having L-shape plan layout, as shown in Figure 4.23, is to be designed to support a single 

storey articulated masonry veneer house on a highly reactive class (H1) with a 

characteristic surface heave, ys = 60  mm. The design implies the following steps:  

 

1. Verify the design service loads acting on the slab foundation and make sure they do 

not exceed those shown in Table 4.1. Note that, as mentioned in Section 4.2, these 

loads do not include the self-weight of the foundation elements (slab and beams). 

 

 
2. Apply the concept of overlapped rectangles to L-shape slabs by dividing it into two 

overlapped rectangle slab areas (14 m × 18 m) and (6 m × 18 m), as highlighted in 

Figure 4.23. 

 

 
3. Calculate the soil mound movement (ym) in accordance with the Australian Standards 

AS2870 (2011), as ym = 0.7 ys = 0.7 × 60 mm = 42 mm. 

 

 
4. The construction type is defined as ‘articulated masonry veneer’, which has an 

allowable slab foundation differential movement (Δall = Ld/400) not exceeding 30 mm; 

where (Ld) is the slab diagonal dimension. For the 14 m × 18 m slab, Δall = 22800/400 

= 57 mm > 30 mm, hence, the 30 mm is the limit, and for the 6 m × 18 m slab, 

Δall  =  18970/400 = 47 mm > 30 mm, hence, 30 mm is the limit.  
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Figure 4.23:  Typical L-shape slab foundation used in the numerical example 

composed of two overlapped rectangular areas. 

 

5. The following outputs, which are derived from the EPR models, are determined for 

the footing dimensions (6 m × 18 m) and the edge drop scenario: 

• The required equivalent thickness, Teq = 200 mm 

• The bending moment in the short direction, Ms = 30.74 kN.m/m 

• The bending moment in the long direction, Ml = 28.84 kN.m/m 

• The shear force in the short direction, Vs = 17.57 kN/m 

• The shear force in the long direction, Vl = 15.40 kN/m 

 

 
6. Likewise, the following outputs, are determined for the footing dimensions (14 m × 

18 m) and the edge drop scenario: 

• The required equivalent thickness, Teq = 260 mm 

• The bending moment in the short direction, Ms = 44.90 kN.m/m 
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• The bending moment in the long direction, Ml = 35.79 kN.m/m 

• The shear force in the short direction, Vs = 17.78 kN/m 

• The shear force in the long direction, Vl = 16.02 kN/m 

 

7. Similarly, the following outputs (derived from the EPR models), are determined for 

the footing dimensions (6 m  × 18 m) and the edge lift scenario: 

•  The required equivalent thickness, Teq = 200 mm 

• The bending moment in the short direction, Ms = 7.99 kN.m/m 

• The bending moment in the long direction, Ml = 7.65 kN.m/m 

• The shear force in the short direction, Vs = 5.37 kN/m 

• The shear force in the long direction, Vl = 5.42 kN/m 

 

8. Finally, the following outputs are determined for the footing dimensions (14 m × 18 

m) and the edge lift scenario: 

• The required equivalent thickness, Teq = 200 mm 

• The bending moment in the short direction, Ms = 12.22 kN.m/m' 

• The bending moment in the long direction, Ml = 10.20 kN.m/m 

• The shear force in the short direction, Vs = 5.71 kN/m 

• The shear force in the long direction, Vl = 5.21 kN/m 

 

 
9. Estimate the configuration of the sub-beams based on the following limits:  minimum 

spacing = 3.0 m and maximum spacing = 4.0 m. Based on these limits, the 

configuration shown in Figure 4.24 is deemed acceptable. Note that the width of all 

sub-beams is chosen to be 300 mm.  
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Figure 4.24: Sub-beams spacing for the slab foundation of the numerical example. 

 

10. From the plan layout of Figure 4.24, the maximum width served by the sub-beams is 

determined in the long span and short span for each rectangular part of the slab, which 

in this numerical example are found to be 3.43 m and 4.0 m, for the 14 m × 18 m 

rectangular part of the slab, and 2.85 m and 3.71 m for the 6 m× 18 m rectangular part 

of the slab. Consequently, the flange width (bf) in the short and long directions can be 

verified against the recommendations of Section 4.4 of the Australian Standards 

AS 2870 (2011). In this example, the effective flange width (bf) is conservatively 

calculated as 1500 mm and 1850 mm for the 6 m× 18 m rectangle, in the long and the 

short direction respectively, whereas it is computed as 1750 mm and 2000 mm for the 

18 m × 14 m rectangle, in the long and short directions, respectively. 

 
11. The design in the long and short directions is carried out under both the edge lift and 

edge drop scenarios, in order to find the required sub-beams depth for certain top and 

bottom reinforcement considering the effective section inertia based on Section 4.2.1 

(items 9 to 11). An iterative procedure is required, as follows: 
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• The top and bottom reinforcements are first estimated along with the top 

and bottom concrete covers. In this numerical example, the top cover is 

considered to be 30 mm, while the bottom cover is taken to be 50 mm.   

• The width of the sub-beam (Bw) is considered to be 300 mm, the width of 

the flange is already known (refer to Step 4) and the depth of the sub-beam 

(Tb) is estimated. 

• The effective inertia of the sub-beam section (Ieff) is calculated using 

Branson’s equation, by knowing the following: the dimensions of the T-

section of the stiffening beam (i.e. Bw, bf and Tb), as well as the steel 

reinforcements, and the applied moments obtained from the EPR 

equations. 

• The effective inertia of the sub-beam per unit width (Ieff/served width) is 

then compared with the inertia calculated from the required equivalent 

thickness (Teq) obtained from the EPR models.  

• The iteration is carried out by changing (Tb) and the reinforcement until 

(Ieff/served width) equals the inertia calculated from the required equivalent 

thickness (Teq).  

 
12. After obtaining the maximum required sub-beams depth, the flexural reinforcement 

and the shear capacity are verified based on the Australian Standards AS3600 (2009). 

Note that the values of the internal forces of the slab foundations are service (working 

forces) and factorised by 1.35 to obtain the factored design moments and shearing 

forces.  

 

A flow diagram that explains the above design procedure is shown in Figure 4.25. As 

explained earlier, for the ease of use by design engineers and practitioners, the 

abovementioned steps as well as EPR models are integrated into the SFORS computer 

program that can perform all of the above design calculations and iterations. This 

computer program is user-friendly and will be available for interested readers upon 

request. Figures 4.26-4.29 show screenshots of the program’s input and output modules.   
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Figure 4.25: Flow chart explaining the procedure of the new design method. 
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Figure 4.26: Screenshot of the SFORS Program developed for the new design 

method, solving rectangle (6 m × 18 m) of the numerical example. 

 

 

 

 

Figure 4.27: Screenshot of the SFORS Program developed for the new design 

method, solving rectangle (14 m × 18 m) of the numerical example. 
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Figure 4.28: Screenshot of the design report obtained from the SFORS program 

developed for the new design method, solving (6 m × 18 m) of the numerical 

example. 
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Figure 4.29: Screenshot of the design report obtained from the SFORS program 

developed for the new design method, solving (14 m × 18 m) of the numerical 

example. 
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A summarised comparison between the results obtained from the new design method and 

those obtained from Mitchell’s method (1980) is given in Table 4.3. It can be seen that 

the new design method produces stiffening beam dimensions of 300 mm × 637 mm, with 

top reinforcement of 953 mm2 (3-N16 bars in addition to the slab mesh) and bottom 

reinforcement of 603 mm2 (3-N16 bars). On the other hand, Mitchell’s method requires 

stiffening beam dimensions of 300 mm × 540 mm, with top reinforcement of 519 mm2 (2-

N16 in addition to the slab mesh) and bottom reinforcement of 591 mm2  (3-N16). Both 

solutions are based on the same material properties (i.e. f’c  = 20 MPa and fy = 500 MPa), 

having a top slab of 100 mm thickness and 175 mm2/m reinforcement mesh. In general 

the amount of reinforcement obtained from the new design method is higher than that of 

Mitchell’s method, since the minimum code requirement for the tensile steel according to 

the Australian Standards AS 3600 (2009) is considered, which contributes directly to the 

effective inertia of the section of the stiffened slab foundation (Ieff). Note that Mitchell’s 

method is based on an assumption that the mound movement is within a certain edge 

distance (ed), as explained in Chapter 2, over which the slab foundation moves and 

generates the corresponding internal forces, while the rest of the slab foundation is 

assumed to be in direct contact with the soil, thus, generating no or minor internal forces. 

On the contrary, in the new design method there is no predefined boundaries on the slab 

foundation movement, therefore, the whole slab is subjected to movements following the 

generated mound, yet the differential movement between the slab corner and slab centre 

is satisfied according to the Australian standards limits. Mitchell’s assumption is that the 

slab deformation takes place within the edge distance (ed), with the maximum deformation 

at the edge, while in the 3D FE analysis of the new design method the deformation is 

within the whole slab, with its maximum value at the corner and least value at the centre. 

Allowing all the deformation to be within the edge distance only requires a more flexible 

footing slab and this explains why the depth of the stiffened beam obtained from 

Mitchell’s method is less than that obtained from the new design method. The flexible 

footing obtained from Mitchell’s method results in less bending moment and therefore 

less reinforcement. It is presumed that the conservatism provided by the new method in 

this regard may help in reducing the case histories of damage that is still reported in the 

literature due to the use of the existing design methods including Mitchell’s method. 
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Table 4.3: Comparison between the new design method and Mitchell’s method for 

the numerical example. 

