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Abstract

The general purpose of this thesis is to develop a comprehensive theory of the ge-

ometric control for N -dimensional systems. In particular, the geometric approach

will be extended from the two-dimensional setting to the general N -dimensional

one. To this end, two possible representations of multidimensional systems will be

considered: the Fornasini-Marchesini first order model and Fornasini-Marchesini

second order model. For each model, the concept of structural invariance and the

related subspaces, such as controlled invariant, output-nulling and self-bounded,

as well as the respective dual notion of conditioned invariance and the input con-

taining and self-hidden subspaces are studied and generalised to theN -dimensional

case. Furthermore, the developed theory on output-nulling subspaces and sta-

bilisation of controlled invariant subspaces will be used to address the distur-

bance decoupling problem and the model matching problem for N -dimensional

Fornasini-Marchesini first and second order models. The obtained solutions will

offer a methodology to address a variety of control and estimation problems in

which the disturbance decoupling problem and the model matching one act as

building blocks. Finally, with regards to the existence of solutions for linear shift-

invariant two-dimensional Fornasini-Marchesini models, necessary and sufficient

conditions will be provided. Importantly, it will be possible to check these con-

ditions recursively by exploiting a suitable sequence of subspaces. After that, all

the obtained results will be generalised to the N -dimensional case.
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veloped further in Section 5.1 (for 2-D systems) and in Section 5.2 (for general

N − D systems). Theorems 2.1 and 2.2 (and the relative proofs) are both in

Section 5.1.

Fatma

iv



Acknowledgements

Firstly, I would like to thank Allah who has granted me the patience to achieve

this work. I would like to extend my thanks and gratitude to my late father,

Hassan Shike. May God have mercy on him. My father had always been very

encouraging and proud of me. How I wish for him to be able to see what I have

achieved during this period. I would like also to thank all the staff members in the

mathematics department of Curtin University, especially, my supervisor Lorenzo

Ntogramatzidis and co-supervisor Fabrizio Padula, for their guidance, assistance

and their patiences. I am also grateful to my family for their encouragement

and support, especially my husband (Abdullah Mohamed), who was very helpful

throughout this work. Finally, I would like to thank my children and friends for

their constant support and also to thank everyone else who has helped me in one

way or other.

v



Contents

Notation and Symbols 1

1 Introduction and Previous Work 3

2 Background material 15

2.1 Structural invariants of (1-D) systems . . . . . . . . . . . . . . . . 15

2.1.1 A-invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 State feedback control and output injection . . . . . . . . 26

2.1.4 Controlled and Conditioned Invariance . . . . . . . . . . . 26

2.1.5 Self-boundedness controlled invariance and Self-hidden con-

ditioned invariance . . . . . . . . . . . . . . . . . . . . . . 32

2.1.6 Reachability and observability subspaces in the discrete case 33

2.1.7 Stability and stabilizability subspaces . . . . . . . . . . . . 35

2.1.8 Disturbance decoupling problem (DDP) . . . . . . . . . . 36

2.2 Structural invariants of 2-D systems . . . . . . . . . . . . . . . . . 37

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 2-D states models . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 Controlled invariance with related properties and their dual

for models in the 2-D system . . . . . . . . . . . . . . . . . 42

2.2.4 Friends and stabilisation for models in 2-systems . . . . . . 45

2.2.5 Disturbance decoupling problem . . . . . . . . . . . . . . . 47

3 Geometric approach for N-D second-order Fornasini-Marchesini

state space models 50

3.1 Structural invariants for N -D model . . . . . . . . . . . . . . . . . 50

3.1.1 N -D Invariant subspaces . . . . . . . . . . . . . . . . . . . 51

3.1.2 N -D controlled invariance . . . . . . . . . . . . . . . . . . 53

3.1.3 N -D output-nulling subspaces . . . . . . . . . . . . . . . . 55

3.1.4 N -D controlled invariant subspaces of feedback type . . . . 57

3.1.5 N -D output-nulling subspaces of the feedback type . . . . 58

vi



3.1.6 Disturbance decoupling problem (DDP) . . . . . . . . . . 58

3.1.7 N -D conditioned invariance . . . . . . . . . . . . . . . . . 60

3.1.8 N -D input-containing subspace . . . . . . . . . . . . . . . 61

3.1.9 N -D conditioned invariant subspace of output-injection type 61

3.1.10 N -D input-containing subspaces of the output-injection type 62

3.1.11 Stability of N -D systems . . . . . . . . . . . . . . . . . . . 63

3.1.12 Friends and stabilisation . . . . . . . . . . . . . . . . . . . 66

3.1.13 Reachability and observability forN -D Fornasini-Marchesini

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.14 Self-boundedness and self-hiddenness for N -D systems . . 75

3.1.15 Reachability subspaces on N -D controlled invariant sub-

spaces of feedback type . . . . . . . . . . . . . . . . . . . . 78

4 Geometric approach for N-D first-order Fornasini-Marchesini state

space models 81

4.1 Structural invariants for N -D model . . . . . . . . . . . . . . . . 81

4.1.1 Invariant subspaces for N -D FM models . . . . . . . . . . 82

4.1.2 Internal and external stability of N -D invariant subspaces 85

4.1.3 N -D controlled invariance . . . . . . . . . . . . . . . . . . 86

4.1.4 N -D output-nulling subspaces . . . . . . . . . . . . . . . . 88

4.1.5 Internal and external stabilisability of an N -D controlled

invariant subspace . . . . . . . . . . . . . . . . . . . . . . 89

4.1.6 Disturbance decoupling problems . . . . . . . . . . . . . . 96

4.1.7 Model matching problem . . . . . . . . . . . . . . . . . . . 99

5 Geometric conditions for the existence of solutions of singular

multidimensional systems 102

5.1 Existence of solutions for 2-D systems . . . . . . . . . . . . . . . 102

5.1.1 Formulation of problems . . . . . . . . . . . . . . . . . . . 103

5.2 Existence of solutions of the local states in N -D systems . . . . . 111

Conclusion 115

A Linear Algebra 116

A.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Spanning set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.4 Linear independence . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.5 Basis of a vector space . . . . . . . . . . . . . . . . . . . . . . . . 117

vii



A.6 Basis matrices of subspaces . . . . . . . . . . . . . . . . . . . . . 117

A.7 Linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.8 From maps to matrices . . . . . . . . . . . . . . . . . . . . . . . . 118

A.9 Changes of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.10 Image and null-space of a linear transformation and matrix . . . . 119

A.11 Rank and nullity of a matrix . . . . . . . . . . . . . . . . . . . . . 120

A.12 Direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.13 Orthogonal complement . . . . . . . . . . . . . . . . . . . . . . . 121

A.14 Sum of subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.15 Intersection of subspaces . . . . . . . . . . . . . . . . . . . . . . . 122

A.16 Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.17 Inverse image of a subspace . . . . . . . . . . . . . . . . . . . . . 124

A.18 Change of coordinates . . . . . . . . . . . . . . . . . . . . . . . . 125

A.19 Quotient spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.20 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Statement of contribution from author and co-authors for joint

paper 128

References 130

viii



Notation and Symbols

def
= equal by definition

∀ for all

∃ there exists

∈ belonging to

⊂ contained in

⊆ contained in or equal to

⊃ containing

⊇ containing or equal to

∪ union

∩ intersection

\ difference of sets with repetition count

× cartesian product

⊕ direct sum

N the set of natural integers

Z the set of integers

R the set of real numbers

C the set of complex numbers

C− left half complex plane

Rn the set of n-ples of real numbers

Rn×m the space of n×m real matrices

dimV the dimension of subspace V
V⊥ the orthogonal complement of subspace V
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Contents 2

I the identity matrix

In the n× n identity matrix

0n×m the n×m null matrix

A> the transpose of matrix A

A−1 the inverse of A

im A the image of A

ker A the null-space of A

trA the trace of A

rankA the rank of A

det A the determinant of A

diag A the block diagonal of A

adj A the adjoint of A

σ(A) the spectrum of A

Given a subspace Y of Rn, the symbol M−1 Y stands for the inverse image of Y
with respect to the linear transformation M . The restriction of a mapping A to

the A-invariant subspace I is written A|I ; the eigenvalues of A restricted to I
are denoted by σ (A)|I . If I1 and I2 are A-invariant subspaces and I1⊆I2, the

mapping induced by A on the quotient space I2/I1 is denoted by A|I2/I1 .



CHAPTER 1

Introduction and Previous Work

Control theory mainly deals with dynamical systems with inputs and outputs. It

is an interdisciplinary offshoot of applied mathematics, science and engineering.

More precisely, control theory is concerned with the task of designing the inputs

for such systems which cause the output to behave in a desired way, or according

to some preassigned specifications. Typically, such input functions are expressed

in a feedback form. A major goal of the control theory is to determine a con-

trol function that ensures the stability (or, in general, good performance) of the

feedback system.

Multidimensional systems (N -D) are useful in control theory because they

arise in the modelling of several systems: they are used in the discretisation of

partial differential equations. They also arise in areas such as image processing

and in all contexts where there is the need to model the system using more than

one indeterminate (Marszalek, 1984, 1987; Kaczorek, 1985; F. Lewis, Marszalek,

& Mertzios, 1990). Therefore, multidimensional system analysis has received

extensive attention over the past few decades. However, there is still a plethora of

modelling and control problems that have never been solved for multidimensional

systems.

A first important difficulty in dealing with multidimensional systems is the

presence of major differences between the algebraic structure of the multidimen-

sional systems and the classical one-dimensional (1-D) systems. This is the reason

behind the limited success obtained so far in the generalisation of well-established

one-dimensional control and estimation techniques to an N -D setting. As men-

tioned above, N -D systems arise when modelling systems whose dynamics depend

on spatial and temporal coordinates: the pixels in an image, the concentration

of pollutants in a lake and the temperature of a metal rod are good examples of

physical systems where it is natural to require the mathematical model to involve

both spatial and temporal independent variables. Therefore, the mathematical

3
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description of a multidimensional system includes the use of several independent

variables, one of which represents time (Bose, 1982). In addition, there have

been other interesting contributions relating multi-dimensional systems theory

with applications. For example, Fornasini (1991) discussed the approach based

on Fornasini Marchesini model to river pollution modelling, Marszalek (1984)

introduced the discretisation of PDE’s which described the absorption of gas

and water stream heating and Vomiero (1992) presented the diffusion process

of a tracer into a blood vessel. Furthermore, the same result of the diffusion

process of a tracer into a blood vessel is confermed by Valcher (1997). In a

one-dimensional context, it is usually implicitly assumed that the independent

variable is time. Moreover, there is only one first-order state space representation

of a one-dimensional system. The state, in a one-dimensional system, is typically

denoted by x, and represents both the variable, which is updated in the equa-

tions of the model, and the so-called memory of the system. Therefore, to find

the solution, we need to assign the vector x at a particular time instant.

Multidimensional systems are represented by different mathematical mod-

els which make them different from the classical one-dimensional system the-

ory and they have been used for the investigation of various properties (Kurek,

1985). These include the Attasi model, introduced in Attasi (1976) and re-

cently in Hinamoto and Fairman (1984), the classical Roesser model introduced

in Roesser (1975) and two Fornasini-Marchesini models introduced in the two

papers: Fornasini and Marchesini (1976) and Fornasini and Marchesini (1978).

Further research has also been completed by Kung, Levy, Morf, and Kailath

(1977), which discusses the methods to recast Fornasini-Marchesini models into

Roesser models and vice-versa. The Roesser and Fornasini-Marchesini models are

equivalent. Their drawback is the possibility of realising only two-dimensional (2-

D) systems which have a quarter-plane causal structure. Considerable focus has

been put on 2-D Fornasini-Marchesini and Roesser models as well as related

definitions and properties of invariance because of their practical importance

(Kaczorek, 1985). In these models, the concept of “state” needs to be gener-

alised in a multidimensional framework: we need to distinguish between a “local

state”, which represents the variable which gets updated in the equations of the

model, and a “global state”, which represents the memory of the system, or, in

other words, represents the variables that need to be assigned in the space of

independent variables to iterate the equations of the model. The global state is

infinite dimensional. The regions where the local state needs to be assigned to

iterate the model are referred to as “separation sets”.
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When the only independent variable is time, it is natural to assume causality,

because the concepts of past, present and future are well-defined. However, in

the context of multidimensional systems, the presence of additional independent

variables (which, as already mentioned, may be representative of spatial coordi-

nates) makes the assumption of causality artificial. Indeed, there is no natural

notion of past, present and future when spatial coordinates are involved.

An important area of control theory is the one referred to as “geometric con-

trol”. This branch of control theory studies the properties of systems, their

interactions and the techniques to control them in terms of subspaces of the state

space. In the classic geometric control theory, controlled invariance is consid-

ered as a key concept. Controlled invariance for one-dimensional systems (1-D)

was originally introduced by Basile and Marro (1969) and W. Wonham (1979).

Loosely speaking, a controlled invariant subspace is a set of initial states for which

it is possible to determine an input that keeps the whole state trajectory on that

subspace. An alternative characterisation is to define a controlled invariant sub-

space both for continuous time systems x·(t) = Ax(t) + B u(t) and discrete

time systems xk+1 = Axk + B uk, as the subspace V that satisfies the inclusion

AV ⊆ V + im B (Basile & Marro, 1969). A fundamental property of controlled

invariance in the one-dimensional case is the fact that the input function that

keeps the trajectory on V can always be expressed by a static state feedback

u = F x. Different from the previous condition, this constitutes a closed-loop

characterisation of controlled invariance, which has also often been used as the

very definition of a controlled invariant subspace. Controlled invariance is a key

ingredient in the solution of fundamental problems such as the disturbance decou-

pling, model matching and the non-interacting control problem (W. M. Wonham,

1974; Basile & Marro, 1992; Trentelman, Stoorvogel, & Hautus, 2001).

Another key notion is that of conditioned invariance. Conditioned invariant sub-

spaces were also introduced in Basile and Marro (1969); they were defined by

duality from controlled invariant subspaces and they found applications in prob-

lems such as unknown-input observation and fault detection.

However, when trying to adapt these notions to the multidimensional case

(N -D), one immediately notices that the first issue is the absence of a single rep-

resentation of a two-dimensional system (2-D) in terms of state variables, since, as

aforementioned, the representation depends on the model that one considers. For

this reason, there has been a significant stream of recent literature on the exten-

sion of controlled and conditioned invariance for 2-D systems, which originated in

Conte and Perdon (1988) and Karamancioglu and Lewis (1990). Moreover, if we
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consider N -D case instead of the 2-D case these subspaces have not been defined.

The following dissertation will be primarily concerned with presenting suitable

algebraic structures for 2-D systems that will be considered and generalised to

the N -D case. These structures will enable the defining of state space models,

controlled invariance and system theoretic properties for 2-D systems, such as the

transfer function, which is considered the mathematical tool used for studying

the input-output behaviour of a system. Contrary to 1-D system descriptions,

various algebraic settings can be imposed for 2-D systems. Indeed, even if the two

most frequently used state-space models for 2-D systems, namely the Fornasini-

Marchesini and Roesser models, have been shown in Galkowski (1996) to be

intrinsically equivalent, they are characterised by different types of boundary

conditions.

The first model was proposed by Fornasini-Marchesini in Fornasini and March-

esini (1976). In this paper, the 2-D Fornasini-Marchesini update equation is

defined as

(i, j)

(̃i, j̃)

Figure 1.1

x(i+1,j+1) = A0 x(i,j) + A1 x(i+1,j) + A2 x(i,j+1) +B u(i,j),

y(i,j) = C x(i,j), (1.1)

where, for all admissible values of the integer indices i and j, the vector x(i,j) ∈ Rn

denotes the local state and u(i,j) ∈ Rm is the control function. Here, A0, A1, A2 ∈
Rn×n, B ∈ Rn×m and C ∈ Rp×m. The mathematical model (1.1) is referred
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to as the 2-D Fornasini-Marchesini second-order state space model (or also first

Fornasini-Marchesini model, because it was introduced first) (Fornasini & March-

esini, 1976). In addition, Fornasini and Marchesini (1980) set the situation when

A0 is identically zero.

For the considered model, it can be seen that the local states are defined as

points in the plane. In the equation (1.1), the update state x(i+1,j+1) depends

on neighbours local states x(i,j),x(i+1,j) and x(i,j+1). If an arbitrary point (̃i, j̃)

is considered in the two-dimensional state space such that (̃i, j̃) ≥ (i, j), a local

state x(̃i,j̃), obtained by iterating backwards using the recursion (1.1), will not

depend only on the state x(i,j) but also on the local states x(k,0), k = 0, . . . , ĩ and

x(0,`), ` = 0, . . . , j̃ on the coordinate axis, as illustrated in Figure 1.1. These two

lines of points provide the boundary conditions of the systems, which are referred

to as a separation set.

Along with the boundary condition with assigning x(i,j) for (i, j) ∈ Q0 (Q0 is the

separation set), we present the sets

Qi
def
= ({i} × {j ∈ Z | j ≥ i}) ∪ ({j ∈ Z | j ≥ i} × {i}). (1.2)

Thus, as shown in Figure 1.2 a suitable set of boundary conditions for (1.1) is

given for an arbitrary vector x̄(i,j) by

x(i,j) = x̄(i,j) for all (i, j) ∈ Q0, (1.3)
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j

i

Qk

k

k

Figure 1.2

Ntogramatzidis (2012) was the first paper to extend and introduce a definition of

controlled invariance for the 2-D second-order Fornasini-Marchesini model (1.1).

This definition considers as a controlled invariant subspace V that satisfies the

inclusion Ai V ⊆ V + im B, i ∈ {0, 1, 2}. This definition is used also to solve the

problems of output-nulling and disturbance decoupling, by leading to necessary

and sufficient conditions (see Theorem 3.2 by Ntogramatzidis (2012)). From the

structure of model (1.1), it is clear that the model is closed under the state feed-

back input u(i,j) = F x(i,j). However, it is clear that this definition of controlled

invariance alone does not automatically ensure the existence of a feedback matrix

F , which keeps the state evolutions on the controlled invariant subspace V for the

2-D model (1.1) (Karamancioglu & Lewis, 1992). For this reason, the concept

of 2-D controlled invariance of feedback type was introduced in Ntogramatzidis

(2012). Here, a controlled invariant of feedback type is defined as a subspace W
that fulfils the three conditions:

• A0W ⊆W + im B;

• A1W ⊆W ;

• A2W ⊆W .

2-D controlled invariant subspaces of feedback type are the subspaces where the

trajectories of a 2-D system which are produced by static feedback controls lie.
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This concept is instrumental in the solution of the classic disturbance decou-

pling problem without relying upon previously proposed conservative solutions

(Ntogramatzidis, Cantoni, & Yang, 2008; Conte & Perdon, 1988). Additionally,

Ntogramatzidis (2012) has addressed the problem of characterising the set of feed-

back inputs u(i,j) = F x(i,j) which guarantee the existence of solutions of (1.1).

the 2-D conditioned invariant subspace and 2-D conditioned invariant of output-

injection type are the subspaces introduced as the dual concepts of controlled

invariance and controlled invariance of feedback type, respectively, in a very nat-

ural way. Furthermore, most of the notions related to controlled and conditioned

invariance, for example, self-boundedness, reachability and unobservability sub-

spaces have been generalised to the 2-D counterpart (Ntogramatzidis, 2012).

A second model of 2-D Fornasini-Marchesini models in the classical form was

given by Fornasini and Marchesini (1978):

x(i,j) = A1 x(i,j−1) + A2 x(i−1,j) +B1 u(i,j−1) +B2 u(i−1,j),

y(i,j) = C x(i,j), (1.4)

where, for all admissible values of the integer indices i and j, the vector x(i,j) ∈ Rn

denotes the local state and u(i,j) ∈ Rm is the control function. Here, A1, A2 ∈
Rn×n, B1, B2 ∈ Rn×m and C ∈ Rp×n. The model (1.4) is known in the liter-

ature as the 2-D Fornasini-Marchesini first-order state space models (or second

Fornasini-Marchesini model) (Fornasini & Marchesini, 1978).

For this model, the separation sets, as shown in Figure 1.3 are defined in Ntogramatzidis

et al. (2008) as

Ck = {(i, j) ∈ Z× Z| i+ j = k}, for all k ∈ Z.

Thus, boundary conditions for (1.4) is given for an arbitrary vector x̄(i,j) by a set:

x(i,j) = x̄(i,j) ∈ Rn for all (i, j) ∈ C−1 ∪ C0.
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j

i

C0

Ck

k

k

Figure 1.3

Despite the structural difference between the 2-D Fornasini-Marchesini first

and second order models (1.1) and (1.4) respectively, these models are both capa-

ble of realising any strictly causal rational transfer function. Conte and Perdon

(1988) provide a definition for controlled invariance for 2-D Fornasini Marchesini

first-order models (1.4) as the subspace V , such that there exists a control input

that keeps the state trajectories on that subspace, if the boundary conditions

are given on the same subspace. Equivalently, V satisfies this subspace inclu-

sion

[
A1

A2

]
V ⊆ (V ⊕ V) + im

[
B1

B2

]
, and it is possible to express the control

that keeps the states on V as a static feedback u(i,j) = F x(i,j) (Conte & Per-

don, 1988). Compared with the previous definition of controlled invariance, this

definition can provide only conservative solutions of the control problems listed

above (i.e., disturbance decoupling, model matching and estimation problems),

in terms of sufficient conditions (Conte & Perdon, 1988). Moreover, these prob-

lems have been solved without stability constraints in Conte and Perdon (1988).

However, in Ntogramatzidis et al. (2008), a new notion of stabilisability has been

introduced based on a static feedback for this definition of invariant, in order to

solve many of the control problems. In this case, the properties of the controlled

invariant have been extended to the N -D case .

A further class of Fornasini-Marchesini models has been shown in Karamancioglu
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and Lewis (1992), and it is described by

x(i,j) = A1 x(i,j−1) + A2 x(i−1,j) +B u(i,j). (1.5)

With the subspace V of Rn, the controlled invariant subspace is the loci of the

state x(i,j) that is controlled by u(i,j). Geometrically, V is a controlled invariant

subspace, if it satisfies the inclusion A1V + A2V ⊆ V + im B. However, from

the structure of the description model (1.5), the controlled invariant subspace V
does not enjoy the feedback properties. There is another model type called the

Roesser model. This model generalises the one-dimensional state space systems

by introducing two-state sets instead of a one state set. These two states are a

vertical and horizontal states that are propagated in the corresponding directions

(Gopinath, Kar, & Bhatt, 2010). It is introduced by Roesser (1975) as[
xh(i+1,j)

xv(i,j+1)

]
=

[
Â1 Â2

Â3 Â4

]
︸ ︷︷ ︸

Â

[
xh(i,j)
xv(i,j)

]
+

[
B̂1

B̂2

]
︸ ︷︷ ︸

B̂

u(i,j),

y(i,j) =
[
Ĉ1 Ĉ2

]
︸ ︷︷ ︸

Ĉ

[
xh(i+1,j)

xv(i,j+1)

]
, (1.6)

where xh and xv are respectively the horizontal and vertical states, so that the

local state is the direct sum of theses two states (see also Kung et al. (1977)).

It can be proven that the Fornasini-Marchesini models and Roesser model are

equivalent by assuming the vector x(i,j) =

[
xh(i+1,j)

xv(i,j+1)

]
in (1.4) as a local state

space, with

A1 =

[
0 0

Â3 Â4

]
, A2 =

[
Â1 Â2

0 0

]
, B1 =

[
0

B̂2

]
, B2 =

[
B̂1

0

]
, C =

[
Ĉ1 Ĉ2

]
.

Moreover, Kurek (1985) presents another way of combining the two previous 2-D

Fornasini-Marchesini first-order and second-order models:

x(i,j) = A0 x(i−1,j−1) +A1 x(i,j−1) +A2 x(i−1,j) +B0 x(i−1,j−1) +B1 u(i,j−1) +B2 u(i−1,j),

y(i,j) = C x(i,j) +D u(i,j), .

This approach considers the first step of the generalisation of the 2-D Fornasini-Marchesini

first and second order models to the N -D case. The extension of the 2-D Fornasini-

Marchesini first-order and second-order models and Roesser model to the N -D models
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is apparent in other studies (Galkowski, 2001; Kaczorek, 1992; Matsushita, Saito, &

Xu, 2013). Generalising the 2-D Fornasini-Marchesini first and second order models

to the N -D case is not restrictive because as can be seen, the Roesser model can be

recast into the mentioned models. Previous discussion involves models that are called

”explicit” in the relevant literature: these are characterised in general by a recur-

sive structure. A common way to obtain state space models which do not require a

quarter-plane causal structure (non-recursive) for example, is extending the Roesser

and Fornasini-Marchesini models into descriptor counterparts, by multiplying the up-

date local state vector by a matrix which is not necessarily invertible or even nonsquare,

to capture over or under-determined systems. In the 1-D case, descriptor systems have

been studied widely in many monographs (Bernhard, 1982; Luenberger, 1977). Their

two-dimensional models were introduced in Kaczorek (1988). With the interest that is

growing in the singular systems, the N -D generalisation of the 2-D Fornasini-Marchesini

first-order and second-order models and Roesser model have been carried out as fol-

lows (Kaczorek, 1992; F. L. Lewis, 1992; Matsushita et al., 2013; Kurek, 1989; Alpay

& Dubi, 2003):

E xi1+1,i2+1,...,iN+1 = A0 xi1,i2,...,iN +
N∑
j=1

Aj xi1,...,ij−1,ij+1,ij+1,...,iN

+
∑

16j<k6N

Ajk xi1,...,ij−1,ij+1,ij+1,...,ik−1,ik+1,ik+1,...,iN + . . .+

+

N∑
j=1

Ai1,...,ij−1,ij+1,...,iN xi1+1,...,ij−1+1,ij ,ij+1+1,...,iN+1

+B0 ui1,i2,...,iN +
N∑
j=1

Bj ui1,...,ij−1,ij+1,ij+1,...,iN

+
∑

16j<k6N

Ajk xi1,...,ij−1,ij+1,ij+1,...,ik−1,ik+1,ik+1,...,iN + . . .+

+
N∑
j=1

Bi1,...,ij−1,ij+1,...,iN ui1+1,...,ij−1+1,ij ,ij+1+1,...,iN+1

yi1,i2,...,iN = C xi1,i2,...,iN , (1.7)

which is considered as a generalisation of 2-D Fornasini-Marchesini second-order mod-

els (1.1). In this thesis, (1.1) has been adopted to extend the geometric approach

of 2-D Fornasini-Marchesini second-order models to the N -D case (as presented in

Ntogramatzidis (2012)). For the aims of this work, the general model (1.7) has been

adopted. The reason for this choice is because this model can be used to capture the

structure of the many different models that are considered in this thesis. For instance,

when model (1.7) is used to deal with a multidimensional system that is not the de-

scriptor, the matrix E can simply be considered to be the identity. Also, when we want
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the same model (1.7) to describe the N -D Fornasini-Marchesini second-order model to

this end, the input is selected to appear only once. The descriptor N -D model that

generalises the 2-D first-order Fornasini- Marchesini model (1.4) is

E x(i1,i2,...,iN )=A1 x(i1−1,i2,...,iN ) + . . .+AN x(i1,...,iN−1,iN−1)

+B1 u(i1−1,i2,...,iN ) + . . .+BN u(i1,...,iN−1,iN−1), (1.8)

(Alpay & Dubi, 2003; Matsushita et al., 2013). This model represents a true extension

of the 2-D implicit model of Kaczorek (1988) because it can realise every possible purely

dynamical multivariate transfer function with a positive quarter-plane causal structure.

The geometric approach for this model has also been developed within this work with

the matrix E to be the identity matrix. Among the contributions where a geometric

approach has been developed for these models, we refer to Conte, Perdon, and Kaczorek

(1991); Karamancioglu and Lewis (1990); Ntogramatzidis and Cantoni (2011) and the

references therein. The difficulty related with the models of the descriptor form is the

lack of a recursive structure (see F. L. Lewis (1992)). Other important issues arising

for descriptor systems (one-dimensional and multidimensional) are the existence and

uniqueness problems of the solutions. Obviously, existence problems depend on the size

and shape of the boundary conditions of the dynamics. This thesis involves descriptor

(first-order) Fornasini-Marchesini multidimensional models, with boundary conditions

on the separation sets that were explained in Fornasini and Marchesini (1978) and gen-

eralised in Fornasini and Marchesini (1980). Articles generalising Fornasini-Marchesini

models to an N -D case for N > 2 include Alpay and Dubi (2003) and Matsushita et

al. (2013).

This thesis shows that existence conditions can be expressed on points (or even seg-

ments) of the local state on a certain separation set, in terms of suitable boundary

conditions on a separation set that is assumed as the “initial” condition for the global

state. In this way, a recursive structure can be obtained for these conditions, even if the

structure of the model is not recursive. However, the sequence of subspaces increases

in size as the local state progresses away from the separation set that is assumed to

represent the origin for the global state.

Considering the previous discussion, three situations are addressed in this work. Firstly,

a focus will be on the generalisation of what is normally referred in the literature as the

2-D second-order Fornasini-Marchesini model, when the matrices A0, A1, A2 associated

with the local states x(i,j) and a single matrix B are related to the input function u(i,j).

This generalisation will be called the N -D second-order Fornasini-Marchesini model.

After that, the situation is generalised with the model when the states and inputs ap-

pear equally, which is known as a 2-D first-order Fornasini-Marchesini model. Here, in

this thesis, is called the N -D first-order Fornasini-Marchesini model. Finally, for the
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classical form of the model in Kaczorek (1988):

E x(i,j) = A1 x(i,j−1) +A2 x(i−1,j) +B1 u(i,j−1) +B2 u(i−1,j),

which is known as the implicit Fornasini-Marchesini first-order model, the problem of

existence for the two situations (all possible input functions and given an appropriate

control input) is addressed.

In the same vein, these results have extended to the general N -D setting (1.8).

In this case, the complexity of the problem increases significantly, but a pattern can be

recognised to express the way recursive existence conditions can be written for single

points on separation sets, which are parallel to the one that we consider as the origin.



CHAPTER 2

Background material

The objective of this chapter is to briefly recall some of the foundations of the sys-

tems theory. We begin with the fundamental concepts of structural invariants in the

one-dimensional (1-D) case for a linear transformation. For example, A-invariance, con-

trolled invariance and all the related notions are presented with their properties and

geometric approach. After that, the duality of these concepts is introduced. Finally,

the structural invariants in the two-dimensional (2-D) case is established by defining

the same concepts for the different models.

2.1 Structural invariants of (1-D) systems

The state update equation in continuous time is usually written in the form:

ẋ(t) = f(x(t),u(t)), (2.1)

and in discrete time, it is written as

x(t+ 1) = f(x(t),u(t)). (2.2)

Also, the output equation for both is

y (t) = g(x(t),u(t)), (2.3)

where f and g are vectors whose components are f1, f2, . . . , fn and g1, g2, . . . , gp. More-

over, X is a subset of Rn, U is a subset of Rm and Y is a subset of Rp, for suitable

n,m, p ∈ N. For all t ∈ T (T is R in the continuous time or Z in discrete time), the

vector

x(t) =


x1(t)

x2(t)
...

xn(t)
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is called the state vector, and the scalar functions x1,x2, . . . ,xn of time that solve (2.1)

or (2.2) are called state variables. When t varies in T, these variables describe a curve

in X called the state trajectory. In the input vector

u(t) =


u1(t)

u2(t)
...

um(t)

 ,

the scalar functions of time u1,u2, . . . ,um are the input functions, and the scalar

functions y1,y2, . . . ,yp in the output vector

y(t) =


y1(t)

y2(t)
...

yp(t)

 ,

are the output functions. The sets X , U and Y are the state space, input space and

output space, respectively. The equation (2.1) provides an explicit update. In fact,

if the initial state x(0) is assigned and the input functions are given for all t > 0,

then (2.1) delivers x(t) for all t > 0. In addition, if the functions f1, f2, . . . , fn and

g1, g2, . . . , gp are linear, the dynamical systems (2.1), (2.2) and (2.3) are linear and if

the same functions do not depend on time, then, the dynamical systems (2.1), (2.2)

and (2.3) are time invariant, i.e., (2.1), (2.2) and (2.3) can be alternatively written in

the matrix form as {
ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) +D u(t)
, (2.4)

in continuous time, and {
x(t+ 1) = Ax(t) +B u(t)

y(t) = C x(t) +D u(t)
, (2.5)

in discrete time. In both models (2.4) and (2.5), a matrix A is an n × n real-valued

matrix, and is referred to as the system matrix, a matrix B is an n × m real-valued

matrix, usually called the input matrix, a matrix C is a p× n real-valued matrix, and

is often referred to as the output matrix and a matrix D is a p×m real-valued matrix,

which is usually called the feedthrough matrix. If a system has D = 0, it is called

strictly proper, purely dynamical or strictly causal. For the sake of brevity, systems

(2.4) and (2.5) is identified by Σ = (A,B,C,D). Models (2.4) and (2.5) can be written
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in compact form as {
ρ x(t) = Ax(t) +B u(t)

y(t) = C x(t) +D u(t)
, (2.6)

where the operator ρ denotes the time derivative in the continuous case, i.e., ρ x(t) =

ẋ(t), or to the unit time shift in the discrete case, i.e., ρ x(t) = x(t+ 1).

