
School of Earth and Planetary Sciences 

 

 

 

 

 

 

Modelling Train Station Choice under Uncertainty for Park and 
Ride Users 

 

 

 

 

 

 

Chunmei Chen 

 

 

 

 

This thesis is presented for the Degree of  

Doctor of Philosophy 

of  

Curtin University 

 
 

 

 

 

 

 

May 2019

 

 

 

 



i 

 

Declaration 

 

 

To the best of my knowledge and belief this thesis contains no material previously 

published by any other person except where due acknowledgement has been made.  

 

This thesis contains no material which has been accepted for the award of any other 

degree or diploma in any university.  

 

Human Ethics (For projects involving human participants/tissue, etc.) The research presented 

and reported in this thesis was conducted in accordance with the National Health and Medical 

Research Council National Statement on Ethical Conduct in Human Research (2007) – 

updated March 2014. The proposed research study received human research ethics approval 

from the Research Ethics and Biosafety Office of the University of Western Australia, 

Approval Number RA/4/1/5370. 

 

 

 

 

Signature…………………………………………… 

Date………17/05/2019 ……………………..……… 

 



i 

 

ABSTRACT 

Park and Ride (P&R) is an important component of many train systems as it is 

recognised to be an efficient way to reduce traffic congestion and increase train usage. 

However, high demand for P&R can result in some less than desirable side-affects, 

including pressure on the parking at and around the station and congestion on the 

approach roads, which may result in unreliable travel times to the train station and 

even over-crowding on the trains. When the capacities of the P&R car parks are well 

below the levels required to cater for the demand, the unwanted side-effects or 

problems include uncertainty in finding a space or an uncertain parking search time 

and illegal or inconvenient, (e.g. to local residents), parking on the surrounding streets. 

Research to date related to these issues is limited. The aim of this research is to conduct 

a systematic study to understand the decision-making process of P&R users choosing 

their departure train station under uncertainty, such as travel time, parking search time  

and crowding on the train. The research identifies key factors influencing P&R users’ 

choice, measures P&R users’ risk attitude for the variation of each uncertain situation 

and evaluates individuals’ preference heterogeneity for station choice.  

Four key tasks, to meet the key objectives, were undertaken: 1) develop a novel 

framework for estimating P&R users’ station choice under uncertainty; 2) investigate 

and identify the key factors, (both certain and uncertain), affecting train station choice 

for P&R users; 3) develop station choice models under uncertainty for P&R users; and 

4) implement and validate the station choice models.  

The data used to model station choice were obtained by a stated choice (SC) 

experiment designed using a D-efficiency approach and validated with an eye tracking 

experiment, (consisting of a 60Hz Remote Eye Tracking Device (RED) and a laptop). 

The questionnaire produced from the SP experiment had two alternative stations with 

18 attributes and their corresponding attributes levels. In total, more than 600 

respondents were involved in the experiment and about 2400 usable questionna ires 

were obtained. 

The station choice models in the research, similar to those in previous literature, were 

developed within a discrete choice theory framework but different models were 

applied. For example, mixed logit (ML) was used to develop the sub-model of station 

choice under parking search time uncertainty and the overall station choice model, and 

a latent class (LC) model was used to examine the effect of crowding uncertainty on 
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station choice. The station choice models developed with the ML or LC approach can 

not only be used to calculate choice probabilities but also to reveal the effect of 

individuals’ preference heterogeneity on station choice from different viewpoints. 

Moreover, the utility functions in the station choice models were established with a 

combination of cumulative prospect theory (CPT) and extended expected utility theory 

(EEUT) with the mean-variance approach, which not only successfully explained the 

effect of uncertainty on station choice for P&R users but also made the station choice 

models more realistic by incorporating both subjective and objective information. 

Six factors, (travel time to the departure station, parking search time, crowding on 

trains, safety, train frequency and ticket fare), were identified as key factors 

influencing station choice, the first three being uncertain factors. Based on this, four 

models of station choice were developed including three sub-models of station choice 

under uncertainty related to travel time, parking search time and crowding, and an 

overall station choice model under uncertainty combining the above three separate 

factors. The results showed that P&R users’ risk attitude did have an effect on station 

choice and the attitude towards the variability of travel time to station, parking search 

time and crowding is risk averse. Moreover, P&R users who have personally 

experienced higher travel time variations and greater differences between perceived 

and estimated travel times tend to be more risk averse towards their station choice 

under travel time variability than those who have experienced or perceived less travel 

time variability. Furthermore, the higher the risk aversion that commuters accessing a 

train station displayed, the fewer boarding at that station and correspondingly, the less 

crowded the trains stopping at that station.  

This research has developed a systematic methodology for modelling station choice 

under uncertainty for P&R users. The results could be used to support planning 

decisions on the location, price and capacity of P&R facilities, and provide evidence 

for evaluating upcoming investment decisions. 
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CHAPTER 1 INTRODUCTION  

1. 1 Introduction  

In many, if not all, cities around the world, the level of private car ownership has been 

rising, resulting in increased congestion on the roads and higher levels of traffic 

pollution (Phang & Toh, 2004). A counter-measure, often adopted by responsible 

agencies, has been to reduce parking supply and/or increase the price of parking within 

city centres to discourage car trips, primarily by commuters. Hence, more and more 

commuters need to depend on the public transport (PT) system to get to work, with the 

train, as a key PT mode, becoming a more and more important alternative for the daily 

commute (Ginn, 2009).  

In many cities, park and ride (P&R) is a key part of the train system and P&R use has 

been increasing in line with increasing train usage. P&R combines the efficiency of 

the private car in serving short suburban trips, i.e., from home to the station, with the 

speed, high capacity and efficiency of the train in providing line haul mass transit to 

major employment hubs. It is accepted as an efficient way to reduce traffic congestion 

on roads and our reliance on fossil fuel for transportation. It can also provide the basis 

for creating competitive economies and liveable inclusive communities. Data from the 

Department of infrastructure (2005) reveal that P&R use in Australia is higher than in 

many other countries around the world. Perth, the fourth largest city in Australia, has 

a relatively high proportion of P&R users about 23,000 per day (Department of 

Transport, 2010; Public Transport Authority, 2012-2017). As most of the P&R stations 

fill up within the morning peak, latent P&R demand is likely to be higher than this. 

Based on a projection by the Department of Transport, Western Australia, the demand 

for P&R in 2021 could reach nearly 30,000. Moreover, a survey conducted jointly by 

Curtin University, the University of Western Australia, the Department of Transport 

and the Public Transport Authority on 2 July 2012 revealed that the distribution of 

demand for P&R was very uneven. It also showed that about fifty percent of 

commuters did not choose their nearest station as their departure point, which 

increased the pressure on the limited supply at some stations and resulted in the under-

use of the available P&R supply at others (Shao, Xia, Lin, Goulias, & Chen, 2015). 

However, P&R users’ choice of departure train station is relatively complex and 

involves many factors including travel time, parking search time, crowding on trains  

and dropping children at school on the way to work etc. It can vary day-to-day due to 
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uncertainty in the traffic networks, parking situation, the situation on trains etc. 

Therefore, a systematic study is required to understand the decision making process of 

P&R users in choosing their departure train station under uncertainty and to provide a 

basis for matching P&R demand with supply. 

Moreover, P&R should, ideally, improve traffic conditions on the freeways running 

parallel to the train lines with P&R facilities. However, this is often not the case. In 

Perth, as predicted by Bureau of Transport and Regional Economics [BTRE] (2007), 

the cost of congestion in Perth could reach $2.1 billion by 2020. Therefore, an adequate 

choice behavioural model when the road network is congested is essential for 

evaluating upcoming transport infrastructure investment decisions.  

Research in the field is very limited and conducted primarily in North America, the 

UK and the Netherlands. Moreover, most studies focused on access mode choice and 

station choice combined. The earliest station choice study can be traced back to the 

1970s in North America. Liou and Talvitie (1974) identified the process of station 

choice as having two sequential stages, i.e., mode choice first then station choice. 

Based on this choice process, they developed a multinomial logit (MNL) model of 

station choice. Subsequently, this choice process was recognised by a few authors who 

studied and tested the effects of different factors, (such as the location of station, access 

cost, parking supply, etc.), on station choice with nested logit models, cross-nested 

logit models or MNL models (Adcock, 1997; Davidson & Yang, 1999; Debrezion, 

Pels, & Rietveld, 2007; Desfor, 1975; Fan, Miller, & Badoe, 1993; Fox, 2005; Harata 

& Ohta, 1986; Mahmoud, Habib, & Shalaby, 2014). Other researchers studied the 

prediction of rail passenger ridership with station choice models developed within 

simple MNL models (Kastrenakes, 1988; Lythgoe & Wardman, 2004; Lythgoe, 

Wardman, & Toner, 2004).  

Factors in the previous literature influencing station choice included the location of a 

station, the cost of access and parking attributes, (such as parking capacity, parking 

cost, etc.), which are known (i.e., certain). Uncertain or variable factors, (such as travel 

time, parking search time, crowding on trains, etc.), were not considered in these 

models. However, the effects of some uncertain factors on travel choice have been 

identified. For example, Li, Hensher, and Rose (2010) identified travel time as an 

uncertain factory and studied the effects of its variability on route choice. Therefore, 

it is time to explore the influence of the variability of these uncertain factors on station 

choice to produce more accurate and reliable predictive models. 
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In order to address this problem, a station choice model focusing on the effects of the 

attributes only related to P&R users will be developed to better understand P&R users’ 

choice of departure train station under uncertainty. 

In summary, this research focuses on developing an adequate station choice model 

specifically for P&R users in an uncertain environment, which can not only predict 

P&R demand, (and thereby provide evidence for evaluating upcoming P&R 

investment decisions), but also update the strategic transport evaluation model 

(STEM) used for assessing land use and transport policy by the Department of 

Transport in Perth, Western Australia. 

1. 2 Research objectives 

This research mainly aims to model the choice of departure train station for P&R users 

based on the effect of the three uncertain factors identified from data on P&R users’ 

trips between home and departure train station, i.e. travel time to the station, parking 

search time and the crowding on trains. This study could be used to support planning 

decisions on the location and capacity of P&R facilities and provide evidence for 

evaluating upcoming transport infrastructure investment decisions. Moreover, it could 

assist the Department of Transport to update the STEM model. To achieve these 

objectives, the key tasks include: 

 Identify and attempt to quantify/ measure the key uncertain factors affecting 

railway station choice. 

 Analyse P&R users’ travel characteristics to explore the key factors 

affecting their decision for departure train station. Identify and qualify 

uncertain factors affecting train station choice.  

 Design a stated preference experiment to collect abound sample..  

 Develop a novel framework for estimating P&R users’ station choice under 

uncertainty. 

 Develop station choice sub-models for P&R users based on the effects of the 

uncertain factors. 

 Measure the effects of variability of the uncertain factors on P&R 

users’ and their risk attitude towards this variability  

 Explore the relationship between the P&R users’ risk attitude and 

boarding numbers. 



4 

 

 Develop an overall station choice model under uncertainty and evaluate the 

effects of each uncertain factor on station choice for P&R users. 

 Evaluate and validate the whole station choice model. 

1. 3 Research significance 

The earlier research related to station choice aimed to explore how rail passengers 

choose their departure train station under certain situations. Train station choice model 

development, in the past decades, progressed from standard logit models to more 

complicated cross-nested models within a discrete choice model framework and the 

inclusion of additional relevant certain variables. In practice, the choice situations are 

full of uncertainty, which is in contrast to the “theoretical” situations the traditiona l 

models simulated. For example, travel time to the station can vary significantly by 

time of day (Li et al., 2010). In addition, traditional models didn’t consider P&R users’ 

risk attitude towards these uncertain circumstances or variables. Therefore, more 

advanced models, such as the latent class model, mixed logit model, etc., could to be 

used to explore and better understand station choice behaviour. 

The effects of uncertainty on choice have been tested in the transportation field, but 

have tended to focus on travel mode choice, departure time choice and route choice. 

There appears to be little or no research specific to choice of departure station under 

uncertainty. In the current research of travel choice under uncertainty, the effect of the 

variability of uncertain situations on travel choice is evaluated using the mean-variance 

method and the variation of uncertain stations is measured using expect utility theory 

(EUT), extended expect utility theory (EEUT) and cumulative prospect theory (CPT).  

To my knowledge, this is the first time that this modelling approach, (i.e. EEUT, CPT, 

mixed logit models and latent class models), has been applied to the exploration of 

station choice behaviour for P&R users. The significance of this research is in 

developing robust models to understand the effects of uncertain factors on the choice 

of departure train station for P&R users and measuring their risk attitude towards the 

variability of the uncertain factors. The contributions of this research include: 

 Developing a new framework to explore P&R users’ choice of departure train 

station under uncertainty; 

 Establishing new station choice models to predict P&R users’ choice of 

departure train station under uncertainty; 

 Evaluating the effects of uncertain factors on station choice; 
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 Estimating the variation of uncertain factors within the EEUT and CPT 

framework; and 

 Measuring P&R users’ risk attitude towards these variations. 

1. 4 Research methodology  

This study develops a rigorous, realistic and easily computed station choice model that 

clearly explains P&R users’ choice of departure train station under uncertain situations 

and analyses their risk attitude towards the variations of the uncertain factors. The 

detailed steps are listed as follows: 

 Step 1. Data collection 

 Clarifying the choice sets based on the decision-making tree of P&R users, 

literature review and real preference data via intercept surveys.  

 Designing a stated choice (SC) experiment and an eye tracking experiment, 

and collecting SP data to explore the mechanism of choice behaviour of 

P&R users under uncertainty. 

 Step 2. Development of station choice models  

All station choice models will be developed within a discrete choice theory framework,  

in which variations in the uncertain factors will be measured using cumulative prospect 

theory (CPT) or extended expected utility theory (EEUT) and their effect on station 

choice evaluated with the mean-variance method. All parameters in the models will be 

estimated with the Nlogit 5 software package. 

 Step 3. Analysis of results 

 Based on the estimates and shape of the value and weighting functions, we 

will obtain the commuters’ risk attitude towards the variations in the 

uncertain factors; 

 Comparing the parameters indicating respondents’ risk attitude with rail 

passengers’ ridership for each station, we will identify the effects of 

respondents’ risk attitude on rail ridership; and 

 The latent class model and mixed logit model will be used to determine 

P&R users’ preference heterogeneity. 

