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Geographical and Temporal Changes of Reef Fish (Labridae) 

Assemblages: A Case Study of South Western Australia. 

Abstract 

The main objective of this research was to assess the impact of recent sea surface 

temperature rise and heat wave disturbance on Labridae assemblages (a conspicuous 

and diverse family of reef fish) along the South-Western Australian (SWA) coastline 

between 2006 and 2015. Contemporary global trends of climate change have seen 

many marine ecosystems experience unprecedented temperature increase and habitat 

change. The frequency of marine disturbance events is predicted to increase with 

simultaneous increases in sea surface temperature. However, an understanding of 

how these disturbances will impact marine habitats and the organisms living within 

them remains, poorly understood for temperate marine assemblages. South-Western 

Australia has highly heterogeneous marine habitats with a large number of endemic 

species. South-Western Australia has recently been recognised as a marine warming 

hot spot with sea surface temperature and heat wave events predicted to increase in 

the future, greater than the global average. A marine heatwave in 2011 had broad 

impacts on the local marine assemblages in SWA. 

Abundance data, habitat variables and Sea Temperature (ST) were analysed to 

determine if the documented changes in sea surface temperature were impacting the 

assemblage structure, composition and distribution of labrid fishes. Differences in 

the assemblage structure and distribution of labrids were observed between 2006 and 

2015. Warm water labrids were documented in all of the seven regions in 2015 and 

at locations and reefs where they were either not seen, or rarely seen in 2006. All 

labrids had increased in abundance, with the exception of three temperate species, 

two of which were large, slow growing species. Some warm-water labrids that were 

rarely observed in 2006, had become so pronounced and influential in their 

respective assemblages in 2015, that in a multivariate regression tree analysis, they 

were considered the top indicator for their assemblage. While the structure and 

composition of labrid assemblages changed significantly in all regions, the scale of 

change was larger in the northern, warmer regions than the cooler regions, with the 
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changes in the marine assemblages mostly being explained by increased ST, physical 

reef structure and change in kelp cover. 

The length frequency distributions and biomass were assessed by climatic affiliation 

and trophic function to determine if labrids are changing their distributional ranges 

and successfully establishing outside their previous ranges. It was clear that there 

was a distinct poleward movement of labrids, with species being observed in areas in 

2015 where they were not present in 2006. Many of the warm-water labrids also 

showed signs of successful establishment, with juvenile, mature female and mature 

male individuals all being present. The presence of multiple generations of warm-

water species suggests that the species are recruiting successfully into regions in 

2015 where they did not survive in 2006. Biomass also increased for most species of 

labrids with the exception of A. gouldii and B. frenchii. Taken together, the trends 

seen in this study indicate that these two species are likely decreasing in numbers due 

to climate change and fishing pressure. Lastly, we have seen the inundation of a new 

functional group of warm-water grazing herbivores (scarine labrids, or parrotfishes) 

in the northern warmer regions. Following disturbance caused by climate change, 

these scarine labrids have shown the capacity to maintain an altered habitat structure 

and could continue to influence the SWA coastline if they are able to migrate further 

south. 

The data presented in this study supports the pattern of marine assemblages and 

habitat changing due to increased ST. It also shows that species are moving and 

establishing poleward, beyond their 2006 ranges. The most significant changes were 

in the warmer- northern regions of SWA. However, there was still a significant 

change in the cooler temperate waters. The changes in the SWA labrid population 

demonstrate their potential as valuable indicator group for the marine assemblage. 

Through this study on the family Labridae, I have generated a current picture of the 

SWA marine assemblages and in doing so have created a platform to launch further 

research to understand the processes and interactions driving change, and to model 

the impacts of climate change in SWA.  



 

vii 

Authors Contributions  

Chapter 2. In review. Please see Appendix C for signed author contribution statement 

 

Chapter 2: Parker, J., Saunders, B., Bennett, S., DiBattista, J., Shalders, T., Harvey, 

E. 2018. A decade of change: Shifts in Labridae geographical distribution along a 

unique and dynamic coastline. Submitted to the Journal of Diversity and 

Distributions. 

Author contribution: JP wrote and edited the manuscript, analysed and executed 

the data analysis and the development of figures and tables. JP, ES, BS and SB 

designed the study. EH and BS contributed to the manuscript, developed concepts 

and figures, secured funding and provided guidance. BS and SB contributed to raw 

data analysis. All co-authors reviewed and commented on the manuscript. 

 

Chapter 3. Un-submitted Thesis Chapter 

 

Chapter 3: The successful recruitment and establishment of range-shifting warm-

water Labridae in temperate South Western Australia. 

Author contribution: JP wrote and edited the manuscript, analysed and executed 

the data analysis, figures and tables. JP, ES, BS and SB designed the study. EH and 

BS reviewed and edited the chapter, helped with figure synthesis and provided 

guidance. BS and SB contributed to raw data analysis. All Supervisors reviewed and 

commented on the Chapter. 

 





 

ix 

Acknowledgements 

I would like to take this opportunity to acknowledge and give my profound gratitude 

to the people who have supported and guided me throughout my masters, without 

which, none of this would have been possible. 

I would firstly like to thank my supervisors Euan Harvey, Ben Saunders, Scott 

Bennett and Joey DiBattista. Thank you all for your support, encouragement and 

keeping me on track when I went off on tangents. A special thank you to Euan 

Harvey who initially agreed to take me on as a master’s student (even though he 

knew little about me) and for showing me the right way to handle my thesis at its 

many stages. Also a special thank you to Ben Saunders who put up with me coming 

to him with millions of questions, his statistical knowledge and always being happy 

to get a coffee with me when he saw that I needed to de-stress. Both of them also 

continuously drove me to accomplish more than just my Masters.  

I would like to thank all of the volunteers who helped with the Stereo-DOV field 

work: Scott Bennett, Matt Birt, Nader Boutros, Megan Cundy, Damon Driessen, 

Ronen Galaiduk, Euan Harvey, Jeff John, Rowan Kleindienst, Jarrad Martino, Ben 

Saunders, Tanika Shalders and Bryn Warnock, who had to deal with long days and 

freezing cold waters. Also to: Beau Christopher De Groot, Jarrad Martino and Brae 

Price for volunteering their time for video data analysis. Without your help the field 

work would never had been completed. 

I would also like to thank the data analysis team in the Fish Ecology Lab: Damon 

Driessen, Laura Fullwood, Lauren Munks and Lizzy Myers, thank you for all your 

hard work, the many hours of data analysis and for being patient enough to teach me 

how to effectively analyse the videos. 

A special thank you to all my office crew, who would always be happy to chat and 

get a drink with, especially to Maarten De Brauwer, who babysat me in a foreign 

speaking country and taught me the many destressing values of juggling balls. Thank 

you also to Associate Professor Thomas Mejtoft for giving his thoughts on my 

conclusions. 



x 

 

Thank you to my many friends and family for their support throughout this Masters. 

Thank you to Jake Ronald for always being happy to talk anything about marine 

ecology, testing my knowledge and spurring me on to look at things from a different 

perspective. Thank you to Michael Conlon for always being able to take my mind of 

work with our many adventures and visiting me often to check my sanity. A special 

thank you to John Cripps, Verity Cripps and Helen Cripps for supporting, fussing 

over me and making sure I was on track to finish. 

Thank you to my parents, who always supported and believed in me. Thank you to 

Mum, for always checking up on me and always listening to me and to Dad for 

sparking my initial interest in the marine environment and making sure I got my dive 

licence when I was old enough. Finally a huge thank you to Lucienne Ambrose for 

putting up with the long nights staying up all night, for all the field work, me 

working weekends on my masters and reading large sections for grammatical errors. 

Words cannot describe how grateful I am to you, without your encouragement and 

understanding none of this would have been possible. 

 



 

xi 

Table of Contents 

Author’s Declaration ................................................................................................................... iii 

Abstract .........................................................................................................................................v 

Authors Contributions ................................................................................................................ vii 

Acknowledgements ..................................................................................................................... ix 

Table of Contents ........................................................................................................................ xi 

List of Figures .............................................................................................................................xv 

List of Tables ........................................................................................................................... xvii 

List of Abbreviations ................................................................................................................ xix 

Chapter 1 General Introduction ..............................................................................................1 

 Introduction ............................................................................................................2 

 Trends of changing environment ...........................................................................2 

 Range shifts ...........................................................................................................2 

 Western Australia marine habitat ..........................................................................3 

 Recent climatic trends in WA ................................................................................3 

 Labridae .................................................................................................................4 

 Ecology of cool-water labrids ................................................................................4 

 Ecology of warm-water labrids ..............................................................................5 

 Labridae in the South west of Western Australia ..................................................5 

 Need for further research .......................................................................................6 

 Why I conducted this study ...................................................................................7 

 Thesis Layout .........................................................................................................8 

 Thesis map .............................................................................................................8 

 Chapter 2 ................................................................................................................8 

 Chapter 3 ................................................................................................................9 

 Study area ............................................................................................................10 

Chapter 2 A decade of change: Shifts in Labridae geographical distribution along 

a unique and dynamic coastline. ..........................................................................13 

 Abstract ................................................................................................................14 

 Introduction ..........................................................................................................16 

 Methods ...............................................................................................................20 

 Study design .........................................................................................................20 

 Survey Method .....................................................................................................21 

 Image analysis......................................................................................................22 



xii 

 

2.3.3.1 Abundance quantification ............................................................................22 

2.3.3.2 Habitat Analysis ...........................................................................................22 

2.3.3.3 Sea Surface Temperature .............................................................................23 

 Statistical analysis ................................................................................................23 

2.3.4.1 Assemblage ..................................................................................................23 

2.3.4.2 Abundance ...................................................................................................24 

 Results ..................................................................................................................25 

 Geographical changes and patterns of labrid densities. .......................................25 

 Discussion ............................................................................................................31 

 Temperature change .............................................................................................31 

 Decline in temperate water species ......................................................................33 

 Habitat loss ..........................................................................................................35 

 Recommendations and conclusion .......................................................................36 

Chapter 3 The successful recruitment and establishment of range-shifting warm-

water Labridae in temperate South Western Australia. .......................................39 

 Introduction ..........................................................................................................40 

 Distribution of marine species .............................................................................40 

 Changing ecosystems ...........................................................................................42 

 Successful establishment .....................................................................................42 

 Western Australia ................................................................................................43 

 Labridae ...............................................................................................................44 

 Aims .....................................................................................................................44 

 Method .................................................................................................................46 

 Site description ....................................................................................................46 

 Study design .........................................................................................................46 

 Survey Method .....................................................................................................47 

 Image analysis......................................................................................................48 

 Statistical analysis ................................................................................................48 

3.2.5.1 Length - Individual .......................................................................................48 

3.2.5.2 Length - climate association .........................................................................49 

3.2.5.3 Biomass climate association ........................................................................49 

3.2.5.4 Biomass Trophic level..................................................................................50 

 Results ..................................................................................................................51 

 Discussion ............................................................................................................62 

 Naturalisation / establishing populations .............................................................62 

 Overall increase in biomass .................................................................................63 

 Vulnerable temperate species ..............................................................................64 

 Distribution of tropical herbivores and their establishment .................................65 



 

xiii 

 Consumption of juveniles by larger labrid species ..............................................66 

 Great Southern reef ..............................................................................................67 

 Conclusion and recommendations .......................................................................68 

Chapter 4 General Discussion ..............................................................................................69 

 Summary of findings ...........................................................................................70 

 Limitations of the thesis .......................................................................................73 

 Future implications for assemblages in SWA- ....................................................73 

4.3.1 Labrid assemblage competition ...........................................................................73 

4.3.2 Implications for other families of marine species ................................................74 

 Future implications- management........................................................................74 

4.4.1 Predicted continued climate change .....................................................................74 

4.4.2 Evidence of impact on fisheries important, long-lived species ...........................75 

 Future research .....................................................................................................76 

4.5.1 Depth ....................................................................................................................76 

4.5.2 Other families ......................................................................................................77 

4.5.1 Study over whole species ranges .........................................................................77 

4.5.2 Ecological impacts of species distributions changing .........................................78 

 Conclusion ...........................................................................................................78 

Bibliography 81 

Appendix A Chapter 2 ............................................................................................................103 

Appendix B Chapter 3 ............................................................................................................111 

Appendix C Contributions to Chapter 2 .................................................................................123 

 





 

xv 

List of Figures 

Figure 1:1 Conceptual flow diagram summarising the general structure of this thesis 

and its relative background. .................................................................................11 

Figure 2:1: Survey area illustrating the seven geographical regions surveyed. Within 

each region four locations are also illustrated. Leeuwin Current is 

depicted by the black lines and the Capes Current is indicated by the 

white lines. The seven geographical regions that were surveyed north-

west to south-east were: 1 Geraldton, 2 Jurien Bay, 3 Perth, 4 South-

western Capes, 5 Albany, 6 Bremer Bay and 7 Esperance (Saunders 

et al. 2014). ..........................................................................................................21 

Figure 2:2: nMDS of the centroids of labrid assemblages for all seven regions 

(Geraldton, Jurien Bay, Perth, Capes, Albany, Bremer Bay and 

Esperance) in 2006 and 2015, with the most strongly correlated species 

overlaid as vectors. All differences between region and years were 

significant at α=0.05. ...........................................................................................26 

Figure 2:3 Multivariate regression tree analysis of the abundance of labrid species 

over the seven sampling regions of the southwest coast. The MRT is 

constrained by categorical benthic habitat, depth and longitude. At the 

centre of each split there is a value noting the percent of variation in the 

species abundance data explained by the split. Overall the tree 

explained a total of 40% of the variation in the transformed species 

abundance. Each split (node) is made up of both 2006 and 2015 

assemblage data. The regions from each year that are encompassed by 

each terminal node are listed below them, followed in parentheses ‘()’ 

by the number of sites from each region that are included in the node. ..............28 

Figure 2:4 Multivariate regression tree analysis of the abundance of labrid species 

over the seven sampling regions along the southwest coast, depicting 

the indicator species identified for each terminal node. Each of the 

species is presented, followed by the Dufrêne and Legendre index (DLI) 

value. DLI and associated P values are summarized in Table App A:4. .............29 

Figure 3:1: Depicts the 7 geographical regions surveyed and the 4 locations (shown by 

the white crosses) nested within each. Leeuwin Current is depicted by 

the black lines and the Capes Current is indicated by the white lines. 

The seven geographical regions that were surveyed from northernmost 

to southern and around to easternmost where: 1) Geraldton; 2) Jurien 

Bay; 3) Perth; 4) South-West Capes; 5) Albany; 6) Bremer Bay; and 7) 

Esperance. ............................................................................................................46 

Figure 3:2: length frequency analysis of labrids with Temperate (blue), Sub-tropical 

(green) and Tropical (red) climate affiliations. Left column represents 

the 2006 data and the right the 2015 data. Regions 1 to 7 are from warm 

to cool, north to southeast geographically. Black star indicates 

statistically significant difference between years (Kolmogorov-Smirnov 

tests α=0.05). ........................................................................................................54 

file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378175
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378176
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378176
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378176
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378176
file:///C:/Users/Parker/Documents/masters%20at%20curtin/Thesis/re-sub/final%20re-sub%20docs/Jack%20Ryan%20Cripps%20Parker%20Masters%20resubmission%20%20.docx%23_Toc5378176


xvi 

 

Figure 3:3: Shows two bar plots depicting the biomass of each climatically affiliated 

species over the study regions of 2006 (Left) and 2015 (Right). 

Temperate Data is shown in Blue; Sub-Tropical indicated by Green and 

Tropical species biomass is indicated in Red. . Black stars above certain 

regions and climate association biomass indicate a significant difference 

in biomass (P value< 0.05) from the pair wise test for climate 

association over year by region. ..........................................................................57 

Figure 3:4: Biomass of the five different trophic levels of labrids. Each trophic 

biomass is associated with either Tropical, Sub-Tropical or Temperate 

climatic affiliations. The five tropic levels are Herbivores ( ), 

Generalist Carnivores ( ) Small Invertivores ( ), Large Invertivores (

) and Omnivore ( ). Where a PERMANOVA test was significant 

between years (α>0.05) a white star was used to indicate this on the 

figure. Where there was a significant Pairwise test between year × 

Region a black star was placed over that region and functional group. ...............59 

Figure 4:1 Updated flow diagram detailing the outcomes and the future research 

possibilities identified in this study. ....................................................................72 

 

Figure App A: 1 Mean yearly sea surface temperature of the seven survey regions with 

linear trend line overlayed from the initial 2006 study (White Squares), 

during the marine heatwave in 2011 (Black Diamonds) and the current 

recent survey in 2015 (Grey Triangles). ............................................................103 

Figure App A: 2 Mean densities (per 125m2) in 2006 (dark bars) and 2015 (Light 

Bars) of the 15 most abundant indicator labrid species at each of the 

seven regions. The regions consist of four locations, which in turn have 

four sites nested within them (n-4). ...................................................................109 

 

Figure App B: 1 Length frequency analysis for select labrid species A (A. gouldii), B 

(B. frenchii), C (C. auricularis), D (C. rubescens), E (N. parilus), F (O. 

lineolatus), G (S. ghobban / schlegeli) and H (T. lunare). The figure 

depicts 2006 lengths (blue) and 2015 lengths (red). Graphs were 

overlaid with age of estimated maturity from literature however they are 

highly variable; darker indicates length when juveniles first become 

mature females and lighter were females change to males A Pairwise 

test between year × region was run and a black star was placed over that 

region to indicate a significant result at that region however this could 

not be done for region when a species was not present for either 2006 or 

2015. ..................................................................................................................120 

 



 

xvii 

List of Tables 

 

Table 2:1 Three factor PERMANOVA on the fourth root transformed densities of 

each labrid assemblage across the seven regions. year, region and 

location are fixed factors. Significant change (at α=0.05) were displayed 

in bold. .................................................................................................................27 

Table 3:1 PERMANOVA tests for the biomass of labrid with the 3 different climate 

affiliations (Temperate, Sub-Tropical and Tropical) Bold P-Values 

indicate significant result (P-value < 0.05). .........................................................56 

Table 3:2 Results of PERMANOVA tests of the labrid biomass of the three climate 

affiliated categories split into a further five trophic classifications 

(Herbivores, Large invertivores Omnivores, Generalist Carnivores and 

Small Invertivores) over the seven regions sampled encompassing both 

years. Bold P-Values indicate significant result (P-value < 0.05). ......................60 

 

Table App A: 1 Results of post-hoc PERMANOVA test of the different labrid 

assemblages for the interaction of year by location, grouped into the 

seven sampling regions. The significant differences (α=0.05) are 

indicated in bold.................................................................................................104 

Table App A: 2 Details of the splits in the MRT in Figure 2:3 and Figure 2:4. 