Area (m2) 

Required stiffening 

beam dimensions 

(mm) 

Reinforcement (mm2) 

Top Bottom 

New  

method 

Mitchell’s  

method 

New  

method 

Mitchell’s  

method 

New  

method 

Mitchell’s  

method 

6 m × 18 m 300 × 486 300 × 540 926 519 603 591 

14 m × 18 m 300 × 637 300 × 450 953 349 603 413 

 

To confirm the validity of the new design method, the illustrative numerical example 

solved earlier using the new design method, is analysed using an iterative 3D FE analysis, 

trying to obtain the equivalent slab foundation thickness and the corresponding internal 

forces, for the same input conditions. The results obtained from the 3D FE analysis are 

then compared with those obtained from the new design method. Figure 4.30 shows a 

typical 3D mesh of the FE model. All of the material properties, flow parameters, initial 

conditions, boundaries and loading data utilized in the parametric study are used in the 3D 

FE model. The equivalent slab thickness (Teq) required to limit the maximum differential 

slab foundation movement (δ) to the standard requirement (Δall) is obtained through an 

iterative analysis and is found to be 275 mm for the edge drop scenario and 200 mm for 

the edge lift scenario. Consequently, the edge drop scenario governs, as it resulted in 

higher Teq; the edge drop scenario also governed when the new design method is used. 

Figures 4.31 and 4.32 show the bending moment and shear force in both directions of slab 

foundation for the 275 mm slab foundation thickness. The maximum service bending 

moment from the 3D FE is 40.0 kN.m /m and the maximum service shear force is 19.2 

kN/m. These values are found to be equal to 44.9 kN.m/m for the maximum service 

bending moment and 17.8 kN/m for the maximum service shear force when the new 

design method is used, implying a good agreement with the results of the 3D FE analysis. 

By adopting the same beam configuration in Figure 4.24, the required dimensions of the 

stiffening beams are 300 mm × 613 mm with 4-N16 bars top and bottom reinforcements, 

in addition to the slab mesh reinforcement of 175 mm2/m. Again, these results are also in 
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good agreement with the output of the new design method, which gave a section of 

300 mm × 637 mm with the same slab mesh, 3-N16 bars top reinforcement, and 3-N16 

bottom reinforcement. 

 

 

Figure 4.30: Typical 3D FE mesh of the L-shape slab foundation used in the 

numerical example. 
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Figure 4.31: Service bending moment of the slab foundation used in the numerical 

example, for the edge drop scenario.  
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Figure 4.32: Service shear forces for the slab foundation used in the numerical 

example, for the edge drop scenario. 

 

 

4.5 SUMMARY 

 

In this chapter, an intensive parametric study was carried out based on the advanced 3D 

FE hydro-mechanical model proposed and explained in detail in Chapter 3. The different 

parameters used in the parametric study were defined and the results were presented and 

analysed. The outcomes of the parametric study were then congregated into a series of 
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design charts. In order to avoid the inaccurate linear interpolation when using the design 

charts, the charts were substituted by design equations. Subsequently, the data obtained 

from the parametric study were compiled and trained using artificial intelligent (AI) to 

generate a set of design equations, which formed a standalone new design method for 

stiffened slab foundations on reactive soils. These design equations along with all design 

and iteration procedures were integrated into a user-friendly computer program called 

SFORS. The assumptions and limitations of the new design method were discussed. The 

new method was then applied to an illustrative numerical example involving L-shape slab 

foundations, and the results were compared with those obtained from the well-known 

Mitchell’s method as well as the 3D FE analysis. The results of the new design method 

were found to agree well with the common engineering practice and the outputs of the 3D 

FE analysis, and were thus deemed to be more realistic than those obtained from 

Mitchell’s method. The particular example tried here shows that the new method is 

slightly more conservative than Mitchell’s method.  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

EFFECT OF USING SAND CUSHION ON THE PERFORMANCE OF 

STIFFENED SLAB FOUNDATIONS 

5.1 INTRODUCTION 

 
The use of a sand cushion underneath slab foundations is known worldwide as an effective 

solution to the problems associated with expansive soils. By partial replacement of the 

reactive soil layer below the foundation with a stable, clean sand layer extended laterally 

to a certain limit beyond the foundation footprint, the expected foundation deformation 

resulting from moisture variation is reported to be reduced or entirely omitted (Moussa et 

al. 1985). In this chapter, an investigation is carried out (based on the 3D hydro-

mechanical model presented in the previous chapters) to better understand how the sand 

cushion works and how far it can mitigate the damage caused by reactive soils. The 

chapter begins with a study on the mechanism associated with the sand cushion which 

leads to enhancement of the performance of stiffened slab foundations. Following that, 

the chapter presents a comprehensive parametric study to quantify the efficacy of the sand 

cushion using the EPR modelling process presented in Chapter 4. The parametric study 

covers 3 practical depths for the sand cushion layer (i.e. 0.5, 1.0 and 1.50 m), aiming to 

investigate the effect of the sand cushion depth on the reduction of the slab foundation 

thickness. The results of the parametric study is used as input data in a regression analysis 

using the EPR method in order to obtain a set of design equations which can be easily 

used by practitioners to estimate the reduced slab foundation equivalent thickness (Teq) 

and its reduced internal forces in the presence of a specific thickness of sand cushion. 

Eventually, designing stiffened slab foundations with a sand cushion is illustrated by 

example, using an extended version of the computer program SFORS presented in 

Chapter 4.  
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5.2 HOW DOES SAND CUSHION WORK?  

 
There are a number of different interpretations regarding the mechanism associated with 

the role of sand cushions in mitigating the soil movement upon moisture variation. The 

most common of these interpretations are: 

1- The replacing sand cushion adapts to the deformability of the underlying swelling 

soil: A very common understanding of the mechanism of the sand cushion  refers 

to its adaptability to the soil movement of the underlying swelling clay (Rao et al. 

2008). In order to achieve this adaptability, the sand cushion should be loose 

enough to absorb most of the deformation of the soil to suppress any excessive 

uplift pressure on the slab foundation. However, a loose sand cushion may violate 

the settlement design limits under gravity loading; moreover, a sand cushion would 

normally provide easy access for the surface water into the deeper expansive soil. 

It is experimentally proven that the swelling pressure exerted by an expansive soil 

is proportional to the density of the sand cushion and is inversely proportional to 

its fineness (Moussa et al. 1985). Accordingly, a highly compacted sand cushion 

will be inefficient in reducing the swelling pressure due to its lower adaptability. 

Moreover, a coarse sand with a higher hydraulic conductivity would increase the 

potential of moisture migration towards the deep expansive soil, which may 

exacerbate the problem.  

   

2- The weight of the sand cushion suppresses heave: As previously discussed in 

Chapter 2, the swelling pressure of an expansive soil can be counteracted when the 

soil is loaded. Replacing a thickness of the swelling soil with a stable sand layer 

reduces the volume of the swelling clay and poses a surcharge on the remaining 

reactive deposit, hence reducing the overall swelling. This can be effective for the 

case of relatively shallow swelling layers of up to 2 m  to 3 m thickness; however, 

this role of the sand cushion will diminish as the swelling clays becomes thicker 

(Nelson and Miller 1992). However, as iterated above, the high permeable sand 

with respect to the original low permeable swelling clay eases access of the surface 

water to the reactive soil, hence, increasing the potential surface heave.   
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3- A cohesive, non-swelling clay cushion serves as a moisture barrier to the lower 

swelling clay: Many researchers favour the use of a ‘Cohesive Non-swelling Soil’ 

cushion (CNS) over the sand cushion for its lower hydraulic conductivity, which 

can be controlled to be even lower than that of the original swelling soil. Such 

cushion can serve as a water barrier that efficiently diminishes or prevents increase 

in the moisture of the underlying swelling clay and reduces heave (Bharadwaj 

2013). However, efficiency of the CNS critically requires that the cushion must 

extend beyond the slab boundaries, which in most practical cases does not exceed 

beyond a margin of 1 to 2 metres. However, it appears that the CNS actually delays 

the moisture propagation to the lower swelling layers rather than preventing it; this 

may explain the findings of Subba Rao (2000) that the CNS cushion becomes 

ineffective after the first shrink-swell cycle, presumably after the moisture finds 

alternative flow paths into the reactive soil.   

 

4- Loaded sand cushion reduces swelling by confinement: Field observations confirm 

that, when the soil under a sand cushion heaves, only the lightly loaded parts of 

the sand cushion will experience heave (like in the case of the areas between 

footings), while the footings will not experience substantial movement (Varghese 

2012). Experiments also showed that partially confining the top surface of the sand 

cushion has a great effect in reducing the swelling  beneath the loaded areas 

(Moussa et al. 1985). In fact, this feature of the sand cushion is directly attributed 

to the effect of gravity loading on the reduction of heave as described in detail in 

Chapter 2; this effect is more pronounced in the case of isolated footings, which 

exerts relatively high stresses on the top of the sand cushion. Obviously, this effect 

is not applicable to the particular case of stiffened slab foundations, since there is 

no unloaded parts within the slab area.  

 

5- Sand cushion creates a condition of uniform degree of saturation: As previously 

presented in earlier chapters, differential rather than total movements of the slab 

foundations is mostly responsible for major structural damages associated with 

expansive soils. As explained in the following section, using a sand cushion below 
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the slab foundation allows for a more uniform change in the moisture content, and, 

consequently, more uniform shrink swell deformation. According to this 

argument, even if a deep reactive soil swells by the ingress of moisture through 

the highly permeable sand cushion, the differential movements will probably be 

uniform, and hence more tolerable (Chen 1988).  