 Step 4. Evaluation of the station choice model 
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Eye tracking techniques will be applied to assess the SC experiment and, from that, to 

evaluate the overall station choice model. 

1. 5 Thesis outline 

This thesis comprises nine chapters as shown in Figure 1.1 and described below: 

Chapter 1 introduces the area of research. It sets out the background, specifies the 

problems addressed, identifies the study’s scope, and lists its objectives and the 

research’s significance in improving the strategic transport evaluation model and 

sustainable development of the transport system in Perth. 

Chapter 2 starts with a brief description of the concept of P&R as a travel mode, then 

reviews the literature related to P&R, train station choice and travel choice under 

uncertainty, which provides an overview of the gaps and limitations in the previous 

literature associated with departure train station choice.  

Chapter 3 sets out an efficient and effective methodology to develop station choice  

models under uncertainty. The study area, the decision making process of train station 

choice for P&R users, the identification of choice sets, sample stations and surveys are 

included in the chapter.  

Chapter 4 discusses the design of the two experiments used in the research, one for 

developing the station choice model and the other for validating the model. Data 

collection and collation, experimental design, determination of sample size and the 

survey implementation are included in the chapter.  

Chapter 5 develops the station choice sub-model for exploring station choice 

behaviour under travel time uncertainty. This chapter includes the development of the 

travel time sub–model, the measurement of respondents’ risk attitude towards 

uncertainty of travel time and the analysis of the impact of respondents’ real travel 

time experiences on their risk attitude towards station choice. 

Chapter 6 develops the station choice sub-model based on the effect of crowding on 

trains. Crowding indices affecting station choice for P&R users are identified first in 

the chapter, then the crowding sub-model is developed. The measurement of P&R 

users’ risk attitude towards crowding on trains, the exploration of the relationship 

between individuals’ risk attitude and boarding numbers, and an understanding of the 

effects of personal preference heterogeneity on station choice are also included in the 

chapter.  
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Chapter 7 develops the station choice model based on the uncertainty/variability of 

the parking search time. The chapter investigates the effects of parking attributes on 

station preference and measures P&R users’ risk attitudes towards the variability of 

parking search time. 

Chapter 8 develops the overall station choice model under uncertainty. This chapter 

includes identification of key factors for P&R users’ choice of departure train station, 

the establishment of the overall model, investigation for individuals’ preference 

heterogeneity on station choice and elasticity analysis for the key factors. 

The thesis concludes with Chapter 9. It summarises the major findings, discusses the 

limitations of the research with respect to the objectives and provides 

recommendations for future research.  

It is worth noting that the similarity of parts of chapters in the thesis is high as this 

information is from my PhD candidacy report approved by Curtin University on 

August 12, 2012 and three published papers (i.e. (Chen et al., 2015; Chen, Xia, 

Smith, & Han, 2014; Chen et al., 2017)), in which my contribution is about 80%.  

These papers are contained within the thesis as follows. 

 Chapter 2 used part of the candidacy report;  

 Chapter 3 used part of candidacy report and papers I, II and III; 

 Chapter 5 used paper II;  

 Chapter 7 used paper III; and 

 Chapter 9 used papers II and III 

1. 6 Chapter summary  

This chapter has established the objectives of and rationale for the research on 

modelling train station choice for P&R users under uncertainty and sets out the key 

tasks and thesis structure. The next chapter will review the literature relevant to P&R 

station choice and travel choice under uncertainty so as to identify the research gaps 

in the research and methods required to fill these gaps. 
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Figure 1.1 Research structure and relationship to thesis chapters 
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents a review of the literature associated with the study of P&R, 

station choice and travel choice under uncertainty. It starts with a brief description of 

the concept of P&R as a travel mode, including its advantages and disadvantages. 

Sections 2.2, 2.3 and 2.4 then provide, respectively, a comprehensive review of the 

research literature related to P&R, train station choice and travel choice under 

uncertainty. The review summarises the current evidence in this field and highlights 

the research gaps to be addressed in this thesis. 

It is worth emphasising that some of the content in the chapter is from my candidacy 

report submitted to and approved by Curtin University. 

2. 1 The development of P&R  

Park and Ride (P&R) is a form of travel involving multimodal transport that 

encourages car users to transfer to Mass Public Transport (MPT), such as buses, trains, 

etc., in order to reduce road congestion, increase PT patronage, decrease air pollut ion 

and achieve cost and time savings for P&R users. In other words, a trip by the P&R 

mode involves the use two or more travel modes and requires a transfer between 

private car and public transport (Ison & Rye, 2008). The concept of P&R can be 

disaggregated into four constituent phases, as shown in Figure 21: private transport 

access; a parking service, public transport departure, and destination. 

 

Figure 2.1 P&R phases 

2.1.1 Advantages  

P&R has gained enormous popularity since it was first introduced in the United States 

in the 1930s as a measure to increase transit ridership and manage travel demand 

(Noel, 1988). Many countries, including UK, USA, Australia and China, have 

Private transport Public transport 
Parking 

facilities  

Walk Drive  
Destination 

Walk, bus 
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witnessed its benefits. It has four key roles: ① providing an alternative travel mode to 

drive all the way, which improves accessibility (Bolger, Colguhoun and Morrall 1992; 

Flint 1992; Niblette and Palmer 1993; Noel 1988); ② alleviating traffic congestion, 

reducing energy consumption and decreasing pollution related to the automobile by 

encouraging car users to use public transport (PT) for part of their trip. In other words, 

it is an efficient way to manage travel demand (Hong Kong Transport Department 

(HKTD), 1995); ③ reducing costs and saving time for its users, and improving users’ 

comfort (Noel, 1988); and ④ controlling parking demand in central areas (Williams, 

1999). 

2.1.2 Disadvantages  

Even though much of the literature, (such as Bolger, Colguhoun and Morrall 1992; 

Flint 1992; Niblette and Palmer 1993; Noel 1988), proved that P&R can improve a 

transportation system’s efficiency, some unexpected problems emerged as it was 

implemented. Not all P&R users were found to be transferring from car to PT but 

included those that previously caught the bus or walked to the PT (Arne, 2004; Harris, 

Cooper, & Whitfield, 1998; Mingardo, 2013; Noel, 1988; Parkhurst, 1996; Parkhurst, 

2000). Some P&R schemes, therefore, increased traffic on some roads and the vehicle 

kilometres travelled rather than reducing them, such that traffic conditions became 

worse on some highways and the pollution by vehicles increased (Cousins, 1977; 

Meek, Ison, & Enoch, 2009; Parkhurst, 1995; Topp, 1995). In addition, many P&R 

facilities were found to be built on greenfield, (or green belt) sites, which may have 

adverse environmental impacts (Pearson Education Ltd, 2014). 

Although there are some issues related to P&R, overall, P&R was found to play a very 

important role in benefitting commuters, reducing traffic congestion and decreasing 

environmental pollution. More importantly, it has been identified as an effic ient 

strategy to manage travel demand and can improve the sustainability of a transport 

system(Olaru, Smith, Xia, & Lin, 2014). Therefore, P&R has been accepted and 

implemented worldwide.  

2. 2 Research related to P&R 

The research related to the studies of P&R is substantial and has therefore been divided 

into five key aspects, as discussed below. 
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2.2.1 Guidelines to design and plan P&R facilities 

In order to develop sound P&R facilities, many agencies have developed guidelines 

based on specific local conditions and requirements. In the USA, the State of Florida 

published the “State Park and Ride Lot Program Planning Manual” in 1989. It was 

used by the Florida Department of Transport (FDOT) and other state agencies to plan, 

design and implement P&R facilities. It has been updated and revised a number of 

times since then including in 1996, 2001 and 2012, the latter being a major revision to 

incorporate the latest strategies, initiatives and legislation, with the name changed from 

“manual” to “guide” (Frederick R. Harris, 2012).  

After that, similar documents were published one after another. For example, Bolger, 

Colguhoun, and Morrall (1992) prepared planning guidelines for the P&R facilities of 

a Light Rail Transit System in Calgary, a city in the Canadian province of Alberta. The 

guidelines included the criteria for locating P&R facilities, access and egress 

requirements and the size and design of the parking facilities. Robert and Spillar (1997) 

developed P&R Planning and Design Guidelines for New York, USA that provided 

advice on selecting the optimum locations to maximise use and best serve community 

needs, and on the design of the P&R facilities. The American Associaton of State 

Highway and Transportation Officials (2004) prepared a guide for P&R facilities for 

Washington DC, USA Compared to the guidelines for New York, it is more detailed 

and comprehensive. It considered the operation and maintenance of P&R facilit ies, 

and the integration of architecture, landscape, art and P&R facilities. Cherrington et 

al. (2017) produced a “Decision–Making Toolbox to Plan and Manage Park-and-Ride 

Facilities for Public Transport”, which is a guide book on planning and managing P&R 

in America and covers everything from the concept to the operation of P&R facilit ies. 

In the Australian context, Austroads and Departments of Transport in various states 

have developed guidelines. For example, Austroads (2017) published the “Guide to 

Traffic Management Part11: Parking”, which included guidance for planners and 

engineers to plan, design and implement efficient P&R facilities. In Queensland, The 

Department of Transport and Main Roads (2015) prepared the “Public Transport 

Infrastructure Manual (PTIM) 2015”, which provided good practice guidelines for the 

planning and design of P&R facilities. 
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2.2.2 Locating and pricing P&R facilities 

Given the consistent recognition of the importance of locating P&R facilities to 

effectively intercept vehicles on their journey to their destinations (Dickins, 1991; 

Faghri, Lang, Hamad, & Henck, 2002; Farhan & Murray, 2005; Robert & Spillar, 

1997), many studies associated with locating P&R facilities have been conducted. 

Diverse approaches have been proposed. For example Horner and Grubesic (2001) and 

Faghri et al. (2002) used geographic information system (GIS) tools to identify optimal 

P&R locations. Pickett (2005) suggested that the decision on locating P&R facilit ies 

should consider a range of factors including the key stakeholders involved, what has 

worked and not worked in the past, (i.e. reviewing successful and less successful 

facilities), new technology, pricing and market strategies, and targeting key user 

groups. Wang, Yang, and Lindsey (2004) used an optimal approach to locate and price 

P&R facilities based on profit maximisation and social cost minimisation. Horner and 

Groves (2007) proposed a network flow-based approach while Krasić and Lanović 

(2013) used an Analytic Hierarchy Process (AHP) method to evaluate the potential 

locations of P&R facilities. Fan, Khan, Ma, and Jiang (2013) developed a bi-level 

programming model to locate P&R facilities with the capacity to capture the supply-

demand interactions of commuters. Generally, all these approaches have contributed 

to efficiently locating P&R facilities and increasing P&R attractiveness. 

2.2.3 P&R modelling  

Two types of research related to P&R modelling were found. The first is associated 

with the prediction of P&R demand and patronage (Fernandez, Cea, Florian, & 

Cabrera, 1994; Islam, Liu, Sarvi, & Zhu, 2015). In this context, many P&R demand 

models were developed with the consideration of road network equilibrium. The 

detailed specifications of these models are diverse, including nested logit models 

(Fernandez et al., 1994; Fox, 2005; Garcı́a & Marı́n, 2005), multinomial logit models 

(Islam et al., 2015; Li, Lam, Wong, Zhu, & Huang, 2007; Xiong & Yang, 2008), 

deterministic continuum equilibrium models (Liu, Huang, Yang, & Zhang, 2009), and 

disaggregate demand models (Florian & Los, 1979). The second type of research, 

although limited compared to the first, is the modelling of P&R access station choice. 

The objectives are usually to investigate the factors influencing the choice of P&R 

access station and to estimate P&R train station demand. For example, Vijayakumar, 
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El-Geneidy, and Patterson (2011), based on the data from an Origin to Destinat ion 

(OD) survey and boarding data, identified the factors affecting the driving distance to, 

and demand at, suburban rail stations in the Montreal region as well as personality, 

(e.g. gender and age), trips characteristics, (e.g. in-vehicle travel time), and station 

characteristics, (e.g. parking bays). Mahmoud et al. (2014) used a multinomial logit 

approach to develop three access station choice models for different regional P&R 

users to estimate the access distance by car and the number of P&R users boarding at 

each station. 

In summary, most of the previous studies focused on modelling P&R demand based 

on road network equilibrium not the choices of individuals. Moreover, the research 

specific to P&R access station choice is very limited and only identified a few factors 

influencing P&R station choice. In practice, more factors, (such as parking search time, 

crowding on trains, etc.), may affect P&R station choice. In order to accurately predict 

P&R demand, the systematic investigation of P&R station choice has been identified 

as research gaps that should be filled.  