Assemblage column describes the splits and nodes in the tree, followed 

by the number of sites included at that level. The species that are most 

associated with that split or node based upon their Dufrêne and 

Legendre index (DLI) values. As a description of the assemblage at 

each terminal node the range of species richness (means ± s.e. site-1) 

and range of abundances (means ± s.e. site-1) within a species are also 

given. .................................................................................................................106 

 

Table App B: 1 Supporting literature for labrid climatic affiliation and trophic groups ..........112 

Table App B: 2 PERMANOVA tests differences in the length frequency distributions 

of species across different regions and years of the labrid climate 

association that were analysed above in Figure 3:2 and the individual 

species length frequency’s Figure App B:1. Bold P-Values indicate 

significant result (P-value < 0.05). .....................................................................121 

 





 

xix 

List of Abbreviations 

BRUV-Baited Remote Underwater stereo-Video 

DLI- Dufrêne and Legendre Index 

DOV- Diver Operated stereo-Video 

GRS- Great Southern Reef 

LC- Leeuwin Current 

MRT- Multivariate Regression Tree 

nMDS- Non-metric Multidimensional scaling 

PERMANOVA- Permutational Multivariate Analysis of Variance 

ROV- Remote Operated Vehicles 

ST- Sea Temperature 

SST- Sea Surface Temperature 

SWA- South Western Australia 

WA- Western Australia 

 





 

1 

Chapter 1 General Introduction 

 

 

 

 

 

 

 

 

 

 

 

Photograph: A curious Achoerodus gouldii off of Bremer Bay, Western Australia  
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 Introduction 

 Trends of changing environment  

Global climate change has been considered as one of the most important 

contemporary drivers of marine ecosystem structure (Seabra et al. 2015). Over recent 

years, gradual ocean warming has been driving many changes in the chemical and 

physical properties of marine environments (Poloczanska et al. 2016; Stuart-Smith, 

Edgar & Bates, 2015). The increase in sea surface temperatures has contributed to an 

erosion of resilience in marine habitats as key processes are modified, including 

trophic interactions and recruitment (Bennett et al. 2015b; Duffy et al. 2016; 

Zarnetske, Skelly & Urban, 2012). Sea temperature and habitat change may 

ultimately change the structure and functioning of established ecosystems into new 

novel ones, where historically different species interact (Bennett et al. 2015b; 

Wernberg et al. 2010; Wernberg et al. 2016). Documenting changes in our marine 

environments and interpreting these in regards to species distributions, habitat use, 

diet and reproductive biology of marine species occupying those habitats, is crucial 

for understanding and managing the future of our marine ecosystems and any 

potential threats and impacts. 

 

 Range shifts 

Changes in the distribution and range of marine taxa have been recorded across the 

globe (Perry et al. 2005; Poloczanska et al. 2013; Verges et al. 2014). Changes in the 

range of many species, due to increases in sea temperature (ST), have already been 

recorded for corals (Yamano et al. 2011) and canopy forming macroalgae (Bennett et 

al. 2015b) that are critical for ecosystem function. The geographic distribution of 

marine fish is influenced by their tolerance to environmental variables, biotic and 

abiotic habitat changes, anthropogenic processes, sea surface temperature or a 

combination of these. Long term exposure to these environmental changes can lead 

to range expansion of warm-water species at the cooler edge of their range, or cool-

water-species range retraction at their warm edge (Sorte et al. 2010).  
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 Western Australia marine habitat 

In comparison to other areas around the globe, the coastal marine environment of 

WA has been described as an ancient, oligotrophic seascape that has over the past 40 

million years, via the Leeuwin Current (LC), experienced warm waters flowing 

poleward (Langlois et al. 2012b; McGowran et al. 1997). The LC elevates water 

temperatures during the winter and is responsible for the distribution of benthic 

marine larvae southward along the coast (Cure, 2016; Harvey et al. 2013; Kendrick 

et al. 2009). Although the geological and oceanographic history of WA has been 

temporarily stable, geographically WA has a highly heterogeneous coastline with a 

plethora of marine habitats driven by the gradual North-South gradient in 

temperature which support tropical coral reefs in the north and temperate algal and 

seagrass beds in the south (Langlois et al. 2012b). This diversity of habitats creates 

opportunities for specialisation, resulting in high numbers of marine endemics being 

recorded in WA, which is recognised as the second richest multi-taxon system in the 

world (Cheung et al. 2012; Fox & Beckley, 2005). The Southern coastline of WA is 

part of the Great Southern Reef (GSR), which is a biodiversity hotspot for many taxa 

and provides substantial socio-economic value to the surrounding communities that 

depend on this reef system (Bennett et al. 2016). 

 

 Recent climatic trends in WA 

Similar to the rest of the world, South-Western Australia (SWA) has undergone a 

gradual increase in ocean temperature (Bennett et al. 2016; Cure et al. 2018; 

Wernberg et al. 2016). South Western Australia has also recently experienced a large 

marine heat wave in 2011 (Pearce and Feng, 2013). The heat wave equated to a 

century’s worth of warming over the space of 10 weeks, driving ST up 2-4 °C and 

resulting in altered species interactions and loss of macro-algae canopy (Bennett et 

al. 2015b; Cure et al. 2018; Wernberg et al. 2013). 

 

Marine fish assemblages and the marine environment form a complex, 

interconnected relationship with one being dependent on the other (Micheil & 

Halpern, 2005). Recent anthropogenic environmental change however, has resulted 

in this relationship to become unbalanced in many areas of the marine world. Due to 
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this change, an understanding of how the structural components of the marine habitat 

influences fish assemblages over temporal and spatial scales is crucial for managing 

marine habitats and taxa (Harvey et al. 2013). While marine habitat change on 

marine assemblages has been looked at on  smaller spatial scales, recent studies have 

promoted the need to study marine fish assemblage response to changing 

environmental variables over large spatial scales (Booth, Bond & Macreadie, 2011; 

Harvey et al. 2013; Hiddink & Hofstede, 2008; Nye et al. 2009; Perry et al. 2005; 

Verge´s et al. 2014). 

 

 Labridae 

Labridae are one of the most abundant and diverse families of reef fish in Australia. 

In SWA alone there are over 90 species associated with cool-water rocky reefs 

(Morton, Platell & Gladstone, 2008). Labrids are mostly benthic invertivores, but 

they fulfil many functional roles, from abundant and large mobile predators which 

reduce prey numbers and modify rocky reef assemblages, through to herbivorous 

species that can control algal growth on coral reefs (Lek et al. 2011; Morton, Platell 

& Gladstone, 2008). Additionally, labrids include many socially, economically and 

environmentally important species (Bellwood, 1994; Coulson et al. 2009; Cure et al. 

2015). 

 

 Ecology of cool-water labrids 

Cool-water labrids in SWA are for the most part, endemic to either WA or Australia 

(Hutchins, 2001), and have a large range of sizes representing several functional 

groups. Cool water labrids in SWA include large, long lived species such as the 

western blue groper (Achoerodus gouldii) and the western foxfish (Bodianus 

frenchii), which can live up to 75 and 80 years respectfully (Bryars et al. 2012; 

Coleman et al. 2011; Cossington et al. 2010). Similarly, most Labridae are 

hermaphrodites, starting out as females and changing sex to males with many, 

species having markedly different appearances between female and male (Lek, et al., 

2012; Colman, et al., 2011). Temperate Labridae can have a highly plastic diet, 

changing as they grow, with species such as Ophthalmolepis lineolatus predating on 
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small epifauna on Macrophytes. Other large species such as A.gouldii, consume large 

invertebrates over many years in its home range (Lek, et al., 2012). Temperate 

Labridae have relatively small home ranges compared to warm-water labrids (Bryars, 

et al., 2012), and when combined with a slow turnover rate they are exceptionally 

vulnerable to fishing pressure and changing environment (Bryars, et al., 2012; 

Cossington, et al., 2011; Coleman, et al., 2011). 

 

 Ecology of warm-water labrids 

When compared to cool-water labrids, their warm-water counterparts are more 

diverse in function (Bellwood, 1994). Like cool-water labrids, most warm-water 

labrids have a very plastic diet. But, they also include Scarine labrids (Parrotfish) 

some of which are corallivores, and others are functionally herbivorous scrapers or 

excavators. Recent literature suggests that while many Scarine labrids function as 

herbivores, they are in fact microphages, which take energy from the consumption of 

epilithic microbial films (Clements & Choat, 2017). Most tropical species are highly 

associated with shallow reef systems between 1m and 10m deep (Bellwood, 1994), 

with most warm-water labrid species having high recruitment compared to their 

colder water relatives (Cossington et al. 2010; Parmesan, 2006). In combination with 

their increased spawning potential in warm-water, tropical labrids may have a better 

tolerance and adaptability to changing environmental variables than cooler water 

labrids (Domeier & Colin, 1997). 

 

 Labridae in the South west of Western Australia 

Changes in the distribution of labrids in response to climate change have already 

been reported in SWA. An unusually high abundance of juvenile Choerdon 

rubescens (baldchin groper) was recorded in 2013, as a result of increased 

recruitment, following the 2011 marine heatwave (Cure et al. 2015). Scarus ghobban 

(a tropical labrid species) was observed in high abundances at the warm edge of the 

temperate SWA region. Scarus ghobban have had profound impacts, playing a 

pivotal role in maintaining turf algae dominance in habitat where canopy algae has 

declined (Bennett et al. 2015b). These members of the Labridae family have shown 
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the capacity to shift their range southward, suggesting that other labrids may have a 

similar capacity to move and impact ecosystems (Bennett et al. 2015b; Cure et al. 

2015). 

 

 Need for further research 

Given the recent unprecedented changes experienced by marine ecosystems globally 

due to climate change, understanding of temporal variability of marine communities 

is crucial and is an area that is currently understudied (Barrett et al. 2007). 

Knowledge of temporal variability of marine communities is especially lacking for 

temperate reef assemblages, which are relatively understudied compared to tropical 

reef assemblages. In my conceptual model for my thesis (Figure 1:1), I identify the 

need for research into the composition of the SWA labrid assemblage which is 

addressed in Chapter 2. Further research is particularly needed to inform the 

management of SWA, which not only makes up part of the economically important 

Great Southern Reef, but also has a host of endemic species. In my conceptual model 

(Figure 1:1) I emphasise that the environment in which this unique marine 

assemblage occurs is further predicted to change relatively quickly compared to 

warm-water habitats, due to the east-west orientation of the southern coastline of WA 

(Wernberg et al. 2016). Despite being one of the most diverse and conspicuous 

families of marine fish in WA, there is very little quantitative data on the length, 

abundance and distributions of labrids from south-Western Australia’s shallow reefs. 

However, while there is a lack of data in SWA, many studies have highlighted the 

potential use of Labridae as a valuable indicator family for observing the impacts of 

climate change on marine ecosystems (Cure et al. 2015; Cure et al. 2018; Perry et al. 

2005; Verges et al. 2014). Furthermore, labrids have been shown to be an effective 

surrogate for sub-tropical fish assemblage patterns on reefs in eastern Australia 

(Malcom & Smith. 2010). 

 

While relatively large sized members of the Labridae family have been found to 

change their distributions (Cure, 2016), the species most likely to change their 

distributions and establish successfully are small, fast growing species, which makes 

up the majority of SWA labrid assemblage (Feary et al. 2014; Perry et al. 2005). In 
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my conceptual model (Figure 1:1) I also identify the importance of investigating 

species length frequency distributions and life history traits, which I address in 

Chapter 3. To date, no studies have investigated changes in the geographical 

distribution or size-frequency distributions of the entire SWA labrid assemblage. In 

addition, fishing pressure historically has been demonstrated to negatively impact the 

abundances of some labrid species such as the western blue groper (Achoerodus 

gouldii) and baldchin groper (Choerodon rubescens) (Coulson et al. 2009; Johnson, 

1982; Ottaway et al., 1987). Recent trends for recreational fishing effort have shown 

a 15% decrease, but fishing pressure on many labrids has increased, while catch rate 

for some species such as the western foxfish (Bodianus frenchii), has increased 

almost 50% (Ryan et al. 2013; Ryan et al. 2017). Some labrids may be especially 

vulnerable to fishing, and evidence of fishing pressure might be apparent in their 

length frequency distributions. 

 

 Why I conducted this study 

South-Western Australian marine assemblages and habitat are changing, and with the 

predicted increase in disturbance events and ST increase, they are likely to keep 

changing (Cheung et al. 2012). The geographical layout and location of the SWA 

coastline is important and ideal for this study, as it has an almost linear decrease in 

mean ST (Figure App A:1), and a north-south, then west to east orientation. Its 

marine ecosystems and assemblages are predicted to change relatively rapidly due to 

its orientation and relatively isolated heterogeneous habitat (Figure 1:1). The 

orientation will result in limited areas for cool-water species to seek refuge from 

changing temperatures, potentially leading to extirpation or extinction (Bennett et al. 

2016; Wernberg et al. 2016). Broad-scale surveys of SWA were conducted in 2006 

(Saunders et al. 2014) prior to the 2011 marine heatwave event. Replication of the 

2006 study in 2015 provides an unprecedented opportunity to compare marine 

assemblages over a large geographic and temporal scale to observe changes over the 

temporal and geographic scales. I chose the family Labridae as they are a diverse and 

abundant family that have been used around the globe for climate change studies. 

They are also functionally diverse, covering many different feeding groups and 

ecological roles. Additionally, members of the Labridae family have already been 



8 

 

found to be influenced along SWA (Bennett et al. 2015b; Cure et al. 2015; Cure et al. 

2018). In-depth data on whole family response to climate change in SWA is lacking, 

especially for a family as functionally diverse and economically and socially 

important as Labridae. This evidence makes Labridae the ideal family to evaluate 

how a decade of gradual ocean warming, disturbance events and habitat change has 

impacted SWA marine species. 

 

The overarching objective of this thesis is to determine how labrids assemblages 

have changed in response to recent climatic trends over the past 10 years on SWA’s 

temperate reefs (Figure 1:1). I specifically focus on labrid assemblage composition, 

the species that are most characteristic of those assemblages and how recent climate 

change has impacted these assemblages (Figure 1:1). I investigate species range 

shifts along the SWA coastline and whether the patterns in length frequency 

distributions provide evidence of successful establishment, and finally assess the 

biomass and functional diversity of shifting species (Figure 1:1).  

 

 Thesis Layout 

 Thesis map 

This thesis is presented in two data chapters (Chapter 2 and Chapter 3), both of 

which have been written as manuscripts for publication. The implications of the main 

findings of the two data chapters are synthesised into a general discussion in Chapter 

4. As the main data chapters have been prepared for submission, there may be some 

repetition at the start of each chapter. 

 

 Chapter 2 

Motivation: Previous studies have found that select members of the Labridae family 

are influenced by changing environmental variables, however little research has been 

done on the whole labrid assemblage along the heterogeneous SWA coastline (Figure 

1:1). The temperature gradient along the SWA coast makes it ideal for investigating 
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labrid assemblage change over a large geographical area, due to warming 

temperature trends (Figure 1:1). 

 

In Chapter 2 I present data collected from diver operated stereo-video surveys 

(DOVs), which were used to record the densities of labrid assemblages in 2015 and 

compare them to a previous survey of the same design from 2006. I investigate 

whether there are changes in the labrid assemblage composition and whether the 

changes (if any) observed in warmer water areas of SWA are of a greater magnitude 

than for cooler water assemblages. I identify the environmental variables that best 

explain the patterns in the labrid assemblages and I identify the species that are most 

indicative of the labrid assemblages at each region and how they define their 

communities. 

 

 Chapter 3  

Motivation: Successful establishment of tropical vagrants have been reported in 

numerous locations both globally and locally, with studies also recording successful 

establishment in SWA (Figure 1:1). A few of these species include members from 

the Labridae family, but no study has looked at the whole assemblage, which 

includes many small, fast growing species that are more likely to change their 

distribution successfully, compared to the more commonly studied larger, slow 

growing species. 

 

In Chapter 3 I analyse the length-frequency structure of the labrids by region, 

specifically looking at how these have changed from 2006 to 2015. I also look at the 

proportion of recruits, specifically to identify if representatives of all size classes are 

present in 2015 in areas where species were not present in 2006. Such patterns would 

indicate successful establishment. Finally I assess changes in the biomass of tropical, 

sub-tropical and temperate affiliated labrids between the years 2006 to 2015.  
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 Study area 

The study area is south-Western Australia, from Port-Gregory in the north, around 

the south-west capes region, east to the Recherché archipelago. The study area is 

further described in the methods of each Chapter. 
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Figure 1:1 Conceptual flow diagram summarising the general structure of this thesis and its relative background. 
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Chapter 2 A decade of change: Shifts in 

Labridae geographical 

distribution along a unique and 

dynamic coastline. 

 

Photograph: Top: Bodianus frenchii, Bottom: Choerodon rubescens   
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 Abstract 

Aim: Compare the distribution and composition of temperate Labridae (wrasse) 

assemblages on shallow water coastal reefs between 2006 and 2015, after a decade 

characterized by gradual ocean warming and severe heat wave disturbance events in 

South Western Australia.  

 

Location: South-Western Australia from Port Gregory to the Recherché 

Archipelago. 

 

Methods: Surveys of Labridae fishes were conducted in 2006 and repeated in 2015 

across 112 reefs spanning 2000 km of coastline, using diver operated stereo-video 

systems (stereo-DOVs). We used a hierarchical design with seven regions, four 

locations in each region, four reef sites in each location and 12 transects in each site.  

 

Results: We found a significant increase in tropical and sub-tropical labrid species in 

2015 that were rarely observed in 2006. Three temperate species declined in 

abundance, which tended to be large slow growing fish, whereas 22 labrid species 

increased in abundance. There was also a discernible poleward shift in many of the 

most abundant and characteristic species from 2006 to 2015. The labrid community 

composition was explained predominantly by sea temperature (ST), physical reef 

structure and kelp (Ecklonia radiata) cover. 