 

5.3  FE MODELLING OF STIFFENED SLAB FOUNDATION WITH SAND 

CUSHION 

 

This section investigates the actual mechanism responsible for the efficacy of the sand 

cushion in improving the performance of stiffened slab foundations on reactive soils, 

through 3D FE modelling, emphasising the concept that a sand cushion creates a condition 

of uniform degree of saturation. A parametric study is then carried out on the 3D FE model 

to produce data from which design equations for slab foundations on reactive soils 

incorporating sand cushions are derived, for use by practitioners.  

 

5.3.1 Modelling of sand cushion  

The 3D FE hydro-mechanical model presented and validated in Chapter 3 is used in this 

chapter with the inclusion of the sand cushion, considering 3 practical thicknesses of 

0.5 m, 1.0 m and 1.5 m. A reactive soil of a constant thickness of 4.0 m underlying the 

sand cushion is maintained in all cases. As explained in Chapter 4, this thickness was 

found to be sufficient to generate the soil mound without significantly distorting the soil 

elements in the FE mesh; furthermore, this thickness represents the maximum suction 

depth adopted by the Australian Standards AS2870 (2011). Except for the sand cushion, 

the soil model, soil properties (including the soil-water characteristic curve, SWCC, 

Moisture-Swell model) and the finite element type are similar to those used in Chapter 4. 

The slab foundation parameters are also similar to those used in Chapter 4 (model, 

modulus, loading and element type). For the sand cushion, an elastic model is used which 

is justified by the fact that the study focusses on the deformation caused by the shrink-

swell process rather than the relatively lower expected settlement from the slab light 

loading. A representative soil-water characteristic curve from the literature is used (Figure 
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5.1) is also used, with an initial void ratio of 0.6 and a Poisson’s ratio of 0.3. The soil 

element type used is 8-node brick trilinear displacement, trilinear pore pressure element 

(C3D8P).  

 

Since the aim of using a sand cushion is to increase its efficiency in producing a nearly 

uniform saturation field, as explained earlier, a relatively highly permeable sand cushion 

layer is used with a saturated permeability of 5 × 10-4 m/sec (Ishibashi and Hazarika 2011), 

corresponding to slightly silty sand. Sand cushion layers comprising more fine particles 

with lower permeability are not recommended.  

 

Figure 5.1: Typical soil-water characteristic curve for the cushion sand  

(Fredlund and Xing 1994).  

 

To achieve such permeability for the sand cushion, Hazen’s (1892; 1911) formula can be 

used as follows:  

 

2

10Hk C D=              (5.1) 

 

where (k) is the sand permeability in cm/s; (CH) is Hazen’s empirical coefficient (usually 

= 100); and (D10) is the effective particle size in (cm). This formula is developed for sands 

with coefficient of uniformity (D60/D10) of less than about 2. By using Hazen’s formula, 

the (D10) of the recommended sand is about 0.22 mm.  
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The soil mound stiffness is fixed to be 5000 kPa for both the edge lift and edge drop 

scenarios. This value is the same for the stiff clay in the case of the edge drop scenario, 

but it is much higher than the 1000 kPa used in Chapters 3 and 4 for the swelling soil in 

the case of the edge lift scenario; the reason is that, in the case of the edge lift scenario, 

even when the swelling soil is softened, the sand cushion mound stiffness (K), which is in 

direct contact with the footing will not be affected. The analysis steps are also similar to 

those presented in Chapter 4, starting with (1) application of a geostatic step in which the 

in-situ stresses are calculated, (2) application of a second geostatic gravity analysis to 

account for the slab foundation loading, and (3) simulation of the precipitation or 

evaporation event to initiate the edge lift or the edge drop scenario, respectively. The 

analysis is carried out using the ABAQUS (2014) package, and a typical 3D FE model is 

shown in Figure 5.2. Normally, the sand cushion extends outside the slab foundation 

footprint; however, in certain cases, when the slab foundations is located on the allotment 

limit, the extension is not possible. Accordingly, the sand cushion is assumed to have the 

same dimensions of the slab foundation, as a worst case scenario.  

 

Figure 5.2: A typical Finite element model showing the sand cushion (double 

symmetry).  

As explained in Chapters 3 and 4, for the case of no sand cushion, the target mound 

movement defining the soil class, is measured as the difference between the movement of 
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the reactive soil beneath the corner of the footing and beneath its centre. However, in the 

case of using a sand cushion layer beneath the slab foundation, and since the sand cushion 

provides a uniform condition of moisture change which results in almost uniform 

deformation beneath the slab, it is found that the target mound differential movement (ym) 

is achieved after a very long period of flow which generates a huge surface heave (ys) that 

violates the rule of thumb adopted by the Australian Standards (ym = 0.5 to 0.7 ys) and may 

reach a value of 5 times ym. Therefore, in case of sand cushion the target ym is deemed to 

be achieved when the surface heave of the uncovered area ys reaches conservatively twice 

the target ym. For instance, if the target ym = 70 mm, the soil mound, the slab movement 

and its internal forces are recorded when the surface heave reaches 140 mm. This criterion 

is adopted for both the edge drop and edge heave scenarios. 

 

5.3.2 Validation of the uniform moisture condition interpretation  

In order to validate the uniform moisture conditions initiated by the sand cushion, resulting 

in improving the performance of stiffened slabs on reactive soils, a hypothetical case is 

modelled considering a slab foundation of 26 m × 26 m dimensions for a soil mound 

differential movement of 84 mm corresponding to an E2 soil class. An allowable 

differential movement Δall = Ld/600 is considered for the two scenarios of edge lift and 

edge drop. The results of this exercise are displayed in terms of both the saturation 

contours within the soil layers under the slab (i.e. the sand cushion and the reactive soil) 

and the shape of the soil and footing mound. As described earlier, three thicknesses are 

considered for the sand cushion: 0.5 m, 1.0 m and 1.5 m.  

 

The degree of saturation contours shown in Figures 5.3 and 5.4, demonstrate the role of 

the sand cushion in providing more uniform saturation to the soil with respect to the case 

with no sand cushion, for both cases of edge lift and edge drop scenarios. Without a sand 

cushion the variation of the degree of saturation at the soil beneath the edges is huge for 

both scenarios, besides the degree of saturation beneath the centre of the footing is almost 

unchanged. On the other hand, in case of using a sand cushion, the degree of saturation 

has almost same values at the edges and the centre. In addition, the uniformity of the 

moisture change and the depth of wetting increases with the depth of sand cushion.   
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(a) 

(b) 

(c)  

(d) 

Figure 5.3: Saturation contours at soil mound ym = 84 mm, presented on the 

undeformed shape for the edge lift scenario: (a) no sand cushion; (b) sand cushion 

depth S = 0.5 m; (c) sand cushion depth S = 1.0 m; (d) sand cushion depth 

S = 1.5 m. 
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(a) 

(b) 

(c) 

(d) 

Figure 5.4: Saturation contours at soil mound ym = 84 mm, presented on the 

undeformed shape for the edge drop scenario: (a) no sand cushion; (b) sand 

cushion depth S = 0.5 m; (c) sand cushion depth S = 1.0 m; (d) sand cushion depth 

S = 1.5 m. 
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The role of the sand cushion explained above is manifested in Figures 5.5. Scrutiny of 

Figure 5.5 reveals that the vertical movement profile is more uniform than in the case of 

no sand cushion. This applies to both the edge lift and edge drop scenarios. Uniformity of 

the soil movement increases by increasing the sand cushion thickness. Since the 

differential movement rather than the total movement is responsible for generating the 

slab foundation deflection and its internal forces, one should expect a reduction in the 

required slab thickness and the internal forces. This aspect is discussed later. 

 

Based on the FE results and discussion presented above in Figures 5.3 to 5.5 that primary 

contribution of the sand cushion is to serve as a permeable blanket that attracts the 

moisture and redistributes it uniformly into the underlying reactive soil (in the absence of 

this blanket, the moisture will eventually reach the reactive soil but in a non-uniform 

manner). In other words, the high permeability of the sand cushion with respect to the 

surrounding reactive soil allows water to migrate horizontally beneath the footing much 

faster than vertically towards the underlying soil. This in turn produces a uniform moisture 

field within the reactive soil as the accumulated moisture within the sand cushion tends to 

migrate downward under gravity. Eventually, this results in a much uniform deformation 

for both the soil (Figure 5.5) and the slab foundation as shown in Figure 5.6. Similarly, 

for the case of edge drop, evaporation of the soil moisture is much faster horizontally 

(within the sand cushion) than vertically, which guarantees a much uniform settlement of 

both the soil and the slab. 
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Figure 5.5: Effect of sand cushion thickness on the soil mound: (a) edge lift 

scenario; and (b) edge drop scenario. 
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Figure 5.6: Effect of sand cushion thickness on the footing mound: (a) edge lift 

scenario; and (b) edge drop scenario. 
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It is now interesting to examine how the implementation of the sand cushion can affect 

the internal forces of the slab foundation. To this end, Figures 5.7 and 5.8 are prepared for 

the cases presented above. The equivalent slab thickness Teq required to limit the slab 

deformation to the codified limit (Δall = Ld/600) under the mound value ym = 84 mm is first 

determined for each thickness of sand cushion and then the internal forces are generated. 