2.2.4 Factors influencing travellers’ choice for P&R  

The factors affecting P&R schemes, based on previous literature, can be divided into 

four groups. The first is related to the service quality of public transportation, such as 

safety (Sgurgaikar & Deakin, 1927), convenience, seats availability, reliability, 

frequency of public transit system, and difficulty in parking (Arne, 2004; Bos, Heijden, 

Molin, & Timmermans, 2004; Harris et al., 1998; Li, Lam, Wong, Zhu, & Huang, 

1994; Robinson, 1994), and in-vehicle travel time in public transit and transfer time at 

P&R station (Islam et al., 2015). The second is related to the journey cost, such as 

travel time and cost (Bos et al., 2004; Harris et al., 1998; Lam, Holyoad, & Lo, 2001; 

Li et al., 1994; Seik, 1997), and the severity of road congestion (Mogridge, 1990; Qin, 

Guan, & Zhang, 2012). The third group is associated with travellers’ characterist ics, 

such as income and car ownership (Arne, 2004) and individual preference (Bos et al., 

2004). The last group is P&R facility location (Mingardo, 2013) and parking fare 

(Islam et al., 2015; Kono, Uchida, & Andrade, 2014). Even though diverse factors 

were identified in different papers, nobody considered all of them in analysing P&R 

choice behaviour. Therefore, research is needed to systematically study the effect of a 

variety of factors on travellers’ choice.  
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2.2.5 Assessment of performance of the P&R  

In the previous literature, assessing the performance of P&R facilities mainly focuse d 

on their contribution in generating a mode shift from car-only modes to more 

sustainable transport modes. The methods to assess their performance chiefly included 

surveys and modelling, with most researchers using the survey method as the results 

can provide direct evidence of the P&R facility’s performance. Generally, the surveys 

to assess a P&R facility’s performance were intercept surveys, in which the 

questionnaires used included some specific questions, such as how did you get to the 

train station or bus stop?, are you satisfied with the P&R facilities?, how much will 

you save by using P&R mode?, etc. Researchers can easily count the number of arrivals 

at the station by car or bus and assess the P&R facility’s performance based on this 

and the answers to the above questions. For example, in the UK, Parkhurst (1995) 

surveyed 600 users in York and 1750 users in Oxford and the results confirmed the 

success of P&R in attracting users. Mingardo (2013) surveyed 700 travellers at nine 

rail-based P&R stations around Rotterdam, The Netherlands, and further confirmed 

the good performance of some P&R facilities in outer suburbs. Dijk and Montalvo 

(2011) conducted surveys in 45 cities in Europe and assessed the current levels of 

usage of the P&R facilities, mapped out the range of P&R strategies adopted by these 

European cities, and investigated the policies and objectives underpinning these 

strategies Meek, Ison, and Enoch (2011), Parkhurst and Meek (2014) examined P&R 

facilities in the UK and confirmed the attractiveness and effectiveness of P&R. 

Another way to assess the performance of a P&R system is modelling. For example, 

Karamychev and Reeven (2011) developed a discrete choice model to test the effect 

of the introduction of P&R on social welfare and distribution of car traffic. The results 

indicate that P&R did efficiently intercept, (capture), cars travelling to the city centre 

at the outskirts of the centre.  

In general, the studies adopted two indicators of P&R usage. The first, and by far the 

most common, is the proportion of public transport passengers using P&R, i.e. the 

number P&R users on the PT service divided by the total using the PT service. It is 

commonly used in UK and Australian cities. For example, in Oxford it is 17% 

(Huntley, 1993), in York 12% and in London 21%, with a P&R market share in some 

Australia cities of up to 15% (Vincent & Hamilton, 2007). A second index, although 
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seldom used, is P&R usage as a proportion of commuter trips to the centre business 

districts (Vincent & Hamilton, 2007). 

The effects of P&R are relative complex. Even though the success of P&R facilit ies 

was generally confirmed by the usage surveys, issues were identified in some cases, 

such as lower than expected patronage levels (Arne, 2004; Heggie & Papoulias, 1975, 

1976); the misuse of the P&R carparks (e.g. non-P&R users parking there), insuffic ient 

(too infrequent) public transit services, personal safety concerns, low service quality 

of the public transit (Abbas & Sergany, 2008), and low mode shift rate to public transit 

(Olaru et al., 2013; Olaru et al., 2014; Wiseman, Bonham, Mackintosh, Straschko, & 

Xu, 2012). Therefore, further studies are needed to address more sustainable P&R. 

2.2.6 Summary 

As P&R has become recognised as an efficient and economic travel mode option, 

particularly for low-density cities, more and more authors have devoted themselves to 

this research. Currently, the research related to P&R covers many aspects, includ ing 

planning and design, location optimisation, implementation and operation, and 

demand prediction. Generally, the underlying objective of the research is to provide a 

basis for improving P&R’s attractiveness and increasing rail patronage. Given that few 

previous P&R demand models took P&R access station choice behaviour into account, 

and there isn’t a thorough study on P&R access station choice either, to date we cannot 

accurately predict P&R demand. Correspondingly, there are issues related to the 

balance of supply and demand of P&R. Therefore, to develop sustainable P&R, the 

systematic study of P&R users’ choice for departure train station and its introduction 

into P&R demand models should be addressed.  

2. 3 Research on train station choice 

The literature related to train station choice modelling is also very limited. It mainly 

focuses on the discussion of the several aspects listed below. 

2.3.1 Objectives for studying station choice 

The objectives of station choice studies are generally limited to three aspects. The first 

is improving the transport model packages by incorporating station choice sub-models. 

For example, Fox (2005) improved the Policy Responsive Integrated Strategy Model 

(PRISM ) used in the West Midlands region of the UK and Fox, Andrew Daly, Bhanu 
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Patruni, and Milthorpe (2011) extended the Sydney Strategic Model (STM). The 

second is providing evidence for planning the rail network. For example, Mahmoud et 

al. (2014) located a new train station based on the results of a station choice study. 

Givoni and Rietveld (2014) helped transport policy makers plan train stations in an 

urban region and design the required road network around the stations. Debrezion, 

Pels, and Rietveld (2009) predicted travel demand at the station level to allow 

transportation managers to select the station locations when extending the existing 

lines and planning new lines, design the P&R facilities and plan the connecting 

(feeder) bus services. The third is improving the demand models. For example, 

Davidson and Yang (1999) produced an accurate station-level ridership forecast model 

for MIS studies and facilities planning. Lythgoe and Wardman (2004) established a 

new parkway of forecasting model that had improved features and was easier to apply 

compared to previous demand models. Blainey and Evens (2011) improved rail 

demand models by analysing the catchment areas that P&R stations should serve and 

informed and enhanced the Passenger Demand Forecasting Handbook (PDFH) 

guidance on catchment definition for demand modelling. 

In general, the research related to station choice mainly aims to improve demand 

models so as to more accurately predict rail patronage and provide planners and policy 

makers with useful information to plan all kinds of transportation facilities. However, 

the behaviour of individual station choice is very complex and cannot be predicted 

accurately based on the current limited literature. Moreover, the evidence for 

improving railway service quality, as obtained by exploring station choice behaviour, 

has not been investigated so far. Therefore, separately evaluating the effect of factors 

influencing station choice, as a basis for improving rail service quality, should be 

considered as one of the tasks in this study.  

2.3.2 Station choice models 

According to our knowledge, most station choice models were developed within 

discrete choice theory, with five types of logit models found in the previous literature. 

They are multinomial logit (MNL) models, nested logit (NL) models, probit models, 

cross-nested logit models and latent class (LC) models.  

The MNL model is the simplest with a closed form and predominated in the earlier 

history of station choice. The earliest MNL model of station choice was developed by 

Liou and Talvitie (1974) for access mode and access station selection. With this model, 
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the sequence of a traveller’s decision-making process for the access mode and station 

choices and the attributes with greatest effects were identified. After that, a number of 

authors developed MNL models of station choice based on different considerations. 

For example, Kastrenakes (1988), developed an MNL model for New Jersey Transit 

to predict rail ridership based on four variables (i.e. station location with respect to 

home, access time to station, train frequency and the generalised (time & distance) 

cost of travel between the access station and the final destination). Adcock (1997) 

investigated the factors determining a rail passenger’s station choice and used them to 

develop an MNL model of station choice. Moreover, he estimated the relative 

importance of each factor with the model. Debrezion et al. (2007) established an MNL 

model for Dutch railway passengers to choose their departure train station with 

consideration of accessibility to the train station and service quality provided at the 

station. The MNL models were developed based on the axiom of the “independence  

of irrelevant alternatives (IIA)”, but, in reality, some correlation between the choices 

exists. A number of authors have therefore raised concern over whether the MNL 

models adequately explained station choice behaviour. Hence, some researchers began 

to try other discrete choice models.  

The essence of the nested logit (NL) model is that it can take into account the 

correlations between those features of an alternative that cannot be readily observed  

by dividing (partitioning) the full set of alternatives (choice set) into sub-sets 

containing similar alternatives, (usually referred to as nests). Given that a travelle r’s 

decision-making process is a function that includes the interaction of both station 

choice and access mode choice, some authors began to use the NL models to explore  

jointly station choice and access mode behaviour. For example, Harata and Ohta 

(1986) developed a three level NL model to analyse access mode and station choice 

behaviour, and tested its prediction accuracy and temporal stability. Fan et al. (1993) 

developed an NL model and an MNL model for Greater Toronto to analyse rail access 

mode and station choices and subway automobile access station choice for commuter 

trips by rail and subway during the morning peak. Davidson and Yang (1999) 

developed a two level NL model in which station choice was taken as the lower level 

and mode of access the upper level. Debrezion et al. (2009) developed a two level NL 

model to explore Dutch railway passengers’ choice of departure station and access 

mode in two decision structures, (i.e. access mode upper level and station choice lower 

level, and vice versa). Givoni and Rietveld (2014) used a two level NL model to 
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determine the optimum number of train stations that should be provided for the urban 

area under investigation. Generally, within the NL model, the traveller’s decision 

making process is made of access mode choice and station choice, and most models 

adopted two-level structures per Figure 2.2.  

 

Figure 2.2 The two-level structure of NL models 

Similar to the NL model, the cross-nested logit (CNL) model also belongs to the set of 

general extreme value (GEV) models and, thus, also allows correlations of attributes 

over alternatives and is easy to manipulate. Not only that, the CNL model can contain 

multiple nests. Therefore, Lythgoe et al. (2004) used it to explore access mode choice 

and station choice behaviour and forecast demand for journeys from new stations. 

Even though the GEV model can relax the IIA property of the MNL model, it is unable 

to take into account random variations in taste, i.e. individual differences, or 

incorporate longitudinal data if the unobserved factors for each individual are 

correlated over time. Therefore, Desfor (1975) developed a probit station choice 

model, which could overcome all the limitations of MNL models, to test the effects of 

station location, access cost to competing stations and parking availability on a 

commuter’s station choice, and to estimate the catchment area of each station on the 

line, which made a basis for the demand of the entire line.  

In summary, access mode and station choice behaviour were modelled in the earlier 

research as a hierarchical decision process with access mode as the upper level. 

However, a traveller’s decision-making process is very complex and cannot be 

accurately predicted. Therefore, Chakour and Eluru (2014) simultaneously considered 

two segments of access mode and station choice behaviour: Segment 1—station choice 

then access mode choice, and Segment 2—access mode choice then  station choice. 

They then applied a latent segmentation approach to allocate individuals to the two 

segments based on probabilities determined by the individuals socio-demographic 
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status, the level of service provided, land uses and urban form around the station, the 

characteristics of the trip and the facilities at the station  

In general, the previous station choice models were developed in discrete choice theory 

and the trend of their forms was from simple to more complex, i.e. MNL models, NL 

models, CNL models and probit models. The MNL model is the easiest and the most 

widely used discrete choice model due to its function for choice probability having a 

closed form and being readily interpretable. It was derived based on the assumption 

that the distribution of unobserved factors across alternatives is independent and 

identically distributed (IID) with a Type I extreme-value distribution, which means 

that there is no correlation between the unobserved factors over the alternatives, 

individual’s responses are the same, (homogeneity), and all alternatives have the same 

variance. This assumption has been violated by many studies (Ben-Akiva & Francois, 

1983; Daganzo, 1979; McFadden, 1978; McFadden & Train, 2000). NL models, CNL 

models, and Probit models partially relaxed the assumption, i.e. the independent 

requirement, by allowing the unobserved utility to be correlated across alternatives but 

retained the assumption that the random components of the alternatives were 

identically distributed. Specific to both NL models and CNL models, the restriction in 

the alternatives in different nests was relaxed, while still exhibiting the independence 

of irrelevant alternatives (IIA) property within each nest. However, they belong to the 

General Extreme Value (GEV) class of models, so they assumed that the random 

components of alternatives followed the general extreme value distribution, rather than 

the Type I extreme-value distribution. For Probit models, they completely relaxed the 

independence assumption but only allowed the unobserved utility of alternatives to 

follow the normal distribution. Actually, we cannot assume that the distribution of the 

unobserved factors across alternatives is identical and that an individual’s preference 

to attributes of alternatives is homogenous, which may lead to the results of the 

analysis of station choice using GEV models and Probit models deviating from reality, 

i.e. be less accurate and reliable than desirable. Therefore, more flexible discrete 

choice models that can fully relax the IID assumption should be applied when 

exploring station choice behaviour.  

2.3.3 Attributes affecting station choice  

Based on Ortúzar and Willumsen (2011), a traveller’s choice of travel mode is made 

based on three types of factors: the traveller’s characteristics, the travel mode’s 
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characteristics and the service quality of the transport facilities. The factors influenc ing 

a P&R user’s choice of departure train station, based on different trips between origin 

and departure train station are classified as follows: 

(a) Depart from home 

The departure time needs to be considered as it is very sensitive to changes in travel 

time in peak hours and costs (Jong et al., 2003), traffic congestion on the road network 

during the peak travel time (Yang & Huang, 1997) and arrival time at the destination 

(Bajwa, Bekhor, Kuwahara, & Chung, 2008). Moreover, the survey for Bay Area 

Rapid Transit (BART) rail station parking lots revealed 56 percent of commuters leave 

home between 4:00 am and 6:00 am to ensure a space is available at their preferred 

train station along on the I-80 corridor (Shirgaokar & Deakin, 2005), which confirmed 

that the departure time can be very important for a P&R user’s choice. Martinovich 

(2008) also found that many stations in Perth started to fill before 6:00 am and were 

completely full by 7:30 am. Additionally, Olaru et al. (2014) revealed P&R station 

choice is linked to departure time. 

(b) Drive to train station 

During this stage, accessibility to the train station, location of the station and fuel cost 

were found to affect station choice. Accessibility has two measurements, namely, 

distance to the station from last stop and travel time (also called access time). 

Distance to the station from last stop can be measured in a number of ways. The easiest 

is straight- line distance, i.e. the distance in a straight line between the last stop and the 

station, and was used in the station choice models developed by Desfor (1975), Adcock 

(1997), Mahmoud et al. (2014), etc. It is the least accurate as it rarely reflects the 

distance travellers actually travel. Another index is real journey distance determined 

by the shortest route to the station from the last stop. Debrezion et al. (2007), Blainey 

and Evens (2011), Givoni and Rietveld (2014) used it to develop their station choice 

models.  

The second measurement of accessibility is travel or access time, and, within the 

context of P&R, refers to the time spent travelling from the last stop to the departure 

train station. It was used by Kastrenakes (1988), Fan et al. (1993), Lythgoe and 

Wardman (2004), Lythgoe et al. (2004), etc. Whichever measurement was used, 
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accessibility always had a negative effect on station choice behaviour in the past 

studies. 