2.1.1 A-invariance

A-invariant subspaces are loci of the trajectories generated by the autonomous dynam-

ical system ẋ(t) = Ax(t) in continuous time or x(t+ 1) = Ax(t) in discrete time.

The following definition introduces A-invariance in terms of the well known geometric

inclusion A I ⊆ I.

Definition 1. Let I be a subspace of Rn, and A ∈ Rn×n be a matrix represent a linear

map A : X −→ X with respect to a particular basis. I is an A-invariant if for all x ∈ I

Ax ∈ I or A I ⊆ I (2.7)

Remark 2.1. The following are satisfied with an A-invariant I:

• A subspace I with a basis matrix J is A-invariant, if and only if

im(AJ) ⊆ im J. (2.8)

• A subspace I with ker Q = I is A-invariant, if and only if

ker Q ⊆ ker (QA). (2.9)

• It is clear that the origin {0} and the state space X are both A-invariant, since

A {0} = {0} ⊆ {0} and AX ⊆ X .

• Consider two A-invariant subspaces I1 and I2. Their addition and intersection

are A-invariant. Instead, by virtue of (2.7), we obtain (Basile & Marro, 1969)

A (I1 + I2) = A I1 +A I2 ⊆ I1 + I2,

and by virtue of equation (2.7)

A (I1 ∩ I2) ⊆ A I1 ∩A I2 ⊆ I1 ∩ I2.

• The set of all A-invariant subspaces of X is denoted by GA(X ). Figure (2.1)

shows that this set is closed under subspace addition and intersection.
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{0}

I1 ∩ I2

I2I1

I1 + I2

X

Figure 2.1: Lattice (GA(X )).

Theorem 2.1. A subspace I with a dimension r and basis matrix V is A-invariant, if

and only if a matrix X exists such that

AV = V X. (2.10)

Proof: Let
[
υ1 υ2 . . . υr

]
and

[
X1 X2 . . . Xr

]
be the columns of V and

X, respectively. Then, (2.10) is equivalent to

A
[
υ1 υ2 . . . υr

]
=
[
υ1 υ2 . . . υr

] [
X1 X2 . . . Xr

]
=
[

[ υ1 υ2 ... υr ]X1 [ υ1 υ2 ... υr ]X2 . . . [ υ1 υ2 ... υr ]Xr

]
.

This relation says that A transforms a basis vector of I into a vector of I as

Aυi =
[
υ1 υ2 . . . υr

]
Xi, ∀i∈{1, . . . , r}, (2.11)

which is equivalent to saying that I is A-invariant.

A Changes of basis with invariants

A change of basis is presented in Appendix A. Here, the relation between invariants

and change of basis is investigated.

Let I with basis matrix V be a subspace of X and let J be another basis matrix for I.

Then, there exists an n × n real valued non-singular matrix T , such that J = T−1 V .

Clearly, from (2.10) we derive

T−1AT (T−1 V ) = (T−1 V )X,
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which is equivalent to

A′ J = J X. (2.12)

Theorem 2.2. [Basile and Marro (1969)] Let I with dimension r be an A-invariant

subspace. Then, there exists an n× n non-singular matrix T , such that the columns of

T =
[
T1 T2

]
form a basis of X , with I = im(T1), such that

A′ = T−1AT =

[
A′1,1 A′1,2

0 A′2,2

]
, (2.13)

where A′1,1 of dimension r × r is the restriction of A to I in the new basis and A′2,2 is

an (n− r)× (n− r) matrix.

There is a correlation between the concept of invariant with the trajectories that

are solutions to the differential and difference equations

ρx(t) = Ax(t), (2.14)

that can be explained as follows.

Theorem 2.3. Let I be a subspace of X . The trajectories that solve system (2.14) are

contained in I, if and only if I is an A-invariant subspace.

Proof: (If). Let I be an A-invariant. Consider x0 ∈ I and the change of coordinate

matrix T =
[
T1 T2

]
such that im T1 = I. The components of x, with respect to

the new basis are given by T−1 x. We can write T−1 x0 as

x′0
def
= T−1 x0 =

[
x′1(0)

0

]
,

for some vector x′1(0) ∈ Rr. Then, by defining[
x′1(t)

x′2(t)

]
def
= T−1 x(t),

the system (2.14) can be written as

T−1 ρx(t) = T−1Ax(t),

which is equivalent to

T−1 ρx(t) = (T−1AT )T−1 x(t).
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By Theorem 2.2, this gives[
ρx′1(t)

ρx′2(t)

]
=

[
A′1,1 A′1,2

0 A′2,2

][
x′1(t)

x′2(t)

]
,

in both continuous and discrete time. This leads to:{
ρx′1(t) = A′1,1 x′1(t) + A′1,2 x′2(t), x′1(0) = x′1,0

ρx′2(t) = A′2,2 x′2(t), x′2(0) = 0

in the continuous and discrete cases. In both cases, the solution of (2.14) is in the form

x′(t) =
[
x′1(t)

0

]
because for x′2(t) and x′2(t + 1), the equations admits only the zero

solution, which means that x′(t) ∈ I for all t ∈ T, as the external components of x′(t)

with respect to I, are identically zero.

(Only if). Assume that the trajectory is in I. We prove that I is A-invariant. By

contradiction, we suppose that I is not an A-invariant, so that there exists x̃ ∈ I such

that A x̃ /∈ I. Then, choosing x0 = x̃ in (2.14) yields ẋ(0) /∈ I in continuous time and

x(1) /∈ I in the discrete case. In both cases, the solution of (2.14) is not contained in

I, thus contradicting the assumption.

From the previous result, in the absence of a control action (i.e., when the input

function u is identically zero), all the trajectories remain on a subspace of the state

space X , if and only if it is A-invariant.

B A-invariant subspaces containing a subspace

Let A ∈ Rn×n be a matrix that represents a linear map with respect to a certain basis

in X . Let M be a linear subspace of X = Rn. The set of all A-invariant subspaces

containing the subspace M is denoted by

GA,⊆(M)
def
= {I subspace of X | A I ⊆ I and I ⊇M},

which is called the Grassmannian GA,⊆(M), as mentioned in the Appendix. We notice

that:

• If M = X , then GA,⊆(M) only contains the element X , while if M = {0}, the

set GA,⊆(M) represents the whole set of A-invariant subspaces.

• Consider I1, I2 ∈ GA,⊆(M). Their addition is in GA,⊆(M), i.e., GA,⊆(M) is

closed under subspace addition. This is because we have proved that the addition

of two A-invariant subspaces is A-invariant. From the fact that I1 and I2 both

contain M, their addition also contains M. Moreover, the smallest subspace of

GA,⊆(M) that contains the subspaces I1 and I2 is the addition of them I1 + I2.

• Given I1, I2 ∈ GA,⊆(M), then I1∩I2 ∈ GA,⊆(M), i.e., GA,⊆(M) is closed under
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M

minGA,⊆(M)

X
GA,⊆(M)

{

Figure 2.2: Lattice GA,⊆(M).

subspace intersection. Indeed, we have already shown that the intersection of

two A-invariant subspaces is A-invariant. In addition, if I1 and I2 both contain

M, then their intersection obviously contains M, and the intersection I1 ∩ I2 is

the largest element of GA,⊆(M) contained in both I1 and I2.

• The set GA,⊆(M) has a maximum and a minimum. The maximum is X and the

minimum is the intersection of all the elements of GA,⊆(M), that will be denoted

with the symbol 〈A |M〉. Then,

〈A |M〉 =
⋂

I∈GA,⊆(M)

I. (2.15)

It seems clear that the result of the latter is A-invariant and contains M, be-

cause as mentioned above, GA,⊆(M) is closed under intersection and as such, the

intersection of elements which all contain M still contains M.

Thus, the smallest among all elements of GA,⊆(M) is defined by the subspace I∗
def
=

〈A |M〉, which satisfies the following three properties:

(i) A I∗ ⊆ I∗;

(ii) I∗ ⊇M;

(iii) for every A-invariant subspace I containing M, there holds I∗ ⊆ I.

Theorem 2.4. The subspace I∗ = 〈A |M〉 coincides with the last term of the sequence:{
Z0 = M
Zi = M+AZi−1 i∈{1, . . . , k},

(2.16)

where the value of k≤n− 1 is determined by condition Zk+1 =Zk.

Proof: First, note that Zi⊇Zi−1 for all i∈{1, 2, . . . , k}. In fact, instead of (2.16),

consider the recursion expression:{
Z ′0 = M
Z ′i = Z ′i−1 +AZ ′i−1 i∈{1, . . . , k},
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which defines a sequence of subspaces such that Z ′i ⊇Z ′i−1 for all i∈{1, 2, . . . , k}. We

want to show that this sequence is equal to (2.16), i.e., that Zi = Z ′i for every i ∈ N.

We proceed by induction. Clearly, Z0 = Z ′0. Let us assume that Z ′j =Zj , for all

j ∈{1, 2, . . . , i− 1}, and we prove that Z ′i =Zi. There holds:

Z ′i = Z ′i−1 +AZ ′i−1

= Zi−1 +AZi−1

= M+AZi−2 +AZi−1 =Zi,

since AZ ′i−2⊆AZ ′i−1 implies AZi−2⊆AZi−1, in view of the inductive assumption. If

Zk+1 =Zk, also Zj =Zk for all j >k+ 1 and Zk is an A-invariant subspace containing

M. In fact, in such a case, Zk =M+AZk. Therefore, M⊆Zk, AZk⊆Zk. Since

two subspaces that are subsequent in sequence (2.16) are coincident if and only if they

have the same dimensions and the dimension of the first subspace is at least one, an

A-invariant subspace is obtained in at most n− 1 steps. We now show that the last

subspace of the sequence is the minimal A-invariant subspace containing M. Let J
be another A-invariant containing M. We prove, in particular, that every subspace of

sequence (2.16) is contained in J . Clearly, Z0 =M⊆ J . Assume J ⊇Zi−1. We prove

that J ⊇Zi. From AJ ⊆ J and J ⊇M, we find J ⊇M+AJ ⊇M+AZi−1 = Zi.
Sequence (2.16) delivers anA-invariant subspace, which is the minimum of GA,⊆(M).

C A-invariant subspaces contained in a subspace

Given A ∈ Rn×n and a linear subspaceN of X = Rn, the set of all A-invariant subspaces

contained in the subspace N is denoted by

GA,⊇(N )
def
= {I subspace of X | A I ⊆ I and I ⊆ N}.

This characterisation will play a fundamental role within the important context of

observability and constructibility. Some of its properties are as follows:

• If N = {0}, the set GA,⊇(N ) only contains the element {0}, whereas if N = X ,

then GA,⊇(N ), coincides with the set of A-invariant subspaces of X .

• It is closed under subspace addition, i.e., given I1, I2 ∈ GA,⊇(N ), then I1 + I2 ∈
GA,⊇(N ), since the addition of two A-invariant subspaces is A-invariant, and

since I1 ⊆ N and I2 ⊆ N implies (I1 + I2) ⊆ N . The addition I1 + I2 is the

smallest element of GA,⊇(N ), containing both I1 and I2.

• It is closed under subspace intersection, i.e., given I1, I2 ∈ GA,⊇(N ), then I1 ∩
I2 ∈ GA,⊇(N ), since the intersection of two A-invariant subspaces is A-invariant

and I1 ⊆ N and I2 ⊆ N imply (I1∩I2) ⊆ N . Moreover, the intersection I1∩I2
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{0}

maxGA,⊇(N )

N

GA,⊇(N )

{

Figure 2.3: Lattice GA,⊇(N ).

is the largest element of GA,⊇(N ), contained in both I1 and I2.

• GA,⊇(N ) has a maximum and minimum. As illistrated, the minimum is the

origin, while the maximum is the addition of all the elements of GA,⊇(N ), that

will be denoted by the symbol 〈N |A〉. Then,

〈N |A〉 =
∑

I∈GA,⊇(N )

I. (2.17)

Indeed, the sum on the right hand-side of equation (2.17) is clearly A-invariant and is

contained in N because GA,⊇(N ) is closed under addition and because the addition of

subspaces which are all contained in the subspace N is still contained in the subspace

N . Thus, the largest among all elements of GA,⊇(N ) is defined by the subspace I∗ def
=

〈N |A〉 that satisfies the following three properties:

(i) A I∗ ⊆ I∗;

(ii) I∗ ⊆ N ;

(iii) for every A-invariant subspace I contained in N , there holds I∗ ⊇ I.

Lemma 2.1. The subspace Z is an A-invariant subspace containing M, if and only if

Z⊥ is an A>-invariant subspace contained in M⊥, i.e.,

Z ∈ GA,⊆(M) ⇔ Z⊥ ∈ GA>,⊇(M⊥).

Proof: There holds Z ∈ GA,⊆(M), if and only if: (i) AZ ⊆ Z and (ii) Z ⊆M. On

the other hand, (i) is equivalent to the inclusion A>Z⊥ ⊆ Z⊥, while (ii) is equivalent

to the inclusion Z⊥ ⊇ M⊥. Therefore (i) and (ii) are equivalent to the fact that

Z⊥ ∈ GA>,⊇(M⊥).

Theorem 2.5. Let S be a subspace of X . The orthogonal complement of the smallest

A-invariant subspace containing S is the largest A>-invariant subspace contained in

S⊥, i.e., there holds:

〈A | S〉⊥ = 〈S⊥ |A>〉,
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or, equivalently,

(minGA,⊆(S))⊥ = maxGA>,⊇(S⊥).

Proof: Let us denote by I∗ the subspace 〈A | S〉. Thus, I∗ satisfies:

1a) A I∗ ⊆ I∗;

2a) I∗ ⊇ S;

3a) for any A-invariant subspace I containing S, we have I∗ ⊆ I, i.e., ∀ I ∈ GA,⊆(S),

we have I∗ ⊆ I.

Equivalently, I∗ satisfies:

1b) A> I⊥∗ ⊆ I⊥∗ ;

2b) I⊥∗ ⊆ S⊥;

3b) ∀ I ∈ GA>,⊇(S⊥), we have I⊥∗ ⊇ I⊥.

In view of Lemma 2.1, we can write these conditions as:

1c) A> I⊥∗ ⊆ I⊥∗ ;

2c) I⊥∗ ⊆ S⊥;

3c) ∀ G ∈ GA>,⊇(S⊥), we have I⊥∗ ⊇ G.

In other words, I⊥∗ is A>-invariant and it is contained in S⊥. Moreover, it is greater

than any other A>-invariant subspace contained in S⊥. Hence, I⊥∗ = maxGA>,⊇(S⊥).

Theorem 2.6. The subspace I∗ = 〈N |A〉 coincides with the last term of the sequence:{
Z0 = N
Zi = N ∩A−1Zi−1 i∈{1, . . . , k},

(2.18)

where the value of k≤n− 1 is determined by condition Zk+1 =Zk.

Proof: First, note that Zi⊇Zi−1 for all i∈{1, 2, . . . , k}. In fact, instead of (2.18),

consider the recursion:{
Z ′0 = N
Z ′i = Z ′i−1 ∩A−1Z ′i−1 i∈{1, . . . , k},

which defines a sequence of subspaces such that Z ′i ⊆Z ′i−1 for all i∈{1, 2, . . . , k}. We

prove by induction that this sequence is coincident to (2.18). Clearly, Z0 = Z ′0; assume
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that Z ′j =Zj for all j ∈{1, 2, . . . , i− 1} and let us prove that Z ′i =Zi. There holds:

Z ′i = Z ′i−1 ∩A−1Z ′i−1

= Zi−1 ∩A−1Zi−1

= N ∩A−1Zi−2 ∩A−1Zi−1. (2.19)

In view of the inductive assumption, Z ′i−1⊆Z ′i−2 implies that Zi−1⊆Zi−2, which in

turn gives A−1Zi−1⊆A−1Zi−2, then, (2.19) becomes Z ′i = N ∩A−1Zi−1 = Zi.
If Zk+1 =Zk, also Zj =Zk for all j >k+ 1 and Zk is an A-invariant subspace contained

in N . In fact, in such a case, Zk =N ∩A−1Zk. Therefore, Zk ⊆ N and Zk ⊆ A−1Zk,
is equivalent to AZk ⊆ Zk. Since two subspaces that are subsequent in sequence (2.18)

are coincident, if and only if they have the same dimensions and the dimension of the

first subspace is at least one, then, an A-invariant subspace is obtained in at most n− 1

steps. We now show that the last subspace of the sequence is the maximal A-invariant

subspace contained in N . Let J be another A-invariant subspace contained in N , so

that AJ ⊆ J and J ⊆ N . We want to show that every subspace Zi of sequence (2.18)

contains J . So that, in particular, Zn−1 = I∗ is the maximum of all the A-invariant

subspaces contained in N . Clearly, Z0 = N ⊇ J . Assume J ⊆Zi−1. Then, we show

that J ⊆Zi. From AJ ⊆ J , it follows that J ⊆ A−1J , which, together with J ⊆ N ,

yields J ⊆N ∩A−1J ⊆ N ∩A−1Zi−1 =Zi.

2.1.2 Duality

Let Σ = (A,B,C,D) be the continuous or discrete linear time invariant (LTI) system.

The dual of Σ = (A,B,C,D) is the system ΣT = (AT , CT , BT , DT ), which can be

written as

Σ :

{
ρx(t) = Ax(t) +B u(t)

y(t) = C x(t) +D u(t)
ΣT :

{
ρ x̃(t) = AT x̃(t) + CT ũ(t)

ỹ(t) = BT x̃(t) +DT ũ(t)
.

The dual of the system has some properties that are given by:

• Inputs and outputs are exchanged in Σ and ΣT , which means that if Σ has m

inputs and p outputs, then ΣT has p inputs and m outputs.

• (ΣT )T = Σ.

• The transfer function of the dual system ΣT = (AT , CT , BT , DT ) is equal to the

transpose of the transfer function of the system Σ = (A,B,C,D), i.e., GΣT (λ) =

[GΣ(λ)]T .
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2.1.3 State feedback control and output injection

Let Σ be a regular system that is governed by

Σ :

{
ρx(t) = Ax(t) +B u(t)

y(t) = C x(t) +D u(t)
. (2.20)

Assume that a state feedback control input is

u (t) = F x (t) +Qv (t), (2.21)

where F ∈ Rm×n is a state feedback matrix, Q ∈ Rm×m is a nonsingular matrix, and

v(t) ∈ Rm is an additional input. From equations (2.20) and (2.21), the closed-loop

system Σ̂ is

Σ̂ :

{
ρx(t) = (A+B F ) x(t) +BQv(t)

y(t) = (C +DF ) x(t) +DQv(t),
(2.22)

where ρx(t) = (A + B F ) x(t) is the closed-loop equation and A + B F is called the

closed-loop matrix. The problem of stabilisation by state feedback is solvable, if is

possible to calculate the matrix F , such that the closed-loop matrix A+B F is asymp-

totically stable. An output injection is the dual aspect of the state feedback. Let an

input of Σ (output injection) be

u′(t) = Gy(t) = GC x(t) +GD u (t), (2.23)

where G ∈ Rm×p is called the output injection matrix. Then, Σ becomes

Σ :

{
ρx(t) = Ax(t) +B u(t) + u′(t)

y(t) = C x(t) +D u(t).
(2.24)

By replacing (2.23) in (2.24), we obtain

Σ̂ :

{
ρx(t) = (A+GC) x(t) + (B +GD) u(t)

y(t) = C x(t) +D u(t).
(2.25)

2.1.4 Controlled and Conditioned Invariance

In the classic geometric control theory, controlled invariance is considered as a funda-

mental notion. Controlled invariant subspaces are the spaces that contain the complete

state evolution when the control is present. As explained in Basile and Marro (1969),

a controlled invariant subspace is a subspace such that it is possible to control the

system in a way that at all times the state is inside the subspace if the initial state is in
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the subspace. Controlled invariant subspaces are also referred to as (A,B)-controlled

invariant or A(mod B)-controlled invariant subspaces. In defining controlled invariant

subspaces, we will consider a linear system described as

ρx(t) = Ax(t) +B u(t). (2.26)

The sizes of matrices A and B are n× n and n×m respectively. If for any x(0) ∈ V,

there is an input u(t), such that x(t) ∈ V for all non-negative t, then V ⊆ Rn is a

controlled invariant (Basile & Marro, 1969).

From the the definition, we immediately obtain the following:

• X and {0} are both controlled invariant subspaces.

• The addition of any number of controlled invariant subspaces is a controlled

invariant subspace.

• The controlled invariant subspace is A-invariant subspace with B = 0.

• Any A-invariant subspace is an (A,B)-controlled invariant subspace.

Definition 2. Consider the state equation,

ρx(t) = Ax(t) +B u(t). (2.27)

A subspace V of the state space X is called a controlled invariant subspace, if for any

initial state x0 of V, there exist an input function u, such that the state trajectory

xu(t,x0), generated by the state equation remains in V for all t ≥ 0.

We now provide alternative characterisations of controlled invariance.

Theorem 2.7. [Trentelman et al. (2001)] Let V be a subspace of X . The following are

equivalent:

(i) V is an (A,B)-controlled invariant subspace;

(ii) V satisfies the subspace inclusion,

AV ⊆ V + im B; (2.28)

(iii) there exists a matrix F ∈ Rm×n such that,

(A+B F )V ⊆ V; (2.29)

which means V is an (A+B F )-invariant.

Theorem 2.8. [Basile and Marro (1992)] The following are equivalent if V is a sub-

space of a state space X :
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(i) V is (A,B)-controlled invariant;

(ii) there exist two matrices X and U such that

AV = V X +B U, (2.30)

where V is a basis matrix of V;

(iii) two matrices X and F exist such that

(A+B F )V = V X. (2.31)

Theorem 2.8 expresses an alternative geometric condition for the definition of con-

trolled invariant subspaces in the matrix form.

Definition 3. [Basile and Marro (1969)] Let V be an (A,B)-controlled invariant

subspace, the family of all feedback matrices F ∈ Rm×n that satisfies the inclusion

(A+B F )V ⊆ V is denoted by F(V) and F is called a controlled invariant friend of V.

Theorem 2.9. [Trentelman et al. (2001)] Let V be a controlled invariant subspace.

Suppose that F ∈ F(V) and let L ∈ Rm×m be invertible and im L = B−1 V. For all

initial state x0 ∈ V and input u, the corresponding state trajectory xx0,u(t) remains in

V for all t ≥ 0 if and only if u has the form

u (t) = F x (t) + Lw (t), (2.32)

for some control input w.

Lemma 2.2. Let V, with dimension r and basis matrix V , be a controlled invariant

subspace of (2.27). Matrix F is a controlled invariant friend of V if U = −F V , where

U ∈ Rm×r is a solution of (2.30) for some matrix X ∈ Rr×r.

Proof: Let F be a controlled invariant friend of V. Therefore, (A+B F )V = V Ψ for

some Ψ ∈ Rm×r. Then, AV = V X + B U with X = Ψ and U = −F V . Conversely,

let F be such that U = −F V , where U is a solution of (2.30) for a certain X. Then,

AV = V X + B U can be written as (A + B F )V = V X. Thus, Theorem 2.8 implies

that F is a controlled invariant friend of V.

The computation of all controlled invariant friends F of a controlled invariant sub-

space V in the inclusion (2.29) relies on equation (2.30) which can be obtained as

follows:

AV =
[
V B

] [ X

U

]
, (2.33)
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which gives [
X

U

]
=
[
V B

]†
AV +

[
Φ1

Φ2

]
K1, (2.34)

where

[
Φ1

Φ2

]
is a full column-rank matrix such that:

im

[
Φ1

Φ2

]
= ker

[
V B

]
and K1 is an arbitrary matrix of suitable size. In the same way, the set of solution of

U = −F V is given by

F = −U (V > V )−1V > +K2 Φ, (2.35)

where Φ is a full column-rank matrix, such that ker Φ = V and K2 is an arbitrary

matrix of suitable size.

By indicating with the symbol FK1,K2 , any controlled invariant friends of V obtained

from (2.34) and (2.35), the new coordinates of a closed-loop matrix (A+B FK1,K2) can

be written as

T−1(A+B FK1,K2)T =

[
M1,1(K1) M1,2(K1,K2)

0 M2,2(K2)

]
, (2.36)

where M1,1(K1) is related with A+B F | V, whereas M2,2(K2) is related with A+B F |
X/V.

Definition 4. Let K be a subspace of X . A subspace V∗K is defined as the subspace of

all initial conditions x0 ∈ X , such that there exists a control function u, which yields

xx0,u(t) ∈ K for all t ≥ 0.

Theorem 2.10. [Trentelman et al. (2001)] Consider the subspace K of X . Then, the

subspace V∗K is the largest controlled invariant subspace contained in K, i.e.,

(i) V∗K is a (A,B)-controlled invariant subspace;

(ii) V∗K ⊆ K;

(iii) if there is another controlled invariant subspace V contained in K, then, V ⊆ V∗K.

Theorem 2.11. [Basile and Marro (1969); W. M. Wonham and Morse (1970)] Con-

sider a sequence of subspaces defined by{
V0 = K
Vq+1 = K ∩A−1(Vq + imB) q ∈{1, . . . , k}.

(2.37)
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Then, it follows that:

(i) V0 ⊆ V1 ⊆ V2 ⊆ ...;

(ii) there exists k ≤ dim K, such that Vk = Vk+1;

(iii) Vk = Vk+t for all t ≥ 0 if Vk = Vk+1, and then V?K = Vk.

Definition 5. Consider system (2.20) with D = 0 (a strictly proper system). The

output-nulling subspace V∗ker C is the subspace of initial states x0 ∈ X , for which an

input function u exists that maintains the output function yx0,u(t) at zero for all t ≥ 0,

i.e., the state trajectory xx0,u(t) must be contained in ker C. Correspondingly, V∗ker C

is the largest (A,B)-controlled invariant subspace contained in ker C. For the sake of

simplicity, V∗ker C will be denoted by V∗.

Now, the notion of conditioned invariance will be introduced as the dual of con-

trolled invariance. It leads to the definition of conditioned invariant subspaces, which

is usually referred to as (C,A)-conditioned invariant subspaces.

Definition 6. [Basile and Marro (1969)] Consider a pair (A,C). A subspace S of X
is said to be (C,A)-conditioned invariant if

A (S ∩ ker C) ⊆ S. (2.38)

Remark 2.2. An (C,A)-conditioned invariant subspaces enjoy these following prop-

erties:

(i) Both X and {0} are always both (C,A)-conditioned invariant subspaces;

(ii) when C = 0, the notion of (C,A)-invariance reduces to the notion of A-invariance;

(iii) the intersection of conditioned invariant subspaces is conditioned invariant. In-

deed, given two (C,A)-conditioned invariant subspaces S1 and S2, we find

A((S1 ∩ S2) ∩ ker C) ⊆ A (S1 ∩ ker C) ∩A (S2 ∩ kerC) ⊆ S1 ∩ S2,

which implies that S1 ∩ S2 is itself (C,A)-conditioned invariant. However, the

addition S1 + S2 is not, in general, (C,A)-conditioned invariant;

(iv) given any pair (C,A), any subspace S of X such that S ∩ ker C = 0 is condi-

tioned invariant, because in this case A (S ∩ ker C) = {0}, and equation (2.38)

is automatically satisfied. In particular, (ker C)⊥ = im C> is always condi-

tioned invariant. Moreover, any subspace S of ker A is conditioned invariant,

since in that case A (S ∩ ker C) ⊆ AS ⊆ A ker A = {0} and (2.38) is automati-

cally satisfied. However, not all conditioned invariant subspaces S are such that

S ∩ ker C = {0} or subspaces of ker A.



2.1 Structural invariants of (1-D) systems 31

Theorem 2.12. Let S be a subspace of X . Then, S is (R,A)-conditioned invariant, if

and only if S⊥ is (A>, R>)-controlled invariant.

Proof: The subspace S is (R,A)-conditioned invariant, if and only if A (S∩ker R) ⊆ S.

This inclusion is equivalent to A> S⊥ ⊆ (S ∩ ker R)⊥. On the other hand, (S ∩
ker R)⊥ = S⊥ + (ker R)⊥ = S⊥ + im R>. Thus, A (S ∩ ker R) ⊆ S is equivalent to

A> S⊥ ⊆ S⊥+ imR⊥, which by Theorem 2.7 is a necessary and sufficient condition for

S⊥ to be (A>, R>)-conditioned invariant.

Theorem 2.13. [Basile and Marro (1969)] Given a subspace S of X , the following

statements are equivalent:

(i) S is (C,A)-conditioned invariant;

(ii) S satisfies the inclusion:

A (S ∩ ker C) ⊆ S; (2.39)

(iii) a matrix G ∈ Rn×p exists such that S is (A+GC)-invariant, which is equivalent

to

(A+GC)S ⊆ S. (2.40)

Theorem 2.14. [Basile and Marro (1969)] The following statements are equivalent

for a subspace S of X with dimension µ:

(i) S is (C,A)-conditioned invariant;

(ii) there exist two matrices Z ∈ R(n−µ)×(n−µ) and L ∈ R(n−µ)×p such that

QA = Z Q+ LC, (2.41)

where Q is a matrix such that ker Q = S;

(iii) two matrices Z ∈ R(n−µ)×(n−µ) and G ∈ Rn×p exist such that

Q (A+GC) = Z Q. (2.42)

Definition 7. Let S be a (C,A)-conditioned invariant subspace X . The output injec-

tion matrix G ∈ Rn×p such that (2.40) holds, is called a conditioned invariant friend of

S. Thus, the set of all conditioned invariant friends of S is denoted by GC,A(S).

Corollary 2.1. [Trentelman et al. (2001)] Let G ∈ Rn×p and let M ∈ Rp×p be invert-

ible. Then, the subspace S is (C,A)-conditioned invariant subspace, if and only if it is

(M C,A+GC)-conditioned invariant.
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As what has been established about the duality of controlled and conditioned in-

variant subspaces, this statement will be adapted to dualised the notion of the largest

controlled invariant subspace contained in a subspace K.

Definition 8. Let H be a subspace of X . A subspace S∗H is the smallest (C,A)-

conditioned invariant subspace containing H.

To compute S∗H, use the following result.

Theorem 2.15. [Basile and Marro (1969)] Consider a sequence of subspaces defined

by {
S0 = H
Sq+1 = H+A (Sq ∩ ker C) q ∈{1, . . . , h}.

(2.43)

Then, it follows that:

(i) S0 ⊆ S1 ⊆ S2 ⊆ . . .;

(ii) there exists h ≤ n− dim H, such that Sh = Sh+1;

(iii) if Sh = Sh+1, then S∗H = Sh.

At the end of the discussion, subspaces V∗K and S∗H are respectively, the largest of

all the family of (A,B)-controlled invariant subspaces contained in K and the smallest

of all the family of (C,A)-conditioned invariant subspaces containing H, and they are

dual of each other.

2.1.5 Self-boundedness controlled invariance and Self-hidden

conditioned invariance

Definition 9. Let K be a subspace of X . Let V be an (A,B)-controlled invariant

subspace contained in K. The subspace V is said to be a self-bounded (A,B)-controlled

invariant with respect to K if, for all x0 ∈ V , any control function u yielding xx0,u(t) ∈
K, for all t ∈ T is such that xx0,u(t) ∈ V for all t ∈ T.