 

Main conclusion: Our study reveals that labrid assemblages associated with the 

shallow water temperate reefs of South-Western Australia have undergone rapid 

changes across large geographic distances (almost 2000km); with warm-temperate 

waters showing the strongest change. However, cool temperate waters on the south 

coast also showed significant changes in the composition of the labrid assemblages. 

Previous studies report that this area has remained stable in the face of changing 

climate. In 2006 across the entire geographic range, the labrid assemblage was 

largely comprised of temperate species, whereas in 2015 the northern regions were 

dominated by tropical and sub-tropical labrids.  
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  Introduction 

The geographical distribution and structure of marine fish assemblages are 

influenced by a range of processes, including abiotic environmental niches (e.g. 

temperature), habitat availability, anthropogenic pressure (e.g. fishing pressure), or a 

combination of these factors (Bennett et al. 2015a; Galaiduk et al. 2013; Holbrook et 

al. 1997; Wendelaar Bonga, 1997). These processes are dynamic across both space 

and time, providing an opportunity to quantify their role in structuring marine fish 

assemblages (Booth et al. 2011). 

 

Temperate reef ecosystems sit at the interface of several vectors of rapid global 

change, making them important environments to quantify the response of biotic 

communities (Bennett et al. 2016). Climate driven species redistribution, for 

example, can lead to increased diversity and abundance of tropical species (i.e. 

tropicalisation) on temperate reef ecosystems, while at the same time, driving the 

poleward retreat of temperate species (Bennett et al. 2015b; Cheung et al. 2012; Day 

et al. 2018; Verge´s et al. 2014). This can have important implications for the 

function of temperate reef ecosystems (Bennett et al. 2015b; Wernberg et al. 2016). 

Similarly, the proximity of temperate reefs to urbanized coastal areas can put heavy 

pressure on critical habitats through impacts such as eutrophication (Connell & 

Russell, 2009). Fish and invertebrate assemblages can also be impacted by habitat 

loss and fishing pressure, leading to a loss of lower-level interactions and trophic 

cascades (Ling et al. 2009; Pace et al. 1999; Shears & Babcock, 2002). 

Understanding how benthic habitat, fish assemblage distribution and habitat use vary 

across space and time is critical to the spatial management of reef fishes (Gorospe et 

al., 2018). Benchmarking marine assemblages is important (Dayton et al., 2000), as 

is re-visiting these benchmarks periodically to gauge changes in marine assemblages 

over time. 

 

Western Australia (WA) has had an isolated and stable geological history, largely 

free from mass extinctions and glaciation events throughout the Cenozoic era (66.4 

MYA to the present; (Langlois et al. 2012b; Molony et al. 2011; Phillips, 2001)). The 

coastal marine environment of WA has been described as an ancient oligotrophic 

https://paperpile.com/c/JSNVYS/njOH
https://paperpile.com/c/JSNVYS/njOH
https://paperpile.com/c/JSNVYS/njOH
https://paperpile.com/c/JSNVYS/njOH
https://paperpile.com/c/JSNVYS/LIYw
https://paperpile.com/c/JSNVYS/LIYw
https://paperpile.com/c/JSNVYS/LIYw
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seascape, which over the past 40 million years has experienced warm poleward 

flowing water via the Leeuwin Current (LC) (McGowran et al. 1997). Western 

Australia is recognised as the second richest multi-taxon centre of endemism in the 

world, with a variety of marine habitats that contribute to these high rates of 

endemism (Cheung et al. 2012; Fox & Beckley, 2005). 

 

Tropicalisation of marine communities has been reported in various locations around 

the world (for example; Perry et al. 2005; Verge´s et al. 2014). South-Western 

Australia (SWA) has experienced a gradual increase in ocean temperatures, up to two 

times faster than the global average (Lough & Hobday 2011; Pearce & Feng, 2007). 

This is exacerbated by the LC, a poleward flowing boundary current along Western 

Australia’s coastline, resulting in an ocean warming hotspot (Cheung et al. 2012; 

Kendrick et al. 2009; Vergés et al. 2014). In 2011, a marine heatwave caused an 

unprecedented range contraction of kelp forests (Ecklonia radiata) and the 

tropicalisation of marine fish, seagrass and invertebrate assemblages across hundreds 

of kilometers of coastline (Bennett et al. 2015b; Cure et al. 2015; Day et al. 2018; 

Wernberg et al. 2016; Shalders et al. 2018). In 2015, the kelp canopy along parts of 

the SWA coastline had still not recovered from the 2011 heatwave event (Bennett et 

al. 2015b; Wernberg et al. 2016). An increase in the abundance of tropical herbivores 

(fish families Labridae, Kyphosidae and Siganidae), were also found to be 

contributing to the maintenance of the canopy free habitats and promoting an 

alternate turf-dominated state in the northern (warm) limits of the temperate reef 

distribution in the region (Bennett et al. 2015b; Wernberg et al. 2016). 

 

Previous surveys of shallow water reef fish assemblages from temperate SWA have 

recorded 128 species of fish from 16 families between Port Gregory in the mid-west 

to Esperance in the southeast of Western Australia (Hutchins, 2001). Of these, 63 

species were endemic to Australia and 20 of these were only observed in Western 

Australia. Across this region, labrids are a conspicuous family of fish and included 

36 species, or 28% of all the fish species counted in Hutchin’s surveys (2001). Of 

these 36 species, 17 were endemic to Australia, and 8 were Western Australian 

endemics. To date, reported changes in fish distributions have focused on the west 

coast of SWA (Tuya, Wernberg & Thomsen, 2009; Wernberg et al., 2013). However, 

the southern coast of WA provides critical habitat for many reef fishes including 16 
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labrids which are Western Australian or Australian endemics (Hutchins, 2001). It is 

important that surveys focusing on the status of reef fish assemblages along the 

Western Australian coast also incorporate the south coast which is often neglected by 

researchers (Bennett et al. 2016) due to connectivity (Condie et al. 2005) and 

fisheries being managed by one agency (Gaughan, D.J. and Santoro, K. (eds) 2018).  

 

 

The family Labridae (i.e. wrasses) is one of the most speciose families of reef fish, 

representing a broad range of trophic niches that is not seen in other families (Parenti 

& Randall, 2000; Westneat & Alfaro, 2005). In SWA, this family includes many 

commercially important species such as baldchin groper (Choerodon rubescens), 

western foxfish (Bodianus frenchii) and western blue groper (Achoerodus gouldii) 

(Coulson et al. 2009; Cure et al. 2015). This group also includes important 

herbivores and habitat modifiers (Choat et al. 2012; Bennett et al. 2015b). Labrids in 

SWA have diverse geographies and thermal affinities, whereby almost half of the 

species are endemic (Hutchins, 2001) and span narrow ranges, while others span 

broad cosmopolitan distributions across ocean basins. Moreover, they are associated 

with a wide range of habitats and functional groups, some filling narrow niches, 

whilst others are generalists. Other conspicuous families such as temperate 

Pomacentridae have been used effectively as indicators to assess climate mediated 

changes and ST increase in SWA (Shalders et al., 2018). However, this family is 

relatively small in SWA compared to Labridae and does not cover as many 

functional groups. Additionally, Wrasse are often large and a highly conspicuous 

family. These fish are therefore relatively easy to survey in comparison to some other 

families such as the small and cryptic Gobiidae and Blenniidae, which, while 

functionally important (Brandl et al., 2018), are difficult to survey with most video 

techniques (Thacker, 2008; Thacker & Roje, 2012). 

 

Wrasses have been impacted by ocean warming in both the northern (Bianchi, 2007; 

Kruschel, Zubak, & Schultz, 2012) and southern hemispheres (Cure et al., 2015). 

There is also evidence that single species of Labridae are highly sensitive to SST 

change (Cure et al., 2015) and also are influenced by physical habitat structure 

(Hutchins, 2001; Tuya, Wernberg & Thomsen, 2009). Furthermore, labrids have 

been shown to be an effective surrogate for sub-tropical fish assemblage patterns on 

https://paperpile.com/c/dQTtLF/jYDj
https://paperpile.com/c/dQTtLF/xeg6
https://paperpile.com/c/dQTtLF/muGq
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reefs in eastern Australia (Malcom & Smith. 2010). However, to date most studies 

have focused on a subset of species (for example Tuya, Wernberg & Thomsen, 2009) 

and have not examined broad spatio-temporal changes in the full assemblage 

(Hutchins, 2001; Tuya, Wernberg & Thomsen, 2009). Given their diverse thermal 

affinities, functional roles and trophic levels, labrids present an ideal model group to 

evaluate how climatic change may impact fish assemblages on temperate reefs. Also, 

examining this group along a coastline that has been characterised by environmental 

stability over evolutionary timescales, but which has experienced a decade of 

unprecedented and dynamic change, allows a rare opportunity to examine the 

response of species within leading, central and trailing edge populations of their 

distribution. 

 

The aims of the study are: (1) to determine if the labrid distribution and assemblage 

composition has changed between 2006 and 2015, (2) to identify correlations 

between Labridae assemblage composition and enviromental factors such as ST and 

reef structure, including coral and macroalgae presence and (3) to identify any 

differences in the response of cool-water and warm-water labrids to recent 

environmental changes.  
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 Methods 

 Study design 

The study took place in SWA covering 2000 km of coastline, across 7 degrees of 

latitude and 10 degrees of longitude, from Port Gregory to the Recherché 

Archipelago (Figure.2:1). Seven regions were surveyed, including Geraldton 

(28.7774° S, 114.6150° E), Jurien Bay (30.2970° S, 115.0420° E), Perth (31.9505° S, 

115.8605° E), the Capes (34.2256° S, 115.0609° E), Albany (35.0275° S, 117.8840° 

E), Bremer Bay (34.3940° S, 119.3760° E) and Esperance (33.8608° S, 121.8896° E. 

Each region was surveyed with diver operated stereo-video systems (stereo-DOVs) 

between December 2014 and July 2015. Surveys replicated those conducted by 

Saunders et al. (2014) between November 2005 and June 2006. To minimise 

temporal variability, surveys were conducted at similar times of year in 2014/15 and 

2005/06. The surveys were conducted in a hierarchical design, with 7 regions, 4 

locations in each region, 4 sites in each location and 12 replicate transects in each 

site, generating a total of 1344 transects for each time period. Each transect was 25 

meters long by 5 meters wide and located haphazardly at each reef site. Within each 

site, shallow, complex rocky reef systems between 4 m and 12 m in depth were 

targeted. Regions were separated by hundreds of kilometers, Locations were 

separated by tens of kilometers, Sites were separated by hundreds of meters and 

Transects were separated by at least 10 meters, following the method of Saunders et 

al. (2014). 
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Figure 2:1: Survey area illustrating the seven geographical regions surveyed. Within 

each region four locations are also illustrated. Leeuwin Current is depicted by the 

black lines and the Capes Current is indicated by the white lines. The seven 

geographical regions that were surveyed north-west to south-east were: 1 Geraldton, 

2 Jurien Bay, 3 Perth, 4 South-western Capes, 5 Albany, 6 Bremer Bay and 7 

Esperance (Saunders et al. 2014). 

 

 Survey Method 

In order to record the marine biota and habitat, stereo-DOVs were maneuvered by 

SCUBA divers along transects. Stereo-DOVs were developed and described by 

Harvey and Shortis (1995) to eliminate diver identification bias and increase the 

accuracy and precision of length and distance estimates (Harvey et al. 2004). 

 

In 2006 the stereo-video system utilised two Sony TRV 900 digital video cameras 

(Saunders et al. 2014), whereas in the 2015 two Sony CX700 video cameras were 

used. Both sets of cameras were housed in underwater housings. The cameras were 
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then securely mounted 70 cm apart and the cameras were inwardly converged at 8 

degrees to maximize the area available for stereo-video measurement (Saunders et al. 

2014). Before and after each field trip the stereo-video systems were calibrated using 

the Vision Measurement System software package for the 2006 surveys (Robson et 

al. 2006) and CAL software (Seager, 2014) for the 2015 survey, which enabled the 

accurate calculation of transect dimensions. Two different systems were used 

because of changing camera models over the ten-year period between surveys. The 

higher camera resolution associated with the systems used in 14/15 may have 

resulted in smaller fish (less than 20 mm) being detected, but will not have impacted 

on counts of larger conspicuous labrids. 

 

 Image analysis 

2.3.3.1 Abundance quantification  

Fish counts from the 2006 footage were analysed using the Vision Measurement 

System software package (Robson et al. 2006), while the 2015 videos were analysed 

using the software package Event-Measure (Stereo) (www.seagis.com.au). Both of 

these packages, although different, allowed an image analyst to identify only Labrids 

(including subfamily Scarinae) to the lowest taxonomic group (see below). Rules 

were established within the software which prevented fish that were more than 7 m 

from the camera or 2.5 m from the centre of the transect line from being counted or 

measured. Fishes only seen on one camera due to the obstruction of the field of view 

by substrate or algae were still counted if analysts were confident that the fish was 

within the transect boundaries. 

 

2.3.3.2 Habitat Analysis 

In addition to fish abundance, benthic habitat was also measured and analysed from 

the stereo-DOV video footage. Habitat was analysed using a Visual Basic program in 

Microsoft Excel modified from Holmes’s (2005) original design. During each 

transect, five frames were chosen that were equally spaced. Within each frame we 

assessed the presence of habitat variables including Reef cover, Reef height, 

steepness of the sea bed (gentle slope, steep slope), Vertical wall, Overhanging wall, 
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Overhead reef/ cave, Ecklonia cover, Non-Ecklonia canopy cover, Hard coral cover, 

Foliose presence, Combined turf and seagrass presence. These variables were given a 

value from 0 to six, with 0 meaning that the variable was not present and six meaning 

that the habitat was made up of 100% of that variable. These values were then used 

for geographical analysis and compiled to formulate a measurement at the reef site 

level, resulting in 60 measurements per 1500m2 (Saunders et al., 2014).  

 

2.3.3.3 Sea Surface Temperature 

The mean ST was determined for each site at the time of each survey using the 

NOAA Optimum Interpolation sea surface temperature (OISST) 

(https://www.ncdc.noaa.gov, accessed 6 October 2015). OISST combines satellite 

data and in situ observations to produce a one degree grid. Monthly maximum 

temperatures were extracted from the corresponding survey areas from the SWA 

coast. These were then averaged over the year at each region, with 2006, 2011 (year 

of the biggest marine heat wave) and 2015 plotted to depict the correlation in 

temperature change over the study time. Furthermore, the minimum and maximum 

temperatures were averaged at the site level for both 2006 and 2015 for use in the 

MRT.  

 

 Statistical analysis 

2.3.4.1 Assemblage 

The raw transect assemblage data for the family Labridae was summed to site level 

(n=4 at each location). Assemblage data was then 4th root transformed to down-

weight overly abundant species (Clarke and Gorley, 2015). Patterns in the data were 

illustrated by an unconstrained nMDS using a zero adjusted Bray-Curtis coefficient 

in PRIMER 6 on the centroids for each region by year (Clarke & Gorley, 2005). A 

Bray-Curtis coefficient was used to independently account for joint absences. This 

however, results in an undefined value when there is a sample with no individuals 

recorded. To avoid this issue, the zero-adjusted Bray-Curtis coefficient includes a 

dummy variable with a value of 1 in all samples (Clarke & Gorley, 2005). Using the 

PERMANOVA+ package in PRIMER 6 (Anderson et al. 2008), a three factor 
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PERMANOVA was run to determine if there was a significant difference in labrid 

assemblages among Year, Region and Location. The design included Year (fixed 

factor, two levels, 2006 and 2015), Region (fixed factor, seven levels) and Location 

(fixed factor, nested in region, four levels at each region). 

 

Multivariate regression trees (MRT) were used to map the relationships between 

transformed (4th root) species and environmental data (De'ath, 2002) which included 

habitat and mean ST for each sampling year at each site. All environmental variables 

apart from Foliose presence (as it was very similar to turf algae presence (correlation 

=0.71)) were used in the MRT, with the MRT picking the optimum level of each 

variable that best explained the split in assemblage structure. The MRT for this study 

was used to observe how the nodes of the tree have changed from 2006 to 2015 and 

to identify the environmental drivers of labrid assemblages. The Dufrêne and 

Legendre index (DLI) was calculated for each species for each node of the tree 

(Dufrêne & Legendre, 1997). Each species was associated with a node or split in the 

tree where its maximum DLI value occurred (Clarke and Gorley, 2015). Higher 

values indicate that the species was more representative of the assemblage. The MRT 

and species assemblage was illustrated using the ‘Mvpart’ package (De’ath et al. 

2005) in R Studio (R Core Team, 2015). The indicator species for the MRT were 

identified using the Mvpart and ‘Indicspecies Packages’ (De’ath et al. 2005; De 

Caceres & Jansen, 2016) in R; and were represented graphically. The assemblage 

DLI values were also represented in tabular format (Table App A: 2). 

 

2.3.4.2 Abundance 

To interpret changes in the distributions and abundances, the indicator species with 

the higher DLI values were explored graphically by plotting the mean abundance of 

each species for each reef site (1500 m2) per location at each of the seven 

geographical regions.  
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 Results 

 Geographical changes and patterns of labrid 

densities. 

Across the 2,688 transects that were conducted in 05/06 and 14/15, a total of 17,615 

individuals from 25 labrid species were recorded (Table App 2: A), with species 

richness and diversity higher in 2015 compared to 2006. In 2006, 4,798 individual 

labrid were recorded from 15 species versus 12,817 from 25 species in 2015. Of 

these ten newly observed species, six of these were warm temperate or tropical 

species (Anampses melanurus, Chlorurus sordidus, Dotalabrus alleni, Scarus 

frenatus, Thalassoma lunare, Thalassoma lutescens (Froese & Pauly 2010; 

Ackerman, 2004)). Coris auricularis was the most abundant species in both 2006 

and 2015, with a total of 9,179 individuals present at 79% of sites. However, 

Notolabrus parilus, was more consistently observed in both sampling years than any 

other species and present at 92% of the sites, but only 2,141 individuals were 

recorded. 
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Figure 2:2: nMDS of the centroids of labrid assemblages for all seven regions 

(Geraldton, Jurien Bay, Perth, Capes, Albany, Bremer Bay and Esperance) in 2006 

and 2015, with the most strongly correlated species overlaid as vectors. All 

differences between region and years were significant at α=0.05. 