Fuel cost was included, as part of general travel cost, in the station choice model 

developed by Kastrenakes (1988), Fan et al. (1993), Lythgoe and Wardman (2004), 

Fox (2005), etc. 

(c) Parking at the station 

During this stage, parking capacity and parking cost were the first factors considered 

in station choice models. Miller and Cheah (1991) asserted that the parking charge 

could be one of the key factors in car access station choice because they found that car 

commuters may compare the P&R parking charge, (plus rail fare), with the parking 

fee at the workplace for the drive all the way mode. Later, Fan et al. (1993) and 

Davidson and Yang (1997) proved this assertion and revealed that the effect of parking 

supply (or capacity) on station choice is positive.  

After that, more parking attributes were identified. Debrezion et al. (2007), 

Vijayakumar et al. (2011), Mahmoud et al. (2014) found that station choice was related 

to parking attractiveness, measured by parking availability, and showed a positive 

effect on station choice. In addition, Mahmoud et al. (2014) investigated the effect of 

parking cost on station choice and a negative sign was found. 

Kastrenakes (1988) also examined parking availability and parking fee in his station 

choice model but they were dropped from the model due to their counterintuitive signs.  

(d) Rail station service quality 

The quality of service at a rail station is usually described by the quality of the train 

services from that station and the range of services and facilities at the train station 

itself (Debrezion et al., 2007). The quality of rail service is measured by train 

frequency, network connectivity and coverage. The supplementary service quality is 

evaluated based on the availability of other facilities at the station, such as parking 

bays, safety facilities, shops, etc. (Debrezion et al., 2007, 2009; Kastrenakes, 1988; 

Wardman & Whelan, 1999). Additionally, Fox (2005) introduced the number 

transferring to rail into his station choice model. Usually, these factors were taken as 

independent variables in the station choice models but Debrezion et al. (2009) 

incorporated them into a new index (called service quality index) and introduced it 

into an NL model combining station choice and access mode choice. 
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(e) Travel on trains 

The time spent travelling on the train, (also called in-vehicle travel time), was 

identified as a factor influencing station choice by a number of authors. Desfor (1975) 

was the first to introduce travel time on train, as a trip cost, into a station choice model 

and identified its contribution to the disutility of the train alternative. Fan et al. (1993) 

and Davidson and Yang (1997) put it into their study of modelling rail access mode 

and station choice and revealed its negative effect on access station choice. Fox (2005) 

concluded that P&R users with car access usually minimise, as much as possible, the 

travel time to the station relative to the travel time spent on the train. 

(f) Additional factors and uncertainty 

Over time, more and more attributes have been included in the station choice models 

but these are still not sufficient to fully explain, and therefore predict, a P&R user’s 

choice of departure train station. There are two key reasons for this. The first is that 

some important factors, including crowding on trains, comfortability of trains, parking 

search time, parking availability and safety, are missing from the station choice 

models. The second is that the factors used in the current station choice models are 

assumed to be certain, i.e. the factors have fixed values known by the P&R user when 

making his/her station choice. In practice, a number of factors can vary by time of day 

and/or from day to day. These “uncertain” factors include travel time to the station, 

(influenced by traffic congestion levels, weather and incidents such as crashes or 

breakdowns), and parking availability at the station and, linked with this, the time 

taken searching for a free space. It has been found that these uncertain factors, and 

their level of variability, do have an effect on a traveller’s choice of station. Therefore, 

testing the effects of additional attributes and of the uncertain factors, (and their 

variability), on station choice should be further work. 

2.3.4 Study area summary 

To date, station choice studies have focused mainly on the USA (Davidson & Yang, 

1999; Desfor, 1975; Kastrenakes, 1988; Liou & Talvitie, 1974), UK (Blainey & Evens, 

2011; Fox, 2005; Lythgoe & Wardman, 2004; Lythgoe et al., 2004; Wardman & 

Whelan, 1999), Canada (Chakour & Eluru, 2014; Fan et al., 1993; Mahmoud et al., 

2014), Netherlands (Debrezion et al., 2007, 2009; Givoni & Rietveld, 2014), and Japan 

(Desfor, 1975). There is a research gap in this field in Australia, especially in Western 
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Australia, even though P&R makes up a sizable share of total public transport 

patronage. 

In order to fill the gaps in modelling station choice behaviour, a general station choice 

model based on data from Perth, Western Australia, (and including both certain and 

uncertain factors), will be developed. 

2. 4 Research on travel choice under uncertainty  

The study of travel choice behaviour has a long history and the topics covered span a 

wide area, including route choice, travel mode choice, departure time choice, location 

choice and station choice. Most of the early research assumed that complete and 

perfect information was available to all travellers when making their station choice 

decision. However, this assumption of decision making under certainty is not realistic. 

For example, when choosing public transport, travellers may not be able to predict 

whether or not a seat would be available as this can vary by time of day and/or from 

day-to-day, even at the same time of day and for the same train. When choosing a park 

bay, drivers cannot be sure that they will get a parking bay and even if they can, where 

it may be located and how long it may take to find it, as parking availability and the 

location of free spaces can also vary by time of day and from day to day. When 

choosing a route, drivers cannot forecast which route will have the least congestion 

(Rasouli & Timmermans, 2014). Based on this, more and more researchers have 

recognised that travel choice may be made in uncertain environments and have applied 

decision making theories under uncertainty (or risk) to explore travel choice 

behaviours. 

2.4.1 Decision making theories under uncertainty (or risk) 

There are many decision making theories that can be used to understand choice 

behaviour under uncertainty (or risk): discrete choice models (Bates, 1987; Ben-Akiva 

& Steven, 1985; Greene & Hensher, 2003; Small, 1987; Truong & Hensher, 1985), 

von Neumann-Morgenstern expected utility theory (Savage, 1972) and non-expected 

utility theory, such as weighted expected utility (Chew & MacCrimmon, 1979), rank 

dependent utility (Quiggin, 1993), extended expected utility theory (Li, Hensher, & 

Rose, 2009), prospect theory (Kahneman & Tversky, 1979), and cumulative prospect 

theory (Tversky & Kahneman, 1992). To date, the main theories used to explore travel 

choice are expected utility theory (or extended expected utility theory), and unexpected 
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utility, (such as prospect theory). For example, Sikka (2012) and Tian and Gao (2013) 

applied expected utility theory to study the route choice based on the effect of travel 

time uncertainty. Avineri and Bovy (2014) integrated prospect theory into a travel 

choice model to analyse travellers’ response to risk and uncertainty. Li et al. (2009), 

Li, Tirachini, and Hensher (2012), and Li et al. (2010) used extended expected utility 

theory to analyse route choice under travel time uncertainty. 

2.4.2 Methods to measure uncertainty 

Travel time uncertainty has been recognised in many choice situations, such as route 

choice, departure time choice, travel mode choice, etc. The three most popular methods 

to evaluate travel time uncertainty on travel choice are mean-variance, scheduled delay 

method and mean-lateness. They are described below.  

(a) Mean-variance  

The approach, proposed by Jackson and Jucker (1982) defines the utility of a choice 

option as a function of expected travel time, (mean travel time), and variability in travel 

time (standard-deviation). A commuter minimises the sum of these two terms when 

choosing a departure station.  

(b) Scheduling delays 

This approach is based on a traditional utility maximisation framework. It focuses on 

the time constraints, (e.g. train departure time), a commuter may face and their 

associated costs due to early or late arrival. There is a desire to minimise the frequency 

of late arrivals but maximise the time spent at home relative to the train waiting time. 

This approach is mainly used for departure time choice studies (Carrion & Levinson, 

2012; Gaver, 1968; Knight, 1974). 

(c) Mean-Lateness 

This approach is proposed by the Association of Trains Operating Companies, UK and 

used widely in passenger rail in UK. It suggests that a traveller’s expected utility 

consists of the scheduled journey time and the mean lateness at destination 

(Assiociation of Train Operating Companies, 2002). Travellers aim to minimise the 

lateness of arrival at their final destination, such as work or educational institution. 
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2.4.3 Application of travel choice under uncertainty 

To date, the research related to travel choice under uncertainty is limited and only 

focused on three choice behaviours, departure time choice, and route choice and travel 

mode. In general, the decision-making process under uncertainty is made up of two 

components. The first considers variations in the transport network that affect travel 

times by time of day and from day to day including the more predictable variations 

due to congestion and unpredictable and irregular variations due to road works and 

incidents such as crashes and breakdowns (Circella, Dell’Orco, & Sassanelli, 2005). 

The second is the degree of confidence the decision makers have in their assessment 

of the network conditions, i.e. their level of uncertainty in how much the uncertain 

factors may vary. The understanding of travel choice under the both types of 

uncertainty is summarised as follows:  

(a) Departure time choice under uncertainty  

Originally, Gaver (1968) discovered that travellers determined their time of departure 

based on their required time of arrival and the likely travel time. After that, a number 

of authors investigated the effect of travel time uncertainty on travellers’ departure 

time choice using different models. For example, McFadden et al. (1977) and Small 

(1978) separately developed departure time choice models based on a multinomia l 

logit and schedule delay approach, and used them to evaluated the effect of the 

uncertainty of late arrival, social-demographic factors and mode choice on commuters’ 

departure decisions. Abkowitz (1981) extended their studies. More factors, such as the 

level of flexible work practices, available travel modes, individual characterist ics, 

(such as income, age, social status and occupation), and quality of transportation 

service, were included in the logit model. Moreover, transit commuters were studied 

separately from all commuters. In all these studies, scheduling disutility is traded off 

against the possible advantages due to variations in congestion over the rush hour. 

Noland and small (1995) developed a generalised cost model where commuters 

balanced the costs (disabilities) of less convenient travel times and the penalties for 

late arrivals against the desire to reduce the time spent in congestion to a minimum.  

With the model, they reinforced the conclusion from Gaver (1968). Ettema, 

Tamminga, Timmermans, and Arentze (2005) developed a micro-simulation model to 

account for departure time choice under travel time uncertainty for routine trips, in 

which individuals’ decisions about departure time for routine trips were made based 
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on a mental model, where the mean travel times and their variances were specified for 

a range of departure times. Lam (2000) developed a theoretical model to analyse 

commuters’ joint decisions of route and departure time under travel time uncertainty 

and found that travellers may use toll roads, where available, to reduce travel time 

uncertainty and therefore depart later. Jou, Kitamura, Weng, and Chen (2008) used 

prospect theory to test commuters’ asymmetric responses to gains and losses by 

comparing their actual arrival times against their expected arrival times, the latter also 

being referred to as the reference times. They found that the reactions of commuters 

were consistent with expectations. Li et al. (2012) developed a non-linear schedule 

model and revealed that the more uncertain travel time is, the earlier commuters depart. 

Siu and Lo (2014) extended the schedule cost approach into probabilities, by applying 

weightings to the expected and scheduled travel time costs, and developed a 

punctuality-based travel choice model. It revealed that more risk-averse travellers 

choose to depart from home earlier than less risk-averse travellers.  

Generally, the previous studies mainly focused on identifying uncertain factors 

influencing departure time choice and developing choice model under uncertainty. 

Based on this, commuters’ responses to travel uncertainty were tested and commuters’ 

risk attitudes towards uncertainty were measured. Moreover, most of the departure 

time choice models under uncertainty were developed using the scheduled delay 

approach, in which only travel time and congestion were considered as uncertain. 

(b) Route choice under uncertainty  

Route choice is one of main decisions made daily by travellers in an uncertain 

environment. The uncertain environment results from a number of factors includ ing 

variations in traffic levels, variations in the capacity of road network due to road works, 

lane or road closures etc., incidents such as breakdowns or crashes, weather conditions 

or faulty traffic operation, e.g. faulty or poorly set traffic signals increasing congestion 

at an intersection (Avineri & Prashker, 2003). The uncertainty presented in route 

choice models is usually only travel time uncertainty or travel time variability (Bekhor, 

Ben-Akiva, & Ramming, 2001; Outram & Thompson, 1977). For example, Shao, 

Lam, and Tam (2006) used travel time reliability to measure the magnitude of 

unexpected delay, introduced it into a route choice sub-model and formulated travel 

time reliably based on a traffic assignment model. This model may assist transportation 

planners to better understand how travellers behave in a congested road network 
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environment and, hence, plan and operate their strategic road network. Most of the 

existing route choice models under uncertainty are developed within random utility 

theory with the underlying the assumption that travellers are rational, homogeneous 

and have perfect knowledge. Discrete choice models, with mean-variance expected 

utility functions formulated by von Neumann and Morgenstern (1947), were mainly 

used. In these models, travellers’ decisions are made in terms of expected travel time 

and its variation. By applying different decision rules, different route choice models 

were produced, including shortest path model (Dial, 1969; Drrksrra, 1959), logit route 

choice (Dial, 1971), probit route choice (Burrell, 1976), C-logit (also a multinomia l 

logit model capturing the correlation among alternatives in a deterministic way) 

(Cascetta, Nuzzolo, Russo, & Vitetta, 1996; de Palma & Picard, 2005), and mixed logit 

model (Bogers, Viti, & Hoogendoorn, 2005). There is also literature recording the 

application of other decision making theories under uncertainty (or risk) or utility 

functions on route choice. For example, Yang and Jiang (2014) applied cumula t ive 

prospect theory to model route choice behaviour and analysed travellers’ risk attitudes. 

Wang, Liao, Gao, and Timmermans (2018) used a schedule delay approach to develop 

utility functions of route choice and examine the extent that travel delays and risk 

attitudes affect route choice.  

In summary, the studies of route choice under uncertainty mainly focused on 

identifying uncertain environments for route choice, measuring the effect of travel time 

uncertainty on route choice, developing route choice models and evaluating travelle rs’ 

risk attitudes towards travel time uncertainty. Generally, the route choice models under 

uncertainty were developed within discrete choice theory based on stated preference 

data, in which the effect of travel time uncertainty on route choice was estimated using 

the mean-variance approach or the schedule delay approach within an expected utility 

theory or cumulative prospect theory framework. 