Theorem 2.16. Let K be a subspace of X . Let V be an (A,B)-controlled invariant

subspace contained in K. The subspace V is said to be a self-bounded (A,B)-controlled

invariant with respect to K, if and only if V∗K ∩ im B ⊆ V.

Proof: (If). Let x(0) ∈ V, and let u be an input such that xx0,u(t) ∈ K. Then,

xx0,u(t) ∈ V∗K, which implies that u can be expressed as u(t) = Fx(t)+v(t), where F is

a controlled invariant friend of V∗K and v(t) ∈ B−1V∗K for all t ∈ T. Since V∗K ∩ im B ⊆
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V ⊆ V∗K, by Lemma 2.2, it follows that F is a controlled invariant friend of V. The

state equation can thus be written as

ρx(t) = (A+B F ) x(t) +B v(t). (2.44)

Hence, for all t ∈ T, there holds B v(t) ∈ B(B−1V∗K), so that, since F is a controlled

invariant friend of V and V ⊇ V∗K ∩ im B, it is found that x(t) ∈ V for all t ∈ T.

(Only if). Let V be self-bounded with respect to K, and let x(0) ∈ V. The set of

control functions ensuring that the state trajectory is maintained in K can be written

as u(t) = Fx(t)+v(t), where F is a controlled invariant friend of V∗K and v(t) ∈ B−1V∗K
for all t ∈ T. From (2.44), it follows that the state trajectory lies on V only if B v(t) ∈ V,

for all t ∈ T, which implies that V∗K ∩ im B ⊆ V.

Lemma 2.3. [(Basile & Marro, 1969)] Let K be a subspace of the state space X . Let

V and Ṽ be two self-bounded (A,B)-controlled invariant, with respect to K and Ṽ ⊆ V.

Then, any controlled invariant friend of V is also a controlled invariant friend of Ṽ.

Proof: Let F be a controlled invariant friend of V. Since Ṽ is a self-bounded (A,B)-

controlled invariant subspace, then, it is a (A,B)-controlled invariant subspace, so

that A Ṽ ⊆ Ṽ + im B. By addition of this inclusion with B F Ṽ ⊆ im B, we obtain

(A + B F ) Ṽ ⊆ Ṽ + im B. Since Ṽ ⊆ V, we find (A + B F ) Ṽ ⊆ (A + B F )V ⊆ V,

which once intersected yields (A+B F ) Ṽ ⊆ V ∩ (Ṽ + im B) = Ṽ + (V ∩ im B). Since

Ṽ ⊇ V∗K ∩ im B ⊇ V ∩ im B, we obtain (A + B F ) Ṽ ⊆ Ṽ. Hence, F is a controlled

invariant friend of Ṽ.

Corollary 2.2. [Basile and Marro (1969)] Let K be a subspace of the state space. Let

F be a controlled invariant friend of V∗K. Then, F is a controlled invariant friend of

any self-bounded (A,B)-controlled invariant subspace, with respect to K.

Definition 10. Let H be a subspace of X . Let S be a (C,A)-conditioned invariant

subspace containing H. The subspace S is said to be a self-hidden (C,A)-conditioned

invariant subspace with respect to H if

S ⊆ S∗H + ker C.

Remark 2.3. Consider matrix G that satisfies (A+GC)S∗H ⊆ S∗H. Any S self-hidden

(C,A)-conditioned invariant, with respect to H, satisfies (A+GC)S ⊆ S.

2.1.6 Reachability and observability subspaces in the dis-

crete case

The concept of reachability is investigated in the situation of determining the set of

states of the system, that can be brought from the origin, choosing a suitable control
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function.

Definition 11. Consider the discrete system (2.5). We denote by RA,B, the matrix:

RA,B
def
=
[
B AB . . . An−2B An−1B

]
.

The n×nm matrix RA,B is called the reachability matrix in n steps of the pair (A,B).

Theorem 2.17. [Basile and Marro (1969)] The reachable subspace R from the origin

in n steps of the system (2.5) is, for every t > 0, the image of the reachability matrix

RA,B, i.e.:

R = im RA,B.

Remark 2.4. The associated pair (A,B) of system (2.5) is said to be reachable or

completely reachable in n steps if R = X , i.e., if rank RA,B = n.

Theorem 2.18. [Basile and Marro (1969)] Given the pair (A,B). The reachable

subspace R from the origin of (A,B), which determines the family of the states that

can be brought from the origin in bounded steps using a suitable input function, is the

smallest A-invariant subspace containing the image of B, i.e.,

R = 〈A | im B〉.

Definition 12. Let V be a controlled invariant subspace for (2.5). The reachability

subspace RV on V is the set of all points x̃ of V, such that there exist T > 0 and an

input function u such that x0,u(T ) = x̃ and x0,u(t) ∈ V, for all t ∈ [0, T ].

Basile and Marro (1969) shows that a reachability subspace RV on V for (2.5) is

given by

RV = 〈A+B F | V ∩ im B〉.

From this definition, is obvious that every reachability subspace is controlled invariant.

Now, the notion of observability is related to how can be determined the state of a

system at time t = t0 based on the input and output functions of the system itself at

t > t0.

Definition 13. Consider the discrete system (2.5). We denote by OC,A the matrix:

OC,A
def
=


C

C A
...

C An−1

 .
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The n p× n matrix OC,A is called the observability matrix of the pair (C,A).

Theorem 2.19. [Basile and Marro (1969)] The unobservable subspace Q of the system

(2.5) is, for every t > 0, the kernel of the observability matrix OC,A, i.e.,

Q = ker OC,A.

Remark 2.5. The system (2.5) is said to be completely observable, if Q = {0}, i.e., if

rank OC,A = n.

Theorem 2.20. [Basile and Marro (1969)] The unobservable subspace Q is the largest

A-invariant subspace contained in the kernel of C.

Indeed, duality is also achieved between the concepts of reachability and observabil-

ity. By considering the system Σ = (A,B,C,D) and its dual ΣT = (AT , CT , BT , DT ).

Then, Σ is completely reachable if ΣT is completely observable and vice-versa (Basile

& Marro, 1992).

2.1.7 Stability and stabilizability subspaces

Stability and stabilizability subspaces are two fundamental concepts in control theory

which are used to solve many control problems.

Definition 14. The differential equation of system (2.14) is called asymptotically sta-

ble, if every solution tends to zero for t −→∞.

Corollary 2.3. [Trentelman et al. (2001)] System (2.14) is asymptotically stable, if

and only if

max {Reλ | λ ∈ σ (A)} < 0.

Lemma 2.4. [Kar and Singh (2003)] System (2.14) is asymptotically stable, if there

exist n× n symmetric positive definite matrix P , such that:

P A+AT P < 0,

in continuous time and

AT P A− P < 0,

in discrete time.

Definition 15. Let I be an A-invariant subspace and let x0 be the initial state of

(2.14). We say that I is:

• internally stable, if for every x0 ∈ I \ {0}, there holds x(t) −→ 0 as t −→∞,

• externally stable, if for every x0 /∈ I, there holds x(t) −→ I as t −→∞.
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A more formal theorem is stated as follows:

Theorem 2.21. [Trentelman et al. (2001)] Let I be an A-invariant subspace. Then,

• I is internally stable, if and only if A′1,1 in (2.13) is asymptotically stable,

• I is externally stable, if and only if A′2,2 in (2.13) is asymptotically stable.

Corollary 2.4. Let V be a controlled invariant subspace. Then,

• V is internally stabilisable, if K1 in (2.34) exists, such that M1,1(K1) in (2.36)

is asymptotically stable,

• V is externally stabilisable, if K2 in (2.35) exists, such that M2,2(K2) in (2.36)

is asymptotically stable.

Definition 16. A subspace V of a state space X is called a stabilizability subspace

if, for the initial state x0 on it, there exists a suitable control function u, such that

xx0,u(t) ∈ V, for all t ∈ T and xx0,u converges to zero as t converges to infinity.

This definition immediately shows that every stabilizability subspace is controlled

invariant.

Theorem 2.22. [Trentelman et al. (2001)] Consider system (2.27). Let V, with a

controlled invariant friend F , be a controlled invariant subspace of X . Then,

• V is internally stabilisable, if and only if σ(A+B F |V) is asymptotically stable,

• V is externally stabilisable, if and only if σ(A+B F |X/V) is asymptotically stable.

2.1.8 Disturbance decoupling problem (DDP)

Consider the system:

ρx(t) = Ax(t) +B u(t) +Hw(t), (2.45)

y(t) = C x(t), (2.46)

where w is a disturbance. Now, the problem of disturbance decoupling by state feedback

has been solved by using a geometric method. There are two versions of the problem,

the basic version which is a solution without stability. It is based on finding a control

law u(t) = F x(t), such that the output y(t) of the closed-loop system,

ρx(t) = (A+B F ) x(t) +Hw(t), (2.47)

is not affected by the disturbance w. Then, the same problem will be solved using the

notion of stability, i.e., in addition to the previous requirement, the closed-loop matrix

(A+B F ) of (2.47) has to be asymptotically stable.
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Corollary 2.5. [Basile and Marro (1969)] The disturbance decoupling problem is solv-

able with state feedback, if and only if im H ⊆ V∗.

Corollary 2.6. [Trentelman et al. (2001)] The disturbance decoupling problem with

stability is solvable, if and only if im H ⊆ V∗ and V∗ is internally and externally

stabilisable.

2.2 Structural invariants of 2-D systems

2.2.1 Overview

Discrete 2-D systems are discrete dynamical systems that evolve in the plane Z ×
Z. Typically, but not necessarily, the points of the plan are partially ordered by the

relation:

(i, j) ≤ (h, k)⇐⇒ i ≤ h, j ≤ k. (2.48)

In this way, we can introduce the past and future of the point (h, k) in the plane Z×Z.

Definition 17. The past of (i, j) is the set of all points given by

P(i,j) = {(h, k) ∈ Z× Z | (i, j) ≥ (h, k)}, (2.49)

and the future of the same point is the set:

F(i,j) = {(h, k) ∈ Z× Z | (i, j) ≤ (h, k)}. (2.50)

We now formalize the concept of future with respect to the separation set as the

set of points for which we can compute the states of the system with a valid boundary

condition. Note that there are other points that do not precede and follow the point

(i, j). For instance, in Figure 2.4, the past of (i, j) and the future are the two discrete

cones in the plane Z × Z. The points, not contained in such cones, do not belong to

the past or future of (i, j).

Definition 18. [Fornasini and Marchesini (1980)] A nonempty set C in the plane Z×Z,

with the following properties, is called a separation set:

• if i > h, j > k, (i, j) and (h, k) cannot belong simultaneously to C;

• if (i, j) ∈ C, then C intersects the sets {(i − 1, j), (i, j + 1), (i − 1, j + 1)} and

{(i+1, j), (i, j−1), (i+1, j−1)} and does not contain the set {(i+1, j), (i, j+1)};

• for any (h, k) in Z×Z, the relation (i, j) ≤ (h, k) cannot be satisfied by infinitely

many elements (i, j) in C.
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Past

Future

(i, j)

Figure 2.4

The following separation sets are a particular case of this definition (Gapinski,

1988):

Ck
def
= {(i, j) ∈ Z× Z | i+ j = k}, k ∈ Z (2.51)

Ck divides the plane Z × Z into two regions: the past region of the separation set

Ck is the union of the cones that constitute the past of points Ck, which are sets of

PCk
=

⋃
(i,j)∈Ck

P(i,j) = {(i, j) ∈ Z× Z | i+ j > k} (2.52)

and the future region is the union of the cones that constitute the future of points Ck,

given by

FCk
=

⋃
(i,j)∈Ck

F(i,j) = {(i, j) ∈ Z× Z | i+ j 6 k}. (2.53)

Figure 2.5 illustrates some examples of separation sets, past and future regions of each

one in Z× Z.

Note that there are many possibilities for choosing a separation set Ck.

Definition 19. A local state space X is a finite dimensional vector space, where the

local state x ∈ X is assigned to each point (i, j) of the plane, while a global state space
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Figure 2.6

Xk is the set of points on the separation set Ck and is defined by

XCk
= {x(i,j) ∈ X | (i, j) ∈ Ck}. (2.54)

The previous definition gives rise to a distinction between the local and global state.

In the 1-D case, the present separates the past the from future, and it is given by a

point (i.e. the boundary condition is on the state itself). In the 2-D case, the present

will be given by an infinite dimension of vectors. In particular, in the case of the

separation set Ck, the boundary condition is a line. For further clarification, in Figure

2.6, if the global state X0 = {x(h,−h) |h ∈ Z} is known, the local state at an arbitrary

point (i, j) belonging to the future of C0, can be calculated in a finite number of steps

by the entrance into the future of C0 with {u(h,k), h+ k ≥ 0}.

2.2.2 2-D states models

In the 2-D state model that we consider, the present local state is x(i+1,j+1), and it

is determined by the two local states and two inputs values belonging to the past of

(i+1, j+1) which are placed at the two points that are also immediately in the past of

(i+ 1, j + 1). In this case, the structure of the model is given by Fornasini-Marchesini

first order model (Fornasini & Marchesini, 1978), which is described by

x(i+1,j+1) = A1x(i,j+1) +A2x(i+1,j) +B1u(i,j+1) +B2u(i+1,j). (2.55)
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The output at the point (i, j), as in the 1-D case, is determined by the state and

function of input at the same point:

y(i,j) = Cx(i,j), (2.56)

where the vectors x,y,u belong, respectively, to Rn, Rp, and Rm, and A1, A2, B1, B2, C

have suitable dimensions. An appropriate set of boundary conditions of model (2.55)-

(2.56) is given by the separation set (2.51) and the boundary conditions for the same

model is defined by assigning the local state x(i,j) for all (i, j) ∈ C0 (Ntogramatzidis

et al., 2008). The model is obviously linear and, as we mentioned, first order, because

the quantities involved in the update are related only to the points that precede the

points at which the state is calculated. In addition, in the rest of the chapter, we will

concentrate our attention on model (2.55) because it is the most general model. Indeed,

it can be used to describe the majority of other 2-D models which are presented in the

literature.

• Fornasini-Marchesini second order model is introduced in Fornasini and March-

esini (1976, 1975) as:

x̄(i+1,j+1) = Ā0x̄(i,j) + Ā1x̄(i,j+1) + Ā2x̄(i+1,j) + B̄u(i,j) (2.57)

y(i,j) = C̄x̄(i,j), (2.58)

which is a special case of (2.55), when assuming the vector

x(i,j) =

 x̄(i,j)

x̄(i,j−1)

u(i,j−1)

 ,
as a local state with the matrices:

A1 =

 Ā1 0 0

I 0 0

0 0 0

 , A2 =

 Ā2 Ā0 B̄

0 0 0

0 0 0

 , B1 =

 0

0

I

 ,

B2 =

 0

0

0

 , C =
[
C̄ 0 0

]
.

Then, model (2.57) can be rewritten in form (2.55). An appropriate set of

boundary conditions of model (2.57) is given by the separation set (2.51) and the

boundary conditions for the same model is defined by assigning the local state

x(i,j) for all (i, j) ∈ C−1 ∪ C0 (Ntogramatzidis et al., 2008).
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• Roesser’s model (Roesser, 1975; Givone & Roesser, 1972, 1973) is described by[
xh(i+1,j)

xv(i,j+1)

]
=

[
Â1 Â2

Â3 Â4

]
︸ ︷︷ ︸

Â

[
xh(i,j)

xv(i,j)

]
+

[
B̂1

B̂2

]
︸ ︷︷ ︸

B̂

u(i,j), (2.59)

y(i,j) =
[
Ĉ1 Ĉ2

]
︸ ︷︷ ︸

Ĉ

[
xh(i+1,j)

xv(i,j+1)

]
, (2.60)

where xh and xv are the horizontal and vertical states respectively, so that the

local states is the direct addition of theses two states. Model (2.59-2.60) can

clearly be recast in the form of (2.55-2.56) by assuming that the vector

x(i,j) =

[
xh(i+1,j)

xv(i,j+1)

]

as local state, with matrices:

A1 =

[
0 0

Â3 Â4

]
, A2 =

[
Â1 Â2

0 0

]
, B1 =

[
0

B̂2

]
,

B2 =

[
B̂1

0

]
, C =

[
Ĉ1 Ĉ2

]
.

• The model of Attasi introduced in Attasi (1973) is a special case of model (2.57)

with Ā0 = −Ā1Ā2 = −Ā2Ā1.

In the following, regarding the 2-D structure invariance, attention will be paid on the

Fornasini-Marchesini first and second order models. The reason for this choice is that

these models will provide a base for the generalisation into the N -D case.

2.2.3 Controlled invariance with related properties and

their dual for models in the 2-D system

The geometric theory of the 2-D models described here parallels the one in the 1-D

case, albeit with some modification.

Definition 20. [Ntogramatzidis et al. (2008)] Consider a 2-D FM model described by

(2.55), where the input is identical to zero. A subspace I of local state space X is

(A1, A2)-invariant, if the following inclusion holds:[
A1

A2

]
I ⊆ I × I, (2.61)
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where A1, A2 are matrices representation of linear maps in particular bases.

Lemma 2.5. Let I be a subspace of X , and let J be a basis matrix of I. Let r be the

dimension of I. Then, I is (A1, A2)-invariant, if and only if two matrices X1, X2 from

Rr×r exist such that: [
A1

A2

]
J =

[
J 0n×r

0n×r J

][
X1

X2

]
. (2.62)

Proof: It is clear that the relation of the subspace inclusion (2.61) can be expressed

as in (2.62).

Definition 21. [Conte and Perdon (1988)] The subspace V of X is said to be of

controlled invariant for model (2.55), if the following subspace inclusion holds:[
A1

A2

]
V ⊆ (V × V) + im

[
B1

B2

]
.

Lemma 2.6. [Ntogramatzidis et al. (2008)] Let V be a subspace of X , and let V denote a

basis matrix of V. Let r be the dimension of V. The following statements are equivalent:

(i) V is the controlled invariant for model (2.55);

(ii) there exist matrices X ∈ R2r×r and Ω ∈ Rm×r, such that:[
A1

A2

]
V =

[
V 0

0 V

]
X +

[
B1

B2

]
Ω; (2.63)

(iii) there exists a matrix F ∈ Rm×n, such that:[
A1 +B1 F

A2 +B2 F

]
V ⊆ V × V; (2.64)

(iv) there exist matrices F ∈ Rm×n and X ∈ R2r×r, such that:[
A1 +B1 F

A2 +B2 F

]
V =

[
V 0

0 V

]
X.

Definition 22. [Ntogramatzidis (2012)] A subspace V of X is said to be a 2-D con-

trolled invariant subspace for model (2.57), if it is at the same time (A0, B)-, (A1, B)-,

and (A2, B)-controlled invariant subspaces in the 1-D counterpart, which is equivalent

to

Ai V ⊆ V + im B, i ∈ {0, 1, 2}.
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Theorem 2.23. [Ntogramatzidis (2012)] Let V be a subspace of X . For any V-valued

boundary condition, system (2.57) has a V-valued solution, if and only if V is a 2-D

controlled invariant subspace.

Proof: See Theorem 3.2 in Ntogramatzidis (2012).

The family of all controlled invariant subspaces contained in ker C in the 2-D case

for model (2.55) and the family of all controlled invariant subspaces contained in ker C

in the 2-D case for model (2.57) are both closed under subspace addition. Then, the

addition of the elements in each family is the maximum. This subspace is called the

output-nulling subspace and it is denoted by V∗. The following algorithms compute V∗

for each model.

Proposition 2.1. [Conte and Perdon (1988)] Consider model (2.55). V∗ coincides

with the last term of the sequence of subspaces:
V0 = X

Vq+1 = ker C ∩

[
A1

A2

]−1

(Vq × Vq + im

[
B1

B2

]
), q ∈ {1, 2, . . . , k},

(2.65)

where the value of k ≤ n− 1 is determined by condition Vk+1 = Vk.

Lemma 2.7. [Ntogramatzidis (2012)] Consider model (2.57). V∗ is the last term of

the monotonically nonincreasing sequence:{
V0 = ker C,

Vq =
⋂2
j=0A

−1
j (Vq−1 + im B) ∩ ker C, q ∈ {1, 2, . . . , κ},

where the integer κ ≤ n− 1 is determined by the condition Vκ+1 = Vκ, i.e., V0 ⊃ V1 ⊃
V2 ⊃ . . . ⊃ Vκ = Vκ+1 = V∗.

Definition 23. [Ntogramatzidis (2012)] A subspace S of X is said to be a 2-D con-

ditioned invariant subspace for model (2.57), if it at the same time (C,A0)-, (C,A1)-,

and (C,A2)-conditioned invariant in the 1-D counterpart, which is equivalent to

Ai (S ∩ ker C) ⊆ S, i ∈ {0, 1, 2}.

The concept of subspace introduced in the previous definition is the dual of the 2-D

controlled invariant subspace. Moreover, the 2-D output-nulling subspace V has also

a dual, named 2-D input-containing subspaces S, which is a 2-D conditioned invariant

subspace containing im B. The intersection of all these 2-D input-containing subspaces

is denoted by S∗ and dualizes the subspace V∗: its computation can be carried out by

dualizing Lemma 2.7 as follows.
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Lemma 2.8. [Ntogramatzidis (2012)] Consider the model (2.57). S∗ is the last term

of the monotonically nondecreasing sequence:{
S0 = im B,

Sq = Σ2
j=0Aj(Sq−1 ∩ ker C) + im B, q ∈ {1, 2, . . . , κ},

where the integer κ ≤ n− 1 is determined by the condition Sκ+1 = Sκ, i.e., S∗ = Sκ.

Definition 24. A subspace W is said to be a 2-D controlled invariant subspace of

the feedback type for model (2.57) if W is A0W ⊆ W + im B, and it satisfies both

inclusions A1W ⊆W and A2W ⊆W.

Theorem 2.24. [Ntogramatzidis (2012)] A subspace W is said to be a 2-D controlled

invariant subspace of the feedback type for (2.57), if and only if a static feedback control

u(i,j) = F x(i,j) exists such that for any W-valued boundary condition, (2.57) has a W-

valued solution lies in W.

A 2-D controlled invariant subspace of the feedback type contained in ker C is an

output-nulling subspace of the feedback type. The addition of all the families of these

subspaces is denoted by W∗, and it is computed by the following algorithm.

Lemma 2.9. [Ntogramatzidis (2012)] Consider the model (2.57). W∗ is the last term

of the monotonically nonincreasing sequence:{
W0 = ker C,

Wq = A−1
0 (Wq−1 + im B) ∩A−1

1 Wq−1 ∩A−1
2 Wq−1 ∩ ker C, q ∈ {1, 2, . . . , κ},

where the condition Wκ+1 = Wκ determines the integer κ ≤ n − 1, which means that

W∗ =Wκ.

2.2.4 Friends and stabilisation for models in 2-systems

Definition 25. A matrix F , such that (2.64) in Lemma 2.6 holds, is called a controlled

invariant friend of the controlled invariant subspace V, and the family of all these

matrices is denoted by F(V).

Lemma 2.10. [Ntogramatzidis et al. (2008)] Let V,with dimension r and a basis matrix

V , be a controlled invariant subspace for (2.55). A linear equation Ω = −F V , where

Ω of dimension (m× r) is a solution of (2.63) in Lemma 2.6 for some X of dimension

2r × r, has a solution for each F = −Ω (V > V )−1V > + Λ, from F(V) where ΛV = 0.

It follows that the change of basis T =
[
T1 T2

]
, with im T1 = V, is such that:

T−1(Ai +Bi F )T =

[
Gi,11(Ω,Λ) Gi,12(Ω,Λ)

0 Gi,22(Ω,Λ)

]
.
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Lemma 2.11. [Ntogramatzidis (2012)] Let W, with a basis matrix W , be a 2-D con-

trolled invariant subspace of the feedback type for (2.57). The family of matrices F

that solve the equation Ω = −F W , where Ω solves the equation A0W = W X0 + B Ω

for some matrix X0, is considered as the family of a feedback type controlled invariant

friend of W.

The computation of all feedback type controlled invariant friends F of a 2-D con-

trolled invariant subspace of the feedback type W comes from solving the equation

A0W = W X0 +B Ω in the unknown X0 and Ω as[
X0

Ω

]
=
[
W B

]†
A0W +

[
Φ1

Φ2

]
K1, (2.66)

where

[
Φ1

Φ2

]
is a full column-rank matrix such that:

im

[
Φ1

Φ2

]
= ker

[
V B

]
and K1 is an arbitrary matrix of suitable size. In the same way, the set of solution of

Ω = −F W is given by

F = −Ω(K1) (W>W )−1W> +K2 Φ, (2.67)

where Φ is a full column-rank matrix, such that ker Φ = V and K2 is an arbitrary

matrix of a suitable size.

By indicating the symbol F = FK1,K2 for all feedback type controlled invariant friends

of W, obtained from equations (2.66) and (2.67), the new coordinates of a closed-loop

matrix (A0 +B FK1,K2) using the change of basis T =
[
W W c

]
can be written as

T−1(A0 +B FK1,K2)T =

[
L1(K1,K2) L2(K1,K2)

0 L3(K2,K2)

]
,

T−1A1 T =

[
M1 M2

0 M3

]
, T−1A2 T =

[
N1 N2

0 N3

]
.

Then, as shown in Basile and Marro (1992), as well as W. Wonham (1985) in the 1-D

case, the matrix L1(K1,K2) does not depend on K2. Likewise, the matrix L3(K1,K2)

does not depend on K1.

Definition 26. The system (2.55) is called asymptotically stable, if every solution

tends to zero for i+ j −→∞.
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Proposition 2.2. [Fornasini and Marchesini (1978)] The pair of matrices (A1, A2) is

asymptotically stable, if and only if

det(In −A1 z2 −A2 z1) 6= 0,

for all z1 and z2 in the unit bidisc {(ζ1, ζ2) ∈ C× C | |ζ1| ≤ 1 and |ζ2| ≤ 1}.

Lemma 2.12. [Kar and Singh (2003)] The Linear Matrix Inequality condition for

asymptotic stability of the pair of matrices (A1, A2) is that two symmetric positive

definite matrices P1 and P2 exist such that[
P1 0

0 P2

]
−

[
A>1

A>2

]
(P1 + P2)

[
A1 A2

]
> 0.

Lemma 2.13. [Ntogramatzidis et al. (2008)] Let I,with dimension r and a basis matrix

J , be an (A1, A2)-invariant subspace of Rn and equation (2.62) to hold with X1, X2

from Rr×r. Thus, I is internally stable, if and only if the pair of matrices X1, X2 is

asymptotically stable.

Definition 27. Let V be the controlled invariant subspace for the model (2.55). V is

internally stabilisable, if a friend of V exists, such that the pair (A1 +B1 F,A2 +B2 F )

is asymptotically stable, i.e., V is an internally stable (A1 +B1 F,A2 +B2 F )-invariant

subspace.

The definition of externally stabilisable of V comes from putting the term ”exter-

nally”, rather than ”internally” in the previous definition .

Corollary 2.7. [Ntogramatzidis (2012)] Let W ⊆ X be a 2-D controlled invariant

subspace of feedback type, so that

• W is internally stabilisable, if and only if K1 in equation (2.66) exists such that

(L1(K1),M1, N1) in equation (2.68) is asymptotically stable;

• W is externally stabilisable if, K2 in equation (2.67) exists such that (L3(K2),M3, N3)

in (2.68) is asymptotically stable.

2.2.5 Disturbance decoupling problem

Given the 2-D FM first and second order models:

x(i+1,j+1) = A1x(i,j+1) +A2x(i+1,j) +B1u(i,j+1)

+ B2u(i+1,j) +H1w(i,j+1) +H2w(i+1,j), (2.68)

y(i,j) = Cx(i,j), (2.69)
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x(i+1,j+1) = A0x(i,j) +A1x(i,j+1)

+ A2x(i+1,j) +Bu(i,j) +Hw(i,j), (2.70)

y(i,j) = Cx(i,j), (2.71)

where w(i,j) is a disturbance which we want to decouple from the output y(i,j) with

a suitable control u(i,j) = F x(i,j), and H,H1 and H2 are matrices of appropriate

dimensions. The disturbance decoupling problem (DDP) is studied and solved for 2-

D FM first and second order models (2.68-2.69) and (2.70-2.71) by finding conditions

ensuring that a feedback law u(i,j) = F x(i,j) exists, such that the disturbance w(i,j) does

not affect the output function y(i,j) of the closed-loop system. The other decoupling

problem is considered when the disturbance w(i,j) is measurable. In this case, with the

measurable disturbance decoupling problem (MDDP), a feedback law takes the form

u(i,j) = F x(i,j) + Sw(i,j).

Proposition 2.3. [Conte and Perdon (1988)] Consider system (2.68-2.69), and con-

sider the largest output-nulling controlled invariant subspace V∗ of system (2.55). Then,

(i) the (DDP) is solvable if

im

[
H1

H2

]
⊆ V∗ × V∗,

(ii) the (MSDP) is solvable if

im

[
H1

H2

]
⊆ V∗ × V∗ + im

[
B1

B2

]
.

The following theorem solving the (DDP) and (MSDP) with notion of stability,

is considered as a special case of Theorem 5.1 in Ntogramatzidis et al. (2008), with

feedthrough matrices, D and G, to be zero.

Proposition 2.4. [Ntogramatzidis et al. (2008)] Consider system (2.68-2.69), and

consider the largest output-nulling controlled invariant subspace V∗ of system (2.55).

Then,

(i) the (DDP) is solvable if

• im

[
H1

H2

]
⊆ V∗ × V∗,

• V∗ is both internally and externally stabilisable.

(ii) the (MSDP) is solvable if

• im

[
H1

H2

]
⊆ V∗ × V∗ + im

[
B1

B2

]
,
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• V∗ is both internally and externally stabilisable.

When the conditions are satisfied, any output-nulling friend F of V∗, which makes V∗

internally and externally stabilisable, is considered a solution of the problem.

Proposition 2.5. [Ntogramatzidis (2012)] Consider system (2.70-2.71), and consider

the largest output-nulling subspace of feedback type W∗ of system (2.57). Then,

(i) the (DDP) is solvable if and only if

im H ⊆ W∗,

(ii) the (MSDP) is solvable if and only if

im H ⊆ W∗ + im B.



CHAPTER 3

Geometric approach for N -D

second-order Fornasini-Marchesini state

space models

3.1 Structural invariants for N-D model

In this chapter, we generalise a geometric approach of what is normally referred in the

literature as Fornesini-Marchesini second order models, where we have A0, A1, A2 and a

single matrix B. In this case, this generalisation is called N -D second-order Fornesini-

Marchesini models. The generalised a N -D model of a linear discrete system proposed

by Kaczorek (1992) can be written as

xi1+1,i2+1,...,iN+1 = A0 xi1,i2,...,iN +

N∑
j=1

Aj xi1,...,ij−1,ij+1,ij+1,...,iN

+
∑

16j<k6N

Ajk xi1,...,ij−1,ij+1,ij+1,...,ik−1,ik+1,ik+1,...,iN + . . .

+
N∑
j=1

Ai1,...,ij−1,ij+1,...,iN xi1+1,...,ij−1+1,ij ,ij+1+1,...,iN+1

+B ui1,i2,...,iN (3.1)

yi1,i2,...,iN = C xi1,i2,...,iN , (3.2)

where, for all i1, i2, ..., iN ∈ Z, the vector xi1,i2,...,iN is the local state which belongs to

Rn, the input ui1,i2,...,iN and the output yi1,i2,...,iN belong to Rm and Rp respectively.

The matrices A0, Aj , Ajk, . . . , Ai1,...,ij−1,ij+1,...,iN , B and C are real matrices with ap-

propriate dimensions. We can also provide an alternative way of writing (3.1-3.2) in a

50
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more compact way, by defining SN = {z ∈ NN | ‖z‖∞ ≤ 1 and ‖z‖22 < N} as follows:

x(i1+1,i2+1,...,iN+1) =
∑
`∈SN

A` x(i1,i2,...,iN )+` +B u(i1,i2,...,iN ) (3.3)

y(i1,i2,...,iN ) = C x(i1,i2,...,iN ), (3.4)

where the notation x(i1,i2,...,iN ) denotes the local state and u(i1,i2,...,iN ) denotes the input

function. A`, B and C are real matrices of suitable dimensions. In the model considered,

`0 = (0, 0, . . . , 0)︸ ︷︷ ︸
N times

is the zero element of SN , `i for i = {1, . . . , card(SN )} and the elements

of this set are ` = (`(1), `(2), . . . , `(N)), such that `(i) denotes the i-th element of `

from the left. For example, if ` = (1, 0, 0, 1), then `(1) = 1, `(2) = 0, `(3) = 0, and

`(4) = 1. In the sequel, we will consider SN as a set of all indexes in (3.3-3.4). For

brevity, we denote system (3.3-3.4) by Σ = (A`, B,C).