It is clear from Figures 5.7 and 5.8 that the internal forces generated in the slab foundations 

are reduced by the presence of the sand cushion. For the specific cases presented in Figure 

5.7, a massive reduction in the bending moment of up to 50% and 70% is achieved for the 

edge lift and edge drop, respectively, when a sand cushion thickness of 0.5 m is used. 

Further reduction is achieved by increasing the thickness of sand cushion. Similarly, the 

shear forces are reduced by increasing the depth of sand cushion for both cases of edge 

lift and edge drop, as shown in Figure 5.8.  

 

It should be noted that using the sand cushion is criticised on the grounds that it increases 

the depth of the active zone and, hence, the soil total heave. However, this is not 

completely true, since, as explained in Chapter 2, a permanent change occurs in the soil 

moisture conditions beneath the slab, due to the fact that the slab itself does not allow the 

water to evaporate in dry seasons at a rate that matches its infiltration during wet seasons. 

Therefore, for an extended swelling soil layer, in the course of several years the water 

accumulates below the slab and the active zone increases until reaching the depth of 

desiccation (Hd), as reported by Chen (1988) (refer to Chapter 2). A similar behaviour was 

reported by Fityus et al. (2004) (refer to Chapter 3). Accordingly, it can be argued that the 

deep seated heave of reactive soils beneath slab foundations is inevitable, whether a sand 

cushion is used or not. The sand cushion actually speeds up the process of deep seated 

heave, but does not initiate it. Furthermore, one should recall that, there is no limitations 

in the foundation design standards as to the total foundation movement; the limits are 

available only for the differential movement. However, the foundation’s total movement 

is always governed by the building usage and the movement tolerance of the utility fittings 

and connections.  
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Figure 5.7: Effect of sand cushion thickness on the footing bending moments: (a) 

edge lift scenario; and (b) edge drop scenario. 
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Figure 5.8: Effect of sand cushion thickness on the footing shear forces: (a) edge lift 

scenario; and (b) edge drop scenario. 
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5.3.3 Parametric study incorporating sand cushion 

As explained earlier, one of the objectives of this study is to generate design equations for 

stiffened slab foundations on reactive soils considering a specific thickness of sand 

cushion. Consequently, a parametric study is carried out, similar to that of Chapter 4 with 

the inclusion of the new parameter, S, representing the sand cushion thickness.  The range 

and limits of the parametric study are similar to those of Chapter 4 (refer to Table 4.2) and 

as described earlier, three practical sand cushion thicknesses are used 0.5 m, 1.0 m and 

1.5 m. Similar to the parametric study in Chapter 4, for each slab foundation combination, 

a set of iterative analyses is carried out with different slab foundation thicknesses. The 

slab thickness selected is the value that maintains the differential movement of the slab 

within the standard limits, for a certain mound movement ± ym corresponding to a certain 

edge movement scenario. The outcome recorded from the analysis is the corresponding 

internal forces (bending moments and shear forces). The effect of the sand cushion is 

manifested in reducing the slab thickness and the corresponding internal forces in 

comparison with the similar case where no sand cushion is used.   

 

Figures 5.9 to 5.12 show the reduced slab foundation thickness as a function of the sand 

cushion thickness, for different construction types (different allowable deformation limits) 

and for different site classes (soil mound movement ym). These figures are generated for a 

rectangular slab foundation of 26 m × 26 m dimensions and for the case of an edge drop 

scenario. Similar behaviour is also found for the case of edge lift scenario and other 

dimensions.  

 

In general, the sand cushion can significantly reduce the required slab thickness. As 

expected, the efficacy of the sand cushion in reducing the required slab thickness increases 

with increasing mound movement; the benefit also increases with a reduced deflection 

limit. Interestingly, it can be seen from the figures that the efficacy of the sand cushion 

drops beyond a certain thickness, which may call for optimisation of the sand cushion 

quantity. 
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Figure 5.9: Effect of the sand cushion thickness on the equivalent slab thickness for 

different soil mounds- 26 m × 26 m- edge drop scenario, Δall =  Ld/300. 

 

 

Figure 5.10: Effect of the sand cushion thickness on the equivalent slab thickness 

for different soil mound- 26 m × 26 m- edge drop scenario,  Δall =  Ld/400. 
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Figure 5.11: Effect of the sand cushion thickness on the equivalent slab thickness 

for different soil mound- 26 m × 26 m- edge drop scenario, Δall =  Ld/600. 

  

 

 

Figure 5.12: Effect of the sand cushion thickness on the equivalent slab thickness 

for different soil mound- 26 m × 26 m- edge drop scenario, Δall =  Ld/800. 
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 The results presented above in Figures 5.9 to 5.12 agree with the results of Bharadwaj 

(2013), who found numerically that the reduction in the total heave of an extremely 

expansive, deep reactive layer reached 22% after replacing 750 mm of the reactive soil 

with a non-reactive cushion of higher saturated permeability. By increasing the thickness 

of the cushion to 2.0 m, a further reduction in the total heave of only 15% was achieved, 

whereas a further increase in the cushion thickness to 4.0 m added only a further 7.3% 

reduction in the total heave. The fact that the efficacy of the sand cushion reduces with its 

thickness indicates that the recommendations made by Chen (1988), regarding the use of 

a minimum thickness of 3.0 feet (1.0 m) for the sand cushion, are questionable.  

 

5.4 DEVELOPMENT OF EPR MODELS FOR STIFFENED SLAB FOUNDATION 

WITH SAND CUSHION 

 
Currently, there is no definite codified method or guideline to evaluate or design the 

thickness of the sand cushion. Chen (1988) recommended a minimum depth of 3 feet (1.0 

m) and preferred 5 feet (1.5 m). Nelson and Miller (1992) suggested that the depth of the 

cushion should be governed by the weight required to counter the expected uplift. 

Obviously, this recommendation may lead to impractical thicknesses, considering that the 

expected total heave and the corresponding swelling pressure is proportional to the active 

zone which is even quite challenging to estimate in the presence of a sand cushion. To fill 

this gap in design practice, this section aims at providing a tool that can help engineers 

quantify the role of the sand cushion into specific design output. This is accomplished 

using the EPR method presented in Chapter 4. 

 

The input data concerning the EPR method presented here are similar to those of Chapter 

4 with the inclusion of the new parameter (S), representing the thickness of the sand 

cushion. The outputs are the same as in Chapter 4, including the internal forces in the slab 

foundation (bending moments and shear forces in both directions) and the slab foundation 

deflection. In total, a number of 569 data cases were compiled from the parametric study 

for the edge drop scenario, whereas 524 data cases were collected for the edge heave 

scenario. Similar to the EPR model developed in Chapter 4, 90% of the parametric study 

outputs data, considering the sand cushion is used for training the model, while 10% of 
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the data is used for validation. The training and validation data are divided in a way to be 

statistically consistent to properly represent the same statistical population. Consequently, 

the training and validation data are selected to have very close averages (means) and 

standard deviations. The minimum and maximum values of the parameters are used in the 

training data to avoid extrapolation. The EPR analysis returned 4 models for each output 

parameter and the optimal models along with their performance graphical representation 

(see Figures 5.13 to 5.22) are as follows:  

 

For the edge lift scenario: 
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For the edge drop scenario:  
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Figure 5.13: Graphical performance of the EPR model of Equation 5.2 regarding 

deflection : (a) Training set; and (b) Validation set.  
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Figure 5.14: Graphical performance of the EPR model of Equation 5.3 regarding 

Ms: (a) Training set; and (b) Validation set.  
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Figure 5.15: Graphical performance of the EPR model of Equation 5.4 regarding 

Ml: (a) Training set; and (b) Validation set.  
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Figure 5.16: Graphical performance of the EPR model of Equation 5.5 regarding 

Vs: (a) Training set; and (b) Validation set.  
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Figure 5.17: Graphical performance of the EPR model of Equation 5.6 regarding 

Vl: (a) Training set; and (b) Validation set.  
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Figure 5.18: Graphical performance of the EPR model of Equation 5.7 regarding 

deflection : (a) Training set; and (b) Validation set.  
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Figure 5.19: Graphical performance of the EPR model of Equation 5.8 regarding 

Ms: (a) Training set; and (b) Validation set. 
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Figure 5.20: Graphical performance of the EPR model of Equation 5.9 regarding 

Ml: (a) Training set; and (b) Validation set.  
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Figure 5.21: Graphical performance of the EPR model of Equation 5.10 regarding 

Vs: (a) Training set; and (b) Validation set.  
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Figure 5.22: Graphical performance of the EPR model of Equation 5.11 regarding 

Vl: (a) Training set; and (b) Validation set.  
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The results of the EPR analysis are implemented in the new design method and the SFORS 

computer program, so that the designer can select the option to consider the use of a 

predefined thickness of a sand cushion beneath the slab foundation. The computer 

program carries out the required calculations using the EPR models shown above in order 

to get the required equivalent slab thickness and the corresponding slab internal forces. 

The rest of the procedure is similar to that explained in Chapter 4, in terms of accounting 

for the effective inertia of the stiffened slab foundation and delivery of the final design, 

including the dimensions and reinforcement of the stiffening beams. In the following 

section the new design method using the SFORS program with the feature of a sand 

cushion is illustrated and tested through an illustrative numerical example.     

 

It should be noted that, instead of investigating the optimal sand cushion depth required 

to reduce or eliminate the surface heave or reduce the swelling pressure, this section 

focuses on how the sand cushion can be used to reduce the required foundation stiffness 

needed to maintain the foundation differential movement within the standard limits. 