 

Sea temperature (ST) change was quantified between the 2006 and the 2015 surveys 

with approximately a 1 C° increase in ST from 2006 to 2015 across all regions with 

approximately a 4 C° temperature gradient descending from Geraldton to Esperance 

(Figure App A:1). Labrid assemblages changed between 2006 and 2015 across all 

regions, albeit with larger assemblage changes observed in the four warmer, western 

regions, than in the three cooler, southern regions (Figure 2:2). Importantly all 

Regions showed the same direction of shift, towards the top left of Figure 2:2. This 

regional difference in assemblage change between years was reflected by a 

significant interaction between Year, Region and Location on assemblage structure 

(Table 2:1). Further fine scale analysis by post hoc PERMANOVA test revealed that 

apart from 3 locations (two in Esperance and one in the Capes), all locations changed 

significantly from 2006 to 2015 (Table App A:1).  
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Table 2:1 Three factor PERMANOVA on the fourth root transformed densities of 

each labrid assemblage across the seven regions. year, region and location are fixed 

factors. Significant change (at α=0.05) were displayed in bold. 

   df       SS Pseudo-F P(perm) Unique perms 

Year 1 20018 40.5760 0.0001 9953 

Region 6 1.16E+05 39.1630 0.0001 9896 

Location 3 3927.5 2.6537 0.0005 9935 

YearxRegion 6 8327.2 2.8132 0.0001 9910 

YearxLocation 3 3538.7 2.3910 0.0030 9925 

RegionxLocation 18 26445 2.9780 0.0001 9862 

YearxRegionxLocation 18 15100 1.7004 0.0004 9852 

Res 168 82882                         

 

The MRT identified 11 unique assemblages, including six terminal node assemblages 

(Figure 2:3). Mean ST from 2006 and 2015 explained the largest amount of variation 

(24%) in assemblage structure (Figure 2:3). This first split divides the labrid species 

into warm-water (left) and cool-water (right) assemblages. Within the warm-water 

assemblages, the secondary and tertiary splits divide assemblages by structural 

habitat characteristics of the reef, with large rocky formations and kelp (Ecklonia 

radiata) cover, explaining 6% and 3% of the variation in assemblage structure, 

respectively (Figure 2:3). Within the cool-water assemblages, the secondary and 

tertiary divisions were also driven by habitat characteristics of the reef, with the 

cover of hard temperate corals and rocky reef cover each explaining 3% of the 

variation. 

 

Importantly, the second terminal node was the assemblage with the highest number 

of warm- affiliated species and was only observed in 2015, thereby representing a 

novel assemblage, not present in 2006. A similar pattern was observed in the cool-

temperate portion of the tree. Most 2006 sites (83%) were found in the 5th terminal 

node, reflecting broad consistency between cool-water assemblages in 2006. In 2015, 

however, cool sites were split into nodes 4 and 6, while only a subset of the coolest 

(i.e. eastern-most) sites remained in the 5th node assemblage. This results in three 

separate cool-water assemblages in 2015, reflecting the multiple smaller assemblages 

in the warmer region. 
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Figure 2:3 Multivariate regression tree analysis of the abundance of labrid species over the seven sampling regions of the southwest 

coast. The MRT is constrained by categorical benthic habitat, depth and longitude. At the centre of each split there is a value noting the 

percent of variation in the species abundance data explained by the split. Overall the tree explained a total of 40% of the variation in 

the transformed species abundance. Each split (node) is made up of both 2006 and 2015 assemblage data. The regions from each year 

that are encompassed by each terminal node are listed below them, followed in parentheses ‘()’ by the number of sites from each region 

that are included in the node. 
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Figure 2:4 Multivariate regression tree analysis of the abundance of labrid species over the seven sampling regions along the 

southwest coast, depicting the indicator species identified for each terminal node. Each of the species is presented, followed by the 

Dufrêne and Legendre index (DLI) value. DLI and associated P values are summarized in Table App A:1. 
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Of the 25 species of labrid observed in this study, five species displayed DLI values 

> 50, making them ‘highly-representative’ of assemblage structure (Table App A:2). 

Notolabrus parilus and Coris auricularis were highly representative of all 

assemblages and were associated with the central root node of the MRT (Figure 2:4). 

Ophthalmolepis lineolata, Pseudolabrus biserialis and Achoerodus gouldii were 

highly representative of and associated with, the root-node of cool-water 

assemblages (Figure 2:4). Conversely, indicator species in warm-water sites were 

associated with terminal node assemblages. The key indicator species in the novel 

warm-water assemblages in 2015 (node 2) were Scarus ghobban/schlegeli and 

Scarus frenatus, three widespread parrotfish species that displayed low abundances 

in 2006, but were dominant species within the 2015 assemblage (Table App A:3). 

Similarly, the tropical species Thalassoma lunare and Thalassoma lutescens were not 

recorded in 2006, but were common at most warm-water sites (Geraldton, Jurien Bay 

and Perth) in 2015 (Figure App A:2). Moreover, the warm-water-affiliated tusk fish, 

Choerodon rubescens, was observed approximately 300 km further poleward in 2015 

(region 4) than its most southern observation (region 3) in 2006. Of the 25 species of 

labrid that were observed, only three species (A. gouldii, B. frenchii and Pictilabrus 

laticlavius) declined in abundance between 2006 and 2015 (Figure App A:2). All 

three of these species are temperate indicator species, whereas no warm-water 

species declined over the same period.  
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 Discussion 

Species abundance and richness within labrid fish assemblages increased between 

2006 and 2015 across 2000 km of temperate Australian coastline. Within this region 

the greatest changes were observed in warm-temperate habitats, in comparison to the 

cool-temperate habitats. This change was driven by an increased abundance of 

several warm-water affiliated species at the leading, poleward edge of their 

distribution, with no comparable decline of cool-water affiliated species from within 

the same assemblages. Changes within labrid assemblages were best explained by ST 

change and a loss of dominant habitat forming kelp forests, indicated by the primary 

and secondary splits in the MRT (Figure 2.3). These changes resulted in multiple, 

less diverse Labridae assemblages along the cooler end of this studies survey range. 

 

 Temperature change 

One of the most prominent trends observed in our study was the increase in 

abundance and species richness of wrasses in warm-temperate environments. This 

pattern was consistent with observed temperature changes along the coastline over 

the past decade, whereby warm-temperate regions experienced an extreme marine 

heatwave in 2011, followed by several anomalously warm years in 2012 and 2013. 

Previous studies have shown that increased temperature promotes the dominance of 

warmer water species and is a driving factor for temperate marine species to move 

south towards the poles (Attrill & Power, 2002; Genner et al. 2004; Kirby et al. 

2006; Pearce & Feng, 2013; Perry et al. 2005). This poses a severe risk to endemic 

species that already have their distributions restricted to a relatively small area. If 

they are continuously pushed towards the poles they could drastically decline in 

abundance either due the rapidly changing habitat of SWA or by running out of 

coastline to move into (Wernberg et al., 2011). Observed impacts to wrasse 

assemblage structure are consistent with previous studies that have demonstrated 

tropicalisation of fish assemblages following the heatwave (Day et al. 2018; 

Wernberg et al. 2016), with predicted marine tropicalisation along the WA coast by 

2055 (Cheung et al. 2012) and observations of tropicalisation globally (Bennett et al. 
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2015b; Cure et al. 2015; Kumagai et al. 2018; Raitsos et al., 2010 Shalders et al. 

2018; Vergés et al. 2014; Wernberg et al. 2016). 

 

Moreover, the tropical species observed in SWA in 2015 appear to be well 

established. Recruitment pulses of warm-affiliated reef fishes were observed 

immediately following the heatwave (Cure et al. 2015), with these cohorts continuing 

to grow and persist on reefs, four years later (J. Parker, unpublished data). Warm, 

low variability (~ 4C° annual ST range) conditions facilitate the overwintering of 

warm-water affiliated species in SWA, likely attributing to the observed 

tropicalisation effect. Thalassoma lunare and T. lutescens species were observed in 

relatively high numbers in 2015 at three of the seven regions sampled, compared to 

the species being completely absent in 2006. This warmer, sub-tropical genus has 

increased its abundance along the coastline of SWA. Many of the individuals 

observed ranged from around 100 mm to 300 mm in length (J. Parker, unpublished 

data), with the larger, mature individuals potentially able to reproduce and generate 

successful progeny. These trends have also been observed in other families such as 

tropical members of Pomecentridae (Abudefduf sexfasciatus and A. vaigiensis) 

(Pearce et al., 2016). These tropical species were observed persisting over multiple 

years, south of their distributions and occurred at Rottnest Island (a location in this study 

where T. lunare was also observed), however breeding populations were not observed 

for A. sexfasciatus and A. vaigiensis (Pearce et al., 2016). This raises the question as 

to whether this is the same for tropical Labridae such as T. lunare. 

 

Not all species that increased in abundance were strictly tropical. Coris auricularis is 

a cosmopolitan species throughout southern and western Australia, ranging from 

cool-temperate to tropical environments. Coris auricularis underwent the largest 

increase in abundance among the labrid species detected in this study and was an 

important indicator species for the entire survey area. In addition to its thermal 

plasticity, C. auricularis has high dietary plasticity, with different gut contents 

recorded throughout its distribution (Lek et al. 2011). Lek et al (2011) concluded that 

diet availability was not a limiting factor that restricted the range of this species. This 

plasticity may have enabled C. auricularis to adapt quickly to changing conditions 

along the coast and outcompete more spatially or functionally restricted species of 

labrids (also see Harvey et al. 2013). 
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The changes in species abundances emphasises the need for further study on species 

entire distributions, especially at the margins. Globally it has been observed that 

warming water increases larval survival at the cooler ends of a species distributions 

but, it is also detrimental at the warmer end of species ranges (Beaugrand et al., 

2012; Cure et al., 2018; Ling et al., 2008; Poloczanska et al., 2016; Solmundsson et 

al., 2010). This study supports this, with warm-water species becoming more 

apparent at their cooler margins and moving poleward along the coast, while several 

cooler water species, declined in abundance at the warm edge of their distributions. 

The poleward redistribution of species in SWA, however, poses a significant risk, 

due to the steep temperature gradient and the orientation of the southern coastline. 

Sparse reef habitat poleward of southern Australia for species to move into and large 

horizontal distances between isotherms connecting shallow reef habitats, will make it 

difficult for species to keep pace with warming (Wernberg et al., 2011; Wernberg et 

al., 2016). 

 

 Decline in temperate water species 

Labrid assemblages in the cooler temperate regions increased in abundance, but less 

than warm water regions. In contrast to warm-temperate regions, cool-temperate 

regions did not experience an extreme heatwave, but instead experienced a more 

gradual warming over the past decade. Three species were observed to decline 

between 2006 and 2015, each of which were temperate indicator species (Pictilabrus 

laticlavius, A. gouldii and B. frenchii). Both A. gouldii and B. frenchii have declined 

in the northern, warmer end of their surveyed range. While the exact cause of these 

species’ declines remains unknown, fishing pressure may potentially contribute to 

the decrease of B. frenchii (western foxfish) and A. gouldii (western blue groper). 

Both of these species are susceptible to line and spearfishing (both from free divers 

and SCUBA divers in WA) (Cossington et al. 2010). Recent fisheries research 

surveys indicate that overall fishing effort has declined in SWA by almost 15% over 

4 years (Ryan et al., 2013; Ryan et al., 2017). However, the catch rate for B. frenchii 

increased by 44% (increasing from 2135 to 3080 individuals caught) from 2011 to 

2015 (Ryan et al., 2013; Ryan et al., 2017), indicating that fishing pressure could be 
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having a negative impact on this species. Similarly, despite the general decrease in 

fishing effort, the catch rate of A. gouldii has marginally increased (Ryan et al., 2013; 

Ryan et al., 2017), indicating continuing fishing pressure on this species. Last et al. 

(2011) found that many large invertivores, including a very close relative to A. 

gouldii, the eastern blue groper (Achoerodus viridis), had experienced considerable 

range contractions due to the impact of overfishing. Additionally during the 1960’s, 

populations of A. gouldii decreased on the west coast of WA as a result of fishing, 

eventually resulting in a no take ban from 1973 to 1978 as a conservation measure 

but it is not known if this amount of time allowed the population to recover as their 

recovery capacity were not known at the time of the ban (Coulson et al. 2009; 

Johnson, 1982). These two examples above, highlight that long lived Labridae are 

vulnerable to overfishing. However, conservations methods such as no-take marine 

protected areas may have a high positive impact on blue groper as they have a 

relatively small home range (Bryars et al. 2012), and may be adequate to protect 

them and other long lived species of wrasse from continued fishing pressure.  

 

A combination of continuing fishing effort and a changing climate may further 

reduce A. gouldii and B. frenchii populations, which could lead to localized 

extinction (Coleman et al. 2011). Rapidly changing environments have been shown 

to impact long-lived species more severely than fast growing, shorter-lived species 

(Perry et al., 2005, Hiddink & Hofstede, 2008). This is supported by the results of 

this study with the two longest-lived species (A. gouldii and B. frenchii), declining 

compared to other shorter-lived species. However, a changing climate may not be 

detrimental to all fished species in the area. For example, C. rubescens, a 

commercially and recreationally fished species, has increased in abundance along the 

survey area (Cure et al. 2015). The third cool-affiliated species to decline (P. 

laticlavius) is not subject to fishing pressure. Possible drives could be increase in 

species invasions potentially from the warm-water species immigrating along the 

SWA coast and either predating on or competing with P. laticlavius (Moyle & 

Williams 1990). Other causes include P. laticlavius prey declining or a reduction in 

their preferred habitat. This is an important question that needs addressing for 

conservation strategies that aim to mitigate the impacts of climate change on 

declining temperate species. Indeed more research is required to determine the exact 

factors and/or causes for the decrease in abundance of P. laticlavius. 
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 Habitat loss 

The small kelp, Ecklonia radiata, is a dominant habitat forming macroalgal species 

on Australian temperate reefs (Bennett et al. 2016). Similar to other recent studies, 

we found that an extensive decline in the E. radiata canopy was a significant driver 

of wrasse assemblages in the northern most regions (Bennett et al. 2015; Wernberg et 

al. 2013; Wernberg et al. 2016). Local food webs in SWA are heavily dependent on 

the tissues of seagrasses, marine algae and the epifauna that live on them (Bruno & 

O’Conner, 2005; Lek et al. 2011; Steinberg et al. 1995). Declines in kelp, therefore 

would be expected to have flow on effects to Labridae species abundance and 

diversity (Lek et al., 2011), especially given the oligotrophic conditions of the LC 

and Cresswell Current (Harvey et al. 2013).  

 

In this study, it was observed that the warmer herbivorous species such as S. 

ghobban/schlegeli have extended their range poleward into the now turf algae 

dominated habitats. Recent studies have shown that Scarine labrids (i.e. parrotfish) 

graze on the new turf algae and in the process, disturb or consume any potential 

macroalgae germlings (Bennett et al. 2015b), preventing the ecosystem from 

recovering to its hitherto  kelp dominated state (Bennett et al. 2015b, Wernberg et al. 

2016). Parrotfish are now the dominant labrid indicator species in the more northern, 

macroalgae reduced habitats, demonstrating the impact that these species can have 

on marine ecosystems and their assemblages. 

 

Wernberg et al (2013) found that only eight months after a marine heatwave event in 

2011, marine assemblages had significantly changed in the mid-west coast of SWA, 

but not in the south-west. Our study has found that a significant change in the marine 

assemblage persists, in the mid-west, four years after this same heatwave and can 

now also be observed in the south-west fish assemblages too. Labrid assemblages on 

the cooler south coast, now reflect assemblages more typical of warmer habitats. 

This was clearly demonstrated by the grouping of the 2015 data into many smaller 

assemblages, a trait of warm-water ecosystems (Ebeling & Hixon, 1991), in 

comparison to a single more homogenous assemblage during 2006.  
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 Recommendations and conclusion 

Labrid assemblages are currently undergoing change at a rapid rate over a large 

geographical scale. This study shows that the largest changes have occurred in the 

warm-temperate west coast of SWA, but that cooler-temperate sites are also 

experiencing significant change. Identification of the warm-water species moving 

poleward into cooler waters identifies the areas where potential altered species-

habitat interactions may occur. The apparent decline of large bodied cool-water 

indicator species suggests these species may be vulnerable to further warming and or 

fishing pressure and should, therefore be a management and conservation priority. 

Furthermore, the persistence of habitat change after the 2011 marine heatwave 

highlights the importance of continued monitoring as a precursor of the future trends 

in SWA. The changes observed in the northern, warmer regions, provide an insight 

to the possible trajectory of fish assemblages in the cooler temperate regions over the 

coming decades. Such projections are cause for serious concern, as the southern 

coastline of Australia is particularly sensitive to warming, due to the stable climatic 

conditions’ species have adapted to over evolutionary time, the orientation of the 

coastline and lack of adjacent cool-water refuges for species to move into.  

 

Australia’s temperate reefs (i.e. the Great Southern Reef) are an economically 

important ecosystem (Bennett et al. 2016), where labrids are a dominant component 

of the fish assemblage. We have shown that the distribution, abundance and 

composition of labrids are changing in response to increased temperatures. Further 

research on the changes in labrid assemblages should focus on targeting a wider 

depth range to investigate the possibility of depth refugia (Booth et al. 2011; 

Langlois et al. 2012a; Wernberg et al. 2011a). This may be especially important for 

B. frenchii, which is a shallow representative of its closer foxfish relatives, which are 

associated with rocky reefs and kelp forests and can occur up to 340m in depth 

(Cossington et al. 2010; Gomon, 2001; Kuiter, 1993). In addition, future research 

could investigate the speed, extent and temporal persistence of changes to fish 

assemblages in SWA. South-Western Australia’s marine environment oscillates 

between cooler El niño and warmer La niña driven climate cycles (c.f warm El Niño 

cycles in many tropical regions). Further research to understand the permanency of 

https://paperpile.com/c/dQTtLF/jYDj
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the ecosystem change over multi-year climatic cycles and to determine whether 

change is unidirectional or can be reversed, would therefore, be highly valuable. 
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Chapter 3 The successful recruitment and 

establishment of range-shifting 

warm-water Labridae in 

temperate South Western 

Australia. 