For defining an appropriate boundary conditions for (3.3), we introduce the following

sets

Qi
def
= ({i} × {j ∈ Z | j ≥ i} × {j ∈ Z | j ≥ i} × . . .× {j ∈ Z | j ≥ i})︸ ︷︷ ︸

N times

∪ ({j ∈ Z | j ≥ i} × {i} × {j ∈ Z | j ≥ i} × . . .× {j ∈ Z | j ≥ i})︸ ︷︷ ︸
N times

∪ . . .

∪ ({j ∈ Z | j ≥ i} × {j ∈ Z | j ≥ i} × . . .× {j ∈ Z | j ≥ i} × {i})︸ ︷︷ ︸
N times

.

By assigning the local state x(i1,i2,...,iN ) for (i1, i2, ..., iN ) ∈ Q0, we obtain a suitable set

of boundary conditions given for an arbitrary vector x̄(i1,i2,...,iN ) by

x(i1,i2,...,iN ) = x̄(i1,i2,...,iN ) ∈ Rn for all (i1, i2, ..., iN ) ∈ Q0. (3.5)

In this case, by consideringW, any subspace of Rn, we say that the boundary condition

is aW-valued boundary condition of (3.3), if x(i1,i2,...,iN ) belongs toW for all (i1, i2, ..., iN )

∈ Q0. Equivalently, if x(i1,i2,...,iN ) ∈ W for all (i1, i2, ..., iN ) ∈ Qi, then, (3.3) also has

a W-valued solution.

3.1.1 N-D Invariant subspaces

Let us now consider (3.3) with B = 0, i.e.,

x(i1+1,i2+1,...,iN+1) =
∑
`∈SN

A` x(i1,i2,...,iN )+`. (3.6)

We begin our investigation by introducing the notion of invariance for this model.
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Definition 28. A subspace I ⊆ Rn is called an invariant for (3.6), if

A` I ⊆ I, ∀ ` ∈ SN . (3.7)

where A`, for all ` ∈ SN are matrices representation of linear maps in particular bases.

The origin {0} and X are both obviously N -D invariant. In addition, the intersec-

tion and addition of N -D invariant subspaces is N -D invariant. Indeed, given two N -D

invariant subspaces, I1 and I2, by virtue of (3.7), we find

A` (I1 ∩ I2) ⊆ A` I1 ∩A` I2 ⊆ I1 ∩ I2,

and also by virtue of (3.7):

A` (I1 + I2) = A` I1 +A` I2 ⊆ I1 + I2.

Hence, the family of all N -D invariant subspaces of X under subspace addition and

intersection is closed, so that the addition of all invariant subspaces of this family gives

the maximum element which is X . The minimum is the intersection of these invariant

subspaces, which is {0}. In addition, from (3.7), we obtain the equal condition: that is

equivalent to (3.7)

∑
`∈SN

A`I ⊆ I. (3.8)

The connection between the geometric definition of invariance in Definition 28 and the

solutions of (3.6) is given by the following Lemma.

Lemma 3.1. A subspace I of Rn is invariant for (3.6), if and only if for any I-valued

boundary conditions, the model (3.6) admits an I-valued solution.

Proof: Let I be invariant for (3.6). Consider the arbitrary I-value boundary condi-

tions. We want to show that for all ` ∈ SN , the solution x` of (3.6) is such that x` ∈ I.

By virtue of (3.8), we can write x(1,1,...,1) as

x(1,1,...,1) =
∑
`∈SN

A` x`.

For all ` ∈ SN , we have A`x` ∈ I. Since x` ∈ I, the right hand side is in I, therefore,

x(1,1,...,1) ∈ I. This process can be repeated for all vectors of the I-valued boundary

condition. I-valued solution for equation (3.6) is constructed by involving only vectors

from I for (i1, i2, . . . , iN ) ∈ Qj . By continuing in this manner recursively, a solution

can be obtained for (i1, i2, . . . , iN ) ∈ Qj , for j > 0. Now we show the converse. For
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all I-value boundary conditions, the corresponding solutions x` of equation (3.6) are

all contained in I, which means that I is invariant. Suppose that I is not invariant,

so that there exists x` ∈ I for all ` ∈ SN , for which
∑

`∈SN
A` x` /∈ I. Obviously,

for x(1,1,...,1) ∈ I, a solution of equation (3.6) cannot be exist. As such, with arbitrary

I-valued boundary conditions model (3.6) has I-valued trajectory, then, equation (3.8)

automatically holds.

We can also provide an alternative characterisation of invariance, in terms of exis-

tence, a suitable I-valued solution of equation (3.6) as follows. Let J be a basis matrix

for the invariant subspace I, there exist matrices X` for all ` ∈ SN such that

A` J = J X`. (3.9)

Consider an I-valued boundary condition x(i1,i2,...,iN ) of (3.6). Then, for each (i1, i2, . . . , iN )

∈ Q0, we can write x(i1,i2,...,iN ) = J ξ(i1,i2,...,iN ) for some ξ(i1,i2,...,iN ).

As such, if (i1, i2, . . . , iN ) + ` ∈ Q0, for all ` ∈ SN , we can write in view of equation

(3.9):

x(i1+1,i2+1,...,iN+1) =
∑
`∈SN

A` J ξ(i1,i2,...,iN )+`

=
∑
`∈SN

J X` ξ(i1,i2,...,iN )+`. (3.10)

Now, we define the reduced N -D Fornasini-Marchesini model as

ξ(i1+1,i2+1,...,iN+1) = X` ξ(i1,i2,...,iN )+`.

Then, by substitution, one can verify that x(i1,i2,...,iN ) = J ξ(i1,i2,...,iN ) is a solution of

equation (3.6) and is I-valued.

3.1.2 N-D controlled invariance

In this part, the notion of controlled invariance will be introduced. Generally speaking,

controlled invariant subspaces can be considered as a generalisation of the concept of

invariants, in the sense that, while invariant subspaces are the subspaces of the state

space where the solution generated by equation (3.6) lies, controlled invariant subspaces

are the subspaces of solutions generated by

x(i1+1,i2+1,...,iN+1) =
∑
`∈SN

A` x(i1,i2,...,iN )+` +B u(i1,i2,...,iN ). (3.11)

Definition 29. A subspace V of X is said to be an N -D controlled invariant subspace

for model (3.11), if it is at the same time (A`, B)-controlled invariant, for all ` ∈ SN in
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the 1-D counterpart, i.e., if

A`V ⊆ V + im B, ∀ ` ∈ SN . (3.12)

The following facts are easy to establish:

(i) Both X = Rn and {0} are N -D controlled invariant subspaces;

(ii) when B = 0, the notion of N -D controlled invariance reduces to the notion of

N -D invariance. In addition, any N -D invariant subspace V is an N -D controlled

invariant subspace for any matrix B, but not vice-versa,

(iii) the addition of the N -D controlled invariant subspaces is N -D controlled in-

variant. Indeed, using equation (3.12), we immediately see that given two N -D

controlled invariant subspaces V1 and V2, we find

A` (V1 + V2) = A` V1 +A` V2 ⊆ (V1 + im B) + (V2 + im B) = (V1 + V2) + im B,

which implies that V1 + V2 is itself N -D controlled invariant. However, since the

intersection of two controlled invariant subspaces is not a controlled invariant

subspace in a 1-D case (Basile & Marro, 1992), so in the 2-D setting, the same

result is true (Ntogramatzidis, 2012). Moreover, the intersection of two N -D con-

trolled invariant subspaces is not in general considered a N -D controlled invariant

subspace also. Indeed, using equation (3.12) and the chain of inclusions,

A` (V1 ∩ V2) ⊆ A` V1 ∩A` V2 ⊆ (V1 + im B) ∩ (V2 + im B) ⊇ (V1 + V2) + im B,

we cannot conclude that A` (V1 ∩ V2) ⊆ (V1 + V2) + im B.

The following theorem is a simple extension of the results that appear in Karamancioglu

and Lewis (1992) and Ntogramatzidis (2012), and it presents the basic system-theoretic

explanation of the previous definition.

Theorem 3.1. Let V be a subspace of X . A V-valued solution of equation (3.11) exists

for any V-valued boundary condition, if and only if V is an N -D controlled invariant

subspace.

Proof: (Sufficiency). Suppose equation (3.12) holds. Let x(i1,i2,...,iN ) be V-valued

on the k-th forward boundary Qk. Consider equation (3.11), where all the indexes are

in Qk. Let zk = x(i1,i2,...,iN )+` for all k ∈ {0, 1, . . . , 2N − 2} and ` ∈ SN . By virtue of

(3.12), two vectors x and w exist from V and X respectively, such that

A` zk = x +Bw.
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Therefore, by taking u(i1,i2,...,iN ) = −w, the solution for (3.11) exists and is V-valued

on the next boundary Qk+1. By induction, a control function u(i1,i2,...,iN ) exists for a

given V-valued boundary condition, such that x(i1,i2,...,iN ) exists and it is V-valued for

all (i1, i2, . . . , iN ) ∈ Q.

(Necessity). Assume that equation (3.11) does not hold, so that, there exists ξq ∈ V
for all q ∈ {0, 1, . . . , 2N − 2}, such that there is no w ∈ Rm and A` ξq +Bw ∈ V holds.

Hence, a control u`0 cannot be found with a boundary condition x` = ξq such that

x(1,1,...,1) ∈ V. Consequently, a V-valued solution of equation (3.11) does not exist for

the V-valued boundary condition.

3.1.3 N-D output-nulling subspaces

The controlled invariant subspace contained in kerC is particularly important because

it provides the basis to solve a number of control problems, especially the disturbance

decoupling problem (Basile & Marro, 1992). A particular case of N -D controlled in-

variance subspace is an N -D output-nulling subspace, which is that for any V-valued

boundary condition, the system
∑

= (A`, B,C) has a V-valued solution to yield a

zero output. Stated differently, a zero output can be obtained by solving the sys-

tem
∑

= (A`, B,C), if and only if the local state x(i1,i2,...,iN ) remains in ker C for

all (i1, i2, . . . , iN ) ∈ Qi. Therefore, an N -D output-nulling subspace is simply a N -D

controlled invariant subspace contained in the null space of C. The family of all the

N -D output-nulling subspaces of
∑

= (A`, B,C) is closed under subspace addition.

However, it is not closed under subspace intersection. Hence, this family has a max-

imum given by the addition of all these elements and is denoted by V∗. The famous

algorithm to compute V∗ is introduced in Basile and Marro (1969) in the 1-D case and

the other is introduced in Ntogramatzidis (2012) in the 2-D setting. Both of them are

extended to the N -D systems by the following lemma.

Lemma 3.2. The subspace V∗ coincides with the last term of the sequence:{
V0 = kerC,

Vq =
⋂
`∈SN

A−1
` (Vq−1 + imB) ∩ kerC, q ∈{1, . . . , κ},

(3.13)

where the value κ ≤ n − 1 is determined by the condition Vκ+1 = Vκ, i.e., V0 ⊃ V1 ⊃
V2 ⊃ . . . ⊃ Vκ = Vκ+1 = V∗.

Proof: Firstly, by induction, we show that sequence (3.13) is monotonically nonin-

creasing. Clearly, V0 ⊇ V1. To prove Vh ⊇ Vh+1, we assume that Vh−1 ⊇ Vh. From our
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assumption we get

Vh =
⋂
`∈SN

A−1
` (Vh−1 + imB) ∩ kerC

⊇
⋂
`∈SN

A−1
` (Vh + imB) ∩ kerC = Vh+1.

Thus, the sequence (3.13) is monotonically nonincreasing. It is clear that if Vκ+1 = Vκ
holds, then Vj = Vκ holds also for all j ≥ κ. Since two subspaces that are subsequent in

(3.13) are coincident, if and only if they have the same dimension. The dimension of V0

is at least one, then, Vκ+1 must have a dimension at least one less than the dimension

Vκ, before reaching the stationarity. Hence, in at most n steps, the stationarity of the

sequence of subspaces (3.13) is reached. Let the index where sequence (3.13) becomes

stationary be n. Our aim now is to show that Vκ is an N -D controlled invariant

subspace. Begin with

Vκ =
⋂
`∈SN

A−1
` (Vκ + imB) ∩ ker C. (3.14)

Multiplying both sides of equation (3.14) by Ah with h ∈ SN , we find

Ah Vκ = Ah(
⋂
`∈SN

A−1
` (Vκ + imB) ∩ ker C)

⊆
⋂
`∈SN

AhA
−1
` (Vκ + imB) ∩Ah ker C

⊆ AhA
−1
h (Vκ + imB) ⊆ (Vκ + imB) ∩ imAh ⊆ Vκ + imB.

Obviously, Vκ is an (Ah, B)-controlled invariant subspace with h ∈ SN in the the 1-

D case. Therefore, it is an N -D controlled invariant subspace. By the same way of

constructing equation (3.13), Vq ⊆ ker C, so that Vκ is also N -D output-nulling. To

prove Vκ is the largest N -D output-nulling subspace for equation (3.11), which coincides

with V∗, we suppose that Ṽ is another N -D output-nulling subspace. Then, Ṽ is an

N -D controlled invariant subspace, which is an (Ah, B)-controlled invariant subspace

for h ∈ SN in the 1-D case contained in ker C. Hence, Ṽ ⊆ A−1
h (Ṽ + im B). Since this

is true for each h ∈ SN , we get

Ṽ ⊆
⋂
`∈SN

A−1
` (Ṽ + imB) ∩ ker C. (3.15)

Now, we prove that each term of sequence (3.13) contains Ṽ, then, specially, Vκ ⊇ Ṽ.

From sequence (3.13), it is clear that V0 ⊇ Ṽ, and to this end, we suppose that Vq ⊇ Ṽ.
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Hence

Vq+1 =
⋂
`∈SN

A−1
` (Vq + imB) ∩ ker C

⊆
⋂
`∈SN

A−1
` (Ṽ + imB) ∩ ker C,

in view of (3.15), this includes Ṽ. Therefore, Vκ ⊇ Ṽ. This implies that V∗ = Vκ.

3.1.4 N-D controlled invariant subspaces of feedback type

From structure of the model (3.11) we noticed that this model is closed under the

feedback input u(i1,i2,...,iN ) = F x(i1,i2,...,iN ), which guarantees the existence of a closed-

loop equation given by

x(i1+1,i2+1,...,iN+1) = (A`0 +B F ) x(i1,i2,...,iN ) +
∑

`∈SN\{`0}

A` x(i1,i2,...,iN )+`. (3.16)

The closed-loop equation (3.16) shows that the definition of N -D controlled invariance

alone does not automatically ensure the existence of a feedback matrix F , which keeps

the state evolutions x(i1,i2,...,iN ) on an N -D controlled invariant subspace V for V-valued

boundary conditions. For this reason, the concept of N -D controlled invariance of the

feedback type is introduced as a simple extension of what was done in Ntogramatzidis

(2012).

Definition 30. Subspace W is an N -D controlled invariant of the feedback type for

equation (3.11) if

• W is a 1-D controlled invariant subspace for (A`0 , B);

• for all ` ∈ SN\{`0}, W is A`-invariant.

Theorem 3.2. A subspace W is an N -D controlled invariant subspace of the feedback

type for equation (3.11), if and only if a static feedback input u(i1,i2,...,iN ) = F x(i1,i2,...,iN )

exist, such that for any W-valued boundary condition, model (3.11) admits a W-valued

solution for all (i1, i2, . . . , iN ) ∈ Q.

Proof: (Only if). From the previous definition, since W is an N -D controlled in-

variant subspace of the feedback type for equation (3.11), it is also a 1-D controlled

invariant subspace for (A`0 , B), and this implies that there exist two matrices X`0 and

Ω, such that A`0 W = W X`0 + B Ω, where W is a basis matrix of W (Trentelman,

Stoorvogel, & Hautus, 2012). Furthermore, since W is A`-invariant, the matrices X`,

` ∈ SN\{`0} exist, such that A`W = W X`. Since im W = W, then a linear equation
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Ω = −F W can be solved in F . We obtain the equation (A`0 +BF )W = W X`0 . The

states x(i1,i2,...,iN )+` are in W with the matrix F in the closed-loop system (3.16), so is

x(i1+1,i2+1,...,iN+1), and then for anyW-valued boundary condition, the state x(i1,i2,...,iN )

lies in W for all (i1, i2, . . . , iN ) ∈ Q.

(If). Suppose that the inclusion [ (A`0 +BF ) A`1 A`2 . . . A`
2N−2

](
⊕2N−1

1 W) ⊆
W does not hold, then, there exists x` ∈ W such that x(1,1,...,1) does not lie on W.

This implies that W is not (A`0 + BF )-controlled invariant and is not A`-invariant in

a 1-D sense, for all ` ∈ SN\{`0}. Thus, the previous inclusion must hold.

3.1.5 N-D output-nulling subspaces of the feedback type

An N -D output-nulling subspace of the feedback type W is a N -D controlled invariant

subspace of the feedback type contained in ker C. Furthermore, W is N -D output-

nulling of the feedback type, if and only if there exists a matrix F , such that for

any W-valued boundary condition, model (3.11) has W-valued to yield a zero output

y(i1,i2,...,iN ), for all (i1, i2, . . . , iN ) ∈ Q. The family of all N -D output-nulling subspaces

of the feedback type is denoted byW (Σ). This family is closed under subspace addition.

Therefore, the addition of all these subspaces is the maximum of W (Σ), which is N -D

output-nulling subspaces of the feedback type W∗.

Lemma 3.3. The subspace W∗ coincides with the last term of sequence:{
W0 = kerC,

Wq =
⋂
`∈SN\{`0}A

−1
` Wq−1 ∩A−1

`0
(Wq−1 + imB) ∩ kerC, q ∈{1, . . . , κ},

where the value κ ≤ n−1 is determined by the condition Wκ+1 =Wκ, i.e., W0 ⊃ W1 ⊃
W2 ⊃ . . . ⊃ Wκ =Wκ+1 =W∗.

The proof of this lemma comes directly from Lemma 3.2, with obvious modifications.

3.1.6 Disturbance decoupling problem (DDP)

The notion of the N -D output-nulling subspace of the feedback type plays a significant

part in solving the problem of disturbance decoupling without the stability requirement.

The model to consider is

x(i1+1,i2+1,...,iN+1) =
∑
`∈SN

A` x(i1,i2,...,iN )+` +B u(i1,i2,...,iN ) +H w(i1,i2,...,iN ),(3.17)

y(i1,i2,...,iN ) = C x(i1,i2,...,iN ), (3.18)
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where w(i1,i2,...,iN ) represents a non-measurable disturbance. Using a feedback law

u(i1,i2,...,iN ) = F x(i1,i2,...,iN ), the closed-loop system is given by

x(i1+1,i2+1,...,iN+1) = (A`0 +B F ) x(i1,i2,...,iN ) +
∑

`∈SN\{`0}

A` x(i1,i2,...,iN )+`

+ H w(i1,i2,...,iN ). (3.19)

The problem of disturbance decoupling is solved by finding conditions ensuring that a

feedback law u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) exists, such that the output of the closed-loop

system is not affected by the disturbance w(i1,i2,...,iN ). The other decoupling problem

is considered when the disturbance w(i1,i2,...,iN ) is measurable. In this case, with the

measurable disturbance decoupling problem (MDDP), a feedback law takes the form

u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) + Sw(i1,i2,...,iN ). In an N -D framework, this problem is

solved by the following theorem.

Theorem 3.3. Consider the largest N -D output-nulling subspaces of feedback type W∗

of system (3.16). Then, the (DDP) is solvable, if and only if

imH ⊆ W∗. (3.20)

Proof: (If). Let F be a feedback type output-nulling friend of W∗. Then, equation

(3.17) ensures that for each W∗-valued boundary condition, the local state x(i1,i2,...,iN )

remains on W∗ for all (i1, i2, . . . , iN ) ∈ Q. Therefore, it is contained in the null-space

of C, which means that the system is decoupled by the disturbance w(i1,i2,...,iN ).

(Only if). To prove this part, we suppose that (3.17) is decoupled by the distur-

bance w(i1,i2,...,iN ), which means that there exists a matrix F , such that the output

y(i1,i2,...,iN ) is identically zero. In the situation of zero disturbance equation (3.17) is

still disturbance decoupled, i.e., x(i1,i2,...,iN ) remains on the largest subspace W∗ for all

x(i1,i2,...,iN ), which satisfies the inclusion

[ (A`0 +BF ) A`1 A`2 . . . A`
2N−2

](
2N−1⊕

1

W∗) ⊆ ker (C).

Since the system must be disturbance decoupling, then, the inclusion im H ⊆ W∗ must

be satisfied with matrix H.

Theorem 3.4. The problem of disturbance decoupling, with a measurable disturbance

(MDDP), admits solution, if and only if

imH ⊆ W∗ + im B. (3.21)

Proof: (If). Suppose equation (3.21) holds. Then, this inclusion can be written as

im H =W1 +W2, where W1 ⊆ W∗ and W2 ⊆ im B. Through this decomposition, the
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closed-loop system with the control input u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) + Sw(i1,i2,...,iN )

becomes

x(i1+1,i2+1,...,iN+1) = (A`0 +B F ) x(i1,i2,...,iN ) +
∑

`∈SN\{`0}

A` x(i1,i2,...,iN )+`

+ (B S +W2)w(i1,i2,...,iN ) +W1 w(i1,i2,...,iN ),

where im W1 = W1 and im W2 = W2. Since im W2 = W2 ⊆ im B, matrix S

can be selected to satisfy B S + W2 = 0. Also, by choosing F to be a feedback type

output-nulling friend of W∗, the local state lies on W∗, and the output y(i1,i2,...,iN ) is

identically zero for a W∗-valued boundary condition.

(Only if). It is obvious.

Now, we will use the notion of duality to introduce the dual of all the previous

subspaces.

3.1.7 N-D conditioned invariance

N -D conditioned invariance is the dual concept of N -D controlled invariance. Moreover,

the notion of N -D conditioned invariance leads to the definition of certain subspaces,

usually referred to as N -D conditioned invariant subspaces, which are related to the

reconstructing of the local state of the system by observers that have no access to the

system’s control input.

Definition 31. A subspace S is a N -D conditioned invariant subspace for Σ, if it is

at the same time (C,A`)-conditioned invariant, for all ` ∈ SN , which is equivalent to

A`(S ∩ ker C) ⊆ S, ∀ ` ∈ SN . (3.22)

The following lemma presents a formula of conditioned invariance in terms of du-

ality. The dual system of the system Σ is identified by Σ> = (A>` , C
>, B>).

Lemma 3.4. The orthogonal complement of a N -D controlled invariant subspace for

Σ is a N -D conditioned invariant subspace for Σ>, and vice-versa.

Proof: Consider H is a N -D controlled invariant subspace for the system Σ. From

A`H ⊆ H + im B, for all ` ∈ SN , we obtain A>` (H + im B)⊥ ⊆ H⊥, which in turn

generates A>` (H⊥ ∩ im B>) ⊆ H⊥. Thus, H⊥ is a N -D conditioned invariant sub-

space for the system Σ>. The opposite implication holds with the same previous steps

reversed.
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3.1.8 N-D input-containing subspace

The N -D output-nulling subspace has a dual, named a N -D input-containing subspace.

A N -D input-containing subspace S is a N -D conditioned invariant subspace containing

im B. The family of all N -D input-containing subspaces is denoted by S(Σ). The

intersection of all these subspaces is the minimum of this family. It is denoted by

S∗ and it also dualizes the subspace V∗. Moreover, the orthogonal complement of

the minimum N -D input-containing subspace for Σ> is the maximum N -D output-

nulling subspace for Σ and vice versa, by using Lemma 3.4, which is equivalent to

(min S(Σ>))⊥ = max V(Σ). The dualizing of Lemma 3.2 for computing V∗ represents

the computation of S∗, as showing in the following algorithm.

Lemma 3.5. The subspace S∗ is the last term of the monotonically nondecreasing

sequence: {
S0 = im B,

Sq =
⋂
`∈SN

A` (Sq−1 ∩ ker C) + imB, q ∈{1, . . . , κ},

where the value κ ≤ n − 1 is determined by the condition Sκ+1 = Sκ, i.e., S0 ⊃ S1 ⊃
S2 ⊃ . . . ⊃ Sκ = Sκ+1 = S∗.

3.1.9 N-D conditioned invariant subspace of output-injection

type

The N -D conditioned invariance of the output-injection type is considered as a dual

concept of N -D controlled invariance of the feedback type. This concept is related to

the reconstructing of the state vector of the system by observers that have no access

to the system’s control input. The developed approach in the 1-D and 2-D cases in

Willems (1981); Ntogramatzidis (2012) has been closely followed here.

Definition 32. A subspace Z is said to be an N -D conditioned invariant subspace of

output injection type for Σ, if Z is (A`0 + GC)Z ⊆ Z for an output-injection matrix

G ∈ Rn×p, and it satisfies the inclusion A`Z ⊆ Z, for all ` ∈ SN\{`0}.

In other words, Z is an N -D conditioned invariant subspace of the output injection

type for Σ, if it is (C,A`0)-conditioned invariant in the 1-D case and it is A`-invariant

for all ` ∈ SN\{`0}.
More about the duality is that the orthogonal complement of a N -D controlled invari-

ant subspace of the feedback type for Σ = (A`, B,C) is a N -D conditioned invariant

subspace of the output injection type for Σ> = (A>` , C
>, B>) and vice-versa.
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3.1.10 N-D input-containing subspaces of the output-injection

type

Definition 33. A subspace Z is said to be a N -D input-containing subspace of the

output-injection type if it is (C,A`0)-conditioned invariant, contains the image of B in

the 1-D case, and it is A`-invariant, for all ` ∈ SN\{`0}.

The orthogonal complement of a N -D output-nulling subspace of the feedback type

for Σ = (A`, B,C) is a N -D input-containing subspace of the output-injection type for

Σ> = (A>` , C
>, B>) and vice-versa.

Definition 34. Consider a full row-rank matrix Q, such that Z = ker Q, where Z is

a subspace of X . The condition that characterises the fact that a system (3.11) is a

Z-observer can be ruled by

p(i1+1,i2+1,...,iN+1) =
∑
`∈SN

K` p(i1,i2,...,iN )+` + Ly(i1,i2,...,iN ), (3.23)

such that if p(i1,i2,...,iN ) = Qx(i1,i2,...,iN ) for all (i1, i2, . . . , iN ) ∈ Q, then p(i1,i2,...,iN ) =

Qx(i1,i2,...,iN ) for all (i1, i2, . . . , iN ) ∈ Q.

In other words, a Z-observer maintains the external components of the local state

x(i1,i2,...,iN ) to Z, i.e., if p(i1,i2,...,iN ) = x(i1,i2,...,iN )/Z on the boundary, then p(i1,i2,...,iN ) =

x(i1,i2,...,iN )/Z everywhere.

Theorem 3.5. A subspace Z of X is an N -D input-containing subspace of the output-

injection type for Σ if and only, if a Z-observer for Σ exists.

Proof: (Only if). Let Z be an N -D input-containing subspace for the pair (A`0 , C),

Also, it is A`-invariant for all ` ∈ SN\{`0}. Then, Z can be written as Z = ker Q,

where Q satisfies QA`0 = Ψ0Q + ΦC, QA` = Ψ`Q, for all ` ∈ SN\{`0} and QB =

0. Suppose that equation (3.23) is with K` = Ψ` for ` ∈ SN , and L = Φ. The

error can be defined as e(i1,i2,...,iN ) = Qx(i1,i2,...,iN ) − p(i1,i2,...,iN ). Then, since it is

assumed that p(i1,i2,...,iN ) = Qx(i1,i2,...,iN ) upon the boundary B, e(i1,i2,...,iN ) = 0 for all

(i1, i2, . . . , iN ) ∈ Q. Thus,

e(i1+1,i2+1,...,iN+1) = Qx(i1+1,i2+1,...,iN+1) − p(i1+1,i2+1,...,iN+1)

= QA`x(i1,i2,...,iN )+`

− Ψ` p(i1,i2,...,iN )+`i − ΦC x(i1,i2,...,iN )

= Ψ` e(i1,i2,...,iN )+`. (3.24)

Since the error is zero upon Q, then it is zero everywhere.

(If). Suppose that a Z-observer for Σ exists, so that p(i1,i2,...,iN ) = Qx(i1,i2,...,iN ) over
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the boundary Q is given, then, we have p(i1,i2,...,iN ) = Qx(i1,i2,...,iN ) over Q. Consider

the boundary condition of equation (3.11), such that x`0 ∈ Z ∩ ker C, x` ∈ Z, for all

` ∈ SN\{`0}. The Z-observer has the boundary condition p` = 0, for all ` ∈ SN . This is

compatible with the fact that p(i1,i2,...,iN ) = Qx(i1,i2,...,iN ) for (i1, i2, . . . , iN ) ∈ SN , since

for such indexes (i1, i2, . . . , iN ), we have x(i1,i2,...,iN ) ∈ Z, and then Qx(i1,i2,...,iN ) = 0.

Therefore, by virtue of equation (3.23), we obtain p(1,1,...,1) =
∑

`∈SN
K` p` + LCx`0 ,

which gives zero since, x`0 ∈ ker C. By contrast, x(1,1,...,1) =
∑

`∈SN
A`x` leads to

Qx(1,1,...,1) = Q
∑

`∈SN
A`x` +QB u`0 = p(1,1,...,1), which is zero, as shown above. For

choosing arbitrary states x` for all ` ∈ SN and an inputs u`0 , we obtain QA`0(Z ∩
ker C) + Q

∑
`∈SN{`0} A`Z = {0} and QB = 0. These imply that A`0(Z ∩ ker C) +∑

`∈SN{`0} A`Z ⊆ Z and imB ⊆ ker Q = Z, which is equivalent to Z being an input-

containing subspace of the output-injection type.

The family of all N -D input containing subspaces of the output-injection type is

denoted by Z(Σ) and it is closed under subspace intersection. Then, Z(Σ) admits a

minimum which is Z∗. Its computation by the duality is as follows.

Lemma 3.6. Z∗ coincides with the last term of the sequence of subspaces:{
Z0 = im B,

Zq = A`0 (Zq−1 ∩ ker C) +
∑

`∈SN\{`0}A`Zq−1 + imB, q ∈{1, . . . , κ},

where the value κ ≤ n− 1 is determined by the condition Zκ+1 = Zκ , i.e., Z0 ⊃ Z1 ⊃
Z2 ⊃ . . . ⊃ Zκ = Zκ+1 = Z∗.

3.1.11 Stability of N-D systems

In this part, a sufficient condition of stability is presented for the linear N -D systems

that is described by the model,

x(i1+1,i2+1,...,iN+1) =
∑
`∈SN

A` x(i1,i2,...,iN )+` +B u(i1,i2,...,iN ), (3.25)

y(i1,i2,...,iN ) = C x(i1,i2,...,iN ), (3.26)

where i1, i2, . . . , iN ∈ N.

Definition 35. The system (3.25) is called asymptotically stable if every solution tends

to zero for i1 −→∞, i2 −→∞, . . . and iN −→∞.

The starting point of this is the set that is defined as follows:

G`
def
= {j ∈ N | ¯̀(j) = 0 with ¯̀ is the column vector representation of `

using the canonical basis of Rn}. (3.27)
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The definition of G` and model equations (3.25) and (3.26) give us an expression for

the transfer function H(z1, z2, . . . , zN ).

H(z1, z2, . . . , zN ) = C ΠN
k=1 zk (In −

∑
`∈SN

Πj∈G`
zj A`)

−1B, (3.28)

where In is the identity matrix of size n × n. Model (3.25) is asymptotically stable if

and only if

det(In −
∑
`∈SN

Πj∈G`
zj A`) 6= 0, (3.29)

for all (z1, z2, . . . , zN ) ∈ {(z1, z2, . . . , zN ) : |zi| ≤ 1,∀ i ∈ N}.
A sufficient condition for the asymptotically stable of (3.25) is presented by the follow-

ing, which is an extension of the theorem reported previously by Kar and Singh (2003).