(c) Travel mode choice under uncertainty  

Similar to route choice, travel mode choice can also be a daily decision for some 

travellers. It has attracted more attention due to its close relationship to the policies 

and strategies used to develop the overall transportation system, manage travel demand 

and mitigate traffic congestion. Traditionally, travel mode choice models were 

developed within random utility maximisation (RUM) theory and only focused on 

work-trips, in which the factors considered included parking fee, travel time, transfer 
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time, social-demographic data, etc. and their values were fixed. As the fact that travel 

time uncertainty affects travel choice became more widely recognised, a few 

researchers began to explore travel mode choice under uncertainty. In the literature, 

only departure time (Pan & Zuo, 2013; Shukla, Ma, Wickramasuriya Denagamage, 

Huynh, & Perez, 2015), and travel time (Matthieu & Ben-Akiva, 2014) were taken as 

uncertain factors influencing mode choice. The travel mode choice models were 

developed within discrete choice theory, such as MNL models (Matthieu & Ben-

Akiva, 2014), probit models and nested logit models. These models only showed linear 

relationships between the factors and mode choice, which is not consistent with reality. 

Some authors found that the mode choice decision was usually combined with other 

choice decisions, such as departure time choice (Bhat, 1998) or route choice (Eluru, 

Chakour, & El-Geneidy, 2012). For this reason, new methods, such as machine 

learning (Rasmidatta, 2006), artificial neural networks (ANN) (Cantarella & de Luca, 

2003; Shmueli, Salomon, & Shefer, 1996), decision tree (Xie, Lu, & Parkany, 2003), 

rank-dependent utility theory (Matthieu & Ben-Akiva, 2014), and cumulative prospect 

theory (Ben-Elia, Erev, & Shiftan, 2008; Ben-Elia & Shiftan, 2010) were applied to 

explore travel mode choice behaviour. 

(d) Sub-summary 

Focused on this literature, the studies of travel choice behaviours under uncertainty 

mainly included identifying the uncertain factors, developing travel choice models 

under these uncertainties, analysing the effect of these uncertainties on travel choice, 

respondents’ risk attitudes towards the uncertainty and the data used in choice models. 

In general, most of choice models under travel time uncertainty were developed within 

discrete choice theory and the trend is from simple models (i.e. MNL) to more 

advanced models (e.g. probit logit  and nested logit ). The utility of choice based on 

the effect of travel time uncertainty is evaluated using the mean-variance approach and 

the schedule delay approach within expected utility theory and cumulative prospect 

theory frameworks. However, more factors were also identified as uncertain in other 

research, such as parking search time (Avineri & Prashker, 2003; Hunt & Teply, 1993), 

overcrowding on trains (Hunt & Teply, 1993), but have not yet been considered in the 

above literature. Therefore, the research will apply the decision-making theories under 

uncertainty (or risk) and develop methods to measure the effect of uncertainty on 

station choice. 
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2. 5 Chapter summary  

This chapter has reviewed previous research related to P&R, station choice and travel 

decision making under uncertainty (or risk). The history of the development of P&R 

schemes was introduced first. Then, the research relating to P&R was reviewed, 

including designing, planning, locating, and pricing of P&R facilities, the models and 

methods used to understand P&R choice behaviour, the factors influenc ing 

commuters’ choices for P&R mode, assessing P&R facilities and measuring patronage 

of P&R. The research related to station choice was discussed afterwards, includ ing 

discussion of the objectives for exploring station choice behaviour, the methods and 

approaches used to explore station choice behaviour, attributes affecting station 

choice, the methods to collect data, data type and the countries where station choice 

behaviour has been studied. Lastly, the literature associated with travel choice under 

uncertainty (or risk) was reviewed, including the decision making theories under 

uncertainty (or risk) and the methods to measure uncertainty, and their application for 

travel choice behaviour.  

Generally, literature on station choice is limited, with that on P&R access station 

choice even more so, and that on station choice under uncertainty for P&R users almost 

non-existent. 

Therefore, to fill the research gap, modelling station choice for P&R users in uncertain 

environments is required. Based on the exploration of previous literature mentioned in 

the chapter, a methodology to understand a P&R user’s choice of departure train 

station facing uncertain situations is presented in the next chapter. 
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CHAPTER 3 METHODOLOGY 

The previous chapter identified a number of gaps in the research related to modelling 

station choice. These include the need to understand the demand for P&R services in 

Perth and P&R users’ station choice under uncertainty using a consistent and robust 

methodology. This chapter presents an overview of the methodology adopted for this 

research project to meet the above requirements. 

It is worth reiterating that some of content in the chapter is from my published papers  

and my candidacy report approved by Curtin University. 

3. 1 Study area 

Perth, the capital of Western Australia (see the figure 3.1), was selected as the case 

study area for three main reasons. Firstly, Perth is a city with a high level of car 

ownership and car usage, resulting in significant peak-hour traffic congestion, 

(particularly on the freeways), and difficulties in parking in the central business district 

(CBD), which has the highest concentration of employment. Car ownership data 

indicate that Perth had about 700 motor vehicles per 1000 people in 2011, and 

increasing by about 2% per annum since then. Over a similar period, the total length 

of freeways has not increased in line with car ownership, (approximately 125 km in 

2006 and unchanged in 2015) (Bureau of Infrastructure Transport and Regiona l 

Economics (BITRE), 2017). Demand for road space is therefore increasing at a greater 

rate than supply, resulting in increasing congestion on Perth’s freeways. In order to 

address this and promote sustainable mobility, the P&R mode has been developed over 

the last 20 years or so. P&R marries private car use, (for the home to station leg), with 

efficient, fast and high capacity public transport to major employment nodes, and is 

used extensively by commuters all over the world (Cairns, 1998; Ginn, 2009).  
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Figure 3.1 Perth and its land use map 

(Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), 

2017) 

The second reason for selecting Perth is that it has a very low-density, (around 318 

persons per square kilometre in 2017 (Population 2018, 2018) ) (see Figure 3.1), which 

cannot be efficiently served by the public transport system. Therefore, residents living 

in more remote outer suburbs have to depend on the private car for most, if not all, of 

their daily travel needs. However, the shortage and cost of parking in the CBD and 

congestion on the freeways limit their ability to drive directly to the inner city area, 

where the bulk of the employment is located. Hence, more and more commuters living 

in the outer suburbs, and indeed many in suburbs closer in, choose P&R as their travel 

mode, allowing them to drive to the station on the less congested local roads then use 

to train to reach the CBD quickly and without parking hassles.  

The third reason is that there are a number of problems related to the P&R facilities in 

Perth. Perth currently has five rail lines and seventy stations, with a total track length 

of about 173 kilometres. In 2017, around 21,000 parking bays were provided at these 

train stations (Department of Transport, 2010; Public Transport Authority, 2011-

2017). However, most of the station car parks, especially those on the newer 

north/south lines, fill up quickly during the morning peak, indicating that supply is 

inadequate to meet the overall P&R demand. In addition, a survey jointly conducted 

in 2 July 2012 by the University of Western Australia, Curtin University, the 

Department of Planning (DoP), and the Public Transport Authority (PTA) revealed 
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that the demand for P&R facilities was distributed unevenly and did not fully match 

the distribution of supply. To date, it is unclear why some P&R facilities are more 

likely to be chosen by commuters than others, but a better understanding of this would 

allow planners to better match the future provision of station parking with the latent 

demand for P&R.  

3. 2 Research workflow 

There are three main objectives for modelling departure station choice under 

uncertainty for P&R users, namely, evaluation of the effects of uncertain factors on 

station choice for P&R users, assessment of variability of uncertain factors and 

measurement of the effect of respondents’ risk attitude towards station choice. In order 

to achieve these objectives, the following work was conducted.  

 Clarification of research hypothesis; 

 Identification of decision making process of departure train station for P&R 

users; 

 Determination of choice set; 

 Data collection and analysis;  

 Development of train station choice models; 

 Analysis of results; and  

 Implementation of the method  

These steps are shown in Figure 3.2 and described below. 
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Figure 3.2 Workflow for modelling station choice of P&R users under uncertainty 

3. 3 Decision making process of train station choice for P&R users 

According to the responses from the train station survey, the decision making process 

of P&R users for departure train station usually starts with the selection of the most 

convenient (routine) train station based on their departure time, the train frequency and 

the expected arrival time. Then, they may modify this decision based on parking 

availability around the station. If parking is likely to be available around the most 

convenient station, they would choose that station. If parking is likely to be difficult to 

find, based on past experience, they may decide to transfer to another station where 

past experience has indicated spaces are more likely to be available. The choice may 

also depend upon the time of departure, compared to the normal departure time. For 

an earlier than usual departure, the most convenient station may be chosen as there 

would be more chance of a parking space. For a later departure, the alternative station 

would be more likely to be selected.  
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Alternatively, they may decide to use another travel mode, e.g. drive all the way, the 

decision being based on a number of other factors including total travel time, level of 

crowding on trains, overall cost, service quality, etc. In making this decision, 

uncertainty in some of the variables would be taken into consideration. The key one is 

probably the likelihood of finding a parking space and, linked with this, the parking 

search time. When the P&R station car park is full or close to full, a P&R user may 

spend a lot of time driving round trying to find a free space. They may have to park in 

a street around the station, (if such parking is available). Hence, the parking search 

time would vary with the parking location, time of day, (increasing as car parks fill), 

and the ratio of demand to supply. The P&R user cannot fully predict the number of 

available spaces, if any, in advance, so the parking search time is uncertain. Travel 

time to the station, (subject to localised congestion), and crowding on the trains, (at 

Perth’s peak hour 5 minute frequency, a 1 minute delay in the train could add up to 

20% more passengers on that train), are also variable and therefore uncertain.  

The process for determining station choice for P&R users under uncertainty is shown 

in Figure 3.3. 
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Figure 3.3 Decision-making process of station choice for P&R users 

3. 4 Data  

The data collected for and used in this research to develop the station choice model 

can be categorised into three types; train facilities data, observed travel data and train 

station choice data. The facilities data were mainly used to identify the attributes 

influencing station choice for P&R users. The observed travel data were used to 

determine the level of these attributes. The station choice data associated with those 

decisions made in the hypothetical situations that the researchers specified were 

mainly used to model the departure station choice of P&R users under uncertainty.  

Data related to the respondents’ visual attention, i.e. the duration and frequency of the 

eyes’ fixation on each attribute in the choice questionnaires, were collected through an 

eye tracking experiment. These data were used to improve the questionnaires and 

evaluate each attribute’s significance on station choice. 
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3.4.1 Identification of train stations for collecting station choice data  

The station choice model in the research was build using data from seven train stations 

in Perth, selected based on the following criteria.  

(a) At least one station per train line should be selected 

The current railway network in Perth has been gradually developed over nearly 140 

years. The first line, Fremantle to CBD to Midland, opened in 1881, followed soon 

afterwards by the Perth to Armadale line (1889). After a hiatus of 90 years, the Perth 

to Joondalup line opened (1992), followed 15 years later by the Mandurian line (2007). 

There are significant differences in the locations, spacing, facilities/roles and land uses 

around the stations on the early, (pre-car) lines compared to those of the stations on 

the newer lines built in an age of high car ownership and in an attempt to attract people 

out of their cars. Therefore, to capture the influence and the specific characteristics of 

the different lines on P&R users’ choice of departure train station, at least one station 

per train line should be investigated.  

(b) Both stations in the middle and at the end of the line should be chosen, i.e. a middle 

station and the terminal station 

Generally, train stations can be separated into two groups based on their locations, i.e. 

middle stations and terminal stations. Firstly, at terminal stations, all seats are availab le. 

At stations closer to the CBD, the availability of seats tends to reduce and, with it, the 

potential for having to stand, or possibly not being able to board, increases. In other 

words, a station further from the centre may be more attractive than a closer-in station. 

Secondly, the P&R parking capacities at the terminal stations are usually greater than 

at middle stations. Thirdly, the catchment areas that the terminal stations serve are 

usually larger than the areas served by the middle stations, indicating that the average 

travel times to the terminal stations are likely to be longer than the times to the middle 

stations. Fourthly, the station service quality at some terminal stations may be better 

than it at middle stations. These differences could lead to P&R users making a different 

choice of departure train station. Therefore, to explore the effects of crowding on trains, 

parking attributes, travel time to the station and service quality level on P&R users’ 

choice of departure train station, both middle and terminal stations should be 

investigated. 

(c) Two adjacent stations should be selected 
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As stations next to each other can compete for P&R users, a minimum of two adjacent 

stations on the same line, should be selected to determine the potential impact. 

(d) Two stations on the same line but apart from each other should be selected 

Stations on the same train line, even if well apart from each other, can still compete 

for patronage due to the differences in total travel time, their service quality, 

accessibility, parking availability, etc. Therefore, at least two stations on the same line 

but apart from each other (i.e. separated by a number of stations) should be investigated 

to capture these potential effects.  

(e) Greater focus on the extended lines and newly opened stations 

The Joondalup line serves the northern suburbs and was opened in 1992. Initially only 

three stations, Leederville, Edgewater, and Joondalup) were opened, with other 

stations opening in 1993. In the early years, the line had low passenger numbers but 

strong population growth in the northern corridor, congestion on the freeway and 

parking constraints in the city centre have resulted in increasing patronage and, 

eventually, overcrowding on some peak period trains and capacity issues at some P&R 

car parks. Measures have been taken to address these problems, including extending 

the line to Clarkson and later to Butler, adding more P&R spaces and opening a new 

P&R focussed station at Greenwood. In order to capture how the differences between 

a newly opened station and a station on the initial line affect P&R users’ choice, at 

least two stations (i.e. one is on the initial line and one on the extended line) should be 

investigated. 

(f) A range of car parking capacities should be selected  

As the research aims to study P&R users’ choice behaviour, only stations with a formal 

P&R car park were taken into consideration. Moreover, P&R parking capacity has a 

close relationship with parking search time for P&R users, which is one of uncertain 

factors we want to explore. Hence, a range of car parking capacities, (i.e. small, 

medium, and large), should be investigated. 