 

Photograph: Top male Coris auricularis- Bottom Male Notolabrus parilus   
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 Introduction 

Global climate change, particularly increasing sea temperature (ST), is considered to 

be one of the most important processes that will shape future marine ecosystems 

(Seabra et al. 2015). Increasing ST is predicted to have profound impacts on the 

marine environment including, but not limited to, the disruption of the Autumn and 

Spring cycle with these disruptions being far larger at the El Niño Sothern 

Oscillation (ENSO) (Poloczanska et al. 2016; Pörter et al. 2014), and can result in 

reduction in the body size of marine ectotherms (Foster et al. 2012) and changing 

marine species distributions (Stuart-Smith, Edgar & Bates, 2017). Increasing ST is 

thought to be one of the most important contemporary drivers of marine biodiversity, 

altering the abundance and distribution of marine life and potentially compromising 

the ecological roles that they provide (Galaiduk et al. 2017; Seabra et al. 2015; 

Stuart-Smith, Edgar & Bates, 2015). Globally, there has been an increasing trend of 

marine species shifting to higher latitudes as a result of changing habitat and rising 

ST (Cure, et al. 2018; Stuart-Smith, Edgar & Bates, 2015). The shift of species 

ranges into other habitats has the potential to radically change ecosystem functions 

and composition (Ling, et al. 2008; Stuart-Smith, Edgar & Bates, 2015). Information 

on marine assemblage composition, species size at maturity and how the changing 

environment can disrupt these, is essential for determining the potential impacts of 

recent climate change and warming ST on marine ecosystems and biodiversity 

(Steffen, et al. 2009, Cure, et al. 2018; Verges, et al. 2014; Poloczanska, et al. 2016; 

Stuart-Smith, Edgar & Bates, 2015). 

 

 Distribution of marine species 

Defining a species range is notoriously difficult and it can have an array of 

implications in ecology (Parmesan, et al. 2005; Sorte, et al. 2010; Seabra, et al. 

2015). Sorte et al. (2010, p304) defined a range shift as “the expansion, contraction, 

or both, of a species’ range whereby a species moves into a new, adjacent location”. 

Life history traits of individual species, such as growth rate, length at maturity and 

recruitment, vary across different areas of their range, implying that between, and 
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even within species sub-populations the response to changing ecosystems is variable 

and plastic (Booth et al. 2011; Poloczanska et al. 2016). 

 

Using only abundance data as a metric to investigate the ecological importance of 

changes in the distribution of fishes can be misleading, especially for species within 

a family that may differ in size by several orders of magnitudes (eg a small Western 

king wrasse of 15cm versus a blue groper of 1.6m in length). Only considering 

abundance data might lead to the conclusion that frequently occurring small species 

have a greater functional impact to marine ecosystems than a few larger organisms 

(Saint-Germain et al. 2007). As a unit of measurement, biomass provides greater 

insight into the ecological role that species play within an ecosystem (Saint-Germain 

et al. 2007). Changes in the biomass of a species at a site is linked to the availability 

of resources and the environmental conditions (Duffy et al. 2016) and is a strong 

indicator for food-web dynamics and community structure (Brown, 2004; Saint-

Germain et al. 2007).  

 

It is thought that higher biomass occurs in communities where species are able to 

effectively use a larger fraction of the resources present in the habitat, and 

consequently consumer biomass is controlled by producer biomass (Duffy et al. 

2016; O’Connor et al 2009). Temperature has a fundamental control over an 

organism’s metabolism. When combined with other processes, such as available 

food, temperature provides a template for biomass production (Duffy et al. 2016). 

For marine species biomass an increase in temperature can cause a recurring pattern 

of biomass increasing for a short period of time as species metabolisms increase, 

followed by a corresponding crash in species biomass as food sources are exhausted, 

resulting in disrupted trophic linkages in food webs (Duffy et al. 2016; Bruno et al. 

2015; Froster et al. 2012; Pörtner et al. 2014). Monitoring changes in biomass is 

important for predicting the impact of temperature on both marine species and the 

marine food webs species are present in (O’Connor et al 2009). Biomass can also be 

used to identify a species’ optimum distribution and it can be used to determine if a 

species occurring outside its natural range is adapting and using the new resources 

effectively (Duffy et al. 2016).  
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 Changing ecosystems 

Previous research describes how the larvae of tropical species are carried by currents 

into higher latitude temperate environments where they survive over the warmer 

summer months until the colder winter conditions lead to temperature induced 

reduction in physiological capacity, causing them to die out (Figueira & Booth, 

2010; Smith et al. 2016). Recently, warm-water species have been documented 

recruiting successfully into cooler water ecosystems and over-wintering (surviving 

the colder winter temperatures) (Bennett et al. 2016; Cure et al. 2018; Smith et al. 

2016; Verges et al. 2014). The successful recruitment of warm-water species is seen 

most often in areas of poleward currents (Cure, et al. 2018; Last, et al. 2011; Verges, 

et al. 2014). The successful transition of tropical recruits is predicted to become more 

common as global ST continues to rise and the frequency of disturbance events, such 

as marine heat waves, increases (Bennett et al. 2016; Cure et al. 2018; Figueira & 

Booth, 2010; Verges, et al 2014; Wernberg et al. 2016). Unlike some quantitative 

measures, length distributions can be used to show both the changes in a species 

abundance, and also its recruitment patterns and the life stages present in a habitat 

(Cure et al. 2018). Species length distributions can also be used to track cohorts of 

recruits over time, and help interpret whether juveniles settling into new areas are 

surviving in waters that are normally thermally limiting (Smith et al. 2016). 

 

 Successful establishment  

The successful establishment of any species is dependent the ability to survive the 

physical and chemical changes in the new host habitat, reach maturity and be able to 

reproduce (Smith et al. 2016; Steffen et al. 2009). Length is important in order to 

determine successful establishment as it can be used to determine species size at 

maturity, from which it can be inferred whether the species is surviving over multiple 

years and if it is reproducing successfully (Smith et al. 2016; Sorte, Williams & 

Carlton, 2010; Steffen et al. 2009). In addition, the more morphologically distinct the 

vagrant species is, the more likely it will become successfully established (Smith et 

al. 2016; Sorte, Williams & Carlton, 2010), implying that vagrants of different 

functionalities to those species that currently reside in an area may be more likely to 

successfully establish. Successful establishment of tropical vagrants has been 
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reported in numerous locations both globally (Feary et al. 2014; Figueira & Booth, 

2010; Verge´s et al. 2014) and locally in south-Western Australia (SWA) (Bennett et 

al. 2015a; Bennett et al. 2016; Cure et al. 2018; Smith et al. 2016; Wernberg et al. 

2016). 

 

 Western Australia  

Western Australia’s marine system is acknowledged as being the second richest 

multi-taxon centre of marine endemism in the world, with over 3000 species in total 

known to reside along the Western Australian coast (Fox & Beckley, 2005). 

Furthermore, Western Australia has a great variety of marine habitats which 

contribute to the high endemism (Fox & Beckley, 2005). The coastal marine system 

of Western Australia has been described as an old, oligotrophic seascape that has 

been climatically buffered (Langlois et al. 2012b). The coast of SWA has had a 

relatively geologically isolated and stable past compared to other areas around the 

world, being free from mass extinctions and glaciation events throughout the 

Cainozoic era (from 66.4 million years ago to the present) (Langlois et al. 2012b; 

Phillips, 2011). An additional contributing factor to this stability in WA is the 

poleward flowing Leeuwin Current that has, over the past 40 million years, 

moderated the marine environment along SWA (McGowran et al. 1997). The 

Western Australian coastline is highly variable, with a temperature gradient 

decreasing linearly southward and then eastward (Langlois et al. 2012b). However, if 

species are displaced towards the poles, they may be ill adapted to the rapidly 

changing environment of the SWA coastline (Perry et al. 2005). Species 

displacement in SWA poses a risk to the species diversity and to the abundance of 

endemic species, which can have wide reaching impacts, not only to ecosystems, but 

also to tourism and fisheries (Bennett et al. 2016; Cheung et al. 2012; Harvey et al. 

2013; Wernberg et al. 2011a). In 2011 a marine heatwave caused a 2-4 °C increase in 

ST resulting in the equivalent of a century of warming over a period of three months, 

causing dynamic habitat change that the habitat is still yet to fully recover (Cure et 

al. 2018; Wernberg et al. 2016). This disturbance resulted in mass die-offs of marine 

species and the dynamic shift of temperate ecosystems to more tropical ones, pushing 
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cool-water species further south towards the poles (Cure et al. 2015; Wernberg et al. 

2016). 

 

 Labridae 

The marine fish family Labridae are one of the most diverse, conspicuous and 

abundant families of rocky reef-associated fish in temperate Australia (Morton et al. 

2008; Bray, 2017). The family is comprised of more than 80 genera and 680 species 

globally, almost half of which occur in Australian waters (Western Australian 

Museum, 2016). Labrids fulfil many functional roles, they can be abundant, large, 

mobile predators that play an ecosystem function in reducing prey numbers and 

modifying rocky reef assemblages, including the western blue and baldchin groper 

(Achoerodus gouldii and Choerodon rubescens respectively). Most labrids are 

classified as benthic invertivores, consuming a wide variety of invertebrates on 

temperate reefs (Lek et al. 2011; Morton, Platell & Gladstone, 2008b). Labrids also 

includes many commercially and environmentally important species (Bellwood, 

1994; Bennett et al. 2015b; Coulson et al. 2009; Cure et al. 2015). Labrids have been 

shown to be affected by warming oceans in other geographic areas around the world 

(Atrill & Power, 2002; Bianchi, 2007; Kruschel et al. 2012) and in SWA (Bennett et 

al. 2015b; Chapter 2; Cure et al. 2018; Wernberg et al. 2016). Although the labrid 

family is one of the most diverse families in WA (Hutchins, 2001), there is little 

information on the ranges of distribution of species of labrids in SWA. However, this 

information is needed to help determine the impacts that gradual climatic change and 

disturbance events are having in the vulnerable SWA ecosystem (Cure et al. 2018). 

 

 Aims 

The goal of this research was to understand the response of the SWA labrid 

populations to environmental changes. We used labrid length frequencies and 

biomass to determine how the distributions of labrids changed along SWA between 

2006 and 2015. Due to an increase in ST we hypothesised that; (1) Labridae 

distributions moved further south; (2) length frequency structure changed for 
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different Labridae species and functional groups;, (3) functional group biomass has 

changed by region.  
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 Method 

 Site description 

This study sampled complex, shallow, rocky reef systems from 4m to 12m in depth 

across 2000km of coastline from Port Gregory to Recherché Archipelago along the 

south west of Australia. A total of 7 regions were sampled which included Geraldton, 

Jurien Bay, Perth, the Capes, Albany, Bremer Bay and Esperance. 

 

Figure 3:1: Depicts the 7 geographical regions surveyed and the 4 locations (shown 

by the white crosses) nested within each. Leeuwin Current is depicted by the black 

lines and the Capes Current is indicated by the white lines. The seven geographical 

regions that were surveyed from northernmost to southern and around to easternmost 

where: 1) Geraldton; 2) Jurien Bay; 3) Perth; 4) South-West Capes; 5) Albany; 6) 

Bremer Bay; and 7) Esperance. 

 

 Study design 

Surveys were conducted from December 2014 to July 2015 and replicated the areas 

that were previously sampled by Saunders et al (2014) between November 2005 and 
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June 2006. The surveys were conducted in a hierarchical design which consisted of 7 

distinct regions, 28 locations, 112 sites and 1344 replicate transects and spans 10 

degrees of longitude and 7 degrees of latitude. The distances between the different 

survey hierarchies differed, following the method of Saunders et al. (2014).  

 

 Survey Method 

Diver operated Stereo-videos systems (stereo DOVs) were used to record the marine 

habitat and fish in the survey areas. Two SCUBA divers swam the stereo DOVs 

along 25m by 5m belt transects. Stereo-DOVs were initially described and developed 

by Harvey and Shortis (1995) and were used to increase precision and accuracy of 

species length and distance estimates in comparison to SCUBA diver UVC (Harvey 

et al. 2004). 

 

The surveys completed in 2005-2006 (Saunders et al. 2014), were recorded using a 

stereo video system comprised of two Sony TRV 900 digital video cameras. 

However, in the 2015 surveys the cameras were changed to use newer model (Sony 

CX700), video cameras which recorded at a higher resolution (1920 x 1080 at 50P 

rather than 720x560 at 25P). Both sets of cameras were securely mounted 70cm 

apart, with the cameras tilted inwardly at 8 degrees to optimise the area available for 

stereo-video analysis (Saunders et al. 2014). Before and after each survey trip, 

calibration of the stereo-video systems was done using the Vision Measurement 

System software package for the surveys completed in 2005-2006 (Robson et al. 

2006) and CAL (Seager et al. 2014) for the 2015 surveys, allowing highly accurate 

calculation of the transect dimensions. The cameras recorded a very similar field of 

view with standardisation of the sampling area achieved through the measurement 

software. Over the two sampling times (2006 and 2015) two different camera 

systems were used due to improving technology. The higher camera resolution 

captured by the systems used in 14/15, potentially resulted in smaller fish (less than 

20 mm) being detected, but this will not have impacted on counts of larger, 

conspicuous labrids. 
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 Image analysis 

Image analysis involved identification of fishes to the lowest taxonomic resolution 

possible. Fish were measured for fork length (end of the snout to the middle of the 

fork caudal fin). Rules were integrated in the software that prevented fish that were 

more than 7m from the camera or 2.5m from the centre of the transect line from 

being measured or counted. If fish were within transects but could not be measured 

due to obstruction of one camera, they were still counted for abundance. 

 

 Statistical analysis 

3.2.5.1 Length - Individual 

Length frequency analysis was undertaken for a select number of species 

(Achoerodus gouldii, Bodianus frenchii, Coris auricularis, Choerdon rubescens, 

Notolabrus parilus, Ophthalmolepis lineolatus, Scarus ghobban and Thalassoma 

lunare). These species were selected based on the number of length recordings, the 

importance of the species identified in Chapter 2 via DLI value and if there was 

appropriate supporting literature to identify the species growth and life history 

stages. These species were then graphically represented by length frequency 

histogram comparing 2006 to 2015 for each region. Most species were protogynous 

hermaphrodites. Each graph was overlaid with lines indicating size at maturity to 

female and size at change to male. For the species that were not protogynous 

hermaphrodites, one line was used to indicate the size at maturity. These sizes were 

estimated based on a number of sources (Ackerman, 2004; Cossington et al. 2010; 

Coulson et al. 2009; Cure et al. 2015; Lek et al. 2012; Taylor et al. 2014). All 

statistical analysis was conducted in Primer 7 or Primer 6 (Clarke & Gorley, 2005; 

Clarke & Gorley, 2015).  

 

To test for differences in the shapes of length frequency distributions, frequency data 

were organised into length class bins. The length bins were devised by evenly 

dividing the subject species maximum length into 12 bins. When length bins were 

made for the whole assemblage, there were again 12 bins of 100mm intervals. Next a 

Manhattan distance resemblance matrix was constructed. A two factor 

PERMANOVA was performed on the resemblance matrix to determine if there was 
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a change (α=0.05) in species length distributions between year (fixed factor, 2 levels) 

and region (fixed factor, 7 levels). Lastly, a Kolmogorov–Smirnov test was run 

where a significant interaction, or main test for difference between years was found. 

Kolmogorov–Smirnov tests were used to compare the shapes of length frequency 

distributions between years at each region. 

 

3.2.5.2 Length - climate association 

Labrid raw length data were grouped into temperate, sub-tropical and tropical 

climate affiliations (Table App B: 1). These lengths were then organised into bins, 

pooled at the region level, displayed and analysed as above.  

 

3.2.5.3 Biomass climate association 

Biomass (weight in grams) values for individual labrids were calculated from their 

fork length measurement (Kulbicki et al 1993; Taylor and Willis 1998). The equation 

Weight = a * Length (mm) b, was used with the appropriate values for a and b being 

sourced from relevant published articles (Taylor and Willis 1998) and Fishbase 

(Froese & Pauly 2010). Some labrids were unable to be measured due to either the 

heads or tails being obscured by structure, other fish, or the fish not being in a 

suitable position. If the fish could not be properly measured, the individual was 

counted and the distance to the fish measured. Furthermore, species with a low 

precision for their length measurement were rejected during quality control of the 

raw data. For the individuals that had no length measurements, but that were counted 

inside the transect area, we multiplied the number counted by the average weight of 

the same species that occurred in that site. If that was not possible we used the same 

method, but used the average at a greater replication level (location). 

 

Species biomass was summed into the three climate affiliations at the location level 

(Table S3:1). Biomass was square root transformed and mean biomass data for each 

climate affiliation represented graphically. A two factor PERMANOVA on region 

and year was run to determine any changes in mean biomass. 
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3.2.5.4 Biomass Trophic level 

To enable a finer scale understanding of the changing biomass of the labrid 

assemblage, labrids within each climate affiliation were further split into five rough 

trophic groups: Herbivores, Generalist Carnivores, Omnivores, Large Invertivores 

and Small Invertivores (Table App B: 1). Functional groups were assigned to all 

labrid species except Suezichthys cyanolaemus, Eupetrichthys angustipes, 

Thalassoma septemfasciatum, Halichoeres brownfieldi and Pseudojuloides elongatus 

as there was no conclusive literature found to define their diet. The mean trophic 

biomass was then presented graphically with the five trophic categories compared 

between climate associations and year. A two-factor PERMANOVA (year and 

region) was done as described above.  