For example, forN = 3, S3 = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
Then, G(0,0,0) = {1, 2, 3}, G(0,0,1) = {1, 2}, G(1,1,0) = {3}, G(0,1,0) = {1, 3}, G(1,0,0) =

{2, 3}, G(0,1,1) = {1}, G(1,0,1) = {2}, we obtain from this

H(z1, z2, . . . , zN ) = C z1z2z3 (In − z1z2z3A(0,0,0) − z1z2A(0,0,1) − z2z3A(1,0,0)

− z1z3A(0,1,0) − z1A(0,1,1) − z2A(1,0,1) − z3A(1,1,0))
−1B,

which is the transfer function for the model (3.25) and (3.26) by using the definition of

G` in (3.27).

Theorem 3.6. System (3.25) is asymptotically stable, if there exist n × n symmetric

positive definite matrices P` for all ` ∈ SN , such that

M =


P`0 0 . . . 0

0 P`1 . . . 0
...

...
. . .

...

0 0 . . . P`
2N−2

 −AT P A > 0, (3.30)

where A = [A`0 A`1 . . . A`
2N−2

] and P = (P`0 + P`1 + . . .+ P`
2N−2

).

Proof: By the properties of the Schur complement, condition (3.30) is equivalent to
P`0 0 . . . 0
0 P`1 . . . 0
...

...
. . .

... AT P
0 0 . . . P`

2N−2

P A P

 > 0. (3.31)
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Let the condition (3.30) be satisfied. Suppose that

det(In −
∑
`∈SN

Πj∈G`
zj A`) = 0, (3.32)

a vector x 6= 0, with size n× 1, exists, such that

(In −
∑
`∈SN

Πj∈G`
zj A`) x = 0, (3.33)

or, equivalently

x = (
∑
`∈SN

Πj∈G`
zj A`) x =

∑
`∈SN

A` [ Πj∈G`
zj In ]T x. (3.34)

We obtain from equations (3.30) and (3.34)

x∗ P x = x∗ [ Πj∈G`
z∗j In ]×AT P A [ Πj∈G`

zj In ]T x

= x∗ [ Πj∈G`
z∗j In ] ×




P`0 0 . . . 0

0 P`1 . . . 0
...

...
. . .

...

0 0 . . . P`
2N−2

 −M
 [ Πj∈G`

zj In ]T x,

where x∗ denotes the complex conjugate transpose of x. The last equation could be

rearranged as

x∗ {
∑
`∈SN

P`(1− |Πj∈G`
zj |2)}x = −x∗[ Πj∈G`

z∗j In ]M [ Πj∈G`
zj In ]T x. (3.35)

Based on the above equation, we obtain a contradiction. Since M > 0, the right-

hand side is negative. However, the left-hand side of (3.35) is non-negative because

P`0 , P`1 , . . . , P`2N−1
are positive definite matrices, and |z1|≤ 1, |z2|≤ 1, . . . , |zN |≤ 1.

This implies that (3.29) is valid for any (z1, z2, . . . , zN ) ∈ {(z1, z2, . . . , zN ) : |zi| ≤ 1, i ∈
N}. Thus, the theorem is proven.

Corollary 3.1. System (3.25-3.26) is asymptotically stable, if an n × n symmetric

positive definite matrix Q and positive numbers α0, α1, . . . , α2N−2 exist, such that

R =


α0Q 0 . . . 0

0 α1Q . . . 0
...

...
. . .

...

0 0 . . . α2N−2Q

 (

2N−2∑
i=0

αi)−AT QA > 0. (3.36)

Note that Corollary 3.1 is a special case of Theorem 3.6, by replacing P`0 =

α0Q, P`1 = α1Q, . . . , P`
2N−1

= α2N−2Q.
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Corollary 3.2. System (3.25-3.26) is asymptotically stable if

I(2N−1)N − (2N − 1)AT A > 0. (3.37)

Moreover, Corollary 3.2 is a special case of Corollary 3.1, by putting α0 = α1 =

. . . = α2N−2 = 1/(2N − 1), and Q = In.

3.1.12 Friends and stabilisation

By adapting the arguments used in Ntogramatzidis (2012), a fundamental result of the

characterisation of the set of controlled invariant friends of N -D controlled invariant

subspace of the feedback type is shown by the following theorem.

Theorem 3.7. LetW, with a basis matrix W , be an N -D controlled invariant subspace

of the feedback type. A matrix F is a feedback type controlled invariant friend of W, if

U = −F W , where U is a solution of A`0 W = W X`0 +B U for some matrix X`0.

Proof: Let F be such that U = −F W , where U is a solution of A`0 W = W X`0 +B U

for a certain X`0 . Thus, A`0 W = W X`0 − B F W , which can also be written as

(A`0 + B F )W = W X`0 . Moreover, A`W = W X`, for all ` ∈ SN\{`0}. Then, F is a

controlled invariant friend of W. Conversely, let F be a controlled invariant friend of

W. Then, there exists Λ, such that (A`0 + BF )W = W Λ. Then, (A`0 + BF )W =

W X`0 +B U , with X`0 = Λ and U = −F W .

Similar to the 1-D case, there are two degrees of freedom of the computation of

controlled invariant friends F of the subspaces of the N -D invariant of the feedback

type W. One of them comes from solving equation A`0 W = W X`0 + B U for the

unknowns X`0 and U . Indeed, the complete set of its solutions is given by[
X`0

U

]
=
[
W B

]†
A`0 W +

[
Ω0

Ω1

]
K1, (3.38)

where im

[
Ω0

Ω1

]
= ker

[
W B

]
, and K1 is an arbitrary matrix of suitable size. The

other follows from the solution of U = −F W , which is given by

F = −U(W>W )−1W> +K2Ω, (3.39)

where ker Ω =W and K2 is another arbitrary matrix of an appropriate size. Therefore,

by indicating the symbol F = FK1,K2 for the choice of F which depends only on the

two arbitrary matrices K1 and K2.

The new coordinates of a closed-loop matrix (A`0 +B FK1,K2) using the change of basis[
T1 T2

]
, where T1 is a basis matrix of W, and T2 is such that T is invertible, can
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be written as

T−1 (A`0 +B FK1,K2)T =

[
L1(`0)(K1,K2) L2(`0)(K1,K2)

0 L3(`0)(K1,K2)

]
,

T−1A`1 T =

[
L1(`1) L2(`1)

0 L3(`1)

]
, T−1A`2 T =

[
L1(`2) L2(`2)

0 L3(`2)

]
,

. . . , T−1A`
2N−2

T =

[
L1(`2N−2) L2(`2N−2)

0 L3(`2N−2)

]
. (3.40)

Then, as shown in Basile and Marro (1992); Willems (1981); W. Wonham (1985) and

Ntogramatzidis et al. (2008), for the 1-D and 2-D cases, the matrix L1(`0)(K1,K2)

does not depend on K2. Likewise, the matrix L3(`0)(K1,K2) does not depend on K1.

Therefore, by defining [
x′(i1,i2,...,iN )

x′′(i1,i2,...,iN )

]
= T−1 x(i1,i2,...,iN ),

the closed-loop equation, with the new coordinates, can be expressed as[
x′(i1+1,i2+1,...,iN+1)

x′′(i1+1,i2+1,...,iN+1)

]
=

[
L1(`0)(K1) L2(`0)(K1,K2)

0 L3(`0)(K2)

] [
x′(i1,i2,...,iN )

x′′(i1,i2,...,iN )

]

+

[
L1(`1) L2(`1)

0 L3(`1)

] [
x′(i1,i2,...,iN )+`1

x′′(i1,i2,...,iN )+`1

]
+ . . .

+

[
L1(`2N−2) L2(`2N−2)

0 L3(`2N−2)

]  x′(i1,i2,...,iN )+`
2N−1

x′′(i1,i2,...,iN )+`
2N−1

 ,
where x′ and x′′ are respectively, the components of the local states that are internal

and external to the N -D controlled invariant subspace of the feedback type W. Next,

we provide a definition of internal and external stabilisability by using the change of

coordinates that was described above.

Definition 36. Let W be a N -D controlled invariant subspace of the feedback type

with a feedback type controlled invariant friend F , we say that W is:

• internally stabilisable, if for anyW-valued boundary condition, there holds x′(i1,i2,...,iN ) −→
0 as (i1, i2, . . . , iN ) is moving away from Q, i.e., if and only if K1 in (3.38) exists,

such that (L1(`0)(K1), L1(`1), . . . , L1(`2N−2)) in (3.40) is asymptotically stable,

• externally stabilisable, if for any W-valued boundary condition, there holds

x′′(i1,i2,...,iN ) −→ W as (i1, i2, . . . , iN ) goes away from Q, i.e., if and only if K2

in (3.39) exists, such that (L3(`0)(K2), L3(`1), . . . , L3(`2N−2)) in (3.40) is asymp-



3.1 Structural invariants for N-D model 68

totically stable.

Hence, K1 is the only parameter that influences the internal stabilisability of W,

while K2 is the only parameter that influences the external stabilisability of W. An

alternative way to compute an internal stabilisability of W is given by the following

theorem.

Theorem 3.8. Let W be a N -D controlled invariant subspace of the feedback type, and

let r and W be respectively, the dimension and basis matrix ofW. Let the first r rows of

ker
[
W B

]†
A`0 W be denoted by Q0. Then, W is said to be internally stabilisable,

if there exists Υ and an n× n symmetric positive definite matrices Υ`0 , Υ`1 , . . . , Υ`2N−2
,

such that the following linear matrix inequality (LMI) holds:
Υ`0 0 ... ? ?

0 Υ`1 ...
... ?

...
...

... ?
...

0 0 ... Υ`
2N−2

−(
∑

`∈SN\{`2N−2
} Υ`) ?

Q0 Υ`
2N−2

+Ω0 Υ W † A`1
W Υ`

2N−2
... W † A`

2N−2
W Υ`

2N−2
Υ`

2N−2

 > 0,(3.41)

where the symbol ? has been used to abbreviate off-diagonal blocks in symmetric ma-

trices. With (Υ, Υ`0 , Υ`1 , . . . , Υ`N2 −2) that is defined by (3.41), a matrix K1 such that

the 2N − 1-tuple matrices (X`0 , X`1 , . . . , X`
2N−2

) is asymptotically stable, is given by

K1 = Υ Υ−1
`
2N−2

.

Proof: By using condition (3.30), (X`0 , X`1 , . . . , X`
2N−2

) is asymptotically stable, if

there exist n× n symmetric positive definite matrices P` for all ` ∈ SN , such that
P`0 0 . . . 0
0 P`1 . . . 0
...

...
. . .

... XT
` P

0 0 . . . P`
2N−2

P X` P

 > 0, (3.42)

where X` = [X`0 X`1 . . . X`
2N−2

] and P = P`0 + P`1 + . . .+ P`
2N−2

. Since W is an

output-nulling subspace of the feedback type and X` = W †A`W , for all ` ∈ SN\{`0}.
Then, from defining Q0, we can write X`0 = Q0 + Ω0K1. Therefore, to obtain relation

(3.41), we multiply both sides of previous former (3.42) by the block diagonal matrix

diag (P−1, P−1, . . . , P−1)︸ ︷︷ ︸
2N−1 times

and defining Υ` = P−1 P` P
−1, for all ` ∈ SN\{`2N−2} and

Υ`
2N−2

= P−1 together with Υ = K1 Υ`1 .

Parallel to the previous discussion, along with the duality of the internal stabilis-

ability of N -D controlled invariant subspaces of the feedback type, we can establish the

notion of the external stabilisability of the N -D conditioned invariant subspaces of the

output-injection type. An output-injection matrix of the N -D conditioned invariant
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subspace of output injection type Z, such that (A`0 +GC)Z ⊆ Z, and A`Z ⊆ Z, for

all ` ∈ SN\{`0} coincides with matrix G, such that Θ = −QG, where Θ is a solution

of QA`0 = Φ`0 Q+ΘC for a suitable Φ`0 , and Q is such that ker Q = Z. Indeed, the

complete set of solutions of QA`0 = Φ`0 Q+ΘC is given by

[
Φ`0 Θ

]
= QA`0

[
Q

C

]†
+K1

[
Ω0 Ω1

]
, (3.43)

where
[

Ω0 Ω1

]
is a full row-rank matrix such that

ker
[

Ω0 Ω1

]
= im

[
Q

C

]
,

and K1 is an arbitrary matrix of suitable size. In the same way, the set of solution of

Θ = −QG is given by

G = −Q> (QQ>)−1Θ + ΩK2, (3.44)

where Ω is a full row-rank matrix such that im Ω = ker Q and K2 is an arbitrary matrix

of suitable size. The new coordinates with T =
[
T1 T2

]
can be written as

T−1 (A`0 +B F )T =

[
L1(`0)(K1,K2) L2(`0)(K1,K2)

0 L3(`0)(K1,K2)

]
,

T−1A`1 T =

[
L1(`1) L2(`1)

0 L3(`1)

]
, T−1A`2 T =

[
L1(`2) L2(`2)

0 L3(`2)

]
,

. . . , T−1A`
2N−1

T =

[
L1(`2N−1) L2(`2N−1)

0 L3(`2N−1)

]
. (3.45)

As in the 1-D case, it is a straightforward fact that L1(`0)(K1,K2) does not depend on

K1 and L3(`0)(K1,K2) does not depend on K2.

Definition 37. Let Z be an N -D conditioned invariant subspace of the output injection

type, we say that Z is:

• internally stabilisable, if and only if matrix K2 in (3.44) exists, such that

(L1(`0)(K2), L1(`1), . . . , L1(`2N−1)) in (3.45) is asymptotically stable,

• externally stabilisable, if and only if matrix K1 in (3.43) exists, such that

(L3(`0)(K1), L3(`1), . . . , L3(`2N−1)) in (3.45) is asymptotically stable.

On the same pattern of the 2-D case in Ntogramatzidis (2012), along with the dual-

ity, the N -D conditioned invariant subspaces of the output-injection type Z is externally

stabilisable, if and only if an output-injection matrix G and a full row-rank matrix Q
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exist such that Q (A`0 +GC) = Γ`0 Q, QA`1 = Γ`1 Q, QA`2 = Γ`2 Q, . . . , QA`2N−2
=

Γ`
2N−2

Q, where (Γ`0 , Γ`1 , Γ`2 , . . . ,Γ`2N−2
) is asymptotically stable.

The following result is the dual of the one in Theorem 3.8, which presents a computa-

tionally tractable test for external stabilisability.

Theorem 3.9. Let Z of dimension r be an N -D conditioned invariant subspace of the

output-injection type, and let Q be such that ker Q = Z. Let the first n− r columns of

QA`0

[
Q

C

]†
be denoted by Ψ0. Then, Z is said to be externally stabilisable, if there

exist Υ and an n×n symmetric positive definite matrices Υ`0 , Υ`1 , . . . , Υ`2N−2
, such that

the following linear matrix inequality (LMI) holds:
Υ`0 0 ... ? ?

0 Υ`1 ...
... ?

...
...

... ?
...

0 0 ... Υ`
2N−2

−(
∑

`∈Sn\{`2N−2
} Υ`) ?

Υ`
2N−2

Ψ0+Υ Ω0 Υ`
2N−2

QA`1
Q† ... Υ`

2N−2
QA`

2N−2
Q† Υ`

2N−2

 > 0, (3.46)

where the symbol ? has been used to abbreviate off-diagonal blocks in symmetric matri-

ces. With (Υ, Υ`0 , Υ`1 , . . . , Υ`2N−2
) that is defined by (3.46), matrix K1, such that the

2N − 1-tuple matrices (Γ`0 , Γ`1 , Γ`2 , . . . , Γ`
2N−2

) is asymptotically stable, is given by

K1 = Υ−1
`
2N−2

Υ.

3.1.13 Reachability and observability for N-D Fornasini-

Marchesini systems

We begin by presenting some notions before addressing the reachability forN -D Fornasini-

Marchesini model (3.3,3.4). The starting point is a new definition of the N−D state

transition matrix parallel to those introduced for the 1-D and 2-D systems. The state

transition matrix in the 1-D case of the state space discrete systems is φk = 0 for k < 0

and φk = Ak for k > 0 (Mertzios & Lewis, 1989). Applying the z−transform to both

sides

x(t+ 1) = Ax(t) +B u(t), x(0) = x0, (3.47)

is

(z In −A)X (z) = z x(0) +B U (z), (3.48)

where X (z) and U (z) are respectively, the z−transforms of x(t) and u(t). The matrix

(z In − A) is called the resolvent matrix. Moreover, system (3.47) is always solvable

(Mertzios & Lewis, 1989). The Laurent expansion about the infinity of the resolvent
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matrix of (3.47) is written as (z In −A)−1 =
∑∞

i=0A
i z−i−1.

A parallel argument for the 2-D Fornasini-Marchesini second order model can be easily

established. The 2-D state transition matrix φ(i,j) of

x(i+1,j+1) = A0 x(i,j) + A1 x(i,j+1) + A2 x(i+1,j) + B u(i,j) (3.49)

is defined as follows:

φ(i,j) =

{
In for i = j = 0

A0φ(i−1,j−1) +A1φ(i,j−1) +A2φ(i−1,j) for i 6= 0 or j 6= 0,
(3.50)

such that φ(i,j) = 0 for i < 0 and/or j < 0 (Kurek, 1985; Kaczorek, 1992). In

F. L. Lewis (1992) and Poularikas (1998), the z−transform

X (z1, z2) =

∞∑
i=0

∞∑
j=0

x(i,j) z
−i
1 z−j2 , (3.51)

is associated with the 2-D Fornasini-Marchesini second order model in terms of the neg-

ative powers of zi. Then, computing the z−transforms of the 2-D Fornasini-Marchesini

second order model (3.49) as in Kung et al. (1977); Kaczorek (1991) and F. L. Lewis

(1992) is

(z1 z2 In − z1A1 − z2A2 −A0)X (z1, z2) = B U (z1, z2) + z2 (z1 In −A2) x (z1, 0)

+ z1 (z2 In −A1) x (0, z2)− z1 z2 In x(0,0),

where

x (z1, 0) =
∞∑
i=0

x(i,0) z
−i
1 ,

x (0, z2) =
∞∑
j=0

x(0,j) z
−j
2 .

Then, the 2-D polynomial matrix P (z1, z2) of the 2-D Fornasini-Marchesini second

order model, which is sometimes called the resolvent matrix, is defined as

P (z1, z2) = (z1 z2 In − z1A1 − z2A2 −A0). (3.52)

For the same model, the regularity condition ∆ (z1, z2) = det P (z1, z2) = det(z1 z2 In−
z1A1 − z2A2 − A0) 6= 0 is always satisfied. A polynomial in z1 and z2 with degrees n

may be written in the form (Kurek, 1985; F. L. Lewis, 1992; Kaczorek, 1992),

∆ (z1, z2) = det P (z1, z2) =
n∑
i=0

n∑
j=0

q(i,j) z
i
1 z

j
2, where q(n,n) = 1. (3.53)
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Then, the characteristic equation of the 2-D Fornasini-Marchesini second order model

is defined as

∆ (z1, z2) = 0, (3.54)

while the Laurent expansion about the infinity of the resolvent matrix for the 2-D

Fornasini-Marchesini second order model (F. L. Lewis, 1992; Kaczorek, 1992) is

P−1(z1, z2) = z−1
1 z−1

2

n∑
i=0

n∑
j=0

φ(i,j) z
−i
1 z−j2 . (3.55)

Theorem 3.10 ((Kurek, 1985)). A state-transition matrix φ(n+i,n+j) for i > 0 or j >

0 or i = j = 0 can be written in the form:

φ(n+i,n+j) = −
n∑
s=0

n∑
t=0

q(s,t)φ(s+i,t+j), (3.56)

where q(s,t) are coefficients of ∆ (z1, z2).

For i = j = 0, Theorem 3.10 may be considered a generalisation of the well-known

2-D Cayley-Hamilton Theorem. The state transition matrix satisfies the characteristic

equation (3.53), i.e.,

n∑
s=0

n∑
t=0

q(s,t)φ(s,t) = 0. (3.57)

A proof of this result is given in Kaczorek (1992). We extend this characterisation

to the N -D case by showing a generalised result. By adapting the same arguments

used in the 1-D and 2-D cases, one can easily see that the N -D state transition matrix

φ(i1,...,iN ) of the N -D Fornasini-Marchesini model (3.11) is defined as follows:

φ(i1,...,iN ) =

{
In for i1 = . . . = iN = 0

A`0 φ(i1−1,...,iN−1) +
∑

`∈SN\{`0} A`φ(i1,...,iN )−` for i1 6= 0 or . . . or iN 6= 0,

such that φ(i1,...,iN ) = 0 for i1 < 0 and/or i2 < 0 . . . and/or iN < 0. We define the

N -D z-transform in terms of negative powers of zi, i ∈ N, as

X (z1, z2, . . . , zN ) =

n∑
i1=0

n∑
i2=0

. . .

n∑
iN=0

x(i1,i2,...,iN ) z
−i1
1 z−i22 . . . z−iNN , (3.58)

the N -D polynomial matrix P (z1, z2, . . . , zN ) for (3.11) is written as

P (z1, z2, . . . , zN ) = (z1 z2 . . . zN In −
∑
`∈SN

A` z
`(1)
1 z

`(2)
2 . . . z

`(N)
N ). (3.59)
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A polynomial in z1, z2, . . . and zN , with degrees n may be presented in the form,

∆ (z1, z2, . . . , zN ) = |P (z1, . . . , zN )| =
n∑

i1=0

. . .

n∑
iN=0

q(i1,...,iN ) z
i1
1 . . . ziNN , (3.60)

where q(n, . . . , n)︸ ︷︷ ︸
N times

= 1. Then, the characteristic equation of the N -D Fornasini-

Marchesini model (3.11) is defined by

∆ (z1, z2, . . . , zN ) = 0. (3.61)

Consider the following Laurent expansion about the infinity of the resolvent matrix

for the N -D Fornasini-Marchesini model (3.11) as

P−1(z1, z2, . . . , zN ) = (z−1
1 z−1

2 . . . z−1
N )

n∑
i1=0

. . .

n∑
iN=0

φ(i1,...,iN ) z
−i1
1 z−i22 . . . z−iNN .(3.62)

The N -D state transition matrix and characteristic function are useful to present the

next theorem, similar to the well-known Cayley-Hamilton theorem.

Theorem 3.11. A state-transition matrix φ(n+i1,...,n+iN ) for i1 > 0 or i2 > 0 . . . or iN >

0 or i1 = i2 = . . . = iN = 0 satisfies

φ(n+i1,...,n+iN ) = −
n∑

t1=0

. . .

n∑
tN=0

q(t1,...,tN )φ(t1+i1,...,tN+iN ), (3.63)

where q(t1,...,tN ) are the coefficients of ∆ (z1, . . . , zN ).

Proof: The rule for computing the inverse of N -D polynomial matrix P (z1, z2, . . . , zN )

is

det[P (z1, z2, . . . , zN )] In = adj [P (z1, z2, . . . , zN )]P (z1, z2, . . . , zN ). (3.64)

It can be noted that there always exist real matrices R(t1,...,tN ), such that

adj [P (z1, z2, . . . , zN )] =
n∑

t1=0

. . .
n∑

tN=0

R(t1,...,tN ) z
t1
1 zt22 . . . ztNN . (3.65)

Then, by using equations (3.59), (3.60) and (3.65), equality (3.64) becomes

n∑
t1=0

. . .
n∑

tN=0

q(t1,...,tN ) z
t1
1 zt22 . . . ztNN In =

n∑
t1=0

. . .
n∑

tN=0

R(t1,...,tN ) (In z
t1+1
1 . . . ztN+1

N

−
∑
`∈SN

A` z
t1+`(1)
1 . . . z

tN+`(N)
N ). (3.66)
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Two polynomials are equal, if and only if all coefficients are respectively equal. There-

fore, if we change zt11 zt22 . . . ztNN into φ(t1+i1,...,tN+iN ), the equality will still be fulfilled

n∑
t1=0

. . .

n∑
tn=0

q(t1,...,tN )φ(t1+i1,...,tN+iN ) =

n∑
t1=0

. . .

n∑
tn=0

R(t1,...,tN ) (φ(t1+1+i1,...,tN+1+iN )

−
∑
`∈SN

A`φ(t1+`(1)+i1,...,tN+`(N)+iN )).

Then, based on the proof, one can note for i1 = i2 = . . . = iN = 0, Theorem 3.11

may be considered a generalisation of the N -D Cayley-Hamilton Theorem. The state

transition matrix satisfies the characteristic equation (3.60), i.e.,

n∑
t1=0

. . .

n∑
tN=0

q(t1,...,tN )φ(t1,...,tN ) = 0. (3.67)

It is well known that in the 1-D linear time invariant in both cases: continuous or

discrete systems, as described by a pair (A,B), the reachable subspace from the origin

is defined by the smallest A-invariant subspace containing the image of B. Correspond-

ingly, the reachable subspace from the zero boundary condition of the local state x(i,j)

in a 2-D case, coincides with R(i,j), which is defined by the following 2-D sequence of

subspaces:{
R(i,j) = {0}, (i, j) ∈ Q

R(i,j) = A0 R(i−1,j−1) +A1 R(i,j−1) +A2 R(i−1,j) + im B, (i, j) ∈ Q+\Q.
(3.68)

The reachability subspace coincides with the last term of equation (3.68) at n− 1 and

it is defined by R = R(n−1,n−1). In the case when R = Rn, the system is completely

reachable from the origin; see, e.g., (Bisiacco, 1985; Fornasini & Marchesini, 1982;

Kaczorek, 2000, 2012; Ntogramatzidis, 2012).

The computation of R, which is the smallest subspace of Rn that is at the same time

A0-,A1- and A2-invariant subspaces containing im B coincides with the last term of the

sequence of subspaces:{
R0 = im B,

Ri =
∑2

j=0Aj Ri−1 + im B, i ∈ {1, 2, . . . , κ},
(3.69)

where the value κ ≤ n− 1 is determined by the condition Rκ+1 = Rκ, i.e., R0 ⊃ R1 ⊃
R2 ⊃ . . . ⊃ Rκ = Rκ+1 = R (Ntogramatzidis, 2012). Then, this characterisation can

be extended to the N -D case by showing that the same arguments holds. Consider the



3.1 Structural invariants for N-D model 75

following N -D sequence of subspaces:{
R(i1,...,iN ) = {0}, (i1, . . . , iN ) ∈ Q

R(i1,...,iN ) = A`0 R(i1−1,...,iN−1) +
∑2N−2

i=1 A`R(i1,...,iN )−` + im B, (i1, . . . , iN ) ∈ Q\Q.

The reachable subspace R(i1,i2,...,iN ) from the zero boundary condition of the local state

x(i1,i2,...,iN ) can be derived from this sequence of subspaces. Moreover, the subspace of

the greatest dimension should be at i1 = i2 = . . . = iN = n− 1. Then, the reachability

subspace from the zero boundary condition is defined by R = R(n− 1, . . . , n− 1)︸ ︷︷ ︸
N times

. The

system is completely reachable from the zero boundary conditions if R = Rn. Similar

to the 2-D case in Ntogramatzidis (2012), the computation of R is provided by the

N -D Cayley-Hamilton theorem, which is obvious from the following result.

Theorem 3.12. R is the smallest subspace of Rn that is at the same time A`-invariant

subspaces for all ` ∈ SN containing im B. In addition, its computation coincides with

the last term of the sequence of subspaces:{
R0 = im B

Rq =
∑2N−2

i=0 A`Rq−1 + im B q ∈ {1, 2, . . . , κ},
(3.70)

where the value of κ ≤ n− 1 is determined with the condition Rκ+1 = Rκ. Therefore,

R0 ⊃ R1 ⊃ R2 ⊃ . . . ⊃ Rκ = Rκ+1 = R.

The nonobservability subspace Q of Σ can be introduced as a dual of previous

discussions and it is the limiting subspace which can be obtained from the recursion:{
Q0 = ker C

Qq =
⋂2N−2
i=0 A−1

` Qq−1 ∩ ker C q ∈ {1, 2, . . . , κ}.
(3.71)

3.1.14 Self-boundedness and self-hiddenness for N-D sys-

tems

The concepts of self-boundedness and self-hiddenness play a pivotal case in the solution

of disturbance decoupling problems, due to the fact that both of them allow for the

solution of such problems without the need to make the closed-loop of the system maxi-

mally unobservable (Conte & Perdon, 1988). Spatially, the self-boundedness controlled

invariant subspaces, as defined in Basile and Marro (1982) in the 1-D and 2-D cases,

as defined in Ntogramatzidis (2012), are sometimes useful to solve the disturbance de-

coupling problem because it is useful to deal with the subspaces of smaller dimension

and this often leads to a feedforward compensator of a smaller size. Here, these notions

are extended to the N -D systems for the Fornasini-Marchesini second order form. Our

assumption to guarantee the generalisation is that the matrix B is of full column-rank.



3.1 Structural invariants for N-D model 76

Definition 38. The subspace V, which is an N -D output-nulling subspace of Σ =

(A`, B,C) is an N -D self-bounded subspace, if for any V-valued boundary condi-

tion, the system Σ has a V-valued solution for any control yields zero output, for all

(i1, i2, . . . , iN ) ∈ Q. Similarly, the N -D output-nulling subspace of the feedback typeW
is a N -D self-bounded subspace of the feedback type, if for anyW-valued boundary con-

dition, the system Σ has aW-valued solution for any control u(i1,i2,...,iN ) = Fx(i1,i2,...,iN )

yields a zero output, for all (i1, i2, . . . , iN ) ∈ Q.

The normal consequence of this definition is that both V∗ and W∗ are an N -D self-

bounded subspace and an N -D self-bounded subspace of the feedback type respectively,

because from their definitions for any boundary condition that belongs to them, any

existing controls that maintain the output at zero are such that the local state of Σ

lies ker C. Now, alternative characterisation of the N -D self-boundedness is provided

by the following result, see Basile and Marro (1982) and Ntogramatzidis (2012).

Theorem 3.13. Let V be an N -D output-nulling subspace. V is an N -D self-bounded

subspace, if and only if it satisfies the subspace inclusion V∗ ∩ im B ⊆ V.

Proof: (If). Suppose that V∗ ∩ im B ⊆ V is satisfied. Consider a V-valued bound-

ary condition for the updated equation (3.11), where all the indexes are in Qk, i.e.,

x(i1,i2,...,iN )+` ∈ V, ` ∈ SN . Since V is a N -D output-nulling subspace and then,

it is a N -D controlled invariant subspace, the local states in Qk are given by the

sum of two vectors: one of them belongs to V and the other is in im B, so that

x(i1+1,i2+1,...,iN+1) = φ(i1,i2,...,iN ) + ψ(i1,i2,...,iN ) + B u(i1,i2,...,iN ), where φ(i1,i2,...,iN ) ∈ V
and ψ(i1,i2,...,iN ) ∈ im B. By virtue of V∗ ∩ im B ⊆ V, ψ(i1,i2,...,iN ) + B u(i1,i2,...,iN ) ∈
V∗ ∩ im B, the local state in Qk is in V. By induction, this argument can be repeated

to hold on Q.

(Onlyif). Assume that V∗ ∩ im B ⊆ V does not hold, so that, there exist a vector

ξ(i1,i2,...,iN ) ∈ V∗ ∩ im B such that ξ(i1,i2,...,iN ) /∈ V. Consider a V-valued boundary

condition for Σ, the obtained local state on the k-th forward Qk from the update equa-

tion (3.11), can be written using the (if) part as x(i1+1,i2+1,...,iN+1) = φ(i1,i2,...,iN ) +

ψ(i1,i2,...,iN ) + B u(i1,i2,...,iN ), where φ(i1,i2,...,iN ) ∈ V and ψ(i1,i2,...,iN ) ∈ im B. Since

both ξ(i1,i2,...,iN ) and ψ(i1,i2,...,iN ) are in im B, the control u(i1,i2,...,iN ) can be chosen

such that B u(i1,i2,...,iN ) = ξ(i1,i2,...,iN ) − ψ(i1,i2,...,iN ), which implies to ξ(i1,i2,...,iN ) =

ψ(i1,i2,...,iN ) + B u(i1,i2,...,iN ). From the assumption, this is in V∗ but not in V, which

means that V is not self-bounded.