(g) At least one station on the oldest line should be selected  

As the Fremantle line was Perth’s first railway line, some of its stations are the oldest 

on the Perth train network. While some improvements and upgrades have been made 

in the intervening years, their characteristics, locations, spacing, surrounding land uses, 
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mode of operation and services are different to those of stations on the new lines. At 

least one of the oldest stations should be investigated to capture the impact that the 

above differences may have on how the P&R users using these oldest stations choose 

their departure station.  

Based on the above criteria, the stations chosen to collect data were Claremont, 

Murdoch, Warnbro, Cannington, Greenwood, Warwick and Midland. Their locations 

and positions within the overall train network are shown on Figure 3.4, with Table 3.1 

showing how each station satisfies the above criteria.  

Table 3.1 The selection of stations for the study 

Lines  Stations 
Criteria 

(a) (b) (c) (d) (e) (f) (g) 

Fremantle Claremont        

Mandurah 
Murdoch        

Warnbro        

Armadale Cannington        

Joodalup 
Greenwood        

Warwick        

Midland Midland        

 

Figure 3.4 Locations of sampled train stations 

Section 3.4.2 and Chapter 4 set out how the data were collected and collated. 

3.4.2 Data Collection 

The data used in the research were collected by three surveys: a train station’s facilit ies 

survey, a train station survey and a train station choice survey. The first survey, 
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conducted in April 2012, aimed to identify the facilities and information related to 

every train station on the Perth rail network, i.e. not just for the selected seven stations. 

The questionnaires used for the survey obtained the following: ① basic information 

on the train stations, including platform and station facilities, (such as toilets, seats, 

shelter, kiosk, etc.), bike and ride parking and the possibility of transferring to other 

travel modes; ② information on the P&R facilities, including the number of formal 

and informal, (e.g. adjacent streets), parking bays, safety facilities specific for P&R, 

etc.; and ③ the land-uses around the station, such as the type of land-use, the size of 

land parcels, etc. Example questionnaires can be seen in Appendices B-1 toB-3. 

The second survey was called the train station survey. Its objective was to identify the 

factors influencing P&R users’ choice and to determine the variations of all key 

factors. It was an intercept survey conducted at the seven stations (mentioned above) 

on 2 July 2012 jointly by Curtin University, the Western Australian University, the 

Department of Planning (DoP) and the Public Transport Authority (PTA). A sample 

of the questionnaire used in the survey is presented in Appendix C. 

The third survey explored P&R users’ choice of departure train station in an uncertain 

environment. It was conducted in November-December 2014 at the seven train stations 

and again was an intercept survey. The questionnaires were developed via a stated 

choice experiment which used the D-efficiency method, (see Chapter 4). Each 

respondent was presented with two hypothetical station choice situations and asked to 

choose a preferred station. The questionnaires can be seen in Appendix D. We 

conducted a number of pilot surveys to test and refine the SC questionnaires, (i.e. to 

test the questionnaires’ readability and accuracy and their ability to correctly model 

P&R users’ choice etc.), before carrying out the final station choice survey. These 

questionnaires can be seen in Appendices E-1 to E-5. The sample size and 

investigating time for each pilot survey can be seen in Table 3.2. More than 600 

respondents were involved in the survey and around 2400 questionnaires were 

collected. 

A summary of the surveys is shown in Table 3.2 with Figure 3.5 showing how they 

interrelate and their objectives. 

Table 3.2 Summary of surveys 

Name Type Stations 
Sample 

number 
Time period 

Stations’ facilities survey Intercept 69  April 2012 
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Train station survey Intercept 7 940 
31/07/ 2012- 1/8/2012 

(6:00AM - 4:00PM) 

Station choice 

survey 

Pilot 
surveys 

Intercept 1-2 27-173 2013-2014 

Main survey intercept 7 600 11/2014-12/2014 

 

 

 

Figure 3.5 Relationship between the surveys and their objectives 

3. 5 Data analysis and modelling 

3.5.1 Modelling station choice under discrete choice theory 

Station choice models were developed within a discrete choice framework in the 

research. There were two main reasons to choose this theory to quantitatively analyse 

and explain or predict P&R users’ station choice behaviour. The first is that the choice 

set of train stations exhibits the three characteristics required of choice sets within a 

discrete choice framework, i.e. exclusiveness, exhaustive and finiteness. In practice, 

this means that P&R users can only choose one station once in a station choice set, 

station choice sets include all the stations P&R users can choose and the number of 

stations that will be chosen by P&R users can be determined (Fehr-Duda & Epper, 

2011). 
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The second reason to choose a discrete choice framework is that we assumed that P&R 

users were rational and choose a station with an aim to maximise benefit or utility, 

which is consistent with the assumption in discrete choice models. Therefore, a 

discrete choice framework was used to develop the station choice models under 

uncertainty. 

Discrete choice theory assumes that travellers’ choice is aligned with their order of 

preference, which may be represented by a utility function (Train, 2003). A P&R user, 

labelled n , chooses a departure train station among J alternatives. The utility that the 

P&R user n  obtains from alternative j  is , 1,njU j J . He/she chooses the 

alternative that maximises his/her utility. Therefore, P&R user n  chooses alternative i  

if and only if ni njU U j i   . In general, this utility is known to the P&R user but 

not to the researcher. The researcher only knows the component of the utility  niV  

relating to the observed attributes at station i  and of the P&R user n . As researchers 

cannot observe or measure every factor affecting the station choice made by the P&R 

user, Vni is not equal to total utility Uni. Thus, total utility can be decomposed as:

ni ni niU V   , where ni  captures factors not included in niV . As the researcher does 

not know the characteristics of ni , it is treated as a random term. The joint density of 

these random terms can be denoted as  nf  . With this density, the researcher can 

make probabilistic statements about the P&R users’ choice. The probability that the 

P&R user n  chooses departure train station i  is (Train, 2003): 
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This probability is a cumulative distribution function and using the density  nf  , can 

be rewritten as (Train, 2003) (Train, 2003): 
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where  I  is the indicator function, equal to one when the term in parentheses is true 

and zero otherwise. 

The discrete choice models mentioned above can be derived based on the 

multidimensional integrations of the density of the unobserved utility. 

Different choice models can be derived based on the distribution of the unobserved 

factors. Logit and mix logit were also used in the research and are explained below. 

(a) Logit model 

Logit is the most widely used discrete choice model so far due to its convenience, i.e. 

the choice probabilities equation has a closed form. It is derived under the assumption 

that the unobserved factors (  ) are distributed IID, (i.e. independent and identica l 

distribution), with extreme value I. In other words, the unobserved utility is 

uncorrelated over the alternatives and has the same variance for all alternatives. The 

density for each unobserved utility is (Train, 2003):  

 
nj

nj e

njf e e



                                                                                                    (3-3) 

And the cumulative distribution is: 

 
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where 
nj

 is the unobserved utility obtained from alternative j  by respondentn  and can 

be written as the product of the individual cumulative distribution.  

If ni  is given, then the individual cumulative distribution can be written as: 

 
 V Vni ni nj

e

njF e



  

                                                                                                   (3-5) 

Hence, the probability of P&R user n  choosing alternative j  is the product of the 

individual cumulative distribution. The specification of choice probability is shown as 

follows: 
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In fact, ni is not given, so the choice probability is the integral of the conditiona l 

probability overall all values of ni  weighted by its density. The choice probability 

formula can be seen in equation (3-7). 
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After manipulating the integral, the choice probability within logit can be calculated 

based on a succinct and closed-form expression, as shown below: 
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                                                                                                           (3-8) 

This approach is mainly used to develop travel time and crowding sub-models. The 

detailed applications can be seen in Chapters 5 and 6. 

(b) Mixed logit (ML) model 

Similar to any random utility functions in discrete choice models, the utility associated 

with alternative i  in an ML model, as evaluated by respondent n  in choice task t , can 

be expressed by equation (3-9) (Hensher & Greene, 2003; Mørkbak & Nordström, 

2009). 

nit n nit nitU X e                                                                                                     (3-9) 

where nitX  refers to the attributes of the thi  alternative faced by the respondent n  in 

the choice situation t , which is a vector of independent variables that can be observed 

by the analyst. n and nite  are unobserved and treated as random influences. In a logit 

context, the nite is limited to independent and irrelative distribution (IID) with 

extreme value tyre I, which means the error items of different alternatives are not 

correlated. However, that is not the case in reality. Therefore, researchers have taken 

it into account in other ways. One way is to split the random component into two parts. 

One assumes an independent and irrelative distribution for all alternatives and all 

individuals and the other is correlated over the alternatives and heteroskedastic, which 

means that the variance of the random variables is not the same for all alternatives. 

Based on this, equation (3-9) can be changed into (3-10): 

' [ ]ni ni ni niU X                                                                                                 (3-10) 

where ni  is random and has a mean equal to zero and distributed over individuals and 

alternatives based on parameters and observed data; ni  is also random and has zero 

mean, but IID over alternatives and is  not supported by underlying parameters or data. 
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As the   has IID extreme value I distribution, the conditional probability for choice is 

still logit for a given value of  , and its specification can be written as equation (3-11): 

 ' '( ) exp exp( )i i i j jj
L x x                                                                  (3-11) 

Actually, the   is not given, and therefore the choice probabilities should be integrated 

over all values of  , weighted by the density of  , as given in equation (3-12). 

 ( )i iP L f d                                                                                              (3-12) 

where  f   is the density of  ; and   are the fixed parameters of the distribution.  

ML models allow the unobserved factors to correlate over all alternatives, follow any 

distribution and for an individual’s taste to vary randomly. They are therefore 

considered to be the most flexible of discrete choice models. 

Additionally, ML models can be used to analyse the preference heterogeneity over the 

sample population. Assuming   is not fixed but random, we can specify each n  for 

each attribute of an alternative using a mean and a standard deviation. The standard 

deviation of a parameter   can indicate an individual’s preference heterogene ity 

within the sample population. In order to obtain this heterogeneity through data 

segmentation, the individual’s conditional distribution based on his/her choice should 

be derived first. Within Bayes Rule, the conditional distribution can be written as 

follows: 

       n n nH L g P                                                                           (3-13) 

where  qL   is the probability of an individual’s choice if they had this specific  ; 

 g    is the distribution in the population of s ; and  qp   is the choice 

probability function defined in open form as: 

     n nP L g d                                                                                           (3-14) 

In the research, the ML approach was used to develop the parking search time sub-

model and the overall model, and to analyse how an individual’s preference 

heterogeneity influences his/her choice of departure train station. The detailed 

application can be seen Chapters 7 and 8. 
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3.5.2 Decision making theories under uncertainty (or risk) 

“Risk” refers to situations where there is a range of possible outcomes and decision 

makers make their choice based on the probability of each outcome occurring and 

benefits or disbenefits arising from that outcome, while “uncertainty” relates to 

situations where the probabilities of each outcome occurring vary or are unable to be 

fully determined by the decision maker (Knight, 1921). Based on these concepts, P&R 

users’ choice of departure train stations can be defined as decision making under 

uncertainty (or risk). Three key factors influencing station choice for P&R users, ( 

parking search time, travel time to the departure train station and crowding on trains) , 

can vary over time as travel environments around train stations and on trains change. 

However, as we cannot reliably and accurately predict these changes in advance, the 

variations of these three key factors being random. Correspondingly, the station choice 

for P&R users should be taken as a decision making under uncertainty (or risk) 

process. 

Three decision making theories under uncertainty (or risk) were used to develop the 

utility function related to station choice and analyse respondents’ attitudes towards the 

variation of uncertain factors. They are explained below. 

(a) Expected utility theory  

The basic economic theory for decision making under uncertainty (or risk) is expected 

utility theory. Initially proposed by von Neumann and Morgenstern (1947), it has 

dominated the analysis of decision making under uncertainty (or risk) for many years. 

It is generally accepted as the normative model of rational choice and is widely used 

as a descriptive model of economic behaviour. The theory assumes that all rational 

decision makers follow the axioms of the expected utility maximum. Therefore, the 

utility of any alternative can be written simply as the mathematical expectation of the 

utility of the outcomes. Its specification is shown in equation (3-15), when the 

expected utility is assumed as linear-additive: 

( ) i i

i

E U p x                                                                                                       (3-15) 

where ( )E U  is the expected utility; ix  is the thi  outcome; and ip  is the objective 

probability that the thi  outcome occurs. 
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Furthermore, a power form utility functional has been suggested (see Eq. (3-16)), 

which can show not only decision making under uncertainty but also respondents’ risk 

attitude.  

  i

i

E U px                                                                                                    (3-16) 

where   is an estimated parameter indicating decision makers’ risk attitude towards 

the outcome , when 1   means risk aversion; 1   is risk neutral; and 1   is 

risk seeking. 

The risk aversion is often obtained based on the EUT. 

(b) Extended expected utility theory (EEUT)  

Extended expected utility theory (EEUT), proposed by Li et al. (2009), is, as the name 

indicates, an extended version of the EUT. It still retains the axiom of expect utility 

maximum but differs from the EUT in how the probabilities used to weigh the utility 

are determined. Within the EUT, they are objective, i.e. reflect the actual frequenc ies 

at which the various outcomes occurred. However, within the EEUT, the probabilit ies 

are subjective and as perceived by respondents in terms of their experience and 

cognition. In practice, the probabilities transformed by respondents may overweight 

or underweight the objective probabilities in the EUT, especially for extreme situations, 

and a non-linear probability weighting function was introduced into the EUT to form 

the EEUT. Its specification is given in equation (3-17). 

 ( ) ( )mm
EE U w p U 

                                                                                    (3-17) 

where  w  is a probability weighting function. 

The theory is applied to the estimation of the utility of station choice based on the 

effects of the variation of crowding on trains (see Chapter 6). 