 

Where the PERMANOVA tests indicated statistically significant or close to 

significant (α =0.05) differences for Factors of year or the interaction of year x 

region, post-hoc pairwise tests were run to identify the specific regions where 

particular species biomass had changed over time, this was then indicated on the 

figures.  
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 Results  

3.3.1 Labrid length analysis 

3.3.1.1 Climatic affiliation length distribution 

The length frequency of most species changed from 2006 to 2015, both in terms of 

an increase in the number of individual lengths recorded and an increase in the size 

of individuals that were present. There was a difference in the mean size of species 

based upon their climate affiliation (F(2,12514) 618.3, P<0.001). Temperate species 

grew largest (max length < 1000mm, Temperate mean = 223mm ± 147 mm SD), but 

also included small bodied individuals (Figure 3:2). In comparison, tropical species 

had no very large individuals over 700mm (Figure 3:2), but an overall similar mean 

length (Tropical mean = 222mm ± 89mm SD) with few fishes measured over 500mm 

in fork length. Sub-tropical fishes consisted of smaller individuals with over 75% 

around 1-200mm and none measured over 500mm (Figure 3:2. Mean = 148, ± 81mm 

SD).  

 

The length frequency distributions of tropical labrids did not change significantly 

with the interaction of years and region, however there were differences between 

years (Figure 3:2, Table App B:2). In 2006 tropical associated labrids were only 

present in the three northern most regions (region 1, region 2 and region 3 (Figure 

3:2)) with the length frequency distribution skewed heavily toward smaller size 

classes (rarely reaching 200mm in fork length). Conversely, in 2015, tropical labrids 

were observed in all regions with their length distributions demonstrating a more 

even, less skewed distribution with both smaller and larger individuals present 

(reaching 300mm in fork length throughout the study area) (Figure 3:2). 

 

Sub-tropical species were persistent in all regions for both 2006 and 2015. The 

length frequency distributions of Sub-tropical labrids were found to differ 

significantly by year, region and year×region (Table App B:2), and can be observed 

in their different length frequency distributions between years at all regions (Figure 

3:2), with more small bodied sub-tropical individuals in 2006, whereas in 2015, there 

was a relatively even distribution in sizes from 100mm to 400mm in fork length.  
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There was a significant change in temperate species size classes for both year and 

region (Table App B: 2). While temperate species were present in all regions, larger 

bodied individuals were present in regions 4-7 in both 2006 and 2015 (Figure 3:2). In 

general there more recruits and small bodied temperate individuals (0-100mm) in 

2015, with the exception of regions 1 and 6 (Figure 3:2). 
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Figure 3:2: length frequency analysis of labrids with Temperate (blue), Sub-tropical (green) and Tropical (red) climate affiliations. Left column 

represents the 2006 data and the right the 2015 data. Regions 1 to 7 are from warm to cool, north to southeast geographically. Black star indicates 

statistically significant difference between years (Kolmogorov-Smirnov tests α=0.05).
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3.3.1.2 Individual species length distributions 

Analysis of the individual species length distributions shows changes between 2006 

and 2015 (Appendix B.1). C. auricularis (which accounted for 52% of the almost 

13,000 length measurements) displayed a substantial increase in the number of 

length measurements for both juveniles and mature individuals, resulting in a 

significantly different length distribution in 2015 in all regions when compared to 

2006 (Appendix B.1C). Additionally, tropical associated species Thalassoma lunare 

(which was not observed in 2006 (Appendix B.1H)) and Scarus ghobban (which 

consisted of only a few observations in 2006 (Appendix B.1G)), showed a large 

increase in the numbers of juveniles and larger individuals at the northern 

(Geraldton, Jurien Bay), warmer regions of this study in 2015. However, only 

sexually mature females and male T. lunare were observed in 2015. Choerodon 

rubescens showed a converse trend, with small juveniles being recorded further 

south in 2015 (Perth and Capes regions), compared to their 2006 distributions where 

they were not recorded south of Jurien Bay (Appendix B.1D). 

 

Some opposing trends were also evident, especially in the temperate labrids. 

Bodianus frenchii (Appendix B.1B), which had significant changes in their length 

structure in the cooler regions (4, 6 and 7) between years (Table App B:2). Bodianus 

frenchii  had fewer recruits in cooler water areas in 2015, while larger sexually 

mature male and female individuals declined in warmer areas (Figure App B:1). 

Additionally, A. gouldii had fewer juveniles observed in region 5 and 6, and its 

length structure showed a significant change at region 7, which has the lowest 

temperatures of the study area. For Ophthalmolepis lineolatus, significant changes in 

length frequency distribution were observed (Table App B:1). In the warmer waters, 

very few individuals were observed in 2015 compared to 2006. At region 3 and 

region 4 the distributions of O. lineolatus were dissimilar in shape in both 2006 and 

2015 with O. lineolatus at the Capes region in particular, displaying a fuller, more 

complete size distribution in 2015, driven by large numbers of fish in each size class 

in both years (Appendix B.1F). Towards the cooler waters of region 6 and region 7, a 

significant change in O. lineolatus length structure was observed, driven by the large 

juvenile cohort which was present in 2006 but had diminished in 2015.  
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3.3.2 Labrid biomass 

3.3.2.1 Change in biomass with Climatic affiliation  

The biomass of all sub-tropical and tropical affiliated species increased at each 

region from 2006 to 2015 (Figure 3:3). The biomass of tropical labrids increased 

almost 10-fold from 2006 to 2015 (Table 3:1 and Figure 3:3). Biomass increase was 

particularly evident in Geraldton, Jurien Bay and Perth where tropical species had a 

higher biomass than temperate species in 2015. In comparison, tropical species only 

outweighed temperate species in Geraldton in 2006. Sub-tropical species increased 

over 300%, with sub-tropical species displaying a binominal distribution in both 

2006 and 2015 along SWA. A driver for the sub-tropical biomass pattern was due to 

lower biomass at the Capes region than at the regions to the north and south. The 

biomass of temperate affiliated species remained stable over time, in contrast to the 

significant increase in tropical and sub-tropical biomass. 

 

Table 3:1 PERMANOVA tests for the biomass of labrid with the 3 different climate 

affiliations (Temperate, Sub-Tropical and Tropical) Bold P-Values indicate 

significant result (P-value < 0.05). 

Tropical 

Source df SS Pseudo-F P(perm) Unique perms 

Year 1 40935 18.766 0.0001 9948 

Region 6 26736 2.0428 0.0132 9911 

YearxRegion 6 15144 1.1571 0.2955 9916 

Residuals 42 91615 

  

9916 

Sub-Tropical 

Source df SS Pseudo-F P(perm) Unique perms 

Year 1 17763 21.161 0.0001 9951 

Region 6 21814 4.3313 0.0001 9942 

YearxRegion 6 5835.6 1.1587 0.2967 9914 

Residuals 42 35255 

   Temperate 

Source df SS Pseudo-F P(perm) Unique perms 

Year 1 1735.7 0.9841 0.4149 9941 

Region 6 84277 7.9639 0.0001 9908 

YearxRegion 6 10376 0.98053 0.4921 9883 

Residuals 42 74077 
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Figure 3:3: Shows two bar plots depicting the biomass of each climatically affiliated species over the study regions of 2006 (Left) and 

2015 (Right). Temperate Data is shown in Blue; Sub-Tropical indicated by Green and Tropical species biomass is indicated in Red. . 

Black stars above certain regions and climate association biomass indicate a significant difference in biomass (P value< 0.05) from the 

pair wise test for climate association over year by region. 
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3.3.2.2 Trophic biomass 

Each of the broad climatic affiliations were further broken down to five trophic 

factors (large invertivores, small invertivores, herbivores generalist carnivores and 

omnivores), to allow more detailed examination of these groups. For tropical labrids 

there was a significant increase in small invertivores, generalist carnivores and 

herbivores (with large invertivores and omnivores not recorded for tropical climatic 

affiliated labrids) over the two years (Figure 3:4). Herbivores dominated the biomass 

of tropical labrids and were predominantly present in the more northern regions 

(Figure 3:4). Herbivores were not observed for sub-tropical and temperate labrids. 

Sub-tropical labrids were mainly omnivores and small invertivores in 2006. 

However, sub- tropical large invertivores have increased their biomass significantly 

from 2006 to 2015 with much larger biomass present in the northern most sites in 

2015 (Table 3:2 and Figure 3:4). The biomass of sub-tropical omnivores too, 

increased significantly over years (Table 3:2) at all regions (Figure 3:4). The 

binominal distribution pattern in sub-tropical labrids (Figure 3:3), is mainly due to 

the distribution of biomass of sub-tropical omnivores (Figure 3:4). The biomass of 

generalist carnivores for sub-tropical labrids also increased significantly, being very 

low or absent in 2006, whereas in 2015 greater biomass was recorded in the northern 

most regions (Table 3:2 and Figure 3:4). Lastly, the biomass of temperate affiliated 

species was dominated by large invertivores, but was generally consistent over time 

(Figure 3:4). The exception was the biomass of temperate small invertivores, which 

significantly increased between years (Table 3:2). However, temperate small 

invertivores made up only a very small proportion of the temperate labrid biomass 

(Figure 3:4). 



 

59 

 

Figure 3:4: Biomass of the five different trophic levels of labrids. Each trophic biomass is associated with either Tropical, Sub-Tropical or 

Temperate climatic affiliations. The five tropic levels are Herbivores (  ), Generalist Carnivores (  ) Small Invertivores (  ), Large 

Invertivores (  ) and Omnivore (  ). Where a PERMANOVA test was significant between years (α>0.05) a white star was used to indicate this 

on the figure. Where there was a significant Pairwise test between year × Region a black star was placed over that region and functional group. 
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Table 3:2 Results of PERMANOVA tests of the labrid biomass of the three climate 

affiliated categories split into a further five trophic classifications (Herbivores, Large 

invertivores Omnivores, Generalist Carnivores and Small Invertivores) over the 

seven regions sampled encompassing both years. Bold P-Values indicate significant 

result (P-value < 0.05). 

Source df     SS Pseudo-F P(perm)  Unique perms 

Tropical Generalist Carnivore  

Year 1 5604.5 22.913 <0.001 9932 

Region 6 9345.2 6.368 <0.001 9949 

YearxRegion 6 9345.2 6.368 <0.001 9954 

Res 42 10273                         

Tropical Herbivores 

Year 1 6808.3 10.063 0.002 9931 

Region 6 21557 5.311 <0.001 9941 

YearxRegion 6 3988.7 0.983 0.449 9955 

Res 42 28414                         

Tropical Small Invertivores 

Year 1 14086 17.947 0.001 9932 

Region 6 6023 1.279 0.27 9944 

YearxRegion 6 4891.1 1.039 0.41 9940 

Res 42 32965                         

Sub-Tropical Generalist Carnivore  

Year 1 9257.8 23.865 <0.001 9930 

Region 6 7125.8 3.062 0.001 9946 

YearxRegion 6 7125.8 3.062 0.001 9952 

Res 42 16293                         

Sub-Tropical Large Invertivores 

Year 1 5433 10.808 0.001 9916 

Region 6 40236 13.34 <0.001 9940 

YearxRegion 6 4995.8 1.656 0.137 9934 

Res 42 21113                         

Sub-Tropical Omnivores 

Year 1 2549.8 27.456 <0.001 9931 

Region 6 3639.4 6.532 <0.001 9944 

YearxRegion 6 397.93 0.714 0.668 9945 

Res 42 3900.5                         

Sub-Tropical Small Invertivores 

Year 1 90.073 0.233 0.763 9948 

Region 6 34321 14.783 <0.001 9940 

YearxRegion 6 951.48 0.41 0.937 9927 

Res 42 16252                         
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Source df     SS Pseudo-F P(perm)  Unique perms 

Temperate Generalist Carnivore  

Year 1 70.234 0.526 0.481 9905 

Region 6 544.48 0.68 0.685 9929 

YearxRegion 6 863.8 1.079 0.409 9932 

Res 42 5604.2                         

Temperate Large Invertivores 

Year 1 168.16 0.189 0.759 9914 

Region 6 53006 9.949 <0.001 9930 

YearxRegion 6 3795.7 0.712 0.669 9958 

Res 42 37293                         

Temperate Omnivores 

Year 1 293.93 0.918 0.39 9954 

Region 6 46211 24.047 <0.001 9938 

YearxRegion 6 5048.7 2.627 0.009 9948 

Res 42 13452                         

Temperate Small Invertivores 

Year 1 6975 10.211 0.002 9916 

Region 6 11574 2.824 0.02 9936 

YearxRegion 6 3721.7 0.908 0.507 9945 

Res 42 28690                         
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 Discussion 

 Naturalisation / establishing populations 

The results found that tropicalisation not only affects the marine community structure 

in terms of abundance of organisms (Bennett et al. 2016; Wernberg et al. 2016), it 

also impacts length frequency and biomass. Tropical affiliated species have 

undergone a significant change in SWA. A range of warm-water species including 

the Thalassoma genus, S. ghobban C. auricularis and C. rubescens had juveniles, 

mature females and males present further south of their observed distributions in 

2006. Sub-tropical species have changed significantly at each region over the 10 year 

sample time resulting in a more stable and even length frequency structure in 2015 

compared to 2006. These patterns meet the assumptions of successful establishment 

(Smith et al 2016). Between 2006 and 2015 the warming trend in ST has allowed 

new species to emigrate and expand their range (sensu Walther et al. 2009). Tropical 

species in SWA that were rarely observed in 2006, appear to have established 

multiple generations of individuals, suggesting that they are able to survive the 

colder winter temperatures further south of their previous distribution. This pattern is 

supported by previous reports of C. rubescens successfully establishing itself south 

of its previously recorded range (Cure et al. 2015; Cure et al. 2018).  

 

When biomass was taken into account, it was obvious that not only was the length 

frequency of tropical fish more even in 2015, but the biomass of tropical affiliated 

herbivores far outnumbered any other functional group in the northern areas. 

Tropical herbivores were dominated by the grazing parrot fish S. ghobban (Bellwood 

& Choat, 1990; Bennett et al. 2015b). The establishment of tropical grazers, a 

completely new functional group for SWA labrids, has been assisted by the rapid die 

off of canopy macroalgae and it being succeeded by turf algae, which is the primary 

food source of the tropical grazers (Bennett et al. 2015b). This trend could continue 

if changes in algae continue further down the coast. Biomass and number of length 

measurements can be used together to interpret patterns such as the decrease in sub-

tropical labrid (which are dominated by sub-tropical omnivores) biomass at the 

Capes region. Here, the biomass and number of length measurements for C. 

auricularis is anomalously low. Although C. auricularis appears to be establishing 
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along the whole SWA coastline, some unknown factors are keeping numbers low in 

the Capes region. These could include competition with other species, but it is likely 

that the environment at the Capes does not support them as well as the environments 

at other regions. Marine habitats in the Capes region are highly exposed and 

abundances of many fish species are lower than elsewhere along SWA shallow reefs 

(e.g. Saunders et al. 2014). Overall, the patterns observed in the study suggest that 

both tropical and sub-tropical affiliated labrids are becoming established further 

south of their endemic ranges, including the establishment of completely new 

functional groups. 

 

 Overall increase in biomass 

One of the most important findings is the large increase in labrid biomass. Increasing 

temperature can lead to an increase in producer biomass and/or an increase in 

consumer biomass relative to producer biomass (O’Connor et al. 2009). The increase 

in biomass could also be driven by the increase in warm-water species immigrating 

into cooler ecosystems (Hiddink & Hofstede, 2008; Macpherson, 2002). The increase 

in species biomass observed in this study was due to a greater density of individuals 

and not an increase in individual size. This concept is supported by the increase in 

abundance patterns reported in Chapter 2 and further supported by previous research 

(O’Connor et al. 2009). Increase in species densities may indicate an increase in 

productivity and turnover in the system, as a result of decreased canopy cover 

(Steneck & Dethier 1994). Turfing algae, which has replaced canopy macroalgae in 

some areas, has a higher productivity and turnover in comparison to Ecklonia radiata 

kelp, which may allow more energy to enter the system, increasing its carrying 

capacity (Klumpp & McKinnon 1989; Steneck & Dethier 1994). However, increase 

in species densities and biomass might only be an initial trend, in response to an 

increase in primary productivity. Generally increases in species biomass, 

consumption and diversity eventually reach a limit and decline dramatically, 

potentially culminating in reduced population density in the long term, due to 

intraspecific competition (Bruno et al. 2015; O’Connor et al. 2009). Changing 

biomass is normally a dynamic process (O’Connor et al. 2009), stressing the need for 

further temporal replication of the survey. The vast increase in labrid biomass could 

have far reaching impacts on an environment that may not have the resources or 
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processes to carry it. Consequences could include increasing competition for 

resources with other species (including non-labrids), altered spawning times and 

trophic mismatch (Bruno et al. 2015; O’Connor et al. 2009). 

 

 Vulnerable temperate species 

Unlike the tropical and sub-tropical affiliations, temperate species have remained 

relatively stable between 2006 and 2015. Although they are not declining in biomass, 

temperate species have previously been found to have a reduced resilience to 

changing conditions in their relatively stable environments (Bryers et al. 2012; 

Coleman et al. 2011). Long lived species such as A. gouldii and B. frenchii are 

especially vulnerable to a changing environment and temperature increase, due to 

them being secondary consumers, their long life cycles, their relatively small home 

ranges and that they take significantly longer to adapt to change (Bryers et al. 2012; 

Coleman et al. 2011; Coulson et al. 2009; Hiddink & Hofstede, 2008; Perry et al. 

2005; Thackeray et al. 2016). This idea is supported by similar observations in 

another family of long-lived, territorial, temperate damsel fishes in SWA, where the 

distribution of cooler water Pomacentridae has not changed over time (Shalders et al. 

2018). Cool-water species are further at risk in SWA as the orientation of the 

coastline does not allow species to move further south and take refuge from the 

increasing temperatures, leading to potential rapid decline in their numbers and even 

lead to expiration or extinction (Bennett et al. 2016; Chapter 2; Wernberg et al. 

2016). 