 

5.5 NUMERICAL EXAMPLE CONSIDERING SAND CUSHION 

 
In order to validate the EPR models, the following example of slab foundation with sand 

cushion is examined; first using the EPR models and second using a separate finite 

element analysis. The results of the two methods are then compared. The example is for a 

hypothetical 17.0 m × 23.0 m slab foundation, supporting a single storey masonry veneer 

house, and subjected to a characteristic surface heave (ys) of 109 mm. The loading is 

similar to that used in the parametric study with a uniform load of 4.5 kPa and perimeter 

edge line load of 6.0 kN/mʹ. A 750 mm sand cushion layer is assigned beneath the footing, 

with properties and permeability comparable to those used in the parametric study. The 

two scenarios of edge lift and edge drop are evaluated. 

 

Using Equations 5.2 and 5.7, and by iteration, the equivalent slab thickness (Teq) required 

to limit the deflection of the slab foundations δ to the allowable deformation, Δall, to 

20 mm (according to the type of construction‒refer to Table 4.2), is determined, along 

with corresponding internal forces. A separate, 3D FE model is constructed for the same 
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slab foundation and the same equivalent thickness Teq obtained from the EPR models is 

used for each soil mound scenario. Overall, the results of the finite element modelling are 

found to be in very good agreement with the EPR models, as shown in the comparison 

outcomes in Table 5.1. 

 

Table 5.1: Comparison between EPR and FE results for the numerical example 

with sand cushion. 

Movement 

Scenario 

Teq 

(mm) 

δ 

(mm) 

Ms 

(kN.m/m) 

Ml 

(kN.m/m) 

Vs 

(kN/m) 

Vl 

(kN/m) 

ED EPR 376 20 50.5 43.3 17.5 17.7 

ED FE 375 18.5 41.4 43.3 18.3 18.7 

EL EPR 321 20 38.2 35.1 17.3 17.7 

EL FE 325 22.2 35.6 38.3 18.0 18.9 

 

Using the internal forces obtained from the EPR model and applying the same procedures 

for the calculation of the effective slab inertia in Chapter 4 (considering 6 beams in the 

long slab direction and 7 beams in the short direction) the stiffening beam design depth is 

found to be 790 mm (including the 100 mm top slab), with top and bottom reinforcements 

of 3N16 and 4N16, respectively, and a slab steel mesh of 178 mm2/mʹ. Note that if the 

design is carried out considering the relatively lower moment obtained from the FE results 

(a maximum of 18% lower, Ms), the depth will be 750 mm; however, this difference has 

little effect on the design, and the EPR models can be developed to have acceptable 

conservatism.  Figures 5.23 and 5.24 show screenshots of the SFORS program’s input and 

output modules incorporating a sand cushion. Solving the same example without the sand 

cushion gives much higher results, as shown in Table 5.2, emphasising the benefit of using 

a sand cushion.  
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Figure 5.23: Screenshot of the SFORS Program incorporating sand cushion in the 

new design method, solving rectangle (17 m × 23 m) of the numerical example. 

 

The stiffening beam design depth considering the results shown in Table 5.2, is 1800 mm 

(including the 100 mm top slab), with top and bottom reinforcements of 4N20 and 4N20, 

respectively, and a slab steel mesh of 178 mm2/mʹ. It is obvious that the 750 mm sand 

cushion reduced the depth of the stiffening beam of the slab foundation significantly by 

56%. This reduction results in a remarkable saving in the volume of concrete of about 

65.0 m3 for the size of the footing under consideration (17.0 m × 23.0 m). A detailed cost 

comparison would eventually add the contribution of excavation and standard backfilling 

for the construction of the 750 mm sand cushion (compared to the over-excavation for the 

construction of the 1800 mm deep stiffening beam without the sand cushion), and other 

items including the cost of insulation, top and bottom beams’ reinforcement and shear 

reinforcement, which is most likely to provide an overall cost reduction in favour of the 

sand cushion option.   
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Figure 5.24: Screenshot of the design report obtained from the SFORS program 

incorporating sand cushion in the new design method, solving (17 m × 23 m) of the 

numerical example. 
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The above illustrative example shows how efficient the sand cushion can be in reducing 

the beam depth of the stiffened slab foundation, especially with high differential mound 

movements and strict allowable deformation limits. By incorporating the option of the 

sand cushion in the design tool presented in Chapter 4 in terms of the EPR models, this 

research now enables engineers to quantify the exact contribution of the sand cushion in 

terms of the exact equivalent design depth of the stiffened slab foundation; this 

corresponds to a particular thickness of the sand cushion. Adoption of this tool will 

remove the element of empiricism that engulfs application of the sand cushions in the 

design of stiffened slab foundation on reactive soils (such that engineers are no longer 

forced to follow the rule-of-thumb of using either 1.0 m or 1.5 m of sand cushion, without 

knowing its actual impact on the design). 

 

Table 5.2: EPR results for the numerical example without sand cushion. 

Movement 

Scenario 

Teq 

(mm) 

δ 

(mm) 

Ms 

(kN.m/mʹ) 

Ml 

(kN.m/mʹ) 

Vs 

(kN/mʹ) 

Vl 

(kN/mʹ) 

ED EPR  
765.4 20 191.1 174.8 48.1 46.0 

EL EPR 
615.2 20 111.0 93.0 26.0 23.3 

 

5.6 SUMMARY  

This chapter investigated the role of the sand cushion in the performance of stiffened slab 

foundations on reactive soils. The mechanism behind the ability of the sand cushion to 

improve the performance of this type of foundations was determined numerically. The 

chapter revealed that the sand cushion actually works as a filter that provides a path for 

moisture to accumulate in a uniform manner before it, inevitably, reaches the underlying 

reactive soil under the work of gravity. This eventually creates a field of much more 

uniform degree of saturation within the reactive stratum, leading to reduced differential 

movement of the slab foundation. 
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The effect of using sand cushions on the design of stiffened slab foundation was 

investigated in this chapter. This study succeeded in mathematically relating the 

equivalent slab foundation thickness Teq (and consequently the depth of the stiffening sub-

beams) to the thickness of the sand cushion (S). In order to achieve this goal, an intensive 

parametric study was carried out similar to that presented in Chapter 4 after including a 

parameter representing the thickness of the sand cushion (S). The results of the parametric 

study were compiled using the artificial intelligence, evolutionary polynomial regression 

(EPR) technique, in the form of design equations for the case of edge drop and edge heave 

scenario. The EPR models (design equations) were validated through an illustrative 

numerical example and the results of the EPR models showed good agreement compared 

to the results of the finite element analysis. The same numerical example was solved 

without a sand cushion using the EPR models developed in Chapter 4 in order to compare 

the results with and without the sand cushion. Efficacy of the sand cushion was clearly 

demonstrated in this example. The design equations of the EPR models can be easily used 

by designers to estimate the equivalent slab thickness (Teq) and the corresponding slab 

internal forces for a slab foundation supporting a single storey house having a specific 

construction type and subjected to a specific mound movement, for a specific thickness of 

the sand cushion.  

 



CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 GENERAL 

 
Stiffened slab foundations are the most common foundation technique used worldwide to 

support light-weight structures on reactive soils. Careful review of the existing design 

methods and other studies on stiffened slab foundations revealed that a major assumption 

adopted by almost all methods involves simplifying the real, complex 3D moisture flow 

aspect into a 2D problem, resulting in deformation incompatibility between the soil mound 

and the supported footing. This is manifested by analysing the slab in each direction 

separately, by adopting uncoupled approaches in which the footing is designed for stress 

analysis using pre-defined soil mound shapes obtained empirically or from a separate 

seepage analysis in each direction, with no consideration to the effect of slab loading on 

the formation of the soil mounds. In fact, determination of the soil mound shapes in the 

existing methods is based on simple empirical equations, based on best fit of minimal field 

observations. However, in reality, formation of the soil mound depends on several factors, 

including evolving soil suction, degree of saturation, hydraulic conductivity, site drainage 

conditions and irrigation/plantation events.  

 

This research tackled the above mentioned shortcomings in current design practices by 

developing a robust, hydro-mechanical finite element (FE) model able to simulate the 

intricate behaviour of unsaturated reactive clays and their response to soil moisture and 

suction variations. The range of parameters needed for the developed hydro-mechanical 

FE model were identified, investigated and verified against previous studies. The model 

was then used in a 3D coupled flow-deformation and stress analysis involving 

multidimensional transient flow simulating realistic events of moisture precipitation and 

evaporation. The resulting model simulated the corresponding soil moisture and suction 

changes to produce a realistic soil mound beneath the slab foundation. Contact elements 

were used to allow for the separation between the slab foundation and the soil based on 

the generated soil mound and the stiffness of the slab foundation. The developed hydro-
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mechanical FE model was verified through two case studies involving field observations 

in order to investigate its ability to simulate the soil response in situations involving 

surface moisture and suction changes. The results of the verification work proved the 

success and strength of the model in simulating the soil deformations and suction changes 

in a 3D fashion that reflected the true behaviour of stiffened slab foundations. A third case 

study involving a design of a hypothetical stiffened slab foundation using the developed 

model and the well-known Mitchell’s method was also presented.  

 

Following the verification phase, the developed 3D FE hydro-mechanical model was used 

in an extensive parametric study involving slab foundations of variable dimensions, 

subjected to different soil mounds and supporting different construction types. The results 

of the parametric study were compiled into a set of design charts. However, to avoid the 

inaccuracy in the linear interpolation from the design charts, the data of the parametric 

study were used to generate design equations through a robust artificial intelligence 

techniques. These design equations along with the design procedures formed a new 

standalone design method for stiffened slab foundations on reactive soils supporting light- 

weight structures. The procedures of the new design method (including iterations and 

verifications) were congregated into a user-friendly computer program that can be readily 

used by engineers and practitioners. 