(c) Prospect theory (PT) and cumulative prospect theory (CPT) 

In contrast to the EUT, which aims to help individuals achieve better decisions, 

prospect theory (PT) and cumulative prospect theory (CPT) simply describe people’s 

decision-making behaviour. Moreover, decision making within PT and CPT focus on 

the difference between the actual outcome and the expected outcome that is potential 

gains or losses, instead of the final outcome as evidenced in the EUT. 

thi
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Prospect theory (PT) was proposed by Kahneman and Tversky (1979). It divided an 

individual’s choice process into two stages: ① “editing” phase, where gains and losses 

relative to some neutral reference point ( )  were identified; and ② “evaluat ion” 

phase, where choice was made based on the outcome of alternatives by evaluating their 

value function ( )v x  and weighting function  p . Based on this, the utility function 

of prospect n under PT is defined as follows (Timmermans, 2010; Tversky & 

Kahneman, 1992): 

   
1

J
n n n

i l j

j

u p v x 


                                                                                          (3-18) 

Prospect ns  is preferred to 
'ns  iff  

' 'n n n n

i i i iu u s s                                                                                              (3-19) 

PT has two features: ① the value function ( )v x  is concave for gains and convex for 

losses, with losses steeper than gains; and ②  a nonlinear transformation of the 

individual’s probability leads to overweight small probabilities and underweight high 

probabilities (Kahneman & Tversky, 1979). 

Contrary to EUT, PT considers choices between high risk prospects with a small 

number of outcomes by transforming the individual probability using a non-linear 

function (Kahneman & Tversky, 1979). Later, Tversky and Kahneman (1992) 

extended PT by converting the individual probabilities into a cumulative probability 

distribution function and, thereby, formed cumulative prospect theory (CPT), which 

can explain not only uncertain behaviour but also the risk prospect for any number of 

outcomes.  

Similar to PT, the uncertain prospect based on CPT is still the sum of the utility of 

gains and losses, each weighted by its own weighting function. The decision weights 

under CPT are the subjective weightings derived from the outcome probability given 

by equation (3-20) (Tversky & Kahneman, 1992): 

 
1 1

1 1 1

( )

( ) 1i i i

w p p

w p p p p p p for i n



       
                                           (3-20) 

where ( )p p  is a monotonic risk weighting function restrained by0 ( ) 1p p  .  

Many different functional forms have been suggested for the risk weighting. The top 

four risk weighting function forms identified in a meta-analysis conducted by Stott 



48 

 

(2006), have been tested in the research. Their specifications are shown in equation (3-

21) - (3-24).  

TK      
 

 1

(1 )
r

r

i
i

r r

i i

p
p

p p

 

 

                                                                           (3-21) 

GE    
(1 )

r

i
i r r

i i

sp
p

sp p
 

 
                                                                                  (3-22) 

Prl-I         ln
r

ip

ip e
 

                                                                                        (3-23) 

Prl-II      ln
r

is p

ip e
 

                                                                                        (3-24) 

where ip  is the probability that the thi  outcome occurs;  ip  is the subjective 

weighting function derived from the outcome cumulative probability; and r  and s  

indicate the shape and location of the risk weighting functions.  

Similar to the weighting functions, many different forms of value functions are 

available. Based on the examination of 256 combinations of value functions, weighting 

functions and stochastic choice models by Stott (2006),  the best choice prediction 

model should use a combination of the value function with power form, the weighting 

function with TK form, and logit models. Therefore, the value function with power 

form was used to develop the station choice model. Its specification is given in (3-25).  

 
   

 

0

0

n n

j jn

j
n n

j j

x if x
v x

x if x





 


  

   
  

   


                                                          (3-25) 

where parameters   and   (less than or equal to one) measure the level of sensitivity 

to changes in both directions from the reference point, while parameter  (1) captures 

the degree of aversion to loss. The value function under PT is usually S-shaped. It is 

generally concave for gains and commonly convex for losses; with losses steeper than 

gains if it describes loss aversion. 

(d) Comparison of expected utility theory with extended expected utility theory and 

cumulative prospect theory 

Even though expected utility theory (EUT), prospect theory (PT), cumulative prospect 

theory (CPT) and extended expected utility theory (EEUT) can all be used for 

understanding choice behaviour under uncertainty (or risk), PT/CPT and EEUT may 
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be applied to develop better utility functions of the station choice under uncertainty 

than EUT. 

EUT is a normative decision-making theory due to its simple and parsimonious format 

and consistency with evidence for most choice situations. The main criticism of EUT 

lies with its three key components: 

 Expectation, which means the overall utility of prospect equals the sum of the 

expected utility of its outcomes;  

 Assess integration, which refers to the utility function in EUT depending on 

the final states rather than gains or losses;  

 Risk aversion, which means a person is risk averse if he prefers a certain 

prospect over a riskier prospect with a higher value, which implies that the 

utility function in EUT is concave.  

These axioms have been violated by a serious of phenomena. PT/CPT is one of 

decision-making theories that can accommodate most of these violations and is good 

at explaining the choice between risky prospects with small probabilities of outcome. 

In contrast to EUT, the value function in PT is concave for gains, convex for losses 

and steeper for losses than for gains. Moreover, it uses a non-linear transformation of 

the probability scale, which overweighs small probabilities and underweights 

moderate and high probabilities. Cumulative prospect theory (CPT) is a new version 

of PT, which not only contains the functions of PT but also incorporates cumula t ive 

functionality into PT, so it can predict uncertain as well as risk prospects with any 

number of outcomes. Therefore, CPT should perform better than EUT in explaining 

station choice under uncertainty.  

Another criticism of EUT is that the probability weighting function in EUT is 

objective, so it cannot recognise perceptual processing of respondents’ decision 

making. However, EEUT and PT/CPT replace the objective probabilities in EUT with 

subjective probabilities with either cumulative or non-linear probability weighting, 

which entails elements of over and under-weighting, especially in an extreme or rare 

situation (de Finetti, 1937; Li et al., 2009; Tversky & Kahneman, 1992).    

Based on the above, CPT and EEUT have been applied to explain the effect of different 

uncertain factors on station choice for P&R users under uncertainty. 
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3.5.3 Models measuring reliability (or variability) of uncertain factors  

Reliability, or variability, has been widely used to assess the impact of uncertainty on 

travel choice (Carrion & Levinson, 2012). Actually, a choice related to travel is seldom 

affected by small variations in the uncertain factors (Hensher, Greene, & Li, 2011; Li 

et al., 2010; Nicholson & Du, 1997; Wong & Sussman, 1973). The standard deviation, 

as well as the difference between the 25th & 75th, and 90th & 50th percentiles of travel 

time, have been adopted as measurements of travel time variability by Jackson and 

Jucker (1982). Early research on travel time variability often utilised stated preference 

(SP) data (Department of Transport). Given that the SP data are collected by SC 

experiments, where respondents are making hypothetical choices which could be 

different to what they would actually do in a real situation, more recent research use a 

mix of SP and revealed preference (RP) data to explore the effect of variability of 

travel time on travel choice (Li et al., 2010). 

Two approaches evaluating the influence of variations in travel time on travel choices 

were considered in the research, mean-variance deviation and scheduling delay. 

(a) Mean-variance  

The approach, proposed by Jackson and Jucker (1982), defines the utility of a choice 

option as a function of expected travel time (or mean travel time) ( T ) and variability 

in travel time (standard-deviation) ( T ). The commuter minimises the sum of these 

two terms when choosing a departure station. Its specification is shown in (3-26). 

1 2T TU                                                                                                          (3-26) 

where 1 2,   are the estimated coefficients. 

The model is usually estimated using discrete choice methods and has been 

successfully used in previous studies to predict a range of travel choices includ ing 

route, mode and departure time choice.  

(b) Scheduling delays 

Similar to the mean-variance approach, the scheduling delay approach, proposed by 

Noland and small (1995), is based on a traditional utility maximisation framework. 

However, it focuses on the time constraints, (e.g. train departure time), a traveller may 

face and their associated costs due to an early or late arrival at the final destination. 

There is a desire to minimise the frequency of late arrivals and to maximise the time 
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spent at home compared to waiting at the train station (Carrion, 2010; Carrion & 

Levinson, 2012; Gaver, 1968; Knight, 1974). The general formula is given by equation 

(3-27).  

  1 2 3 4;dU t PAT T SDE SDL DL                                                                (3-27) 

where T  refers to total travel time; SDE  is the amount of time one arrives at a 

destination earlier than desired which is defined as  (0, )dMax PAT T t  ; SDL  is 

the amount of time one arrives later than desired which is defined as 

 (0, )dMax T t PAT  ; PAT  is the preferred travel time; dt  is departure time; DL  

is a fixed penalty for any late arrival; and the  s are estimated coefficients. 

The model, historically, is mainly linked to departure time choice.  

(c) Summary  

Some researchers have found the two theoretical approaches to be broadly equivalent. 

In this research, we have chosen the mean-variance approach to measure the effect of 

variability of the uncertain factors on station choice due to the scheduling delay 

approach being more complex. Its application can be seen in Chapters 5, 6 and 7. 

3.5.4 Station choice models under uncertainty for P&R users 

Traditionally, station choice models were developed based on the effects of certain 

factors and linear utility functions were often used, with linear-additive properties 

assumed. However, this research aims to capture the effects of uncertainty and 

respondents’ risk attitude towards the variation of the uncertain factors on station 

choice. Therefore, non-linear utility functions are used, which makes the station choice 

model more comprehensive. We divided the effects of factors on station choice into 

certain and uncertain effects, and tested the effects of each uncertain factor on station 

choice with non-liner functions. Then, these uncertain effects were taken as new 

indices and, together with the certain factors, were used to develop the linear utility 

function of the overall station choice model. In order to identify the effects of the 

uncertain factors on station choice, we established three sub-models using EEUT and 

CPT. The procedures for establishing each sub-model are explained below. 

(a) Travel time sub-model  
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As travel time has been identified as an uncertain factor, the travel time sub-model 

was used to analyse station choice based on the effects of travel time under 

uncertainty. 

The travel time sub-model was developed within discrete choice theory and the 

mean-variance method was applied to establish its utility function. In contrast to the 

classical measurement of variance, the variance used in the travel time sub-model 

was re-defined within cumulative prospect theory (CPT). The regular travel time, 

(defined as the travel time spent in most of days in one month), was taken as the 

reference point, with the difference between the regular travel time and travel time 

spent on good days treated as gains, and the difference between regular travel time 

and travel time spent on bad days as losses. Moreover, the frequencies that good days 

or bad days occurred in a week were taken as the objective probabilities that a gain 

or loss would occur. Therefore, the risk prospect, obtained based on gains and losses 

within CPT, was taken into account with the variation in travel time. The parameter 

coefficients in the sub-model were estimated using the Nlogit 5 Package.  

The process to develop the sub-model is set out below. 

 Step 1: Identifying unreliability of variation of travel time 

Travel time in the research refers to the time spent in travelling from home to the 

departure station. It can be divided into two components based on a P&R user’s 

routine travel, i.e. regular travel time and additional/reduced travel time. The former 

refers to the time spent in driving to the departure train station on most days. The 

latter refers to the change in travel time resulting from changes in the traffic 

conditions, which leads to unreliability of travel time.  

In order to explore the effects of variations in travel time on station choice, we 

constructed a new variable within CPT to replace the variance in the mean-variance 

framework. It is made up of two components. The first is the variation caused by the 

difference between the good day travel time and regular travel time and its frequency 

and the second, the difference between the bad day travel time and regular travel 

time and its frequency. Assuming both are linear and additive, the new variable is 

their sum. Correspondingly, the coefficient of the variable can indicate P&R users’ 

preference for variation of travel time.  

 Step 2: Determining the value function form 
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Many value functions, combined with various weighting functions, can be used for 

CPT (Stott, 2006). According to the meta-analysis for combining value functions, 

weighting functions and stochastic choice models, the model made of the value 

function with power form, the weighting function with TK form and logit model is the 

best to make a prediction. Moreover, the shape of the value function with power form 

can indicate respondents’ risk attitude, (as detailed in Chapter 5). Therefore, the value 

function with power form is used to measure the value of the outcomes in the sub-

model. 

 Step 3: Measuring respondent’s risk attitude  

Within CPT, the respondents’ risk attitude is determined jointly by the value function 

and the weight function. Assuming a choice is between a prospect ( ,x p ) with expected 

value ( px ), and the reference point is zero, a respondent’s attitude is risk seeking when 

  ( )
( )

v px
p

v x
   and its shape is concave in the domain of gains. Based on this 

method, a respondent’s risk attitude towards the variation of travel time can be 

determined.  

 Step 4 : Analysing the impact of a respondent’s real travel time experience on 

their risk attitude towards their station choice under uncertainty 

We chose three train stations for this analysis, (Murdoch station, Greenwood station 

and Warnbro). Firstly, we geocoded the home end of ten P&R users using these 

stations and then used google maps to extract the shortest home-to-station travel time 

at 15 minute intervals between 6:00am and10:00am from Monday to Friday. From 

these data we obtained the daily variations in travel time for each station and ranked 

them. Next, we used the travel time sub-model to estimate respondents’ risk attitude 

for each station and ranked them. We then compared both rankings.  

Additionally, we calculated the difference between travel times estimated from Goggle 

Map and perceived travel times from the train station choice survey, and ranked them. 

From this, we drew conclusions on whether respondents who have higher differences 

between perceived and objective travel times tend to be more risk averse towards their 

station choice under travel time variability than those who have experienced less travel 

time variability.  

(b) Parking search time sub-model  
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Similar to the travel time sub-model, the parking search time sub-model aims to check 

the effects of parking attributes, including variability of PST, on station choice for 

P&R users. It was developed using the mixed logit approach. The reactions of P&R 

users to the variability of PST were evaluated using the mean-variance approach and 

the variation of PST was measured within CPT. The main tasks for the sub-model are 

listed below: 

 Task 1: Developing utility function of station choice based on the effects of 

variability of PST 

The utility function is developed based on two situations, i.e. whether or not a parking 

space is available in the P&R car park. If parking is available, the variation of PST, 

based on the train service survey, is negligibly and can be ignored. Therefore, certain 

parking attributes, such as parking fee, parking capacity, parking availability in P&R 

parking lots, etc., were taken as the main factors contributing to utility of station choice. 

On the assumption that these factors are linear additive, a linear utility function was 

developed.  

When parking is unavailable within the P&R car park, P&R users have to park their 

cars on the streets, verges, and other parking lots around the station. In this case the 

PST can vary significantly, as the alternative parking locations and parking availability 

vary with each station. Correspondingly, the day to day variation of PST should 

contribute to the disutility of station choice. Additionally, parking cost, determined 

based on the frequency of patrolling for illegal parking and the penalties, would lead 

to disutility of station choice as well. In summary, parking attributes only impact on 

the disutility of station choice when parking is unavailable in the P&R car park. 