The same argument of providing an alternative characterisation of the N -D self-

bounde-dness subspace of the feedback type is expressed by the following theorem,

which is considered a simple extension of what is found in Basile and Marro (1982) and

Ntogramatzidis (2012), whose proof is an adaptation of Theorem 1 in Ntogramatzidis

(2008).
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Theorem 3.14. Let W be a N -D output-nulling subspace of the feedback type. W is a

N -D self-bounded subspace of the feedback type, if and only if it satisfies the subspace

inclusion W∗ ∩ im B ⊆ W.

Proof: (If). Suppose that W∗ ∩ im B ⊆ W. Let W-valued boundary condition for Σ.

Consider the input u(i1,i2,...,iN ) which yields a zero output, i.e., y(i1,i2,...,iN ) = 0. Then,

x(i1,i2,...,iN ) ∈ W∗, by expressing the control u(i1,i2,...,iN ) as u(i1,i2,...,iN ) = F x(i1,i2,...,iN ),

such that F is a feedback type output-nulling friend of W∗. From our assumption, it is

clear that W∗ ∩ im B ⊆ W ⊆ W∗. From Lemma 2.3, which is also consistent with an

N -D self-bounded subspace of feedback type W, it follows that F is a feedback type

controlled invariant friend ofW. Thus, since this andW∗∩ im B ⊆ W, it is found that

the states x(i1,i2,...,iN ) ∈ W for all (i1, i2, . . . , iN ) ∈ Q.

(Only if). LetW be self-bounded and letW-valued boundary condition for Σ. Any in-

put function that yields a zero output can be parametrised as u(i1,i2,...,in) = F x(i1,i2,...,iN ),

such that F is a feedback type output-nulling friend of W∗ for all (i1, i2, . . . , iN ) ∈ Q.

From the closed-loop equation,

x(i1+1,...,iN+1) = (A`0 +B F ) x(i1,i2,...,iN ) +
∑

`∈SN\{`0}

A` x(i1,i2,...,iN )+`,

it follows that the local state remains in W for all (i1, i2, . . . , iN ) ∈ Q, which implies

that W∗ ∩ im B ⊆ W.

Corollary 3.3. Let F be a feedback type output-nulling friend of W∗. Then, F is

a feedback type controlled invariant friend of any N -D self-bounded subspace of the

feedback type.

The proof of this corollary is obvious by using both Lemma 2.3 and Theorem 3.14.

A set of all N -D self-bounded subspaces of the feedback type of (3.11), if defined by

the set:

Θ (Σ)
def
= {W ∈ W (Σ) |W∗ ∩ im B ⊆ W}. (3.72)

This admits both maximum and minimum elements. More explanation about the

existence of these elements is given by the following proposition:

Proposition 3.1. The set of all N -D self-bounded subspaces of the feedback type Θ (Σ)

is closed under subspaces addition and intersection.

Proof: LetW1,W2 be the two subspaces of Θ (Σ). SinceW(Σ) is closed under subspace

addition, then, Θ (Σ) is also closed under subspace addition, i.e., W1 +W2 ∈ Θ (Σ).

Moreover, their addition is the smallest element of Θ (Σ) containing both W1 and W2.

However, the addition of all elements of Θ (Σ) is the maximum of Θ (Σ), which is
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trivially W∗.
To prove the closeness under the intersection, given a controlled invariant friend F of

W∗, so that, by Corollary 3.3, F is a controlled invariant friend of both W1 and W2,

which means that (A`0 + B F ) (W1 ∩W2) ⊆ W1 ∩W2. Therefore, W1 ∩W2 is a N -D

controlled invariant subspace of the feedback type. Their intersection is the largest

subspace of Θ (Σ) contained in both W1 and W2. Since W1 and W2 are N -D output-

nulling subspaces of the feedback type and they are of Θ (Σ), then, both of them are

contained in ker C and contains W∗ ∩ im B, and their intersection is as well. The

minimum element will be characterised in the sequel.

Based on the relevant literature, the minimum subspace of Θ (Σ) in the 1-D case is

V∗ ∩ S∗, where V∗ is the largest output-nulling subspaces of the system and S∗ is the

smallest input-containing subspaces of the same system (Morse, 1973). However, the

corresponding elements in the 2-D case is W∗ ∩ Z∗, which means the intersection of

both the largest output-nulling of the feedback type of the system (3.11) W∗ and the

smallest input-containing of the output-injection type subspaces of the same system,

does not represent the minimum element of Θ (Σ), even if it is a 2-D self-bounded sub-

space of the feedback type (Ntogramatzidis, 2012). As a result of what is proven by

Lemmas 7.9 and 7.10 in Ntogramatzidis (2012), the minimum of Θ (Σ) coincides with

the intersection of the set of subspaces (A0 + B F )-, A1- and A2-invariant containing

W∗ ∩ im B, where F is a feedback type output-nulling friend of W∗, which in the N -D

case, can be computed by the following algorithm as a simple generalisation of the one

in the 2-D case.

Lemma 3.7. [Ntogramatzidis (2012)] H∗ is the smallest subspace of Θ (Σ), which

coincides with the last term of the sequence of subspaces:{
H0 = W∗ ∩ im B

Hq = (A`0 +B F )Hq−1 +
∑2N−2

i=1 A`Hq−1 + (W∗ ∩ im B), q ∈ {1, 2, . . . , κ},
(3.73)

where F is any feedback type output-nulling friend of W∗, and the value κ ≤ n − 1 is

determined by the equation Hκ+1 = Hκ, i.e., H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hκ = Hκ+1 = H∗.

The proof comes directly from Lemma 7.10, with a slight modification to the N -D

system.

3.1.15 Reachability subspaces on N-D controlled invariant

subspaces of feedback type

On the controlled invariant subspace in the 1-D case, on the controlled invariant sub-

space of the feedback type in the 2-D case or in general in the N -D case W, only

from the reachable part, we can reach any point of controlled invariant subspace (W)
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from the boundary condition (W-valued boundary condition), with a local state that

is solving the system (a W-valued solution of (3.11)). This part is called the reachable

part on a controlled invariant subspace (the reachable part on W and it is denoted by

RW). The characterisation and computation of RW is given in the following theorem.

Theorem 3.15. Given an N -D controlled invariant subspace of the feedback type W
with a feedback type controlled invariant friend F . RW(F ) is a minimum of the set of

(A`0 + B F )-, A`-invariant subspaces containing W ∩ im B, for all ` ∈ SN\{`0} that

does not depend on F .

Proof: For anyW-valued boundary condition, the control function u(i1,i2,...,iN ) can be

written as u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) + v(i1,i2,...,iN ) to generate a W-valued solution of

Σ, so that we can define

v(i1,i2,...,iN )
def
= u(i1,i2,...,iN ) − F x(i1,i2,...,iN ).

Then,

x(i1+1,...,iN+1) = (A`0 +B F ) x(i1,...,iN ) +
∑

`∈SN\{`0}

A` x(i1,...,iN ) +B v(i1,...,iN ). (3.74)

The local state x(i1+1,...,iN+1) remains in W, if the element B v(i1,...,iN ) belongs to W,

and therefore belongs toW∩im B. That means v(i1,...,iN ) ∈ B−1W for all (i1, . . . , iN ) ∈
Q. The reachable subspace of (3.74), using the input v(i1,...,iN ), is defined by the smallest

of the set (A`0 +B F )- and A`-invariant subspaces containing the subspace W ∩ im B,

for all ` ∈ SN\{`0}. To prove that the minimum RW(F ) does not depend on F , let

F 1 and F 2 be two feedback type controlled invariant friends of W, and let the states

x(i1,...,iN )+` be in W, then,

xj(i1+1,...,iN+1) = (A`0 +B F j) x(i1,...,iN ) +
∑

`∈SN\{`0}

A` x(i1,...,iN ) +B vj(i1,...,iN ), j = 1, 2,

where the control functions vj(i1,...,iN ) belong to the subspace B−1W for all (i1, . . . , iN )

belong to Q. v2
(i1,...,iN ) can be chosen to satisfy x1

(i1+1,...,iN+1) = x2
(i1+1,...,iN+1). In

particular, we can choose v2
(i1,...,iN ) = v1

(i1,...,iN ) +(F 1−F 2) x(i1,...,iN ). Then, v2
(i1,...,iN ) ∈

B−1W for all (i1, . . . , iN ) belong to Q. Thus, RW(F 1) = RW(F 2).

Remark 3.1. From Theorem 3.15, it is obvious that

• any feedback type controlled invariant friend ofW is also a reachability feedback

type controlled invariant friend of RW ;

• RW ⊆ R∗;

• RW∗ = min Φ (Σ).
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In view of Theorem 3.15, the computation of subspace RW comes from the compu-

tation of any controlled invariant friend F of W. Then, this follows with the recursion

which is given by:{
RW0 = W ∩ im B,

RW q = (A`0 +B F )RW q−1 +
∑2N−2

i=1 A`RW q−1 + (W ∩ im B) q ∈ {1, 2, . . . , κ},

where the value κ ≤ n− 1 is determined by the equation RWκ+1 = RWκ.



CHAPTER 4

Geometric approach for N -D first-order

Fornasini-Marchesini state space models

4.1 Structural invariants for N-D model

In this section, we extend the works of Ntogramatzidis et al. (2008) and Conte and

Perdon (1988) to the N -D case by showing that an analogous characterisation holds.

Consider anN -dimensional system, as described by Alpay and Dubi (2003) and Matsushita

et al. (2013),

x(i1,i2,...,iN−1,iN ) = A1 x(i1−1,i2,...,iN−1,iN ) + . . .+AN x(i1,i2...,iN−1,iN−1)

+ B1 u(i1−1,i2,...,iN−1,iN ) + . . .+BN u(i1,i2,...,iN−1,iN−1) (4.1)

y(i1,i2,...,iN−1,iN ) = C x(i1,i2,...,iN−1,iN ), (4.2)

where, for all admissible values of the indices i1, i2, . . . , iN−1, iN in Z, the vec-

tor x(i1,i2,...,iN−1,iN ) ∈ X = Rn represents the local state at (i1, i2, . . . , iN−1, iN ) ∈
Z× Z× . . .× Z︸ ︷︷ ︸

N times

and u(i1,i2,...,iN−1,iN ) ∈ U = Rm is the control input. Here, A1, . . . , AN ∈

Rn×n, B1, . . . , BN ∈ Rn×m and C ∈ Rm×n. For the sake of brevity, we denote system

(4.1-4.2) by (A1, . . . , AN , B1, . . . , BN , C). Therefore, system (4.1-4.2) is identify by

Σ = (A1, . . . , AN , B1, . . . , BN , C).

Consider also the separation sets defined, for each k ∈ Z, as

Ck
def
= {(i1, i2, . . . , iN ) ∈ ZN | i1 + i2 + . . .+ iN = k}. (4.3)

According to Fornasini and Marchesini (1984), the elements of the direct product

of the local state spaces on Ck are the global states on the same separation sets Ck

which is given by

Xk
def
= {x(i1,i2,...,iN ) ∈ ZN | (i1, i2, . . . , iN ) ∈ Ck}. (4.4)

81
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Consider the usual boundary conditions associated with (4.1). In this case, if the val-

ues of x(i1,i2,...,iN ) on C0 are given (i.e., X0 is determined as a boundary condition),

therefore, the update equation (4.1) gives Xk for all k > 0 which means x(i1,i2,...,iN ) for

i1 + i2 + . . .+ iN > 0. In the sequel, for any subspace W of Rn, we say that (4.1) has

a W-valued boundary condition, if x(i1,i2,...,iN ) belongs to W for all (i1, i2, ..., iN ) ∈ C0.

Equivalently, for each k > 0, (4.1) also has a W-valued solution determined by the

global state Xk, if x(i1,i2,...,iN ) ∈ W for all (i1, i2, ..., iN ) ∈ Ck.

4.1.1 Invariant subspaces for N-D FM models

The concept of invariant subspaces developed in this section corresponds to the one

for 1-D systems obtainable in Basile and Marro (1992) and the other for 2-D systems

presented in Ntogramatzidis et al. (2008). We begin with the autonomous case of the

N -D FM models (4.1) as

x(i1,i2,...,iN−1,iN ) = A1 x(i1−1,i2,...,iN−1,iN ) + . . .+AN x(i1,i2...,iN−1,iN−1), (4.5)

with the boundary conditions (4.3) and the corresponding case of global state (4.4).

Definition 39. Let the N -D FM model (4.5) be given and let I be a subspace of Rn.

The subspace I is an (A1, A2, . . . , AN )-invariant if
A1

A2

...

AN

 x ∈ I × I × . . .× I︸ ︷︷ ︸
N times

, ∀x ∈ I.

This property of invariance is equivalent to the following inclusion:
A1

A2

...

AN

 I ⊆ I × I × . . .× I︸ ︷︷ ︸
N times

. (4.6)

where A1, A2, . . . , AN are matrices representation of linear maps in particular bases.

Definition 40. A subspace I is (A1, A2, . . . , AN )-invariant subspace, if and only if it

is at the same time, A1-, A2-, . . ., AN -invariant subspace in the 1-D counterpart.

Lemma 4.1. Let I be a subspace of Rn, of dimension r and a basis matrix J ∈ Rn×r.
Then, I is (A1, A2, . . . , AN )-invariant if the matrices X1, X2, . . . , XN ∈ Rr×r exist such
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that 
A1

A2

...

AN

 J =


J 0n×r . . . 0n×r

0n×r J . . . 0n×r
...

...
. . .

...

0n×r 0n×r . . . J




X1

X2

...

XN

 (4.7)

Proof: It is obvious that the relation of subspace inclusion (4.6) can be expressed in

matrix form (4.7).

Theorem 4.1. Let I ⊆ Rr be a subspace of Rn. The following two statements are

equivalent:

(i) I is said to be (A1, A2, . . . , AN )-invariant,

(ii) a change of coordinate T of Rn×n exists such that

Âi
def
= T−1Ai T =

[
Â11
i Â12

i

0(n−r)×r Â22
i

]
, for i = 1, 2, . . . , N. (4.8)

Proof: (i) =⇒ (ii) Let J be a basis matrix of I. Let T =
[
J T2

]
be an invertible

n × n matrix. T−1 J can be written as

[
Ir

0(n−r)×r

]
because J has full column-rank.

As such, with Âi
def
= T−1Ai T =

[
Â11
i Â12

i

Â21
i Â22

i

]
, for i = 1, 2, . . . , N. Then, by Lemma

4.1, there exist N matrices X1, X2, . . . , XN such that (4.7) holds, it follows that[
Â11
i

Â21
i

]
=

[
Â11
i Â12

i

Â21
i Â22

i

][
Ir

0(n−r)×r

]

= Âi T
−1 J = T−1Ai J = T−1 J Xi =

[
Xi

0(n−r)×r

]
. (4.9)

For i = 1, 2, . . . , N , we get Â21
i = 0.

(ii) =⇒ (i) . Suppose that the equation (4.8) holds for a non-singular (n × n) matrix

T . Then, clearly

Âi

[
Ir

0(n−r)×r

]
=

[
Xi

0(n−r)×r

]
, for i = 1, 2, . . . , N, (4.10)

holds for Xi = Â11
i . By multiplying both sides of (4.10) by T , we obtain

Ai T

[
Ir

0(n−r)×r

]
= T

[
Ir

0(n−r)×r

]
Xi, for i = 1, 2, . . . , N,
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which by Lemma 4.1, guarantees that T
[

Ir
0(n−r)×r

]
is an (A1, A2, . . . , AN )-invariant

subspace of dimension r.

Remark 4.1. Consider an (A1, A2, . . . , AN )-invariant subspace I of dimension r and

consider the change of coordinate matrix T =
[
T1 T2

]
, such that im T1 = I and T2

is such that T is not singular. The components of x(i1,i2,...,iN ) with respect to the new

coordinate are defined by

T−1 x(i1,i2,...,iN )
def
=

[
x′(i1,i2,...,iN )

x′′(i1,i2,...,iN )

]
. (4.11)

Model (4.5) can be rewritten as

T−1 x(i1,i2,...,iN ) = T−1A1 x(i1−1,i2,...,iN ) + . . .+ T−1AN x(i1,...,iN−1,iN−1)

i.e.,

T−1 x(i1,...,iN ) = (T−1A1 T )T−1 x(i1−1,...,iN ) + . . .+ (T−1AN T )T−1 x(i1,...,iN−1,iN−1),

which gives [
x′(i1,i2,...,iN )

x′′(i1,i2,...,iN )

]
=

[
Â11

1 Â12
1

0(n−r)×r Â22
1

] [
x′(i1−1,i2,...,iN )

x′′(i1−1,i2,...,iN )

]
+ . . .

+

[
Â11
N Â12

N

0(n−r)×r Â22
N

] [
x′(i1,...,iN−1,iN−1)

x′′(i1,...,iN−1,iN−1)

]
. (4.12)

These lead to

x′(i1,...,iN ) = Â11
1 x′(i1−1,...,iN ) + Â12

1 x′′(i1−1,...,iN ) + . . .+ Â11
N x′(i1,...,iN−1,iN−1)

+ Â12
N x′′(i1,...,iN−1,iN−1), (4.13)

x′′(i1,...,iN ) = Â22
1 x′′(i1−1,...,iN ) + . . .+ Â22

N x′′(i1,...,iN−1,iN−1), (4.14)

for all (i1, i2, . . . , iN ) ∈ C0 in equation (4.13), and for all (i1, i2, . . . , iN ) ∈ Ck in equation

(4.14). Notice that the equation for x′′(i1,...,iN−1,iN−1) admits only the zero solution for

any I-valued boundary condition, with respect to model (4.5). This means that the

I-valued of model (4.5) is in the form

[
x′(i1,i2,...,iN )

0

]
for (i1, i2, . . . , iN ) ∈ Ck and

k > 0.

From the considerations of Remark 4.1, it emerges that x′(i1,i2,...,iN ) represents the

components of the local states on an (A1, A2, . . . , AN )-invariant subspace I and it is

referred to as the internal components of K, while x′′(i1,i2,...,iN ) represents the compo-

nents of the local states on the quotient space Rn/I and is referred to as the external
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components of I as well. Therefore, equation (4.13) controls the internal dynamics on

I and equation (4.14) governs the external dynamics of the same subspace I.

4.1.2 Internal and external stability of N-D invariant sub-

spaces

Definition 41. The system (4.5) is called asymptotically stable if every solution tends

to zero for i1 + i2 + . . .+ iN −→∞.

According to Fornasini and Marchesini (1978), asymptotic stability of a N -tuple

matrices (A1, A2, . . . , AN ) in equation (4.5) is equivalent to

det(In −
N∑

i,j=1

Ai
∏
j 6=i

zj) 6= 0, (4.15)

for all (z1, z2, . . . , zN ) ∈ {(z1, z2, . . . , zN ) ∈ CN : |zi| ≤ 1, ∀ i ∈ N}. If the N -tuple matri-

ces (A1, A2, . . . , AN ) of system (4.5) is asymptotically stable, we also say that system

(4.5) with matrices A1, A2, . . . , AN is asymptotically stable. However, the following

lemma expresses a sufficient condition of being asymptotically stable:

Lemma 4.2. [Kar and Singh (2003)] The system with matrices (A1, A2, . . . , AN ) in

(4.5) is asymptotically stable, if n×n symmetric positive definite matrices P1, P2, . . . , PN

exist such that
P1 0 . . . 0

0 P2 . . . 0
...

...
. . .

...

0 0 . . . PN

 −AT (P1 + P2 + . . .+ PN )A > 0, (4.16)

where A = [A1 A2 . . . AN ].

Definition 42. Let I be an (A1, A2, . . . , AN )-invariant subspace. Consider the decom-

position (4.8) in Theorem 4.1. Then, we say that I is

• internally stable, if (Â11
1 , Â

11
2 , . . . , Â

11
N ) in (4.13) is asymptotically stable,

• externally stable, if (Â22
1 , Â

22
2 , . . . , Â

22
N ) in (4.14) is asymptotically stable.

Lemma 4.3. Let I be an (A1, A2, . . . , AN )-invariant subspace, of dimension r and with

a basis matrix J . Let X1, X2, . . . , XN ∈ Rr×r be matrices such that the relation (4.7)

holds. The subspace I is said to be internally stable, if and only if the N -tuple matrices

(X1, X2, . . . , XN ) is asymptotically stable.
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From the relation (4.15), the equivalent model (4.12) is asymptotically stable, if and

only if the N -tuple matrices (Â11
1 , Â

11
2 , . . . , Â

11
N ) and (Â22

1 , Â
22
2 , . . . , Â

22
N ) are asymp-

totically stable. Therefore, model (4.5) is asymptotically stable, if and only if any

(A1, A2, . . . , AN )-invariant subspace I is both internally and externally stable.

4.1.3 N-D controlled invariance

In this, the concept of (A1, A2, . . . , AN , B1, B2, . . . , BN )-controlled invariant subspace

of the state-space X of Σ is introduced. This notion of controlled invariant subspace

for N -D systems, which is enjoyed by feedback properties, is useful in several control

problems.

Definition 43. Let model (4.1-4.2) representation of an N -D system Σ = (A1, . . . ,

AN , B1, . . . , BN , C) be given. A subspace V of the state space model X = Rn is an

(A1, . . . , AN , B1, . . . , BN )-controlled invariant subspace, if the condition
A1

A2

...

AN

 V ⊂ V × V × . . .× V︸ ︷︷ ︸
N times

+ im


B1

B2

...

BN

 , (4.17)

holds.

The same facts of the definition of N -D controlled invariant subspace in the previous

chapter are consistent with this definition. For example, {0} and Rn are N -D controlled

invariant subspaces and the sum of N -D controlled invariant subspaces is an N -D

controlled invariant subspace.

Remark 4.2. N -D controlled invariant subspaces enjoy these following properties:

• Any (A1, A2, . . . , AN , B1, B2, . . . , BN )-controlled invariant subspace in the N -D

case is also an (Ai, Bi)-controlled invariant subspace, with i ∈ {1, 2, . . . , N} in

the 1-D case, but not vice versa.

• Any N -D invariant subspace is an N -D controlled invariant subspace, but not

vice versa.

Definition 44. Given an (A1, A2, . . . , AN , B1, B2, . . . , BN )-controlled invariant sub-

space V of X , a feedback matrix F : X −→ U exists such that


A1

A2

...

AN

+


B1

B2

...

BN

 F
 V ⊆ V × V × . . .× V︸ ︷︷ ︸

N times

. (4.18)
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A matrix F is called a controlled invariant friend of V. The inclusion, as seen in (4.18),

can be rewritten as


A1 +B1 F

A2 +B2 F
...

AN +BN F



 V ⊆ V × V × . . .× V︸ ︷︷ ︸
N times

. (4.19)

The set of all the matrices F that satisfies the previous relation is denoted by F(V).

By substituting the control u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) in (4.1), we obtain

x(i1,i2,...,iN ) = (A1 +B1 F ) x(i1−1,i2,...,iN ) + . . .

+ (AN +BN F ) x(i1,...,iN−1,iN−1). (4.20)

Then, for a given control and any V-valued boundary condition, the global state Xk is

V-valued for k > 0, as discussed in the autonomous case, which ensures that V is an

(A1 +B1 F, . . . , AN +BN F )-invariant subspace for all controlled invariant friends F of

F(V).

Proposition 4.1. Let V be a subspace of the local state X , with dimension r and a

basis matrix V , and let the system Σ = (A1, . . . , AN , B1, . . . , BN , C) be given. The

following statements are equivalent:

(i) V is said to be an (A1, . . . , AN , B1, . . . , BN )-controlled invariant subspace;

(ii) matrices X and Ω exist such that
A1

A2

...

AN

 V =


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 X +


B1

B2

...

BN

 Ω; (4.21)

(iii) V satisfies the inclusion (4.19);

(iv) The matrices X and F that belong to Rnr×r and Rm×n respectively, exist such

that 


A1 +B1 F

A2 +B2 F
...

AN +BN F



 V =


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 X. (4.22)
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Proof: We prove that (i) implies (ii). It comes directly from the definition of controlled

invariant, as per Definition 43.

(ii) =⇒ (iii). Suppose that F = −Ω(V >V )−1V >, then we get Ω = −FV . Then,

equation (4.21) becomes
A1

A2

...

AN

 V =


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 X −

B1

B2

...

BN

 FV, (4.23)

which can be rewritten in the form (4.19).

The fact that (iii) implies (iv) is clear, because equation (4.22) is a matrix representa-

tion of the inclusion, as seen in (4.19).

Now, we prove that (iv) implies (i). Equation (4.22) can be rewritten as
A1

A2

...

AN

 V =


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 X −

B1

B2

...

BN

 FV. (4.24)

The proof is completed.

4.1.4 N-D output-nulling subspaces

Output-nulling subspaces will play an important and crucial role in many control theory

problems, such as disturbance decoupling and model matching problems.

Proposition 4.2. The family of all N -D controlled invariant subspaces contained in a

certain subspace K of Rn has a maximum, and it is denoted by V∗(K).

Proof: The concept of a controlled invariant subspace has some important charac-

teristics. One of them is that a family of controlled invariant subspaces is not empty,

since it contains at least {0} and the other is that this family is closed under subspace

addition. Thus, the addition of these subspaces is the maximum of this family, which

is V∗(K).

Remark 4.3. The following are satisfied:

• If K is an N -D controlled invariant subspace, then V∗(K) = K.

• If instead of K we consider ker C, the subspace V∗(K), in this case is called an

N -D output nulling subspace and it is simply denoted by V∗, which is considered

a special type of N -D controlled invariant subspace.
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• The set of all output-nulling subspaces of (4.1) and (4.2) is referred by V(V),

and it is closed under the addition of subspaces as in the 1-D case (Basile &

Marro, 1992). This addition of subspaces is denoted by V∗, which is the largest

output-nulling subspace of V(V).

An N -D output-nulling subspace V∗ of global states is defined by existing a control

input such that the corresponding global state Xk is V∗-valued for k > 0, with the

corresponding output to be zero for all (i1, i2, . . . , iN ), such that i1 + i2 + . . .+ iN > 0,

if the V∗-valued boundary condition for (4.1) is given. The static state feedback is used

as an alternative way to express the control function, i.e., the required control action

that maintains y(i1,i2,...,iN ) = 0 and the local state x(i1,i2,...,iN ) ∈ V∗ can always be

expressed as u(i1,i2,...,iN ) = F x(i1,i2,...,iN ). The following algorithm is a generalisation

of Proposition 2.7 in Conte and Perdon (1988), which enables V∗ to be computed in

finite terms.

Proposition 4.3. The subspace V∗ coincides with the last term of the sequence of

subspaces:

V0 = kerC,

Vq = kerC ∩


A1

A2

...

AN


−1

(Vq−1 × Vq−1 × . . .× Vq−1︸ ︷︷ ︸
N times

+ im


B1

B2

...

BN

),

where q belongs to the set {1, . . . , κ}, and the value κ ≤ n − 1 is determined by the

condition Vκ+1 = Vκ, i.e., V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vκ = Vκ+1 = V∗.

Proof: The same steps of Lemma 3.2 can be followed for the proof.

4.1.5 Internal and external stabilisability of an N-D con-

trolled invariant subspace

For all F ∈ F(V), the controlled invariant subspace V is an (A1+B1 F, . . . , AN +BN F )-

invariant subspace. Then, the definition of internal and external stabilisability of a

controlled invariant subspace can be investigated by using the notions of internal and

external stability of (A1+B1 F, . . . , AN+BN F )-invariant subspaces that are introduced

in Definition 42.

Definition 45. Let V be an (A1, . . . , AN , B1, . . . , BN )-controlled invariant subspace,

then,

• V is internally stabilisable, if a controlled invariant friend F of V exists, such that

V is an (A1 +B1 F, . . . , AN +BN F )-invariant internally stable subspace.
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• V is externally stabilisable, if a controlled invariant friend F of V exists, such

that V is an (A1 +B1 F, . . . , AN +BN F )-invariant externally stable subspace.

Choosing a controlled invariant friend F of an N -D controlled invariant subspace

V with dimension r and a basis matrix V ∈ Rn×r to satisfy the previous definition

is carried out by finding the set of solutions of the linear equation Ω = −FV , where

Ω ∈ Rm×r is a solution of (4.21), for some X ∈ RNr×r. In particular, this solution is

given by the set of all controlled invariant friends F as

F = −Ω(V >V )−1V > + Φ, (4.25)

such that Φ V = 0, (4.25) can be written as

F = FΩ + Φ, (4.26)

where FΩ = −Ω(V >V )−1V > and Φ as before. Consider a change of coordinate matrix

T =
[
T1 T2

]
, such that T1 is a basis for V. Then, we have

T−1 (Ai +Bi F )T =

[
Li,11(Ω,Φ) Li,12(Ω,Φ)

0 Li,22(Ω,Φ)

]
for i = 1, 2, . . . , N. (4.27)

A controlled invariant friend of the N -D invariant subspace V can be built by choosing

the matrices Ω and Φ independently, as shown in the following part.

Lemma 4.4. The submatrices Li,11(Ω,Φ) of equation (4.27) do not depend on Φ. The

submatrices Li,22(Ω,Φ) of equation (4.27) do not depend on Ω.

Proof: We start proving that Li,11(Ω,Φ) do not depend on Φ. Let FΩ = −Ω(V >V )−1V >,

where Ω ∈ R is a solution of equation (4.21) for some X. Consider two matrices Φ′ and

Φ′′ of suitable size, such that F ′ = FΩ + Φ′ and F ′′ = FΩ + Φ′′, where Φ′ V = 0 and

Φ′′ V = 0. Now,[
Li,11(Ω,Φ′)− Li,11(Ω,Φ′′) Li,12(Ω,Φ′)− Li,12(Ω,Φ′′)

0 Li,22(Ω,Φ′)− Li,22(Ω,Φ′′)

]
= T−1 (Ai +Bi F

′)T − T−1 (Ai +Bi F
′′)T

= T−1 (Ai +Bi FΩ +Bi Φ′ −Ai −Bi FΩ −Bi Φ′′)T

= T−1Bi(Φ
′ − Φ′′)

[
T1 T2

]
=
[

0 T−1Bi(Φ
′ − Φ′′)T2

]
,

since Φ′ T1 = Φ′′ T1 = 0. This implies that Li,11(Ω,Φ′) = Li,11(Ω,Φ′′).

Now we prove that Li,22(Ω,Φ) do not depend on Ω. Let Ω1 and Ω2 be two matrices of
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suitable size. Since equation (4.21) holds for some matrices X ′ and X ′′ as
A1

A2

...

AN

 V =


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 X ′ +

B1

B2

...

BN

 Ω′,

and 
A1

A2

...

AN

 V =


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 X ′′ +

B1

B2

...

BN

 Ω′′.

By subtraction, we obtain
V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 (X ′ −X ′′) =


B1

B2

...

BN

 (Ω′ − Ω′′). (4.28)

Let F ′ = FΩ′ + Φ and F ′′ = FΩ′′ + Φ, where ΦV = 0 and

FΩ′ = −Ω′(V >V )−1V >

FΩ′′ = −Ω′′(V >V )−1V >.

A simple computation shows that[
Li,11(Ω′,Φ)− Li,11(Ω′′,Φ) Li,12(Ω′,Φ)− Li,12(Ω′′,Φ)

0 Li,22(Ω′,Φ)− Li,22(Ω′′,Φ)

]
= T−1 (Ai +Bi F

′)T − T−1 (Ai +Bi F
′′)T

= T−1 (Ai +Bi FΩ′ +Bi Φ−Ai −Bi FΩ′′ −Bi Φ)T

=
[
T1 T2

]−1
Bi(Ω

′′ − Ω′) (V >V )−1V > T,

which is equivalent to

Bi(Ω
′′ − Ω′) (V >V )−1V >

[
T1 T2

]
=[

T1 T2

] [ Li,11(Ω′,Φ)− Li,11(Ω′′,Φ) Li,12(Ω′,Φ)− Li,12(Ω′′,Φ)

0 Li,22(Ω′,Φ)− Li,22(Ω′′,Φ)

]
,
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which yields

Bi(Ω
′′ − Ω′) (V >V )−1V > T2 = T1 Li,12(Ω′,Φ)− Li,12(Ω′′,Φ)

+ T2 Li,22(Ω′,Φ)− Li,22(Ω′′,Φ).

Since T1 is a column basis matrix for V and V is a column basis matrix for V, we

assume that T1 = V , and then,
B1

B2

...