 

In addition to the contribution above, this thesis investigated the effect of sand cushion as 

a well-known remedial technique for foundations in reactive soils. The actual role of sand 

cushions was investigated and identified via 3D analysis using the hydro-mechanical FE 

model mentioned above. The actual contribution of sand cushions to the design of 

stiffened slab foundations was carefully quantified in terms of the reduction in the overall 

slab foundation thickness. To this end, an extensive parametric study was carried out 

similar to that used to develop the new design method, with the inclusion of 3 commonly 

used depths of sand cushion. The results of the parametric study were used to generate 

design equations using the AI technique, and the computer program developed for the new 

design method was then extended to include the sand cushion thickness in the design of 

stiffened slab foundations.   
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6.2 SUMMARY AND CONCLUSIONS 

 
This thesis developed a new design method for stiffened slab foundations on reactive soils, 

based on a robust 3D, coupled flow-deformation and stress analysis, considering an 

advanced hydro-mechanical model, and implementing realistic moisture precipitation and 

evaporation algorithms. The thesis comprises six main chapters: 

 

Chapter 1 presented the premises underlying the design of stiffened slab foundations, 

highlighting the main shortcomings. The chapter also presented the research objectives 

and scope. 

 

Chapter 2 presented a critical review of the existing and most commonly used design 

methods for stiffened slab foundations on reactive soils, exploring their assumptions and 

limitations. The chapter investigated the recent researches into design and analysis of 

stiffened slab foundations on reactive soils that involved the finite element techniques. 

The chapter summarised the specific shortcomings of existing design methods (which 

were tackled and resolved later in this research). These shortcomings included: 

oversimplifying the real 3D real problem into a 2D one, which violates the soil and footing 

mound deformation compatibility; the empirical estimation of the soil mound; and the use 

of uncoupled approach in the flow- deformation problem.   

 

In Chapter 3, an advanced 3D finite element (FE) numerical modelling was pursued to 

simulate the complex behaviour of stiffened slab foundations, which otherwise cannot be 

realistically captured by the currently available design methods. Through a hydro-

mechanical approach, the resulting 3D FE model was proven capable of simulating the 

true performance of stiffened slab foundations on reactive soils, by: (1) involving a 

coupled flow-deformation analysis based on realistic moisture flow and suction evolution; 

and (2) inducing a realistic formation of the soil mound beneath the footing. The chapter 

presented and discusses some modelling aspects relating to unsaturated soils and the 

corresponding associated parameters. Development of the adopted FE numerical models 

is then explained and verified through three case studies. The first case study involved 

field observations of a soil mound formation of a flexible cover membrane resting on a 



Chapter 6: Summary, Conclusions and Recommendations 

 207   

 

highly expansive soil over a period of 5 years in Newcastle, Australia. The mound 

formation over the course of observations was found to be similar to that produced by FE 

analysis. This modelling step confirmed reliability of the adopted FE modelling process 

and capability of the model in generating realistic soil distorted mound shapes. The second 

case study presented field observations of the suction change and soil movement for a site 

in Amarillo, Texas. The results of the FE modelling agreed fairly well with the field 

observations, and this proved the efficacy of the FE model in simulating the water 

diffusion and suction changes through a soil medium. The third case study involved a 

hypothetical stiffened slab foundation on reactive soil, solved via 2D/3D FE modelling 

and compared with Mitchell’s method. The 2D FE analysis showed a good agreement 

with Mitchell’s method. However, the 3D FE analysis produced more realistic mound 

shapes and achieved deformation compatibility; a matter that is usually unaccounted for  

in the 2D analysis adopted by most existing design methods. 

 

Chapter 4 detailed the comprehensive parametric study carried out using the hydro-

mechanical model presented in Chapter 3. The assumptions and conditions associated with 

the parametric study were presented and the results of the parametric study were compiled 

into a set of design charts. Analysis of the design charts was presented through by example 

to demonstrate the design process and associated elements. To avoid any inaccuracy 

during interpolation from the design charts, the output data of the parametric study were 

classified into a training set (90 % of the data) and validation set (10% of the data) and 

then used to generate design equations using the evolutionary polynomial regression 

(EPR) method, as a robust artificial intelligence (AI) technique. The design equations 

along with all design procedures presented a new design methods for stiffened slab 

foundations on reactive soils supporting light weight structures. The new design method 

was validated through an illustrative numerical example involving a slab of L-shape. The 

results of the new design method were compared with those of the well-known Mitchell’s 

method (adopted by the Australian Standards) and also the results obtained from the 3D 

finite element analysis of the same foundation problem. The outcomes of the new design 

method were found to agree well with the common engineering practice and the outputs 

of the 3D FE analysis, and were thus deemed to be more realistic than those obtained from 
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Mitchell’s method, given the shortcomings reported previously for the latter. The new 

design method procedures were integrated into a user-friendly computer program called 

(SFORS).   

 

Chapter 5 explored the effect of sand cushion on the design of slab foundations. The actual 

role of the sand cushion was investigated numerically and shown to be manifested in 

producing a relatively uniform moisture field beneath the slab, which eventually reduce 

the differential movement of the slab foundation. A study was then carried out on the 

effect of sand cushion thickness on reducing the thickness demand of the stiffened slab 

foundation for different soil mound differential movements, different construction types, 

different foundation dimensions and different movement scenarios. An extensive 

parametric study similar to that used to develop the new design method presented in 

Chapter 4 was carried out considering 3 commonly used sand cushion depths. The ability 

of the sand cushion to reduce the differential slab foundation movement and internal 

forces, led to reduction in the required design thickness of the slab. The results of the 

parametric study were synthesized into design equations, using the EPR method 

considering a specific thickness of sand cushion. The design equations were validated 

through an illustrative numerical example solved by the design equations and by the 3D 

finite element method. The results of both methods were found to agree fairly well, 

confirming the ability of the EPR model to calculate the reduced thickness of stiffened 

slab foundations using a specific sand cushion thickness. Considerable cost saving can be 

achieved through the use of sand cushions. This is believed to be contribution critical tool, 

since designers can now discard the empirical rule-of-thumb of using 1.0 to 1.5 m of sand 

cushion, since this method does not lend itself to engineering conviction. Instead, the new 

design tool can be used to specify the thickness of the sand cushion required to achieve a 

specific reduction in the slab foundation thickness.    
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6.3 ORIGINAL CONTRIBUTION OF THE RESEARCH  

 
To the author’s best knowledge, this thesis made the following original contributions:  

 

1- Development of a robust hydro-mechanical model capable of simulating the 

complex behaviour of reactive soils and their response to surface moisture and 

suction variations.  

 

2- Successfully implementing the developed hydro-mechanical in a 3D coupled flow-

deformation and stress FE analysis, involving realistic surface moisture and 

suction changes by generating 3D transient flow process, simulating true time-

dependent precipitation and evaporation conditions. 

 

3- Using the developed model in a comprehensive parametric study that was carefully 

designed to produce an efficient database to develop design equations through the 

Artificial Intelligence method called EPR (Evolutionary Polynomial Regression).  

 

4- Using the design equations from EPR along with traditional design procedure to 

develop a new design method for stiffened slab foundations on reactive soils, 

supporting light weight structures. This new design method is more realistic than 

available methods, since it mitigates many of the limitations and shortcomings of 

these methods.  

 

5- Providing clear understanding of the role of sand cushion when used under 

stiffened slab foundations, and integrating the role of sand cushion in the design 

process of stiffened slab foundation using the EPR method. 

 

6- Development of a computer program integrating the new design method for 

stiffened slab foundation on reactive soils with and without the inclusion of a sand 

cushion layer of a specific thickness.  
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6.4 RECOMMENDATIONS FOR FUTURE WORK 
 
Despite the good performance of the new design method, there are still more 

enhancements that can be made as explained below: 

 

1- The new design method was developed based on a parametric study that had 

certain conditions/limitations, and overcoming these limitations will broaden 

applicability of the method. For example, partition loads were converted to a 

uniform pressure load in the analysis, and this can be enhanced by considering a 

centre line load in each direction to produce more accurate results.  

 

2- Using separate parameters for the edge, centre and uniform loads by adding 3 new 

parameters to cover a wider range of load configuration.   

 

3- The new design method was developed for a highly expansive soil, by considering 

a moisture-swell model with 8% strain upon saturation. Future studies may use 

lesser strain potential, specifically with relatively low soil mound differential 

movement (ym). Consequently, it may also be recommended to study the effect of 

varying the soil-water characteristic curve (SWCC) for different soil classes.  

 

4- The new design method is developed for slab dimensions from 6.0 m to 26.0 m. It 

is recommended in future researches to use a wider range of the dimensions 

parameter.   

 

5- The study on the sand cushion was carried out using a relatively high permeability 

corresponding to slightly silty sand. Lower values of sand permeability are 

recommended in future work. 

 

6- The concrete strength and modulus were fixed in the study to 20 MPa and 15 GPa, 

respectively. Increasing these two parameters will lead to a reduction in the design 

equivalent thickness (Teq) of the stiffened slab foundation. Therefore, higher 

ranges of concrete strengths and corresponding concrete modulus can be used in 

future studies.  
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7- The proposed new design method for stiffened slab foundations on reactive soils 

with and without sand cushion is based on pure numerical modelling. 