 

Large temperate invertivores are targeted by recreational and commercial fishing, 

which may explain some of the changes in their size distributions. Recent trends 

show a 15% drop in recreational fishing effort along SWA from 2013 to 2016 (Ryan 

et al. 2013; Ryan et al. 2017). However, the catch rate of B. frenchii has increased 

almost 50% and A. gouldii has also increased despite the decline in fishing pressure 

(Ryan et al. 2013; Ryan et al. 2017). The increase catch rate of A. gouldii and B. 

frenchii could be due to increase in their abundance or more effective fishing 

equipment. However, Chapter 2 saw a decline in A .gouldii and B. frenchii. While the 

length frequency analysis for A. gouldii illustrated a clear drop in presence of 

individuals over the size of 500mm-600mm in 2015. With the minimum catchable 
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size limit for A. gouldii being 500mm (Department of Primary Industries and 

Regional Development, 2018), it’s probable that fishing pressure is contributing to a 

decline in the adult population. With large invertivores making up an important 

portion of temperate affiliated labrid biomass, there is a possibility that further 

pressures will lead to a loss of an important trophic group in SWA. Loss of trophic 

groups could have important ramifications for ecosystem function and species 

interactions and calls for management for these valuable species which could include 

alleviating fishing pressure (Edwards & Richardson, 2004).  

 

 Distribution of tropical herbivores and their 

establishment 

This study further supports the current growing body of literature that warm-water 

species are increasing their range further south along the SWA coastline (Bennett et 

al. 2015b; Bennett et al. 2016; Chapter 2; Cure et al. 2018; Wernberg et al. 2016). 

Many factors are responsible for the success of tropical, climatically affiliated 

herbivores like S. ghobban. In SWA warming ST and the heatwave in 2011 

decimated E. radiata kelp in the north of the survey area and promoted the growth of 

turf alga (which is a large component of S. ghobban’s diet) which resulted in a 

regime shift, facilitating the species to permeate the new ecosystem (Bennett et al. 

2015b; Wernberg et al. 2016). Chapter 2 found that S. ghobban had become so 

prevalent in the Geraldton region that it was a major indicator species of that 

assemblage. Smith et al. (2016) observed that the most successful naturalisation 

occurred when a species is moving into a neighbouring unoccupied niche. This trend 

explains why Scarus ghobban has become an important indicator species, as they are 

immigrating from neighbouring ecosystems and are the only labrid herbivore 

observed to have established itself in SWA. Furthermore, S. ghobban are especially 

likely to thrive along the SWA coast, as there are no labrids and few other species 

that perform their ecological function as roving grazers. The increase in biomass of 

tropical affiliated herbivores has the potential to introduce unprecedented top down 

control of the macroalgal canopy as they prevent re-establishment of canopy through 

the process of feeding on turf algae (Bennett et al. 2015b). This shift away from 

macroalgal canopy habitat can have negative consequences for the species that 
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depend on it for food and shelter (Bennett et al. 2015b; Cheminee et al. 2017; Levin 

and Hay, 1996).  

 

 Consumption of juveniles by larger labrid species 

Some temperate species, such as O. lineolatus, have seen a decline in juvenile size 

classes along their distribution. In the northern, warmer, regions the decline of 

O. lineolatus could be in part due to an increase in ST and the associated loss of 

macroalgae habitat that they may need for protection. This loss of recruits also 

occurs where there is a corresponding increase in sub-tropical and tropical affiliated 

labrid biomass. Many labrids have very flexible diets and some species can adapt 

their diet when in new environments (Lek et al. 2012). Many studies label labrids as 

invertivores, but multiple authors report that some species of labrid include fish in 

their diet (Ackerman, 2004; Lek et al. 2011; Holmes et al. 2012). The loss of O. 

lineolatus juveniles in the northern most study areas, matched up with a large 

increase in biomass of the tropical species T. lunare, a species that prey on fish as 

well as invertebrates (Ackerman, 2004, Holmes et al. 2012). When present in large 

numbers, T. lunare can drive a decline in juvenile abundance fishes (Holmes et al. 

2012) and it is possible that T. lunare are driving a decrease in the frequency of 

juveniles of other species through direct predation. 

 

While T. lunare have previously been reported to play an important function in 

consuming juvenile fishes, all omnivores recorded in this study have also been 

recorded consuming fish (Lek et al. 2011). One such species, C. auricularis, has seen 

dramatic increases in biomass in the southern, cooler regions between 2006 and 

2015. Coris auricularis has a highly plastic diet and is capable of competing with O. 

lineolatus as they fulfil a similar functional role (Lek et al. 2011). In the cool Albany 

and Bremer Bay regions, O. lineolatus has a decrease in numbers in juvenile size 

classes, while these same regions have more C. auricularis juveniles, adult males and 

females. Juvenile C. auricularis may out-compete O. lineolatus with adult 

C. auricularis possibly including the juveniles of local temperate species such as 

O. lineolatus in their diet. The consumption of juvenile O. lineolatus by warm-water 

labrids may also explain why there are more O. lineolatus observed at the Capes 

(which is warmer than the Albany and Bremer Bay regions and so may be expected 
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to have less O. lineolatus individuals present), as there is a smaller increase in 

biomass of C. auricularis at the Capes region compared to any other region.  

 

If many species of labrids are in fact generalist carnivores or omnivores, the 

changing distributions in response to climate change could have a series of 

environmental impacts that have not yet been considered. Ruiz et al (1999) found 

that the wider impacts of range changes in fishes are especially severe for 

piscivorous fish as they predate the endemic species. If these immigrant warm-water 

predatory labrids are consuming other species, there is potential that they may 

remove an endemic key-stone species, which could have ecosystem-wide flow-on 

effects. Similarly, other tropical and sub-tropical affiliated piscivorous species 

(outside the scope of this study) could contribute to the decline of temperate labrids. 

Further research should target other warm-water families of warm-water piscivorous 

fish. 

 

 Great Southern reef 

Temperate ecosystems are the most vulnerable to changing environments. In the case 

of the Great Southern Reef (GSR), this vulnerability is further exacerbated by the 

orientation of the Australian coastline in relation to the poles (Bennett et al. 2016; 

Stevens, 1989). The GSR has already seen changes in its marine assemblages 

(Bennett et al. 2016; Chapter 2; Shalders et al. 2018; Wernberg et al. 2016). The 

GSR has one most diverse and endemic rich assemblages in the world, generating 

$120 million dollars to the Australian economy in fisheries alone and $200 billion 

dollars in nutrient recycling services (Bennett et al. 2016). However, the increase in 

warm-water affiliated species biomass, newly emerging species functions, the 

decrease in endemic temperate species biomass and change in length structure, could 

put the unique values of GSR in jeopardy. In comparison to tropical reef systems, 

temperate reefs are highly understudied (Parsons et al. 2016; Truong et al. 2017). 

The lack of research on temperate reefs needs to change if management strategies are 

to be put in place to mitigate the recent species life history, biomass and habitat 

changes. 
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 Conclusion and recommendations 

This study examined whether labrid distributions, lengths and biomass changed 

along the SWA coastline in the ten years between 2006 and 2015. Our results 

indicate that warm-water affiliated species are becoming established in the northern-

most survey regions, with some species establishing further south, in cooler waters. 

The changes in length structure of large, slow growing temperate affiliated species 

indicate that fishing pressure is having an impact on target species in SWA, which 

could synergise with future climate change. The combined total labrid biomass has 

increased exponentially, which could cause radical change to habitat and food webs 

in the future. The decline of temperate juveniles could be due to them being 

consumed by highly adaptable immigrating warm-water predators, which could have 

a wide impact on temperate ecosystems. From this study it is certain that tropical 

labrids are becoming established in the warmer areas of SWA and that there is a 

change in the labrid assemblage along the whole SWA temperate reef system. 

South-West Australia and the Great Southern Reef are an economically important 

and biologically significant area that is understudied. Ongoing replication of this 

research should be done to better understand the extent and rate of the changes to the 

SWA marine environment. Future study should also target a wider depth range to 

investigate the possibility of depth refugia in response to climate change (Booth et al. 

2011; Langlois et al. 2012a; Wernberg et al. 2011a). Further research at deeper 

locations will be especially important for the larger species considered in this study 

including B. frenchii, which is a shallow living representative of its genus, with its 

relatives being found up to 340m in depth (Cossington et al. 2010; Gomon, 2001; 

Kuiter, 1993). Lastly, specific research should explore the diet of warmer water 

species to confirm that labrid species are consuming cool-water affiliated endemic 

species, which could have severe implications for the temperate marine assemblages 

of the GSR. 
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Chapter 4 General Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

Photograph: Dr Benjamin Saunders preforming transects - South Western Australia 
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 Summary of findings 

This thesis aimed to determine the changes in labrid assemblages along South 

Western Australia (SWA) over 10 years between 2006 and 2015. The study I 

conducted demonstrated that labrid assemblages are changing along the whole SWA 

coast. Sea temperature and altered benthic habitats were the most important defining 

variables driving assemblage structure (Chapter 2 Figure 2:3). All of the regions 

sampled in SWA are experiencing influxes of warm-water species into temperate 

regions. It was also evident that ecosystems and assemblages in the cooler regions of 

the south coast, which were thought to be stable, are beginning to display 

characteristics more associated with warmer water regions. It was observed that 

labrid assemblage structure was breaking down from larger assemblages in 2006 into 

smaller, more specialised assemblages in 2015 (Figure 2:3). This change is in 

contrast to recent studies that found that the marine assemblages along the south 

coast past the Capes were relatively stable, despite the increasing ST (Shalders et al. 

2018; Wernberg et al. 2013; Wernberg et al. 2016). I also observed declining 

abundances of large bodied temperate species, some of which are targeted by 

fishermen, but which also have an important social value for both fisheries and 

tourism. In the process of identifying the most representative species in the SWA 

marine assemblages, this study found that some of the most characteristic species 

were the new tropical species that were recorded in high numbers in 2015 (Figure 

2:4). Furthermore, the trends observed in this study suggest that warm-water labrids 

may be an important indicator for future changes to marine ecosystems. 

 

Chapter 2 raised some questions as to whether the changes in distribution and 

abundance represented successful establishment (revised conceptual flow diagram, 

Figure 4:1). Chapter 3 addressed these questions, and identified that some warm-

water affiliated species are becoming established south of their normal distribution. It 

also confirmed that life history stages of species have been impacted differently by 

climate change, with juvenile stages becoming more prevalent in comparison to later 

stages. Biomass increased for most labrids between 2006 and 2015, but the increase 

occurred at different scales for different climatically affiliated species (Chapter 3 

Figure 3:3). The source of the increase in biomass was not due to an increase in body 

size, but an increase in juvenile presence. The increase in juveniles was most notable 
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in the warmer northern waters. The data also supports trends of tropicalisation 

reported in previous research, with local species moving from their centre of 

distributions towards the pole along SWA and establishing successfully in new areas 

(Cheung et al. 2012; Cure et al. 2018; Wernberg et al. 2013). The species that were 

most successful were the groups of species that were the most functionally different 

to the local established species (Smith et al. 2016). Although the biomass of large 

bodied temperate species stayed relatively stable there were fewer big individuals of 

these species in 2015, which is a possible result of fishing, as abundances of large 

bodied labrids sharply declined at the legal catch size. One possible unexpected 

interpretation of the results is that some of the warmer species moving into cooler 

water areas may actually be consuming juveniles of resident species in order to 

maintain their biomass (Ackerman, 2004; Lek et al. 2011; Holmes et al. 2012). 

Chapter 3 also generated future questions (outlined in Figure 4:1) that will be 

important for future management of SWA marine ecosystems. 

 

With increases in ST and heat wave events in SWA predicted to be double the global 

average in the near future, this study supports the growing literature that suggests the 

current SWA marine assemblages are at risk of permanently changing (sensu 

Wernberg et al. 2016). Additionally, in SWA once a species moves past the Capes 

region they can no longer move further towards the pole, and in order continue to 

move to cooler waters (Bennett et al.2016; Wernberg et al. 2011b). Instead they are 

restricted to following the temperature gradient (Figure App A: 1) east along the 

coastline, towards the Great Australian Bight. However, options of refuge for cool-

water species are limited, and in the future the SWA coastline will increase in 

temperature relatively rapidly, further limiting refuge areas. Therefore, a cool-water 

species’ only option may be to retreat into deeper water habitats to escape increasing 

ST, otherwise they risk extinction. The removal of species from marine assemblages 

could have substantial economic ramifications for tourism and recreational fishers, as 

the species that tended to be most at risk from climate change were those routinely 

targeted by recreational or commercial fisheries. With the prediction that SWA will 

continue to change rapidly this study’s findings highlight the need for more research 

and for rapid adaptive management in order to manage the changes that labrids are 

already experiencing.
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Figure 4:1 Updated flow diagram detailing the outcomes and the future research possibilities identified in this study.
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 Limitations of the thesis  

With the projected increase in ST, disturbance events and the uncertainty of their 

impacts on labrid assemblages, more research will be critical to inform future 

management. A key limitation of this study is the lack of temporal replication. 

Further replication was not logistically feasible due to the time constraints of a 

Master’s thesis, both in the context of collecting and analysing the resulting imagery. 

Further temporal replication will assist with modelling future trends that will inform 

the management of potential impacts (Patil, Peng & Leek, 2016). Future sampling 

could also target years of the El Niño and La Niña cycles to further progress our 

understanding of how SWA marine assemblages are changing over time (Wernberg 

et al. 2016). South Western Australia has a high frequency of endemic species and 

the unique marine ecosystem itself is predicted to change relatively rapidly, further 

highlighting the need for ongoing repeated monitoring studies in order to identify the 

rates of these change as soon as possible. 

 

 Future implications for assemblages in SWA- 

4.3.1 Labrid assemblage competition 

The increase in abundance and biomass of warm-water labrids will increase direct 

competition with their cooler water family members. However, because warm-water 

labrids have been recorded to have high feeding rates and plastic diets, they may be 

able to easily out compete resident cooler water species (Bennett et al. 2015b; Lek et 

al. 2011). With the predicted rapid increase in sea surface temperature we could see 

SWA labrid assemblages become fully dominated by warm-water labrids and a 

resulting decline in temperate endemic species The results of Chapter 2 and 3 

showed a similar pattern were the increase warm-water species C. auricularis 

coincided with a decrease in the cooler water species O. lineolatus. These two 

species might be competing with each other for food resources, leading to the decline 

of O. lineolatus (Lek et al. 2011). In addition, many other labrids have also been 

found to include fish in their diets (Lek et al. 2011), such as T. lunare which are a 

predator of juvenile fish (Holmes et al. 2012). Coris auricularis could further 

contribute to the declines in temperate species by consuming their juveniles. If 
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warm-water piscivorous labrids are consuming temperate species then the monitoring 

and research of the potential impact that these species could inflict on SWA should 

be of key importance.  

 

4.3.2 Implications for other families of marine species 

This thesis only targeted species from the family Labridae however; there are further 

implications for other species. The large increase in Scarus abundance and diversity 

observed in the data could lead to continued prevention of macroalgae canopy 

recovery in SWA’s northern more regions (Bennett et al. 2015b). Furthermore, 

endemic species of macroalgae further along the SWA coastline are at risk of the 

synergistic impacts. Further ST increase, turf algae dominance and the feeding 

pressure of herbivorous labrids consuming the macroalgae recruits as a by-product of 

feeding on the turf algae, would drive a region wide habitat shift, and loss of endemic 

diversity. The overall increase in labrid biomass may lead to a density dependent 

resource limitation in the marine habitats of SWA, precipitating higher competition 

between species (O’Conner et al. 2009; Sánchez Lizaso et al. 2000). Changes in 

distribution and tropicalisation have been reported in other families, such as 

pomacentrid fishes (Shalders et al. 2018), corals (Verges et al. 2014; Hughes et al. 

2010; Yamano et al. 2011), invertebrates (Caputi et al. 2016) and macroalgae 

(Bennett et al. 2015a; Verges et al. 2014; Wernberg et al. 2016). The changes in 

distributions and tropicalisation observed in other species, combined with the 

findings in my thesis, indicate that the whole marine assemblage of SWA is 

undergoing significant changes and emphasises that SWA’s marine assemblages 

need further targeted future research, especially if new, warm-water species are 

predating upon and outcompeting local cool-water species. 

 

 Future implications- management 

4.4.1 Predicted continued climate change 

This study has observed how 10 years of climate change can impact labrid 

assemblages. Climate change and ST is projected to continue to increase over the 

next four decades (Chueng et al. 2012), and also implies that the changes seen in this 
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study will likely continue, with some models predicting the continued warming will 

lead to complete habitat change and species diversity crashes (Bruno et al. 2015; 

O’Connor et al. 2009). Additionally, the evidence provided by this study 

demonstrates the shift of the cool-water ecosystems towards warm-water ecosystems, 

posing a problem for cool-water species which, due the SWA coastline, are unable to 

move further south to cooler waters. The inability of cool-water species to move 

further south in SWA leaves these species with the options of trying to take refuge in 

deeper water, adaptation, or extinction (Smith et al. 2016). The orientation that SWA 

has to the South Pole and the relative long-term stability of its environment, makes it 

especially susceptible to rapid change. Continuous monitoring is essential; to gauge 

the rate of this change, and the results should be incorporated into adaptive 

management practices, such as revising marine sanctuaries with the changing species 

distributions and habitat rehabilitation. 

 

4.4.2 Evidence of impact on fisheries important, long-

lived species 

The impacts of climate change on the SWA coastline identified in this study also 

have economic ramifications. I documented a decrease in the abundance of the 

important recreationally fished temperate species A. gouldii and B. frenchii. Such a 

decline is also supported by recent and historical scientific and anecdotal evidence 

(Gaynor et al. 2008; Gaynor, 2014; Johnson, 1982; Ottaway et al. 1987). These 

declines show evidence of the effects of fishing pressure; in the case of the A. gouldii 

population, they were found to have declined in numbers at 500mm, which is their 

catch size threshold (Department of Primary Industries and Regional Development, 

2018). Furthermore, the B. frenchii population is potentially even more at risk, as 

over the four years from 2013 - 2016 recreational fishing effort for B. frenchii 

species increased by 44% (Ryan et al. 2013; Ryan et al. 2017). Coupled with the 

exceptionally long life span of B. frenchii (Cossington et al. 2010) the decline in 

numbers seen in this study indicate that B. frenchii  is particularly sensitive and at 

risk from fishing. The decrease in these species will lead to a loss of socio-economic 

value for recreational fishers and divers.  
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Alternatively, an increase in value for fishers may be gained by targeting warm-water 

species such as C. rubescens and other similar warm-water species, that could 

potentially extend their distribution into the areas where cooler water target species 

are diminishing. A change in management to shift the proportion of fishing effort 

away from sensitive cooler water species and toward warmer water species, might 

mitigate the effects of fishing on these vulnerable species. Additionally, education 

efforts could target key areas such as recreational fishing sectors. The essential 

message for management agencies and public alike is that the future of climate 

change on SWA is highly uncertain. It may also be necessary for resource managers 

to establish preventative measures such as full protection for both B.frenchii and 

A. gouldii. While full protection may be unpopular with fishers, such strong 

measures may be necessary to protect our iconic and vulnerable labrid species 

(Coleman, et al. 2011; Last, et al. 2011). 