BN

 (Ω′′ − Ω′) (V >V )−1V > T2

=


V (L1,12(Ω′,Φ)− L1,12(Ω′′,Φ)) + T2 (L1,22(Ω′,Φ)− L1,22(Ω′′,Φ))

V (L2,12(Ω′,Φ)− L2,12(Ω′′,Φ)) + T2(L2,22(Ω′,Φ)− L2,22(Ω′′,Φ))
...

V (LN,12(Ω′,Φ)− LN,12(Ω′′,Φ)) + T2(LN,22(Ω′,Φ)− LN,22(Ω′′,Φ))

 .

By using equation (4.28), we obtain
V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

 (X ′ −X ′′) (V >V )−1V > T2

=


V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V




L1,12(Ω′,Φ)− L1,12(Ω′′,Φ)

L2,12(Ω′,Φ)− L2,12(Ω′′,Φ)
...

LN,12(Ω′,Φ)− LN,12(Ω′′,Φ)



+


T2 0 . . . 0

0 T2 . . . 0
...

...
. . .

...

0 0 . . . T2




L1,22(Ω′,Φ)− L1,22(Ω′′,Φ)

L2,22(Ω′,Φ)− L2,22(Ω′′,Φ)
...

LN,22(Ω′,Φ)− LN,22(Ω′′,Φ)

 .

Therefore, it follows that
T2 0 . . . 0

0 T2 . . . 0
...

...
. . .

...

0 0 . . . T2




L1,22(Ω′,Φ)− L1,22(Ω′′,Φ)

L2,22(Ω′,Φ)− L2,22(Ω′′,Φ)
...

LN,22(Ω′,Φ)− LN,22(Ω′′,Φ)

 = 0,
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from the fact that T2 has linearly independent columns that implies Li,22(Ω′,Φ) −
Li,22(Ω′′,Φ) = 0 for i = 1, . . . , N .

As a result, a matrix FΩ,which is used to stabilise a controlled invariant subspace V
internally, is equivalent to finding a matrix FΩ for which equation (4.22) is verified for

some X =

 X1
X2

...
XN

, such that the N -tuple matrices (X1, X2, ..., XN ) is asymptotically

stable. Hence, the degree of freedom here depends only on the choice of Ω, which is

given by

X1

X2

...

XN

Ω


=


V 0 . . . 0 B1

0 V . . . 0 B2

...
...

. . .
...

...

0 0 . . . V BN


† 

A1

A2

...

AN

 V +



H1

H2

...

HN

HN+1


K, (4.29)

where

im



H1

H2

...

HN

HN+1


= ker


V 0 . . . 0 B1

0 V . . . 0 B2

...
...

. . .
...

...

0 0 . . . V BN

 ,

and K is an arbitrary matrix of suitable size. For the sake of brevity, we suppose that:

G1

G2

...

GN

GN+1


def
=


V 0 . . . 0 B1

0 V . . . 0 B2

...
...

. . .
...

...

0 0 . . . V BN


† 

A1

A2

...

AN

 V.

Then, equation (4.29) becomes

X1

X2

...

XN

Ω


=



G1

G2

...

GN

GN+1


+



H1

H2

...

HN

HN+1


K. (4.30)



4.1 Structural invariants for N-D model 94

There are two possibilities for the solution of this equation. First, when

ker


V 0 . . . 0 B1

0 V . . . 0 B2

...
...

. . .
...

...

0 0 . . . V BN

 = 0,

in this case, only one solution exists to achieve either internally stabilisable or not. The

other solution is considered when

ker


V 0 . . . 0 B1

0 V . . . 0 B2

...
...

. . .
...

...

0 0 . . . V BN

 ,

is different from zero. By finding a matrix K to be (X1, X2, . . . , XN ) asymptotically

stable, Ω can be computed from equation (4.30), which in order implies to solve (4.21)

and (4.22) trivially.

Theorem 4.2. The N -D controlled invariant subspace V is internally stabilisable, if

there exist a matrix Q and symmetric positive definite matrices M1,M2. . . . ,MN of

suitable size such that
M1 0 ... 0 MNG

>
1 +Q>H>1

0 M2−M1 ... 0 MNG
>
2 +Q>H>2

...
...

...
...

...
0 0 ... MN−MN−1 MNG

>
N+Q>H>N

G1MN+H1Q G2MN+H2Q ... GNMN+HNQ MN

 > 0. (4.31)

Defining an (M1,M2. . . . ,MN , Q) by (4.31), a matrix K such that (X1, X2. . . . , XN ) in

equation (4.30) is asymptotically stable, is given by K = QM−1
N .

Proof: The N -D controlled invariant subspace V is internally stabilisable, if and only

if the N -tuple matrices (X1, X2. . . . , XN ) is asymptotically stable, i.e., if there exist

matrices P1 = P>1 > 0, P2 = P>2 > 0, . . . , PN = P>N > 0, such that
P1 0 . . . 0

0 P2 . . . 0
...

...
. . .

...

0 0 . . . PN

−

X>1

X>2
...

X>N

 P
[
X1 X2 . . . XN

]
> 0, (4.32)
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where P = (P1 + P2 + . . . ,+PN ), (4.32) is equivalent to
P1 0 . . . 0

0 P2 . . . 0
...

...
. . .

...

0 0 . . . PN

−

X>1

X>2
...

X>N

 P P−1 P
[
X1 X2 . . . XN

]
> 0. (4.33)

From (4.30), Xi = Gi +HiK, for i = 1, 2, . . . , N , and by using the Schur complement

Theorem in Golub and Van Loan (2012), (4.33) is equivalent to the existence of sym-

metric positive definite matrices Ψ1 = P1,Ψ2 = P1+P2, . . . ,ΨN−1 = P1+P2+. . . , PN−1

and ΨN = P1 + P2 + . . . , PN−1 + PN , such that
Ψ1 0 ... 0 (L1+H1K)>ΨN

0 Ψ2−Ψ1 ... 0 (L2+H2K)>ΨN

...
...

. . .
...

...
0 0 ... ΨN−ΨN−1 (LN+HNK)>ΨN

ΨN (L1+H1K) ΨN (L2+H2K) ... ΨN (LN+HNK) ΨN

 > 0.

Multiplying both sides of the previous matrix by diag(ΨN ,ΨN , . . . ,ΨN︸ ︷︷ ︸
N+1 times

) and defining

Mi = Ψ−1
N Ψi Ψ−1

N (i = 1, 2, . . . , N − 1), MN = Ψ−1
N , and Q = KΨ−1

N , we obtain (4.31),

which concludes the proof.

The internal stabilisation of the N -D controlled invariant subspace V with a basis

matrix V is based on choosing FΩ as a controlled invariant friend of V, such that the

(A1 +B1FΩ, . . . , AN +BNFΩ)-invariant subspace is internally stable, which happens if

and only if (X1, X2. . . . , XN ) is asymptotically stable, while the external stabilisation of

the N -D controlled invariant subspace V depends on choosing a suitable Φ in (4.26). By

placing the control function u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) with F = FΩ + Φ in equation

(4.1), we obtain

x(i1,i2,...,iN ) = (A1 +B1FΩ +B1Φ) x(i1−1,i2,...,iN ) + . . .

+ (AN +BNFΩ +BNΦ) x(i1,...,iN−1,iN−1).

Then, FΩ stabilised V internally, in different words, V is an internally stable (A1 +

B1FΩ, . . . , AN +BNFΩ)-invariant subspace. To stabilise V externally, Φ must be found

such that ((A1 +B1FΩ +B1Φ), . . . , (AN +BNFΩ +BNΦ)) is asymptotically stable and

ΦV = 0.

Theorem 4.3. The N -D controlled invariant subspace V is externally stabilisable, if

there exist a matrix R and symmetric positive definite matrices M1,M2. . . . ,MN ,MN+1
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of suitable size such that
M1 0 ... 0 (L1,Ω+B1R>Q>)>

0 M2−M1 ... 0 (L2,Ω+B2R>Q>)>

...
...

...
...

...
0 0 ... MN−MN−1 (LN,Ω+BNR

>Q>)>

L1,Ω+B1R>Q> L2,Ω+B2R>Q> ... LN,Ω+BNR
>Q> MN+1

 > 0, (4.34)

where Li,Ω
def
= Ai +BiFΩ, (i = 1, . . . , N) and with

MN MN+1 = I (4.35)

.

Proof: The condition ΦV = 0 is equivalent to im Φ> ⊆ ker V >, by considering

im Q = ker V >. Then, im Φ>, for some matrix R, this implies to Φ> = QR, so that

Φ = R>Q>. The N -tuple matrices ((L1,Ω +B1Φ), . . . , (LN,Ω +BNΦ)) is asymptotically

stable by using Lemma 4.2, if the symmetric positive definite matrices P1, P2, . . . , PN

exist such that P1 0 ... 0
0 P2 ... 0
...

...
. . .

...
0 0 ... PN

−
 (L1,Ω+B1Φ)>

...
(LN,Ω+BNΦ)>

 (P1 + . . .+ PN ) [ (L1,Ω+B1Φ) ... (LN,Ω+BNΦ) ] > 0,

by using the Schur complement Theorem in Golub and Van Loan (2012).This condition

is equivalent to the existence of symmetric positive definite matrices M1 = P1,M2 =

P1 + P2, . . . ,MN−1 = P1 + P2 + . . . , PN−1 and MN = P1 + P2 + . . . , PN−1 + PN , such

that 
M1 0 ... 0 (L1,Ω+B1Φ)>

0 M2−M1 ... 0 (L2,Ω+B2Φ)>

...
...

. . .
...

...
0 0 ... MN−MN−1 (LN,Ω+BNΦ)>

(L1,Ω+B1Φ) (L2,Ω+B2Φ) ... (LN,Ω+BNΦ) M−1
N

 > 0. (4.36)

Finally, by substituting Φ = R>Q> with MN+1 = M−1
N from (4.35) in (4.36), we obtain

(4.34).

4.1.6 Disturbance decoupling problems

The problem of disturbance decoupling by state feedback has been studied and solved

by using geometric methods. There are two versions of the problem, the basic version

which is a solution without stability. It was presented for the 1-D case by Basile and

Marro (1969) and for the 2-D case by Conte and Perdon (1988), while the same problem

is solved by using the notion of stability as in W. Wonham (1985) for the 1-D case and

by Ntogramatzidis et al. (2008) in the 2-D case. These results have been adopted to
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the N -D case. Regarding the generalisation, consider the N -D system

x(i1,i2,...,iN ) = A1 x(i1−1,i2,...,iN ) + . . .+AN x(i1,...,iN−1,iN−1)

+ B1 u(i1−1,i2,...,iN ) + . . .+BN u(i1,...,iN−1,iN−1)

+ H1 w(i1−1,i2,...,iN ) + . . .+HN w(i1,...,iN−1,iN−1)

y(i1,i2,...,iN ) = C x(i1,i2,...,iN ), (4.37)

where x(i1,i2,...,iN ),u(i1,i2,...,iN ),w(i1,i2,...,iN ) and y(i1,i2,...,iN ) are respectively, the local

state, the controlled input, the disturbance and the output vector, and they respec-

tively belong to Rn,Rm,Rd and Rp. Ak, Bk, Hk and C, for k = 1, 2, . . . , N , which are

matrices with dimensions n×n, n×m,n×d and p×n, respectively. The disturbance de-

coupling problem (DDP) is studied and solved for the N -D Fornasini-Marchesini model

(4.37) by finding conditions ensuring that a feedback law u(i1,i2,...,iN ) = F x(i1,i2,...,iN )

exists, such that the disturbance w(i1,i2,...,iN ) does not affect on the output func-

tion y(i1,i2,...,iN ) of the closed-loop system. The other decoupling problem is consid-

ered when the disturbance w(i1,i2,...,iN ) is measurable. In this case, with the mea-

surable disturbance decoupling problem (MDDP), the feedback law takes the form

u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) + Sw(i1,i2,...,iN ). Hence, the two decoupling problems can

be solved along the same lines as Basile and Marro (1969) and Conte and Perdon

(1988). The following proposition provides a sufficient condition for the resolvability of

the DDP. However, the necessary condition is not satisfied in an N -D case, because it

is difficult in general to characterise the set of output-nulling global states, as the set

of global states whose local components belong to some subspace V of Rn.

Proposition 4.4. (i) A sufficient condition of the DDP for system (4.37) to be solv-

able is

im


H1

H2

...

HN

 ⊆ V∗ × V∗ × . . .× V∗︸ ︷︷ ︸
N times

. (4.38)

When this condition is satisfied, any output-nulling friend F of V∗ solves this

problem.

(ii) A sufficient condition of the MDDP for system (4.37) to be solvable is

im


H1

H2

...

HN

 ⊆ (V∗ × V∗ × . . .× V∗︸ ︷︷ ︸
N times

) + im


B1

B2

...

BN

 . (4.39)
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Proof: The proof of case (i) is adapted straightforwardly from the proof of Theorem

3.3 with a few modifications. For the proof of case (ii), let us consider {w1,w2, . . . ,wd}
as a basis of Rd, the q number of vectors u1,u2, . . . ,uq from Rm have been chosen such

that 
H1

H2

. . .

HN

 (wi)−


B1

B2

...

BN

 (ui) ∈ V? × V? × . . .× V?︸ ︷︷ ︸
N times

, (4.40)

and define the map S : Rd −→ Rm as S(wi) = ui. By taking F to be any controlled

invariant friend of V and V∗ is an output-nulling subspace of global states, the sufficient

condition is completed.

Now, to solve the DDP by stabilisability of controlled invariant subspace, we will

take into account the requirement of stability of the closed-loop matrices (A1+B1 F, . . . , AN+

BN F ), i.e., a matrix F exists, such that the disturbance w is decoupled by u(i1,i2,...,iN ) =

F x(i1,i2,...,iN ) from the output y and the N -tuple of the closed-loop system matrices

(A1 + B1 F, . . . , AN + BN F ) is asymptotically stable. Similarly, the MDDP is solv-

able by finding the matrices F and S, such that the disturbance w is decoupled by

u(i1,i2,...,iN ) = F x(i1,i2,...,iN ) + Sw(i1,i2,...,iN ) from the output y and such that the N -

tuple of the closed-loop system matrices (A1 +B1 F, . . . , AN +BN F ) is asymptotically

stable. The following theory illustrates the proposed solutions to the two problems of

decoupling using the concept of stabilisability.

Proposition 4.5. (i) The DDP for system (4.37) is solvable if

• im


H1

H2

...

HN

 ⊆ V∗ × V∗ × . . .× V∗︸ ︷︷ ︸
N times

,

• V∗ is internally and externally stabilisable at the same time.

If these conditions hold, any output-nulling friend of V∗ that stabilizes V∗ inter-

nally and externally is a solution of the problem.

(ii) The MDDP for system (4.37) is solvable if

• im


H1

H2

...

HN

 ⊆ (V∗ × V∗ × . . .× V∗︸ ︷︷ ︸
N times

) + im


B1

B2

...

BN

 ,
• V∗ is both internally and externally stabilisable.
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Proof: The proof of (i) follows by compiling two results, which is summarised by choos-

ing a matrix F to be an output-nulling friend of V∗, such that for the first condition,

the closed-loop system,

x(i1,i2,...,iN ) = (A1 +B1F ) x(i1−1,i2,...,iN ) + . . .+ (AN +BNF ) x(i1,...,iN−1,iN−1)

+ H1 w(i1−1,i2,...,iN ) + . . .+HN w(i1,...,iN−1,iN−1),

is not affected by the disturbance w and for the other condition, the N -tuple of the

closed-loop matrices (A1 +B1 F, . . . , AN +BN F ) is asymptotically stable. This if found

to be similar for part (ii) as well.

4.1.7 Model matching problem

The other important class of control theory in the 1-D and 2-D setting is the so-called

model matching problem. The model matching problem is well-known in the area of

1-D systems (Kuvcera, 1981; Malabre & Kucera, 1984). Moreover, in the 2-D case, it

has been studied and solved in several aspects. For instance, Conte and Perdon (1988)

gave the solution via the geometric approach, while the proportional state feedback

and the dynamical state feedback of a special type used by Paraskevopoulos (1979) and

Yasuda (1981) respectively. Sebek (1983) used the polynomial method and recently,

the stability has been used by Ntogramatzidis et al. (2008). From these papers, it turns

out that a number of control problems, in general, have been solved by recasting the

control problems as model matching problems. In the situation considered, the model

matching problem has been taken into account, in terms of the geometric terms and with

stability for the N -D case. Suppose that a system Σ = (A1, . . . , AN , B1, . . . , BN , C)

that is governed by (4.1) and (4.2) and a system ΣM is described by

x(i1,i2,...,iN )M = A1M x(i1−1,i2,...,iN )M + . . .+ANM x(i1,...,iN−1,iN−1)M

+ B1M u(i1−1,i2,...,iN )M + . . .+BNM u(i1,...,iN−1,iN−1)M (4.41)

y(i1,i2,...,iN )M = CM x(i1,i2,...,iN )M , (4.42)

which are given the same output spaces. The exact model matching depends on de-

signing the input by the dynamic regulate system ΣC governed by

z(i1,i2,...,iN ) = A1C z(i1−1,i2,...,iN ) + . . .+ANC z(i1,...,iN−1,iN−1)

+ B1C ũ(i1−1,i2,...,iN ) + . . .+BNC ũ(i1,...,iN−1,iN−1), (4.43)

u(i1,i2,...,iN ) = R z(i1,i2,...,iN ) +H ũ(i1−1,i2,...,iN ), (4.44)

such that the model ΣM is considered as a result of the input and output behaviour

between the connection of the original system Σ and the exact model matching system
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ΣM . The extended system Σe can be used to turn the model matching problem into

a full information decoupling problem Σe which is characterised by the local state

xe =

[
x

xM

]
and matrices

Ake =

[
Ak 0

0 AkM

]
, Bke =

[
Bk

0

]
, Hke =

[
0

BkM

]
, Ce =

[
C − CM

]
,

for K = 1, 2, . . . , N . Then, the system Σe with the disturbance ũ can be written as

xe(i1,i2,...,iN ) = A1e xe(i1−1,i2,...,iN ) + . . .+ANe xe(i1,...,iN−1,iN−1)

+ B1e u(i1−1,i2,...,iN ) + . . .+BNe u(i1,...,iN−1,iN−1)

+ H1e ũ(i1−1,i2,...,iN ) + . . .+HNe ũ(i1,...,iN−1,iN−1)

y(i1,i2,...,iN ) = Ce xe(i1,i2,...,iN ). (4.45)

In this case, the exact model matching problem (EMMP) is solvable if the MDDP

for the system Σe is solvable. In other words, with a feedback law u(i1−1,i2,...,iN ) =

F xe(i1−1,i2,...,iN ) + S ũ(i1−1,i2,...,iN ), the output of the closed loop of the system Σe is

not affected by the disturbance ũ. The EMMP in the N -D case can be solved by using

a direct consequence of part (ii) of the Proposition 4.4 as follows.

Proposition 4.6. The exact model matching problem is solvable if the following con-

dition holds:

im


H1e

H2e

...

HNe

 ⊆ (V∗e × V∗e × . . .× V∗e︸ ︷︷ ︸
N times

) + im


B1e

B2e

...

BNe

 , (4.46)

where V∗e is the largest output-nulling of the system Σe that is governed by (4.45).

Now, for solving the model matching problem by the notion of stability, the two

following conditions must hold:

• im


H1e

H2e

...

HNe

 ⊆ V∗e × V∗e × . . .× V∗e︸ ︷︷ ︸
N times

+ im


B1e

B2e

...

BNe

 ,

• V∗e is internally stabilisable,

where V∗e is the largest output-nulling of the system Σe = (A1e, . . . , ANe, B1e, . . . , BNe, Ce).

The due substitution can be easily noticed from Propositions 4.4 and 4.5, which are
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mainly derived from system (4.45) that solves the model matching problem by two

ways (output-nulling subspaces and the stabilisation of controlled invariant subspaces)

respectively.



CHAPTER 5

Geometric conditions for the existence of

solutions of singular multidimensional

systems

In the singular model, there is no privileged direction of the evolution of the states. In

this chapter, we study the problem of characterising the admissible boundary conditions

in a 2-D Fornasini-Marchesini singular model, where various aspects of the situations of

local states and inputs are explained. This result is then generalised to N -dimensional

systems.†

5.1 Existence of solutions for 2-D systems

The state model of a 2-D system that we consider is the implicit first order Fornasini-

Marchesini 2-D model given by the following equations Kaczorek (1988):

E x(i+1,j+1) = A1 x(i+1,j) +A2 x(i,j+1) +B1 u(i+1,j) +B2 u(i,j+1), (5.1)

y(i,j) = C x(i,j), (5.2)

where, for all admissible values of the indices i and j in Z, the vector x(i,j) ∈ X = Rn

represents the local state and u(i,j) ∈ U = Rm is the control input. Here, E, A1,

A2 ∈ Rq×n and B1, B2 ∈ Rq×m. The outer state-space, corresponding to the number

of equations in (5.1), is denoted by X = Rq. In this implicit model, the matrices E,

A1, A2 are in general not square, and if they are square (i.e., if q = n), they may be

singular.

†This chapter has been published in 2017, 10th International Workshop on Multidimensional
Systems (nDS) by the following reference (Mohamed, Padula, & Ntogramatzidis, 2017).
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We are interested in the evolution of ‘south-west’ causal solutions, given suitable

boundary conditions x(i,j) for (i, j) ∈ C0, where

Ck = {(i, j) ∈ Z× Z| i+ j = k}, k ∈ Z.

Within this setting, the latent variable evolves over the region

C
def
=
∞⋃
k=0

Ck = {(i, j) ∈ Z× Z| i+ j ≥ 0}.

5.1.1 Formulation of problems

Problem 1. Determining under which conditions on the local states of the separation

set C0, the local states on a given region of the separation set CM , where M ∈ N \ {0},
are a solution of the Fornasini-Marchesini model (5.1) with arbitrary inputs. We can

formalise this problem as follows. Let h ∈ Z and r ∈ N\{0}. Let M > 0. There exists

x̃(h,M−h), x̃(h−1,M−h+1), . . . , x̃(h−r+1,M−h+r−1) ∈ X ,

such that for every u(i,j) ∈ U there exists a solution:

{x(i,j) | i 6 h, j 6M − h+ q − 1, 0 6 i+ j 6M},

of (5.1), such that 
x(h,M−h) = x̃(h,M−h)

x(h−1,M−h+1) = x̃(h−1,M−h+1)
...

x(h−r+1,M−h+r−1) = x̃(h−r+1,M−h+r−1),

where the vectors x(h,M−h),x(h−1,M−h+1), . . . ,x(h−r+1,M−h+r−1) are local states over a

segment of CM .

Problem 2. Characterising under which conditions on the local states of the separation

set C0, there exists an input such that the local states on an assigned region of the

separation set CM are a solution of the Fornasini-Marchesini model (5.1) for that input.

Let h ∈ Z and r ∈ N\{0}. Let M > 0. There exists

x̃(h,M−h), x̃(h−1,M−h+1), . . . , x̃(h−r+1,M−h+r−1) ∈ X ,
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such that for a suitable control u(i,j), there exists a solution:

{x(i,j) | i 6 h, j 6M − h+ r − 1, 0 6 i+ j 6M},

of (5.1), such that 
x(h,M−h) = x̃(h,M−h)

x(h−1,M−h+1) = x̃(h−1,M−h+1)
...

x(h−r+1,M−h+r−1) = x̃(h−r+1,M−h+r−1).

We begin by considering Problem 1, which is the problem of the existence of so-

lutions for every arbitrarily assigned input function. The following result shows that

Problem 1 can be solved geometrically, by means of recursive conditions on subspaces

that can be constructed in an iterative fashion.

Theorem 5.1. Let h ∈ Z and r ∈ N\{0}. Let M > 0. Problem 1 admits solutions if

and only if:

(i) im B̂i ⊆Mi for all i ∈ {r, . . . , r +M − 1};

(ii) the local states on C0 satisfy

x̂(0;h,r+M) ∈ Â−1
r+M−1Mr+M−1,

where Âi, B̂i, x̂(α;β,γ), Êi and Mi, i ∈ N are, respectively, given by:

Âi =



A1 A2 0 0 . . . 0 0

0 A1 A2 0 . . . 0 0

0 0 A1 A2 . . . 0 0
. . .

0 0 0 0 . . . A1 A2


B̂i =



B1 B2 0 0 . . . 0 0

0 B1 B2 0 . . . 0 0

0 0 B1 B2 . . . 0 0
. . .

0 0 0 0 . . . B1 B2



x̂(α;β,γ) =


x(β,α−β)

x(β−1,α−β+1)
...

x(β−γ+1,α−β+γ−1)

 , Êi =


E 0 . . . 0

0 E . . . 0
. . .

0 0 . . . E

 ,

and {
M` = im Ê`

Mi = Êi (Â−1
i−1Mi−1) i > `,
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where Âi and B̂i are i q×(i+1)n, Êi is a block-diagonal matrix, with i identical blocks

E and x̂(α,β;γ) is a vector whose components are the local states on the separation set

Cα.

Proof: We prove the claim by letting the local state evolve backwards from the

separation set CM to C0. Every set of local states on the region of CM :

{x(h,M−h),x(h−1,M−h+1), . . . ,x(h−r+1,M−h+r−1)},

in Problem 1 can be written in a compact form as

x̂(M ;h,r) =


x(h,M−h)

x(h−1,M−h+1)
...

x(h−r+1,M−h+r−1)

 .

See Figure 5.1 below.

Clearly, a local state x(h,M−h) on CM is a solution of model (5.1) for arbitrary inputs

u(h,M−h−1) and u(h−1,M−h), if and only if x(h,M−h−1) and x(h−1,M−h) satisfy

A1 x(h,M−h−1) +A2 x(h−1,M−h) +B1 u(h,M−h−1) +B2 u(h−1,M−h) ∈ im E.

Next, the local state x(h−1,M−h+1) on the same separation set CM is a solution of model

(5.1) for arbitrary inputs u(h−1,M−h) and u(h−2,M−h+1), if and only if

A1 x(h−1,M−h) +A2 x(h−2,M−h+1) +B1 u(h−2,M−h) +B2 u(h−2,M−h) ∈ imE.

The previous machinery can be applied to all the vector components of x̂(M ;h,r). Lastly,

the local state x(h−r+1,M−h+r−1) on the same separation set, which is a solution of model

(5.1), exists for arbitrary inputs u(h−r+1,M−h+r−2) and u(h−r,M−h+r−1), if and only if

A1 x(h−r+1,M−h+r−2) +A2 x(h−r,M−h+r−1) + B1 u(h−r+1,M−h+r−2)

+ B2 u(h−r,M−h+r−1) ∈ imE.

These equations can be written in matrix form as

A1 A2 0 ... 0 0

0 A1 A2 ... 0 0
. . .

0 0 0 ... A1 A2




x(h,M−h−1)

x(h−1,M−h)

x(h−2,M−h+1)
...

x(h−r+1,M−h+r−2)

x(h−r,M−h+r−1)

 +

B1 B2 0 ... 0 0

0 B1 B2 ... 0 0
. . .

0 0 0 ... B1 B2




u(h,M−h−1)

u(h−1,M−h)

u(h−2,M−h+1)
...

u(h−r+1,M−h+r−2)

u(h−r,M−h+r−1)


∈ im

E 0 ... 0
0 E ... 0

. . .
0 0 ... E

,
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C0

CM

x(h,M−h)

x(h−1,M−h+1)

x(h−r+1,M−h+r−1)

Figure 5.1
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where the first and third matrices on the left-hand side have r × (r + 1) blocks, while

the one on the right-hand side has r × r blocks. Using the notations introduced in the

statement, we rewrite the latter in compact form as

Âr x̂(M−1;h,r+1) + B̂r û(M−1;h,r+1) ∈ im Êr, (5.3)

where

û(M−1;h,r+1) =


u(h,M−h−1)

u(h−1,M−h)
...

u(h−r,M−h+r−1)

 .
Since u(i,j) is arbitrary, (5.3) needs to hold in particular when u(i,j) is identically zero,

so that x̂(M−1;h,r+1) must satisfy:

Âr x̂(M−1;h,r+1) ∈ im Êr,

which can be written as

x̂(M−1;h,r+1) ∈ Â−1
r im Êr,

where Â−1
r im Êr denotes the inverse image of Êr through the map Âr, and is defined

also when Âr is non-invertible. If the previous condition is satisfied, in order for the

left hand-side of (5.3) to be in im Êr, we must have

im B̂r ⊆ im Êr.

As a result, the condition on the separation set CM−1 is:

• im B̂r ⊆ im Êr;

• x̂(M−1;h,q+1) ∈ Â−1
r im Êr.

We can write these equations in terms of the following sequence of subspaces:{
Mr = im Êr

Mi = Êi (Â−1
i−1Mi−1) i > r,

as {
im B̂r ⊆Mr

x̂(M−1;h,r+1) ∈ Â−1
r Mr.

At the next step, we consider the separation set CM−2. The recursiveness of the condi-

tions for existence arises because the local states on CM−2 need to satisfy the equations
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of model (5.1) for those local states on CM−1, which guarantees that the conditions at

the previous step are met. Using the same notation as in the previous step, we can

express these conditions as

• im B̂r+1 ⊆ Êr+1(Â−1
r im Êr),

• x̂(M−2;h,r+2) ∈ Â−1
r+1 Êr+1 (Â−1

r im Êr),

which can be written as {
im B̂r+1 ⊆Mr+1

x̂(M−2;h,r+2) ∈ Â−1
r+1Mr+1.

Iterating the previous steps up to C0, we obtain the conditions:{
im B̂r+M−1 ⊆Mr+M−1

x̂(0;h,r+M) ∈ Â−1
r+M−1Mr+M−1.

This concludes the proof.

The next result addresses Problem 2. Given a subspace W in Rν+µ, we define the

projection map as

Pν(W)
def
=

{
ξ ∈ Rν

∣∣∣∃ω ∈ Rµ :

[
ξ

ω

]
∈ W

}
.

Theorem 5.2. Let h ∈ Z and r ∈ N\{0}. Let M > 0. Problem 2 admits solutions, if

and only if the local states on C0 with suitable controls satisfy:

x̂(0;h,r+M) ∈ P(r+M)N (F̂−1
r+M−1Mr+M−1),

where Âi, B̂i, x̂(α;β,γ) and Êi are the same as in Theorem 5.1, Mi with i ∈ N is a

sequence of subspaces given by{
M` = im Ê`

Mi = ÊiPiN (F̂−1
i−1Mi−1) i > `,

(5.4)

where F̂i =
[
Âi B̂i

]
and û(α;β,γ) is given by

û(α;β,γ) =


u(β,α−β)

u(β−1,α−β+1)
...

u(β−γ+1,α−β+γ−1)

 .

Proof:
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We prove the claim by moving backwards from the separation set CM to C0.

Consider the set of states on CM with suitable controls. This can be written in compact

form as

[
x̂(M ;h,r)

û(M ;h,r)

]
=



x(h,M−h)

x(h−1,M−h+1)
...

x(h−r+1,M−h+r−1)

u(h,M−h)

u(h−1,M−h+1)
...

u(−r+1,M−h+r−1)


.

There exists a state x(h,M−h) on CM which is a solution of (5.1) for suitable inputs

u(h,M−h−1) and u(h−1,M−h), if and only if x(h,M−h−1) and x(h−1,M−h) satisfy

A1 x(h,M−h−1) +A2 x(h−1,M−h) +

B1 u(h,M−h−1) +B2 u(h−1,M−h) ∈ im E.

The local state x(h−2,M−h+2) on the same separation set, which is a solution of (5.1) as

well, exists for suitable inputs u(h−2,M−h+1) and u(h−3,M−h+2), if and only if

A1 x(h−2,M−h+1) +A2 x(h−3,M−h+2) +

B1 u(h−2,M−h+1) +B2 u(h−3,M−h+2) ∈ imE.

The previous machinery can be applied to all the vectors components of x̂(M ;h,r) with

suitable inputs û(M ;h,r). Lastly, the local state x(h−r+1,N−h+r−1) on the same separa-

tion set, which is a solution of (5.1) exists for suitable inputs u(h−r+1,M−h+r−2) and

u(h−r,M−h+r−1), if and only if

A1 x(h−q+1,N−h+q−2) +A2 x(h−q,N−h+q−1) +

B1 u(h−q+1,N−h+q−2) +B2 u(h−q,N−h+q−1) ∈ imE.