Experimental models, full scale field models, and field observations to slabs 

designed using the new design method is highly recommended for more validation 

and future development.  The experimental work may also extend to produce data 

for the variation of the mound stiffness with the degree of saturation, as this 

parameter was fixed in this study to 1,000 MPa and 5,000 MPa for the edge lift 

and the edge drop, respectively. 

 

************************ 
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APPENDICES 

APPENDIX A:  USER-DEFINED SUBROUTINE USDFLD 

 

  SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT, 

     1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER, 

     2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO, 

     3 LACCFLA) 

C 

     INCLUDE 'ABA_PARAM.INC' 

C 

     CHARACTER*80 CMNAME,ORNAME 

     CHARACTER*3  FLGRAY(15) 

     DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3), 

     1 T(3,3),TIME(2) 

     DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*), 

     1 COORD(*) 

C 

     CALL GETVRM('Por',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP, 

     1 MATLAYO,LACCFLA) 

     Por = ARRAY(1)  

C   Use the pore pressure as a field variable 

      FIELD(1) = ARRAY(1)   

C    Store the Pore Pressure as a solution dependent state  

C    variable 

       STATEV(1) = FIELD(1) 

 

      RETURN 

      END 
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 Keyword File for Soil Modulus-Suction Dependency  

** MATERIALS 

*Material, name=Swelling-soil 

*Elastic, dependencies=1 

 5e+07., 0.3, ,-3900000 

 4e+07.,0.3, ,-1600000 

 3e+07., 0.3, ,-650000 

 2e+07., 0.3, ,-250000 

*USER DEFINED FIELD 

*DEPVAR 

1 
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Slab foundation main span, L (m) 6.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 
 

 

 

Figure B-1: L = 6 m, edge drop and Ld/Δall = 300. 
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Slab foundation main span, L (m) 6.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 
 

 

 

Figure B-2: L = 6 m, edge drop and Ld/Δall = 400. 
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Slab foundation main span, L (m) 6.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 
 

 

 

Figure B-3: L = 6 m, edge drop and Ld/Δall = 600. 
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Slab foundation main span, L (m) 6.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 
 

 

 

Figure B-4: L = 6 m, edge drop and Ld/Δall = 800. 
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Slab foundation main span, L (m) 6.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 
 

 

 

Figure B-5: L = 6 m, edge lift and Ld/Δall = 300. 
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Slab foundation main span, L (m) 6.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 
 

 

 

Figure B-6: L = 6 m, edge lift and Ld/Δall = 400. 
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Slab foundation main span, L (m) 6.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 
 

 

 

Figure B-7: L = 6 m, edge lift and Ld/Δall = 600. 
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Slab foundation main span, L (m) 6.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-8: L = 6 m, edge lift and Ld/Δall = 800. 
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Slab foundation main span, L (m) 10.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-9: L = 10 m, edge drop and Ld/Δall = 300. 
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Slab foundation main span, L (m) 10.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads, Wint (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kpa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load, q (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-10: L = 10 m, edge drop and Ld/Δall = 400. 
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Slab foundation main span, L (m) 10.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-11: L = 10 m, edge drop and Ld/Δall = 600. 
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Slab foundation main span, L (m) 10.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-12: L = 10 m, edge drop and Ld/Δall = 800. 
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Slab foundation main span, L (m) 10.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-13: L = 10 m, edge lift and Ld/Δall = 300. 
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Slab foundation main span, L (m) 10.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-14: L = 10 m, edge lift and Ld/Δall = 400. 
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Slab foundation main span, L (m) 10.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-15: L = 10 m, edge lift and Ld/Δall = 600. 
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Slab foundation main span, L (m) 10.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-16: L = 10 m, edge lift and Ld/Δall = 800. 
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Slab foundation main span, L (m) 14.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-17: L = 14 m, edge drop and Ld/Δall = 300. 
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Slab foundation main span, L (m) 14.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-18: L = 14 m, edge drop and Ld/Δall = 400. 
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Slab foundation main span, L (m) 14.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-19: L = 14 m, edge drop and Ld/Δall = 600. 
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Slab foundation main span, L (m) 14.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-20: L = 14 m, edge drop and Ld/Δall = 800. 
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Slab foundation main span, L (m) 14.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-21: L = 14 m, edge lift and Ld/Δall = 300. 
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Slab foundation main span, L (m) 14.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-22: L = 14 m, edge lift and Ld/Δall = 400. 
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Slab foundation main span, L (m) 14.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-23: L = 14 m, edge lift and Ld/Δall = 600. 
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Slab foundation main span, L (m) 14.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-24: L = 14 m, edge lift and Ld/Δall = 800. 
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Slab foundation main span, L (m) 18.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-25: L = 18 m, edge drop and Ld/Δall = 300. 
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Slab foundation main span, L (m) 18.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-26: L = 18 m, edge drop and Ld/Δall = 400. 
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Slab foundation main span, L (m) 18.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-27: L = 18 m, edge drop and Ld/Δall = 600. 
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Slab foundation main span, L (m) 18.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-28: L = 18 m, edge drop and Ld/Δall = 800. 
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Slab foundation main span, L (m) 18.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-29: L = 18 m, edge lift and Ld/Δall = 300. 
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Slab foundation main span, L (m) 18.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-30: L = 18 m, edge lift and Ld/Δall = 400. 
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Slab foundation main span, L (m) 18.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 

 

 

 

 

 

Figure B-31: L = 18 m, edge lift and Ld/Δall = 600. 
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Slab foundation main span, L (m) 18.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 

 

 
 

 

 

 

 

Figure B-32: L = 18 m, edge lift and Ld/Δall = 800. 
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Slab foundation main span, L (m) 22.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 
 

 

 

 

Figure B-33: L = 22 m, edge drop and Ld/Δall = 300. 

100

200

300

400

500

600

700

6 8 10 12 14 16 18 20 22 24 26

E
q

u
iv

al
en

t 
sl

ab
 t
h
ic

k
n
es

s 
,T

eq
(m

m
)

Slab foundation dimension, B (m)

M-H1

H2

E1

E2

-160

-140

-120

-100

-80

-60

-40

-20

0

6 8 10 12 14 16 18 20 22 24 26

B
en

d
in

g
 m

o
m

en
ts

 i
n
 l

o
n
g
 s

p
an

 (
k

N
.m

/m
)

Slab foundation dimension, B (m)

M H1

H2 E1

E2

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

6 8 10 12 14 16 18 20 22 24 26

B
en

d
in

g
 m

o
m

en
ts

 i
n
 s

h
o
rt

 s
p

an
 (

k
N

.m
/m

)

Slab foundation dimension, B (m)

M H1

H2 E1

E2

0

5

10

15

20

25

30

35

40

45

50

55

6 8 10 12 14 16 18 20 22 24 26

S
h
ea

r 
fo

rc
es

 i
n
 l

o
n
g
 s

p
an

 (
k

N
/m

)

Slab foundation dimension, B (m)

M H1

H2 E1

E2

0

5

10

15

20

25

30

35

40

45

50

55

60

6 8 10 12 14 16 18 20 22 24 26

S
h
ea

r 
fo

rc
es

 i
n
 s

h
o
rt

 s
p

an
 (

k
N

/m
)

Slab foundation dimension, B (m)

M H1

H2 E1

E2



Appendix B: Design Charts of the New Design Method 

 261   

 

Slab foundation main span, L (m) 22.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

Figure B-34: L = 22 m, edge drop and Ld/Δall = 400. 
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Slab foundation main span, L (m) 22.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 
 

 

 

 

 

Figure B-35: L = 22 m, edge drop and Ld/Δall = 600. 
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Slab foundation main span, L (m) 22.00 

 

Edge drop scenario ED 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

Figure B-36: L = 22 m, edge drop and Ld/Δall = 800. 
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Slab foundation main span, L (m) 22.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 
 

 

 

 

Figure B-37: L = 22 m, edge lift and Ld/Δall = 300. 
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Slab foundation main span, L (m) 22.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m’) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

 

Figure B-38: L = 22 m, edge lift and Ld/Δall = 400. 
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Slab foundation main span, L (m) 22.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 
 

 

 

 

Figure B-39: L = 22 m, edge lift and Ld/Δall = 600. 
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Slab foundation main span, L (m) 22.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 
 

 

 

 

 

Figure B-40: L = 22 m, edge lift and Ld/Δall = 800. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario ED 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

Figure B-41: L = 26 m, edge drop and Ld/Δall = 300. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario ED 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

 

Figure B-42: L = 26 m, edge drop and Ld/Δall = 400. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario ED 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

Figure B-43: L = 26 m, edge drop and Ld/Δall = 600. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario ED 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

 

Figure B-44: L = 26 m, edge drop and Ld/Δall = 800. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 300 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 
 

 

 

 

Figure B-45: L = 26 m, edge lift and Ld/Δall = 300. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 400 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 
 

 

 
 

 

 

 

 

 

 

Figure B-46: L = 26 m, edge lift and Ld/Δall = 400. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 600 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 
 

 

 
 

 

 

 

 

Figure B-47: L = 26 m, edge lift and Ld/Δall = 600. 
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Slab foundation main span, L (m) 26.00 

 

Edge lift scenario EL 
Span to deflection ratio (Ld/Δall) 800 

Service Loads: 

Internal wall loads (kPa) 2.6 

Roof: 0.80 mm steel sheet (kPa) 0.1 

10 mm Plasterboard (kPa) 0.083 

12 mm hardwood lining 0.126 

Insulation, wiring, fittings (kPa) 0.058 

Flooring (13 mm clay tiling) 0.27 

Permanent live load (kPa) 1.25 

Total uniform load* (kPa) 4.50 

Edge wall  line load (kN/m) 6.00 

*Without the self-weight of slab foundation  

 

 
 

 

 
 

 
 

 

Figure B-48: L = 26 m, edge lift and Ld/Δall = 800.
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14/02/2019 RE: Permission request

https://outlook.office.com/owa/projection.aspx 1/3

Hi Steph/Mohamed
There are no copyright issues with these proceedings.
 