 

 Future research  

4.5.1 Depth 

An area of research that this study did not consider is different ocean depths. An 

understanding of labrid connectivity across a range of depths will better disentangle 

how marine species adapt with changing climate by either moving towards cooler 

waters or deeper to escape rising temperatures (Booth et al. 2011; Wernberg et al. 

2011a). Species adaptation to changes is principally important in SWA as the 

orientation of the coastline with the South Pole means that species are limited in their 

ability to move south. However, labrids have been found to inhabit deeper waters 

than those sampled in this study (Cossington et al. 2010). Sampling depth could be 

incorporated to further data set replication at each site via use of DOVs or BRUVs 

(baited remote underwater stereo-video) to sample deeper water assemblages. Other 

methods could also include Remote Operated underwater Vehicles (ROVs) for 

deeper waters. The ROVs are able to collect similar transect and density data to 

DOVs but do not require divers for their operation.  
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4.5.2 Other families 

As this study observed profound changes to the diverse labrid assemblages and 

distributions, broadening the focus of research to other families will assist in 

determining whether the changes seen in the plastic labrid assemblage are reflected 

in the other families present in SWA. Addressing this gap in the knowledge would 

allow a broader understanding of the whole assemblage health of SWA and help 

identify the species most at risk. Researching other marine families is especially 

important for species that have multiple stressors on them, such as those that are 

targeted by recreational and commercial fisheries, as these are the species most at 

risk of expiration or extinction (Coleman et al. 2011). Additionally, looking at the 

whole marine assemblage will give a baseline of species for further research to build 

on in SWA. 

 

4.5.1 Study over whole species ranges  

The constant shifting of labrid species ranges needs to be monitored, to further 

understand the impact that climate change and increasing ST are having on labrid 

distributions. This study targets a specific geographical area and not the whole of 

species distributions. To achieve better understanding of how the changing 

environment is impacting species ranges, studies should specifically target species 

distributions. Emphasis should be put on the species range ends where changes will 

be most obvious, as increased temperature negatively impacts growth and 

reproduction at the range ends (Cure et al. 2018; Smith et al. 2016). The testing of 

thermal tolerance limits would also be beneficial to answering how the changing 

environment is impacting species ranges. Testing thermal tolerance limits could be 

set up in a controlled laboratory environment, targeting the thermal tolerances of 

select species and measure stress, hormonal change and reproductive capacity at 

different temperatures (Donelson et al. 2014; Trip et al. 2016). This area of research 

could be further advanced by DNA sampling and analysis along the target species 

distribution, to determine if species that are present in different temperature brackets 

are becoming distinct populations. This testing will provide an understanding of the 

genetic connectivity relationship between the original source population and range 

shifting labrids, and if they are establishing to create distinct populations.  
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4.5.2 Ecological impacts of species distributions 

changing 

The implication that warm-water labrid species may have been wrongly assumed to 

be invertivores and instead are potentially consuming other, cool-water fish species, 

could have a range of negative impacts (Bruno and O’Conner, 2005; Lek et al. 2012; 

Smith et al. 2016). Better understanding of labrid diet is an urgent issue that requires 

targeted research, as species that include other fish in their diet have been found to 

have the largest impact of any functional group when entering new ecosystems, due 

to their ability to consume important endemic species (Bruno and O’Conner, 2005; 

Lek et al. 2012). To address the lack of knowledge of SWA labrid diets, gut contents 

analysis should be carried out on species such as C. auricularis and Thallasoma spp. 

that have been observed to consume fish and have moved southward on the SWA 

coastline. Gut contents analysis should include samples along species entire range 

and could specifically compare the gut contents of the source population, with the 

individuals outside their normal distribution, and would also disentangle whether 

these species are adapting to consume local cool-water species (sensu Chapter 3). 

Gut contents analysis could be accomplished by eDNA using PCR-based molecular 

analysis of stomach contents and it has the benefit of being able to identify species 

DNA fragments hours after the prey has been consumed (Leray et al. 2015; Thomsen 

& Willerslev, 2015). If gut contents research was undertaken it could provide an 

explanation of why some temperate species are declining.  

 

 Conclusion 

South Western Australia is one of the world’s most diverse marine habitats, yet there 

is relatively little data on this temperate marine ecosystem. This study has focused on 

rectifying this gap in current knowledge by targeting one of the SWA’s most 

abundant and diverse families over 10 years of climate change, to determine how 

labrid assemblages have been impacted from 2006 to 2015. This study found a 

significant, radical change in labrid assemblages along SWA’s shallow reefs from 

2006 to 2015. These changes include the inundation of tropical species into regions 

they were previously absent. This study also found that species and habitat changed 
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on different scales, with warmer temperate habitats and assemblages changing more 

than cooler ones. The changes in the southern more regions of the study area 

challenge the previous finding that the southern-most areas of SWA are unaffected 

by increasing ST. Instead it was found that larger, 2006 cool-water assemblages were 

breaking down into smaller, more specialised assemblages in 2015, which is a 

prominent warm- water characteristic (Ebeling & Hixon, 1991). 

 

The results of this thesis provide future directions to better study temperate reef 

assemblages over long time periods and over large geographical areas. This study 

focused on one diverse and highly plastic family of reef fish and it makes a 

substantial contribution to understanding the processes of change in marine 

ecosystems in temperate Western Australia. Future research efforts should focus on 

the whole marine assemblages over multiple habitat types, not just shallow reef 

systems. Advancing our research and understanding of SWA marine assemblages 

will potentially allow us to use targeted management programs to increase resilience 

of SWA marine systems. My study adds to evidence that South Western Australia’s 

unique marine environment is under threat, and these trends will continue into the 

future. However, with the right research and adaptive management the impacts of 

recent climate change can be monitored, and resilience to future changing conditions 

promoted.  
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Appendix A Chapter 2 

Appendix A contains tables and figures in support of Chapter 2. 

 

 

Figure App A: 1 Mean yearly sea surface temperature of the seven survey regions with linear 

trend line overlayed from the initial 2006 study (White Squares), during the marine heatwave 

in 2011 (Black Diamonds) and the current recent survey in 2015 (Grey Triangles). 

 

  

15

16

17

18

19

20

21

22

23

24

Geraldton Jurien Bay Perth Capes Albany Bremer Bay Esperance

M
ea

n
 S

ea
 S

u
rf

ac
e

 T
em

p
er

at
u

re

Region



104 

 

Table App A: 1 Results of post-hoc PERMANOVA test of the different labrid assemblages 

for the interaction of year by location, grouped into the seven sampling regions. The 

significant differences (α=0.05) are indicated in bold. 

Geraldton 

t P(perm) Unique perms 

Location 1 

5.7596 0.0001 9962 

Location 2 

3.6834 0.0001 9955 

Location 3 

3.4328 0.0001 9927 

Location 4 

2.6701 0.0006 9957 

Jurien Bay 

Location 1 

3.6087 0.0001 9968 

Location 2 

5.2222 0.0001 9952 

Location 3 

2.6473 0.0001 9952 

Location 4 

7.1121 0.0001 9960 

Perth 

Location 1 

2.3769 0.0017 9966 

Location 2 

4.1056 0.0001 9953 

Location 3 

4.241 0.0001 9967 

Location 4 

4.7722 0.0001 9952 

Capes 

Location 1 

2.9782 0.0003 9962 

Location 2 

1.6965 0.0521 9956 

Location 3 

2.7712 0.0006 9965 

Location 4 

4.4008 0.0001 9951 
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Albany 

Location 1 

3.909 0.0001 9955 

Location 2 

3.3468 0.0001 9954 

Location 3 

3.5497 0.0001 9968 

Location 4 

3.9595 0.0001 9950 

Bremer Bay 

Location 1 

1.8087 0.022 9948 

Location 2 

2.9088 0.0002 9956 

Location 3 

2.4796 0.0003 9957 

Location 4 

2.6893 0.0005 9951 

Esperance 

Location 1 

1.9274 0.0136 9957 

Location 2 

1.6059 0.0534 9959 

Location 3 

3.0348 0.0001 9963 

Location 4 

1.6093 0.0557 9962 
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Table App A: 2 Details of the splits in the MRT in Figure 2:3 and Figure 2:4. Assemblage 

column describes the splits and nodes in the tree, followed by the number of sites included at 

that level. The species that are most associated with that split or node based upon their 

Dufrêne and Legendre index (DLI) values. As a description of the assemblage at each 

terminal node the range of species richness (means ± s.e. site-1) and range of abundances 

(means ± s.e. site-1) within a species are also given. 

Assemblage Number 

of sites 

Number 

of species 

Species (DLI) Species 

Richness 

Range 

Species 

Abundance 

Range 

ALL 224 5 N. parilus(92), 

C. auricularis(79), 

H. brownfieldi(32), 

A. maculatus(30), 

A. geographicus(10) 

  

Sub-Tropical 100 0 N/A   

Temperate 124 5 O. lineolatus(83), 

P. biserialis(82), 

A. gouldii(69), 

B. frenchii(31), 

P. laticlavius(23) 

  

Geraldton- 

2006/2015 

12 0 N/A 1-6 

(2.5±1.5) 

1-67 (11.1 

±18) 

Geraldton- 2015 9 7 S. ghobban/schlegeli(48), 

T. septemfasciatum(37), 

C. rubescens(35),   

L. dimidiatus(32), 

T. lunare(18), 

S. frenatus(11), 

C. sordidus(9) 

2-7 (5.7 

±1.6) 

0-1028 

(118.2±163.

8) 

Geraldton, Jurien 

Bay, Perth- 2006/ 

2015 

79 4 T. lutescens(14),  

A. melanurus(1) , 

P. elongatus(1), 

S. bandanensis(1) 

0-13 

(4.9±2.3) 

19-148 

(46.8±40.3) 
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Assemblage Number 

of sites 

Number 

of species 

Species (DLI) Species 

Richness 

Range 

Species 

Abundance 

Range 

      

Capes-2006/ Capes, 

Albany, Bremer 

Bay, Esperance- 

2015 

23 1 E. angustipes(12) 1-10 

(5.5±2.4) 

7-241 (60.6 

±59.9) 

Capes, Albany, 

Bremer Bay, 

Esperance- 2006/ 

Esperance-2015 

  62      0 N/A 1-10 

(5.2±1.7) 

3-149 (44.2 

±28.9) 

Bremer Bay-2006/ 

Albany, Bremer 

Bay, Esperance- 

2015 

39 3 D. alleni(9), 

S. cyanolaemus(3), 

D. aurantiacus(2)   

2-11 

(6.6±1.7) 

26-372 (92 

±69.4) 

Geraldton, Jurien 

Bay, Perth- 

2006/2015 

88 0 N/A     

Capes, Albany, 

Bremer Bay, 

Esperance- 2006/ 

Capes, Esperance- 

2015 

85 0 N/A   
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Figure App A: 2 Mean densities (per 125m2) in 2006 (dark bars) and 2015 (Light Bars) of the 15 most abundant indicator labrid 

species at each of the seven regions. The regions consist of four locations, which in turn have four sites nested within them (n-4).  
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Appendix B Chapter 3 

Appendix B contains tables and figures in support of Chapter 3. 
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Table App B: 1 Supporting literature for labrid climatic affiliation and trophic groups 

Species Climatic affiliation Supporting reference Trophic Group Supporting reference 

Achoerodus gouldii Temperate Sheperd, 2007 Large Invertivores Sheperd, 2007 

Anampses geographicus Tropical Fish Base, 2018 Small Invertivores Fish Base, 2018 

Anampses melanurus Tropical Fish Base, 2018 Small Invertivores Hodge et al. 2012 

Austrolabrus maculatus Temperate Fish Base, 2018 Small Invertivores Fairclough, et al., 2011 

Bodianus frenchii Temperate Cossington, et al., 2010 Large Invertivores Platell, et al., 2010 

Chlorurus sordidus Tropical Fish Base, 2018 Herbivores Fish Base, 2018 

Choerodon rubescens Sub-Tropical Cure, et al., 2015; Cure, et al., 

2018 

Large Invertivores Cure, 2016; Lek, 2004 

Coris auricularis Sub-Tropical Lek, et al.,2011 Omnivores Lek, et al., 2011 

Dotalabrus alleni Sub-Tropical Fish Base, 2018 Generalist Carnivore  Bray, 2017 

Dotalabrus aurantiacus Temperate Fish Base, 2018 Generalist Carnivore  Western Australian Museum, 2018 

Eupetrichthys angustipes Temperate Fish Base, 2018 N/A N/A 

Halichoeres brownfieldi Sub-Tropical Fish Base, 2018 N/A N/A 

Labroides dimidiatus Tropical Fish Base, 2018 Small Invertivores Grutter, 1997 

Notolabrus parilus Sub-Tropical Lek, et al.,2012 Omnivores Lek, et al., 2011 

Ophthalmolepis lineolatus Temperate Lek, et al.,2012 Omnivores Lek, et al.,2011 

Pictilabrus laticlavius Temperate Fish Base, 2018 Small Invertivores Fairclough, et al., 2011 

Pseudojuloides elongatus Temperate Fish Base, 2018 N/A N/A 

Pseudolabrus biserialis Sub-Tropical Fish Base, 2018 Small Invertivores Fairclough, et al., 2011 

Scarus frenatus Tropical Fish Base, 2018 Herbivores Fish Base, 2018 

Scarus ghobban / schlegeli Tropical Bennett, et al., 2015b Herbivores Bennett, et al., 2015b 

Stethojulius bandanensis Tropical Fish Base, 2018 Small Invertivores Dulvy, et al., 2002 

Suezichthys cyanolaemus Sub-Tropical Fish Base, 2018 N/A N/A 

Thalassoma lunare Tropical Ackerman, 2004 Generalist Carnivore  Holmes, et al., 2012, Connell, 2000 

Thalassoma lutescens Sub-Tropical Fish Base, 2018 Generalist Carnivore  Fish Base, 2018, Bray, 2017 

Thalassoma 

septemfasciatum 

Tropical Fish Base, 2018 N/A N/A 
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Figure App B: 1 Length frequency analysis for select labrid species A (A. gouldii), 

B (B. frenchii), C (C. auricularis), D (C. rubescens), E (N. parilus), F (O. lineolatus), 

G (S. ghobban / schlegeli) and H (T. lunare). The figure depicts 2006 lengths (blue) 

and 2015 lengths (red). Graphs were overlaid with age of estimated maturity from 

literature however they are highly variable; darker indicates length when juveniles 

first become mature females and lighter were females change to males A Pairwise 

test between year × region was run and a black star was placed over that region to 

indicate a significant result at that region however this could not be done for region 

when a species was not present for either 2006 or 2015. 
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Table App B: 2 PERMANOVA tests differences in the length frequency 

distributions of species across different regions and years of the labrid climate 

association that were analysed above in Figure 3:2 and the individual species length 

frequency’s Figure App B:1. Bold P-Values indicate significant result (P-value < 

0.05). 

Tropical affiliated species 

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 2776 5.4866 0.0042 9969  

 

Region 6 5261 1.7329 0.0663 9920  

 

YearxRegion 6 3994 1.3155 0.2075 9942  

 Residual 42 21251     

Sub-Tropical affiliated  species  

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 3.153E+05 5.7021 0.0075 9960  

 

Region 6 1.3675+E6 4.1218 0.0006 9939  

 

YearxRegion 6 6.9417E5 2.0923 0.0264 9943  

 Residual 42 2.3224E6     

Temperate affiliated species 

  

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 2833.4 3.0047 0.0469 9959  

 

Region 6 48603 8.5905 0.0001 9933  

 

YearxRegion 6 3015.4 0.53296 0.9009 9929  

 Residual 42 39605     

Achoerodus gouldii  

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 109.29 1.9245 0.118 9939  

 

Region 6 2102.7 6.1715 0.0001 9913  

 

YearxRegion 6 251.21 0.73732 0.7946 9922  

 Residual 42 2385     

Bodianus frenchii  

 

Source df       SS Pseudo-F P(perm) 
 Unique 

perms 

P(MC) 

 

Year 1 6343.6 0.66898 0.6254 9956  

 

Region 6 97583 1.7152 0.0367 9901  

 

YearxRegion 5 75102 1.584 0.0654 9908  

 Residual 22 2.0861E5     
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Coris auricularis                                   

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 25476 5.0907 0.0001 9944  

 

Region 6 1.13E+05 3.7611 0.0001 9898  

 

YearxRegion 6 80015 2.6649 0.0001 9906  

 Residual 39 1.9517E5     

Choerdon rubescens                                   

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 35618 4.7463 0.0022 9948  

 

Region 3 65179 2.8952 0.0014 9912  

 

YearxRegion 1 21299 2.8382 0.0102 9938  

 Residual 10 75044     

Notolabrus parilus              

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 2871.4 0.66886 0.6791 9953  

 

Region 6 63541 2.4669 0.0003 9903  

 

YearxRegion 6 15659 0.60793 0.9551 9889  

 Residual 42 1.803E5     

Ophthalmolepis lineolatus 

 

Source df       SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 15792 2.9076 0.0152 9951  

 

Region 6 93287 2.8627 0.0001 9903  

 

YearxRegion 5 37724 1.3891 0.1164 9924  

 Residual 32 1.738E5     

Scarus ghobban                                 

 

Source df     SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 1 8565.5 1.18 0.3604 440  

 

Region 2 58185 4.008 0.0201 947  

 

YearxRegion 0 0  No test                 

 Residual 4 29035     

Thalassoma lunare                                

 

Source df    SS Pseudo-F P(perm)  Unique perms P(MC) 

 

Year 0 0  No test                 

 

Region 2 14036 0.77824 0.6536 104 0.582 

  YearxRegion 0 0  No test                 

 Residual 4 36070     
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