These equations can be written as

A1 A2 0 0 0 ... 0 0
0 A1 A2 0 0 ... 0 0

. . .
0 0 0 0 0 ... A1 A2




x(h,M−h−1)
x(h−1,M−h)

x(h−2,M−h+1)
x(h−3,M−h+2)

...
x(h−r+1,M−h+r−2)
x(h−r,M−h+r−1)

 +

B1 B2 0 0 ... 0 0
0 B1 B2 0 ... 0 0

. . .
0 0 0 0 ... B1 B2




u(h,M−h−1)
u(h−1,M−h)

u(h−2,M−h+1)
u(h−3,M−h+2)

...
u(h−r+1,M−h+r−2)
u(h−r,M−h+r−1)


∈ im

E 0 0 ... 0
0 E 0 ... 0
0 0 E ... 0

. . .
0 0 0 ... E

 , (5.5)
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where the first and third matrices on the left-hand side have r × (r + 1) blocks, while

the one on the right-hand side has r × r blocks. Using the notations introduced in the

statement, we rewrite (5.5) as

Âi x̂(M−1;h,r+1) + B̂i û(M−1;h,r+1) ∈ im Êi,

which can be written as

[
Âi B̂i

] [ x̂(M−1;h,q+1)

û(M−1;h,q+1)

]
∈ im Êi,

and this is equivalent to[
x̂(M−1;h,r+1)

û(M−1;h,r+1)

]
∈
[
Âi B̂i

]−1
im Êi.

Using the notation F̂i =
[
Âi B̂i

]
, we can rewrite this equation as

[
x̂(M−1;h,r+1)

û(M−1;h,r+1)

]
∈ F̂−1

i im Êi.

Therefore, the conditions on the separation set CM−1 can be written as

x̂(M−1;h,r+1) ∈ P(r+1)N (F̂−1
r im Êr).

We can rewrite this condition, by means of the sequence of subspaces in (5.4), where `

is chosen to be equal to r:{
Mr = im Êr

Mi = ÊiPi,N (F̂−1
i−1Mi−1) i > r,

as

x̂(M−1;h,r+1) ∈ P(r+1)N (F̂−1
r Mr).

At the next step, on the separation set CM−2, we get

x̂(M−2;h,r+2) ∈ P(r+2)N

(
F̂−1
r+1 Êr+1 P(r+1)N (F̂−1

r im Êr)
)

= P(r+2)N

(
F̂−1
r+1Mr+1

)
.
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We have to iterate until we find a condition on the local states of the separation set C0:

x̂(0;h,r+M) ∈ P(r+M)N

(
F̂−1
r+M−1 Êr+M−1 P(r+M−1)N F̂

−1
r+M−2 Êr+M−2 P(r+M−2)N . . .

F̂−1
r+1 Êr+1 P(r+1)N (F̂−1

r im Êr)
)
.

Then, by using the sequence of subspaces in (5.4), we get

x̂(0;h,r+M) ∈ P(r+M)N

(
F̂−1
r+M−1Mr+M−1

)
.

5.2 Existence of solutions of the local states in

N-D systems

In the case of N -D systems, we show how the first result considered in the previous

section can be generalised in the special case, where a single point in the separation set

CM is considered. The second result can be extended along the same lines.

Consider an N -dimensional system:

E x(i1,i2,...,iN ) = A1 x(i1−1,i2,...,iN ) + . . .+AN x(i1,...,iN−1,iN−1)

+ B1 u(i1−1,i2,...,iN ) + . . .+BN u(i1,...,iN−1,iN−1).

Consider also the separation sets defined, for each k ∈ Z, as

Ck = {(i1, i2, . . . , iN ) ∈ ZN | i1 + i2 + . . .+ iN = k}.

Let M > 0. Consider a local state x(i1,...,iN ) on the separation set CM , i.e.
∑N

j=1 ij =

M . The local state x(i1,...,iN ) depends only a subset of local states on the separation

set CM−k, which is characterised as

x̂(N,0) = xi1,...,iN

x̂(N,k) =
N⊔
j1=1

N⊔
j2=j1

· · ·
N⊔

jk=jk−1

x(i1,...,iN−1j1,...,jk)
, k ≥ 1,

where the sequence of operators
⊔

appends each new element at the bottom of the

vector obtained at the previous iteration and generates the vector at the first iteration,

i.e., when j1 = j2 = · · · = jk = 1.

The operator 1j1,...,jk subtracts 1 to the j`-th index ij` . Note that the sequence j1, . . . , jk

has repeated elements and therefore, multiple subtractions to the same index are al-

lowed.
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For example, for N = 4, k = 3, j1 = 2, j2 = 2 and j3 = 4, we have

x(i1,i2,i3,i4−12,2,4) = x(i1,i2−1−1,i3,i4−1) = x(i1,i2−2,i3,i4−1).

The resulting vector on the separation set CM−3 is

x̂(4,3) =



x(i1−3,i2,i3,i4)

x(i1−2,i2−1,i3,i4)

x(i1−2,i2,i3−1,i4)

x(i1−2,i2,i3,i4−1)

x(i1−1,i2−2,i3,i4)

x(i1−1,i2−1,i3−1,i4)

x(i1−1,i2−1,i3,i4−1)

x(i1−1,i2,i3−2,i4)

x(i1−1,i2,i3−1,i4−1)

x(i1,i2−3,i3,i4)

x(i1,i2−2,i3−1,i4)

x(i1,i2−2,i3,i4−1)

x(i1,i2−1,i3−2,i4)

x(i1,i2−1,i3−1,i4−1)

x(i1,i2−1,i3,i4−2)

x(i1,i2,i3−3,i4)

x(i1,i2,i3−2,i4−1)

x(i1,i2,i3−1,i4−2)

x(i1,i2,i3,i4−3)



.

The input vector û(N,k) on the separation set CM−k can be characterised by using a

machinery that is identical to the one adopted to define x̂(N,k).

Let us define the following matrices:

T
(1)
N,i

def
= Ai,

T
(k)
N,i

def
=


T

(k−1)
N,i ↓ T (k−1)

N,i+1 · · · ↓ T (k−1)
N,N

0 Ai
...

. . .

0 Ai

 ,
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S
(1)
N,i

def
= Bi,

S
(k)
N,i

def
=


S

(k−1)
N,i ↓ S(k−1)

N,i+1 · · · ↓ S(k−1)
N,N

0 Bi
...

. . .

0 Bi

 ,

where the operator ↓ aligns the last row of two consecutive matrices of different dimen-

sions and fills the missing entries with zeros, e.g.,

M =
[
I3×3 ↓ I2×2

]
=

[ [
1 0 0
0 1 0
0 0 1

]
↓
[

1 0
0 1

] ]
=

 1 0 0 0 0

0 1 0 1 0

0 0 1 0 1

 .

Using the introduced notation, we can rewrite the systems’equations in compact form

as[
T

(k)
N,1 ↓ T (k)

N,2 · · · ↓ T (k)
N,N

]
x̂(N,k) +

[
S

(k)
N,1 ↓ S(k)

N,2 · · · ↓ S(k)
N,N

]
û(N,k) = ÊN,kx̂(N,k−1),

with k ≥ 1, where

ÊN,k
def
=


E

. . .

E

 ,
is a block-diagonal matrix of suitable size. The matrix

[
T

(k)
N,1 ↓ T (k)

N,2 · · · ↓ T (k)
N,N

]
has

∑N
j1=1

∑N
j2=j1

· · ·
∑N

jk=jk−1
n columns and

∑N
j1=1

∑N
j3=j2

· · ·
∑N

jk−1=jk−2
q, k > 1

rows. Clearly, when k = 1, the number of rows is dimX = n. Note that the number

of columns evidently coincides with the number of rows of x̂N,k and, interestingly, also

with the number of rows of T
(k+1)
1 , if the system is square.

The number of columns of the matrices
[
S

(k)
N,1 ↓ S(k)

N,2 · · · ↓ S(k)
N,N

]
can be com-

puted by substituting n with m in the previous equation, while the number of rows

is exactly the same. The number of columns evidently coincides with the number of

rows of û(N,k), but we no longer have an equality, in general, between the number of

columns and the number of rows of S
(k+1)
1 , even when the system is square.∗

In view of the previous consideration, it is clear that the matrix ÊN,k has 1 if k = 1,

or
∑N

j1=1

∑N
j2=j1

· · ·
∑N

jk−1=jk−2
1, k > 1, diagonal blocks.

System admits a solution for some x(i1,...,iN ) and arbitrary input, if the local states

∗We have equality when m is equal to the dimension of the outer state space.
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on CM−1 satisfy

im
[
S

(1)
N,1 ↓ S(1)

N,2 · · · ↓ S(1)
N,N

]
⊆ im ÊN,1,

x̂(N,1) ∈
[
T

(1)
N,1 ↓ T (1)

N,2 · · · ↓ T (1)
N,N

]−1
im ÊN,1,

which implies that the local states on CM−2 must satisfy:

im
[
S

(2)
N,1 ↓S

(2)
N,2 ··· ↓S

(2)
N,N

]
⊆ im ÊN,2

[
T

(1)
N,1 ↓T

(1)
N,2 ··· ↓T

(1)
N,N

]−1
im ÊN,1

x̂(N,2) ∈
[
T

(2)
N,1 ↓T

(2)
N,2 ··· ↓T

(2)
N,N

]−1 (
ÊN,2

[
T

(1)
N,1 ↓T

(1)
N,2 ··· ↓T

(1)
N,N

]−1
im ÊN,1

)
.

The following general recursion can be defined as{
MN,1

def
= im ÊN,1

MN,k
def
= ÊN,k

( [
T

(k−1)
N,1 ↓T (k−1)

N,2 ··· ↓T (k−1)
N,N

]−1MN,k−1

)
,

where k > 1, from which the solvability condition for some x(i1,...,iN ) and arbitrary

input can be expressed in terms of the local states on the separation set CM−k as

im
[
S

(k)
N,1 ↓ S(k)

N,2 · · · ↓ S(k)
N,N

]
⊆MN,k, (5.6)

x̂(N, k) ∈
[
T

(k)
N,1 ↓ T (k)

N,2 · · · ↓ T (k)
N,N

]−1
MN,k. (5.7)

By using the same machinery also, the solution of Problem 2 can be provided in

the form of a recursion for the general N -D case. Let us introduce the matrix:

F
(k)
N

def
=
[ [

T
(k)
N,1 ··· ↓T

(k)
N,N

] [
S

(k)
N,1 ··· ↓S

(k)
N,N

] ]
,

where k ≥ 1. By defining the general recursion:{
MN,1

def
= im ÊN,1

MN,k
def
= ÊN,kPℵk−1

(
(F

(k−1)
N )−1MN,k−1

)
k > 1,

where ℵk =
∑N

j1=1

∑N
j2=j1

· · ·
∑N

jk=jk−1
n,∗ the system admits a solution for some

x(i1,...,iN ) and suitable input, if and only if the local states on CM−k satisfy

x̂(N,k) ∈ Pℵk
(
(F

(k)
N )−1MN,k

)
. (5.8)

∗Note that in the 2-D case, when r = 1, we have ℵk = (r + k)N .



Conclusion

In this thesis, the generalisation of the N -D geometric theory on the basis of several pa-

pers on 2-D systems with the two different types of Fornasini-Marchesini models (first

and second order) has been presented. The geometric approach has been developed for

N -D Fornasini-Marchesini first and second order models, which have different proper-

ties. In particular, the development for theN -D case, for all the definitions of subspaces,

together with related properties are found in Conte and Perdon (1988), Ntogramatzidis

et al. (2008) and Ntogramatzidis (2012) for 2-D systems. The most powerful notion in

the geometric approach is the one of controlled invariant subspace, which provides nec-

essary and sufficient conditions for the solution of the disturbance decoupling problem

for the N -D Fornasini-Marchesini second-order model, while it only provides sufficient

conditions of the solution of the disturbance decoupling problem and the model match-

ing problem for the N -D Fornasini-Marchesini first order model. These solutions are

based on the use of the two different methods: output-nulling subspace, and stabili-

sation of the controlled invariant subspace. Furthermore, the necessary and sufficient

conditions for the existence of solutions of the singular Fornasini-Marchesini models in

the geometric framework have been obtained for each one of the two-dimensional cases,

and for the N -D case. In the two-dimensional case, two situations for the problem

of the existence of solutions are considered in order to guarantee the existence, first

for arbitrary input functions, and then, for suitable inputs. Interestingly, the obtained

geometric conditions can be checked recursively through a sequence of subspaces, even

if the model is not recursive in nature. Then, it has been shown how the found pattern

for two-dimensional systems can be generalised to the N -D models, to solve the equiva-

lent problem by using the same machinery. In view of the complexity in the N -D case,

attention is restricted on a single local state vector, instead of a family of local states

on a separation set. However, a general procedure is outlined for those cases where a

set of local states on a certain region of the separation set is assigned. Finally, it is

worth mentioning that some of the approaches developed in this thesis find natural ap-

plication to models, which are even more general than the Fornasini-Marchesini model,

such as the Kurek models.
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APPENDIX A

Linear Algebra

In the sequel, we will give some geometric background about linear algebra and control

theory (definitions and basic properties), which are considered a foundation of the

thesis.

A.1 Vector spaces

Let K be a field. A set of vectors that defines under the operation of vector addition

and scalar multiplication over a field K is called a vector space X , and the following

axioms are satisfied with these two operations:

• x1 + x2 = x2 + x1 for all x1,x2 ∈ X , (commutative law);

• ( x1 + x2) + x3 = x1 + ( x2 + x3) for all x1,x2,x3 ∈ X , (associative law);

• there exists a unique element denoted by 0, that satisfies: 0+x = x for all x ∈ X ;

• for every element of X , there exists an inverse element−x, such that x+(−x) = 0.

• k ( x1 + x2) = k x1 + k x2 for all k ∈ K and for all x1,x2 ∈ X ;

• (k1 + k2) x = k1 x + k2 x for all k1, k2 ∈ K and for all x ∈ X ;

• ( k1 k2) x = k1 (k2 x) for all k1, k2 ∈ K and for all x ∈ X ;

• 1 x = x for all x ∈ X .

In addition, upper- case calligraphic letters such as V,W,X will be used to denote vector

spaces, which are considered to be of a finite dimension , The field K is also supposed

to be real numbers R or complex numbers C.

A.2 Subspaces

A subset V of the vector space X over the field K, along with the two operations of

vector addition and scalar multiplication, is a subspace, if it is itself a vector space.
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A.3 Spanning set

Let x1,x2, . . . ,xn ∈ X , where X is defined over K. Their span is written span

{x1,x2, . . . ,xn} or span{xi, i ∈ K}, which is the set of all linear combinations of the xi

with coefficients in K.

A.4 Linear independence

Let S = {x1, . . . ,xn} be a set of vectors of X . If there exist scalars {c1, . . . , cn} of K,

such that, the relation
∑n

i=1 ci xi = 0 implies ci = 0 for all i = 1, . . . , n, then the set S

is said to be linearly independent.

A.5 Basis of a vector space

A basis for the vector space V over the field K is a subset of V, which is a spanning set

for V and is linearly independent.

The basis of V determines the dimension of V, which is the number of vectors of this

basis for the vector space.

A.6 Basis matrices of subspaces

Let V be a subspace of Kn with a dimension r, V can be represented by a basis matrix

V of Kn×r such that its columns are linearly independent and span V, i.e., (im V = V
and kerV = {0}). The number of columns of a basis matrix for such subspace gives

the dimension of a subspace.

A.7 Linear transformation

Let X and Y be two vector spaces defined over the same field K. A mapping A of X
into Y is said to be a linear transformation if

A( x1 + x2) = A(x1) + A(x2), ∀ x1, x2 ∈ X , (A.1)

and

A(k x) = kA(x), ∀ k ∈ K,∀ x ∈ X , (A.2)
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or (A.1) and (A.2) can be written together as

A(k1 x1 + k2 x2) = k1A(x1) + k2A(x2), ∀x1, x2 ∈ X k1, k2 ∈ K. (A.3)

A.8 From maps to matrices

Consider a basis {x1,x2, . . . ,xn} of X and a basis {y1,y2, . . . ,ym} of Y , and let A be

a linear transformation from X to Y over K, then

A(x1) = a1,1 y1 + a2,1 y2 + . . .+ am,1 ym

A(x2) = a1,2 y1 + a2,2 y2 + . . .+ am,2 ym
...

A(xn) = a1,n y1 + a2,n y2 + . . .+ am,n ym,

where for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, ai,j ∈ K. This consideration shows

that a linear map A operates on every vector of X . Indeed, for all x ∈ X , there exist

coefficients ξ1, ξ2, . . . , ξn ∈ K, since x can be written as a linear combination of vectors

of the basis of X as:

x = ξ1 x1 + ξ2 x2 + . . .+ ξn xn.

Thus,

A(x) = A (ξ1 x1 + ξ2 x2 + . . .+ ξn xn)

= ξ1A (x1) + ξ2A (x2) + . . .+ ξnA (xn)

= ξ1 (a1,1 y1 + a2,1 y2 + . . .+ am,1 ym) + ξ2 (a1,2 y1 + a2,2 y2 + . . .+ am,2 ym)

+ . . .+ ξn (a1,n y1 + a2,n y2 + . . .+ am,n ym)

= (a1,1 ξ1 + a1,2 ξ2 + . . .+ a1,n ξn) y1 + (a2,1 ξ1 + a2,2 ξ2 + . . .+ a2,n ξn) y2

+ . . .+ (am,1 ξ1 + am,2 ξ2 + . . .+ am,n ξn) ym,

where A(x) can be written by vectors of components

[
a1,1 ξ1+a1,2 ξ2+...+a1,n ξn

...
am,1 ξ1+am,2 ξ2+...+am,n ξn

]
, with

respect to the basis {y1,y2, . . . ,yn} of Y, and these components can be computed as
a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n




ξ1

ξ2

...

ξn

 =


a1,1 ξ1 + a1,2 ξ2 + . . .+ a1,n ξn

a2,1 ξ1 + a2,2 ξ2 + . . .+ a2,n ξn
...

am,1 ξ1 + am,2 ξ2 + . . .+ am,n ξn

 .
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Definition 46. The matrix

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 ∈ Kn×m,

is the matrix ofA with respect to the given basis of X and Y, where (a1,i, a2,i, . . . , am,i)
>

is the column of A (xi) with respect to {y1,y2, . . . ,yn}.

A.9 Changes of basis

Let A : X −→ Y be a linear transformation over the field K, and it is represented by

a matrix A with respect to the bases of X and Y. A change of basis is defined by two

matrices P ,Q over the field K, where P and Q are nonsingular and their columns are

the vectors of the new basis, expressed with respect to the old ones. If x,y and ξ,η are

the old and new coordinates respectively, then x = Pξ, y = Qη, and we obtain

η = Q−1APξ = A′ξ,

where

A′
def
= Q−1AP.

Remark A.1. As a special case, if A is a map from X into itself, then a unique change

of basis is represented by the transformation is T = Q = P , and it follows that

η = T−1ATξ = Áξ,

where

A′
def
= T−1AT.

A.10 Image and null-space of a linear transfor-

mation and matrix

For any linear transformation A : X −→ Y, the image and null-space (or kernel) are

the two fundamental concepts that can be defined as
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(i) im A def
= {y ∈ Y | ∃ x ∈ X : y = A (x)},

(ii) ker A def
= {x ∈ X | A (x) = 0}.

Note that im A is a subspace of Y, while ker A is a subspace of X . However, the

image and null-space of A, where A is the matrix of A, with respect to the given bases

of X and Y, and A ∈ Km×n, n,m ∈ N \ {0} are defined as

(i) im A
def
= {y ∈ Km | ∃ x ∈ Kn : y = A (x) },

(ii) ker A
def
= {x ∈ Kn | A (x) = 0},

where im A is a subspace of Km and ker A is a subspace of Kn.

A.11 Rank and nullity of a matrix

The dimension of im A is referred to as the rank of A, that equals the number of its

linearly independent columns, while the nullity of A is the dimension of ker A, i.e.,

dim(im A) = rank A,

dim(ker A) = n− rank A.

If A : X −→ Y is a linear transformation, there holds

dim (X ) = dim (ker A) + dim (im A).

A.12 Direct sum

The direct sum of two vector spaces X and Y can be defined as the vector space:

X ⊕ Y =

{[
x

y

] ∣∣∣x ∈ X and y ∈ Y

}
.

The direct sum V⊕W of two subspaces V andW of Xand Y respectively, is a subspace

of X ⊕ Y. Moreover, if V is a basis matrix of V and W is a basis matrix of W, then a

basis matrix for V ⊕W is given by

diag{V,W} =

[
V 0

0 W

]
.



A.13 Orthogonal complement 121

A.13 Orthogonal complement

The orthogonal complement of a subspace V of Rn is defined as

V⊥ def
= {y ∈ Rn | y> x = x> y = 0, ∀x ∈ V}.

From the direct sum, we have V ⊕ V⊥ = Rn.

Lemma A.1. Let V and W be two subspaces of Rn, where V ⊆ W. Then,

• (V⊥)⊥ = V,

• V⊥ ⊇ W⊥.

To represent a subspace in a matrix form, there is an alternative way. A full row-

rank matrix is the dual of a full column-rank matrix. Therefore, via both, we can

represent the same subspace. A subspace V of dimension r can be represented by

a full row-rank matrix Q ∈ R(n−r)×n. In other words, Q satisfies (ker Q = V and

imQ = Rn−r).
When V is a basis matrix of the subspace V, we notice that the condition imV = V is

equivalent to the fact that V is of full columns-rank. Dually, the second condition of the

last relation imQ = Rn−r is equivalent to Q having full rows-rank. Stated differently,

Q> is a basis matrix of V⊥ such that imQ> = V⊥ and kerQ> = {0}. The orthogonal

complement of both sides of imQ> = V⊥ yields kerQ = V, and kerQ> = {0} shows

that Q> has linearly independent columns. The same is true about Q, that of having

linearly independent rows.

A.14 Sum of subspaces

The sum of two subspaces V and W of the same vector space X is defined as

V +W def
= {v + w ∈ X | v ∈ V and w ∈ W}.

Moreover, V+W is itself a subspace of X , which is the smallest subspace of X containing

the union V ∪W. For any two basis matrices V and W , respectively of the subspaces

V and W of the same vector space X , we have

V +W = imV + imW = im
[
V W

]
.
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A.15 Intersection of subspaces

The intersection of the two subspaces V and W of the same vector space Rn is defined

as

V ∩W = {z ∈ Rn | z ∈ V and z ∈ W}.

The intersection V ∩ W can never be an empty set. This is because, any subspace of

X contains the origin, then the intersection V ∩W contains at least the zero subspace

{0}. The intersection V ∩W is the largest subspace of Rn contained in both V and W.

Let V and W be two basis matrices of the two subspaces V and W of the same vector

space respectively. We have (V ∩W)⊥ = V⊥ +W⊥, which is equivalent to

V ∩W = (V⊥ +W⊥)⊥.

Lemma A.2. [Strang (1993)] Let V and W be subspaces of Rn and let A ∈ Rm×n.

Then,

A (V +W) = AV +AW, (A.4)

A (V ∩W) ⊆ AV ∩AW. (A.5)

Remark A.2. The subspace W of Rn is contained in the subspace V of Rn, if and

only if

V +W = V, (A.6)

V ∩W = W. (A.7)

Remark A.3. The union V ∪W in general is not a subspace of X , unless one subspace

is contained within the other.

A.16 Grassmannian

The Grassmannian G(X ) of a vector space X of dimension n consists of all the subspaces

of X . Specifically, the set of all subspaces of dimension r of X is always denoted by

Gr(X ), where r ∈ {0, . . . , n}. There holds,

G(X ) =

n⋃
r=0

Gr(X ).

The Grassmannian of any vector space cannot be empty because it contains at least the

origin and X . Indeed, the addition and intersection of subspaces are two operations that
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{0}

V ∩W

WV

V +W

X

Figure A.1: Lattice (G+,∩;⊆(X )).

can be defined in G(X ). This is because the addition and intersection of two subspaces

of X is a subspace of X . Figure A.1 shows these relations among subspaces, and it is

usually called a Hasse diagram or lattice diagram. In particular, each element of G(X )

in a Hasse diagram is represented as a node and a rising branch from one subspace to

an another is where the last subspace contains the previous subspace. There are two

nodes representing two subspaces of G(X ) in the middle of a Hasse diagram that are

not connected with the branches (Trentelman et al., 2001).

Remark A.4. Let V, W and S be subspaces of X . Then,

• The Grassmann formula for all pairs of subspaces V and W is given by

dim(V +W) = dim(V) + dim(W)− dim(V ∩W).

Specifically, if V ∩W = {0}, then dim(V +W) = dim(V) + dim(W).

• The Grassmannian of a vector space in every lattice has a maximum and mini-

mum. The addition of all subspaces of X gives the maximum, which is X ; while

the minimum is given by the intersection of all subspaces of X , which is the origin

of X :

maxG(X ) =
∑
S∈G(X )

S = X ,

minG(X ) =
⋂

S∈G(X )

S = {0}.

Theorem A.1. Given a vector space X of dimension n, the Grassmannian of X is a

lattice with respect to the binary operations of subspace addition and intersection, and

with respect to the inclusion ⊆. In symbols, (G+,∩;⊆(X )) is a lattice.
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Lemma A.3. Consider the subspaces V,W and Z of Rn. There hold

V ∩ (W + Z) ⊇ (V ∩W) + (V ∩ Z), (A.8)

V + (W ∩Z) ⊆ (V +W) ∩ (V + Z). (A.9)

However, if any one of these subspaces is contained in any of the others, the previous

relations carry with the equality sign, i.e.,

V ∩ (W + Z) = (V ∩W) + (V ∩ Z), (A.10)

V + (W ∩Z) = (V +W) ∩ (V + Z). (A.11)

A.17 Inverse image of a subspace

Consider A : X −→ Y is a linear map from a vector space X into a vector space Y. Let

H be a subspace of Y, the inverse image of H with respect to A is given by

A−1H def
= {x ∈ X |Ax ∈ H}. (A.12)

It seems clear that, A−1H is a subspace of X , without consideration if A is invertible

or not, and we have

dim(A−1H) = dim(kerA) + dim(H ∩ imA). (A.13)

In addition,

A−1 {0} = {x ∈ X |Ax = 0} = ker A, (A.14)

A−1 Y = {x ∈ X |Ax ∈ Y} = X . (A.15)

There holds

A−1H = (A>H⊥)⊥.

Lemma A.4. Let H and K be two subspaces of Rm and let A ∈ Rm×n. Then,

(A−1H)⊥ = A>H⊥, (A.16)

A−1 (H ∩K) = A−1H ∩A−1K, (A.17)

A−1 (H+K) ⊇ A−1H+A−1K, (A.18)

A (A−1H) = H ∩ imA, (A.19)

A−1 (AV) = V + kerA. (A.20)
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A.18 Change of coordinates

Let V be a subspace of a vector space X with dimension r and a basis matrix V . A

matrix T =
[
T1 T2

]
describes a change of coordinates in X , where the r columns

of T1 form a basis for V, and T2 is orthogonal to T1. A basis matrix for V in the new

basis is

V ′ = T−1 V =

[
Ir

0

]
.

Moreover, a vector x of V with respect to the transformed basis is given by

xnew = T−1 x =

[
x1

0

]
,

where x1 is r-dimensional.

Proposition A.1. Let A ∈ Rn×m, let V be a subspace of Rn, and let W be a subspace

of Rm. Let V and W be two basis matrices of V and W, respectively. The following

two statements are equivalent:

(i) AV ⊆ W,

(ii) there exists a matrix X ∈ RdimW×dimV , such that AV = W X.

Proof: We prove that (i) implies (ii). Let us denote by vi, the i-th column of V and

by wi, the i-th column of W , so that V = [ w1 w2 . . . ws ]. Then, {v1, . . . ,vr}
and {w1, . . . ,ws} are bases for V and W respectively. Since Avi ∈ W for every

i ∈ {1, . . . , s}, we can write Avi as a linear combination of the vectors w1, . . . ,ws,

using suitable coefficients ξi,k, i.e.,

Av1 = w1 ξ1,1 + w2 ξ1,2 + . . .+ ws ξ1,s,

...

Avr = w1 ξr,1 + w2 ξr,2 + . . .+ ws ξr,s.

These equations can be written as A [ v1 v2 . . . vr ] = [ w1 w2 . . . ws ]X,

where

X =

 ξ1,1 ξ2,1 ... ξr,1
ξ1,2 ξ2,2 ... ξr,2
...

...
. . .

...
ξ1,s ξ2,s ... ξr,s

 .
We now show that (ii) implies (i). Let v ∈ V. Then, v can be written as a linear

combination of the columns of V , which are a basis for V, i.e., there exist α1, . . . , αr ∈ R,
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such that v = α1 V
1 + α2 V 2 + . . .+ αr V r. Let α

def
=

[ α1

...
αr

]
. Then, using (ii),

Av = AV α = W X α ∈ imW =W.

Proposition A.2. Let A ∈ Rn×m, let V be a subspace of Rn, and let W be a subspace

of Rm. Let Q and T be two full row-rank matrices, such that kerQ = V and kerT =W
respectively. The following two statements are equivalent:

(i) AV ⊆ W,

(ii) there exists a matrix Y of suitable size, such that T A = Y Q.

Proof: We begin proving that (i) implies (ii). Clearly, (i) can be written as A kerQ ⊆
kerT , which implies T A kerQ = {0}. Therefore, kerQ ⊆ ker(T A), which in turn

implies that there exists Y such that T A = Y Q. We prove that (ii) implies (i). Let

v ∈ V. We have Qv = 0, and using (ii) we find T Av = Y Qv = 0. This gives

Av ∈ kerT =W.

A.19 Quotient spaces

Let V be a subspace of the vector space X . The equivalence relation

x ∼ x̃ ⇔ x− x̃ ∈ V, (A.21)

on X satisfies these conditions: it is reflexive (since x− x = 0 ∈ V), symmetric (since

x − x̃ ∈ V ⇔ x̃ − x ∈ V) and transitive (if x1 − x2 ∈ V and x2 − x3 ∈ V, by linearity

x1 − x3 = (x1 − x2) + (x2 − x3) ∈ V). Therefore, X is divided into sets, so that their

intersection is empty. Each set contains all the vectors that are equivalent to a given

vector. Together, all these sets are called equivalent classes of X modulo V, and it is

denoted by X (mod V) or X/V. The class of the vectors that are equivalent to a vector

x of X is denoted by [x].

Definition 47. Let V be a subspace of a vector space X over the field R. Quotient

space of X over V (or modulo V) is defined as the set X/V of the equivalence classes

of X modulo V.

In X/V, both operations of addition and multiplication by scalar can be defined as:

(x + V) + (y + V)
def
= (x + y) + V ∀ x,y ∈ X , (A.22)

α (x + V)
def
= (αx) + V ∀ α ∈ R, ∀ x ∈ X , (A.23)

which prove that X/Y is a vector space over the field R.



A.20 Eigenvalues 127

Theorem A.2. If X has a finite dimension n and if (x1,x2, . . . ,xm) (with m < n)

is a basis for V, let (xm+1,xm+2, . . . ,xn) complete the previous basis to a basis for X .

Then, the classes

[xm+1], [xm+2], . . . [xn],

constitute a basis for X/V. If m = n, V coincides with X , and X/V contains only the

zero class.

Corollary A.1. If V is a subspace of X , the dimensions of X , V and X/V satisfy

dim(X ) = dim(V) + dim(X/V). (A.24)

In particular, if V has a finite dimension, we have

dim(X/V) = dim(X )− dim(V). (A.25)

See more about quotient spaces in Trentelman et al. (2001).

A.20 Eigenvalues

An eigenvalue of a matrix A ∈ Rn×n is a real or complex number λ, such that Av = λv

for a certain nonzero vector v ∈ X . The spectrum of A is the set of all eigenvalues and

it is denoted by σ(A), i.e., λ ∈ σ(A) if and only if det(λ I − A) = 0. The maximum of

the spectrum is called spectral radius ρ (A) and is defined as follows:

ρ (A) = max {|λ| |λ ∈ σ(A)}.
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