Mohamed, you would clearly need to refer to the source reference when re-prin�ng these figures.
 
Regards
Barry
 
 
 
Prof. Barry Lehane
Winthrop Professor of Geotechnical Engineering
Department of Civil, Environmental and Mining Engineering, Rm. 2.76A
Faculty of Engineering and Mathematical Sciences  •  M021, Perth WA 6009 Australia
T +61 8 6488 2417  •  M +614 26210262  •  E Barry.Lehane@uwa.edu.au

  

 
 
 
From: ANZ Geomechanics 2019 [mailto:anzgeomechanics2019@arinex.com.au]  
Sent: Tuesday, 12 February 2019 5:25 PM 
To: Barry Lehane <barry.lehane@uwa.edu.au> 
Subject: FW: Permission request
 
Hi Barry,
 
Kel & I are stuck on the below delegates request – Do you understand?
 
Thanks, 
Steph
 

RE: Permission request

   Reply all |

Inbox

BL Barry Lehane <barry.lehane@uwa.edu.au> 
Yesterday, 8:50 AM

ANZ Geomechanics 2019 <anzgeomechanics2019@arinex.com.au>; Mohamed Sha

You replied on 2/14/2019 5:56 AM.

Reply all | Delete Junk | 

mailto:Barry.Lehane@uwa.edu.au
http://www.uwa.edu.au/university-campaigns-resources/emailsig-resources/uwa-logo/
http://www.uwa.edu.au/university-campaigns-resources/emailsig-resources/facebook
http://www.uwa.edu.au/university-campaigns-resources/emailsig-resources/twitter
http://www.uwa.edu.au/university-campaigns-resources/emailsig-resources/youtube
http://www.uwa.edu.au/university-campaigns-resources/emailsig2015/campaign
http://www.uwa.edu.au/university-campaigns-resources/emailsig2015/campaign


14/02/2019 RE: Permission request

https://outlook.office.com/owa/projection.aspx 3/3

 

 

Sinha, J., and Poulos, H. G. (1996). "Behaviour of stiffened raft foundations.",7th Australia New Zealand
Conference on Geomechanics: Geomechanics in a Changing World, Institution of Engineers,
Australia, Barton, ACT, 704-709.

 

I have contacted Engineers Australia first for it looks like they are holding the copyrights of the paper
but they asked me to contact you. 

 

The figures will be cited in my thesis as shown above and the thesis will be made available online via
Curtin’s Institutional Repository, espace.

 

 Please note that the use of these figures is for non-commercial and educational purposes.

 

Regards 

 

Mohamed Shams

BSc, MSc, Civil Engineering
Mob | +61 4 06300653
Email | mohamed.shams@postgrad.curtin.edu.au 
 

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and
others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or
taking action in relation of the contents of this information is strictly prohibited and may be unlawful. 

This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an
innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated
data. Specializing in; Security, archiving and compliance. To find out more Click Here.

Reply all | Delete Junk | 

mailto:m.shahin@curtin.edu.au
http://www.mimecast.com/products/


10/02/2019 Permission request

https://outlook.office.com/owa/projection.aspx 1/2

No problem with me Mohamed. Just please cite the source, and good luck to you. Jean-Louis
 
***************************************************
ASCE President Elect Nominee
Jean-Louis BRIAUD, PhD, PE, DGE, Distinguished Member ASCE
University Distinguished Professor and Buchanan Chair Holder
Zachry Dpt.  of Civil Engineering, Texas A&M University
College Station, Texas, 77843-3136, USA
Tel: 979-845-3795, Cell: 979-777-1692
Email: briaud@tamu.edu
https://ceprofs.civil.tamu.edu/briaud/
 
From: Mohamed Shams <mohamed.shams@postgrad.cur�n.edu.au>  
Sent: Friday, February 8, 2019 9:00 PM 
To: Briaud, Jean-Louis <briaud@tamu.edu> 
Subject: Permission request
 
 
Dear Dr. Briaud,
 
I am a PhD student in Cur�n university in Australia and I want your permission to reprint Figure 10 from
your published paper:
 
 
Briaud, J. L., Abdelmalak, R., Xiong, Z., and Magbo, C. (2016). "Stiffened slab-on-grade on shrink-swell

soil: New design method." Journal of Geotechnical and Geoenvironmental Engineering, 142 (7):
04016017, doi: 10.1061/(ASCE)GT.1943-5606.0001460.

 
The figure will be cited in my thesis as shown above. 
The thesis will be made available online via Curtin’s Institutional Repository, espace.
 Please note that the use of these figures is
for non-commercial and educational purposes.
 
Regards 
 
Mohamed Shams
BSc, MSc, Civil Engineering

RE: Permission request

   Reply all |

Inbox

BJ Briaud, Jean-Louis <briaud@tamu.edu> 
Yesterday, 10:59 AM

Mohamed Shams 

Reply all | Delete Junk | 

mailto:briaud@tamu.edu
https://ceprofs.civil.tamu.edu/briaud/


09/02/2019 RE: Permission requested

https://outlook.office.com/owa/projection.aspx 1/2

Mohamed:
 
You certainly have my permission to reprint those figures.  Good luck with your thesis.
 
 
John D. Reins, PE 
Principal

Wiss, Janney, Elstner Associates, Inc.
Engineers | Architects | Materials Scientists 
3609 South Wadsworth Blvd, Suite 400 
Lakewood, Colorado 80235
tel 303.914.4300 | direct 303.914.4313 | fax 303.914.3000 | mobile 303.618.1832   
 
From: Mohamed Shams [mailto:mohamed.shams@postgrad.cur�n.edu.au]  
Sent: Friday, February 08, 2019 12:00 AM 
To: Reins, John <JReins@wje.com> 
Subject: Permission requested
 
Dear Sir,
 
I am a PhD student in Cur�n university in Australia and I want your permission to reprint Figure 1 and 2
from your published paper:
 
"Monitoring and mitigation of movements affecting foundations on expansive soils in Colorado."
Journal of Performance of Constructed Facilities, 27 (6): 731-736.
 
The thesis will be made available online via Curtin’s Institutional Repository, espace.
 Please note that the use of these figures is
for non-commercial and educational purposes.
 
Regards
 
 
Mohamed Shams
BSc, MSc, Civil Engineering

Mob | +61 4 06300653
Email | mohamed.shams@postgrad.curtin.edu.au 

RE: Permission requested

   Reply all |

Inbox

RJ Reins, John <JReins@wje.com> 
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Dear Shams

I am pleased to grant the permission.

Muawia Dafalla

On Sun, 10 Feb 2019 at 06:16, Mohamed Shams <mohamed.shams@postgrad.curtin.edu.au> wrote: 
 
 

Dear Dr. Muawia,

 

I am a PhD student in Cur�n university in Australia and I need your kind permission to reprint Figure 3
from your published paper:

 

 

Dafalla, M. A., Al-Shamrani, M. A., Puppala, A. J., and Ali, H. E. (2011). "Design guide for rigid
foundation systems on expansive soils." International Journal of Geomechanics, 12 (5): 528-536.

 

The figure will be cited in my thesis as shown above. 

The thesis will be made available online via Curtin’s Institutional Repository, espace.

 Please note that the use of the figures is for non-commercial and educational purposes.

 

Regards  

 

Mohamed Shams

Re: Permission request

   Reply all |

Inbox

MD Muawia Dafalla <mdafalla@gmail.com> 
Today, 9:02 AM

Mohamed Shams 

Reply all | Delete Junk | 

mailto:mohamed.shams@postgrad.curtin.edu.au
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Permissions

As a general rule, permission should be sought from the rights holder to reproduce any substantial
part of a copyrighted work. This includes any text, illustrations, charts, tables, photographs, or other
material from previously published sources. Obtaining permission to re-use content published by
Elsevier is simple. Follow the guide below for a quick and easy route to permission.

Permission
guidelines

ScienceDirect
content

Non-
ScienceDirect

content

Tutorial videos Help and support

Permission guidelines

For further guidelines about obtaining permission, please review our Frequently Asked Questions
below:

When is permission required?

When is permission not required?

From whom do I need permission?

How do I obtain permission to use photographs or illustrations?

Do I need to obtain permission to use material posted on a website?

What rights does Elsevier require when requesting permission?

How do I obtain permission from another publisher?

What is Rightslink?

What should I do if I am not able to locate the copyright owner?

What is Elsevier's policy on using patient photographs?

Can I obtain permission from a Reproduction Rights Organization (RRO)?

Home (https://ww… ▻ About (https://… ▻ Policies (https:/… ▻ Copyright (http… ▻ Permissions (ht…
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www.else
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This page is available in the following languages: 

This is a human-readable summary of (and not a substitute for) the license.

Under the following terms:

Notices:

Creative Commons License Deed
Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format

The licensor cannot revoke these freedoms as long as you follow the license terms.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute
the modified material.

No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for
your intended use. For example, other rights such as publicity, privacy, or moral rights may
limit how you use the material.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
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