Based on this, the utility functions of station choice due to the effects of parking 

attributes should be established separately. For the former (i.e. parking is available in 

P&R car park), assuming all factors are linear additive, a linear utility function can be 

developed. For the latter, (that is parking is not available), the effect of variability of 

PST on station choice was measured with CPT first, then a linear utility funct ion 

developed. 

 Task 2: Determining parameters’ distribution  

Once the utility function of station choice was developed, the parking search time sub-

model was established using a mixed logit (ML) approach.  
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As stated above, the ML model uses a range of βs to produce a mixed logit function

( )f  , so it is necessary to identify parameters’ distribution first. Normal distribution 

was tested. The recommended distribution is dependent upon the statistical results of 

the two models with different distributions. 

 Task 3: Analysing P&R users’ preference for each factor 

 Task 4: Exploring P&R users’ risk attitude towards variations in PST 

Similar to the analysis of P&R users’ risk attitude towards variations in travel time, 

their risk attribute towards variations in PST can be determined jointly based on the 

value function and weighting function of the PST as well as its shape.  

(c) Crowding on trains sub-model  

The sub-model is used to explore P&R users’ station choice behaviour under the 

effects of variations in crowding on trains and to measure their risk attitude to 

crowding. A multinomial logit was used to develop the sub-model, with the utility 

function developed using the mean-variance method and the parameter coefficients 

estimated using the Nlogit 5 software package. Additionally, the relationship between 

the respondents’ risk attitude and railway ridership was analysed based on the sub-

model. The main steps to develop the sub-model are as follows: 

 Step 1: Using stated choice (SC) survey to identify key factors measuring 

crowding  

Both measurements of crowding, (i.e. seat availability and density of passengers 

standing in a train car), in previous questionnaires surveying respondents’ reaction to 

crowding on trains were presented from above, (i.e. a bird’s eye), so they can be used 

independently in the utility function. This does not reflect the actual view of a 

passenger standing on the platform waiting to board a train. They see the view from 

the front as the doors open and have to judge whether there are seats available and the 

level of crowding from that viewpoint. Therefore, to better represent reality, the 

crowding levels in this questionnaire were presented to respondents from the front 

view, i.e. the pictures in the questionnaires showed the situation you could see when 

the train doors open. Boarders cannot know clearly the density of those standing in the 

train when the train is crowded, a factor often exacerbated by people tending to cluster 

near the doors rather than moving down into the carriage. The crowding level boarders 

perceived may therefore not be the actual level. We needed to construct a new index 
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to use in the MNL crowding sub-mode that reflects boarders perceived crowding level 

in the questionnaire, i.e. considers the interaction between seat availability and the 

density of people standing. Additionally, the interaction between in-vehicle travel time 

and the probability that seats have been taken, i.e. how long they have to stand, will 

affect P&R users’ choice. 

 Step 2: Developing the crowding sub-model 

The crowding sub-model was developed within discrete choice theory. Its utility 

specifications were established for three decision making theories under risk (or 

uncertainty) separately, from traditional and dominant EUT to CPT to Morden EEUT. 

Based on statistical indices of these models, the recommended model can be 

determined.  

 Step 3: Analysing respondents’ risk attitude towards crowding on trains 

Given that the value functions in these utility functions, developed under the three 

theories, were of the power form, both the power value and its shape can indicate 

respondents’ risk attitude towards crowding. 

 Step 4: Analysing the relationship between the respondents’ risk attitude and 

train boardings  

By comparing respondents’ risk attitude for each train with their boarding number, we 

derived a relation between them. The risk attitude for each station was estimated using 

the recommended model based on the data from each station, with the boarding 

numbers provided by our cooperative partners. 

 Step 5: Conducting sensitivity tests for identifying the effect of crowding on 

trains on station choice.  

 Step 6: Analysing individual’s preference heterogeneity 

This section aims to identify how P&R users with different annual incomes choose 

their departure train station based on the effect of crowding on trains. A latent class 

model, with classes based on an individual’s annual income, was used to calculate the 

probability that a station would be chosen by a particular income class. The differences 

in the conditional class probabilities indicate the effect of individuals’ preference 

heterogeneity on station choice. 

 Step 7: Elasticity analysis 

 Step 8: Validating the model.  
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A Chi-squared (
2 ) test was used to validate the sub-model. We calculated the 

2  

based on the estimated probabilities from the recommended model and observed 

probabilities (frequencies) for each station (see Chapter 6). Then, the values were 

compared with the critical value to determine whether or not the model was acceptable, 

that is, validated. 

3. 6 Software 

3.6.1 The software to design stated preference experiment  

(a) Evolver 

Evolver, a sophisticated optimisation tool for spreadsheets, was used to identify the 

optimal scenarios in the SC experimental design. Its key role is to quickly solve 

problems modelled in Excel using innovative genetic algorithms (GA) and linear 

programming technology.  

In the research, Evolver was used to determine the appropriate scenarios for 

conducting the train station choice survey.  

(b) SketchUp 

SketchUp is a simple, easy to use, 3D drafting software package used in a range of 

drafting and design fields. Moreover, it can modify and edit pictures imported from 

other software, such as CAD and BIM. 

It was used to design the crowding levels in the questionnaires for the station choice 

survey. The indices reflecting crowding levels include the probability that seats have 

been taken and the density of passengers standing in a carriage. Therefore, we drew a 

3D picture, showing the situation in a train car, based on the two indices and allowing 

respondents to clearly and easily identify crowding levels.  

3.6.2 Software to analyse data 

Statistical Package for the Social Science (SPSS) is a software package used for 

statistical analysis. Its roles included statistical analysis, data management, data 

documentation, etc. 

The database (including RP and SP data) for the research was set up with SPSS and 

the descriptive statistics were also analysed using SPSS tools. The range and levels for 

each attribute used in the station choice survey were determined using classify tools 

within SPSS. 
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3.6.3 Software to develop model  

NLOGIT is an extension of the software package LIMDEP. It can estimate a variety 

of discrete choice models (i.e. logit models) by full information maximum likelihood 

and provide programs for model simulation and analysis of discrete choice data. It is 

mainly used in discrete choice modelling based on panel data or real data from repeated 

observations of choice situations. 

In this research, Nlogit 5 was mainly used to estimate the coefficients of the parameters 

in the station choice models, analyses individuals’ preference heterogeneity and test 

sensitivity test. 

3. 7 Chapter summary 

This chapter has described the methodology used to develop station choice models 

under uncertainty for P&R users; to evaluate the effects of variation in the uncertain 

factors on station choice; to measure the variability of the uncertain factors and 

respondents’ risk attitude to these uncertainties and to analyse individuals’ preference 

heterogeneity. 

In summary, all station choice models were developed within a discreet choice 

framework and the mean–variance approach was applied to establish the utility 

function, in which the effect of variation of crowding on station choice was estimated 

under CPT or EEUT. All the models were estimated using Nlogit 5. The respondents’ 

risk attitudes towards the variation of uncertain factors were determined based on the 

combination of the value function with its weighting function.  

As the process to model station choice under uncertainty is relatively complex, it was 

initially divided into a number of independent parts and then the parts were combined 

to produce a single model. In other words, we developed three sub-models of station 

choice based on the effect of three uncertain factors first, then, together with other 

certain factors, developed the overall model of station choice.  

The study area and data collection were also introduced in the chapter together with 

the software used to design the stated choice (SC) experiment, and estimate and 

analyse the station choice model. 
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CHAPTER 4 EXPERIMENTAL DESIGN 

The last chapter discussed a methodology framework for modelling station choice 

under uncertainty for P&R users. The first step is to collect sufficient relevant and 

reliable data. Therefore, this chapter identifies the data used in the research and then 

describes the design of the stated choice (SC) and eye tracking experiments used to 

collect the data required to develop and validate the model.  

The chapter is structured as follows. Section 4.1 identifies the data used to develop and 

validate the station choice model. Section 4.2 presents a general SC experimenta l 

design workflow. Section 4.3 explains SC experimental design strategies. Section 4.4 

designs an SC experiment to explore the station choice behaviour of P&R users. 

Section 4.5 designs an eye tracking experiment to validate the whole station choice 

model. 

4. 1 Identification of data collection methods  

Two types of data were used to explore station choice behaviour, revealed preference 

(RP) data and stated preference (SP) data. The former refers to the data related to what 

the respondent actually did, so they can provide analysts with the properties of 

reliability (Abdel-Aty, Kitamura, & Jovanis, 1995; Morikawa, Ben-Akiva, & Yamada, 

1991). The latter are the data collected via responses to hypothetical situations to 

understand the preference of respondents (Ben-Akiva et al., 1994).  

Most station choice studies use RP data, usually collected directly from passengers 

waiting at train stations or on-board the train (Lythgoe & Wardman, 2004; Mahmoud 

et al., 2014; Young & Blainey, 2018). Even though the use of RP data has certain 

methodological advantages over the use of SP data, they cannot be used for analysing 

choice behaviour for non-existing situations. Moreover, the collection of the required 

large sample size, compared with SP data, is costly and time-consuming. Certainly, SP 

data can be subjective, however, many studies have proven its authenticity (Abdel-Aty 

et al., 1995; Abdel-Aty, Kitamura, & Jovanis, 1997). A comparison of RP data with 

SP data can be seen in Table 4.1.  

Table 4.1 Comparision between PR data and SP data  

 RP data SP data 

Preference Information  Reaction to actual situations 

 Align to the real behaviour  

 We can get “Choice” result 

 Responding to hypothetical 

situations 

 Possibility of inconsistency 
with the behaviour in the real 

market  
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 We can get “Ranking”, 

“Rating”, “Choice”, etc. 

Alternatives  Real  Real and hypothetical  

Attributes  Levels limited  

 Measurement error 

 May exhibit collinearity  

 Levels extensive 

 No measurement error 

 Collinearity can be controlled 

Number of Response(s) per 

respondent 
 One   One or more  

 

Based on the above, SP data was used to model station choice in the research. They 

were collected through a stated choice (SC) experiment designed using the D-

efficiency method. The experiment constructed twelve hypothetic situations. Each 

included two train stations with four groups of attributes, namely, travel time to the 

departure station, parking facilities, level of crowding on trains, and other relevant 

factors. Each attribute included two or three attribute levels determined based on the 

relevant data from the train survey. Pilot surveys were undertaken to test and refine 

the questionnaires. The final questionnaires covered 12 scenarios overall, with each 

scenario made up of simple and clear figures, numbers and words. The process to 

design the SC experiment is discussed in the following sections. 

Additionally, an eye tracking experiment was conducted, based on these 

questionnaires, to evaluate the station choice models. The setup and implementa t ion 

of the eye tracking experiment are described later in this chapter. 

4. 2 SC experimental design workflow 

The process to design an SC experiment generally starts with the refinement of the 

problem you need to solve. Then, the alternatives, attributes and attribute levels for 

each alternative used in the experiment should be identified and refined. Next, the 

choice set is determined based on the design approaches. The last step is to produce 

questionnaires based on the choice set. The process is illustrated in Figure 4.1. 
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Figure 4.1 General process for an SC experimental design  

4. 3 SC experimental design strategies 

4.3.1 Considerations for the design of an SC experiment 

In order to collect reliable SP data to develop station choice models specific to P&R 

users, this study took the following into consideration for the experimental design: 

(a) Is the experiment labelled or unlabelled? 

A labelled experiment refers to an experiment in which the alternatives’ names have 

substantive meaning to respondents, such as private vehicle, public transport. An 

unlabelled experiment is the one in which the alternatives’ names only convey their 

relative order of appearance, (e.g., route a, route b) or present their number and 

sequences, (e.g., station 1 and station 2). Generally, labelled experiments can be used 

to estimate not only generic parameters but also alternative specific parameters 

whereas unlabelled experiments only estimate generic parameters. This leads to 

differences in the minimum number of choice situations required and it is, therefore, 

very important to determine whether the experiment is labelled or unlabelled. Specific 

Research problem 

Identify 

Alternative 

Attribute 

Attributes’ level 
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Generate choice set 
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to the experiment in the research, the alternatives are train stations and are treated as 

unlabelled, i.e. station 1 or station 2 

(b) Should the experiment keep attribute level balance?  

Attribute level balance refers to ensuring that the different levels for each attribute are 

used the same number of times in the experiment, to minimise behavioural bias 

(Wittink, Krishnamurthi, & Nutter, 1982; Wittink, Krishnamurthi, & Reibstein, 1989). 

However, this property can lead to larger than necessary experimental designs and 

likely generate less efficient design (Hess & Rose, 2009). Hence, in the research, the 

SC experiment did not keep attribute level balanced.  

(c) The number of attributes, attribute levels and the range for each attribute 

The number of attributes and their levels will affect the minimum number of choice 

tasks in the experiment. The attributes in the research were identified based on 

previous literature and relevant surveys, (such as the station facilities’ survey and the 

train station survey). Their range and levels were determined in two ways, the first 

from previous studies and the second using the Classify tools in SPSS. The process is 

detailed in Section 4.4. 

(d) Design types.  

Design types refer to the method used to design the SC experiment. The design type 

can determine the minimum number of choice tasks and which situation is chosen, 

based on the magnitude of the correlation among the attributes over the choice 

situations and the design efficiency. There is a number of available designs as 

described in Section 4.3.2 below. 

4.3.2 Types of experimental design 

The efficient choice (EC) method was chosen to design the experiment of station 

choice, even though many types of SC experimental design are presented in previous 

literature. The decision-making process to choose EC is described below.  

Typically, SC design types can be divided into two classes, full factorial designs and 

fractional factorial designs. 

(a) Full factorial designs 
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A full factorial design refers to an experiment that includes all possible combinations 

of each attribute level over all alternatives. Its advantages are that all effects, includ ing 

main effects and interaction effects, can be estimated within the design and all attribute 

effects of interest can be guaranteed to be truly independent. However, its disadvantage 

is the size of the candidate set. Mathematically, the number of choice tasks in a full 

factorial design is determined by the number of attributes and the number of levels of 

each attribute. It can be calculated by the following specification (Rose & Bliemer, 

2009): 

1

K

k kCN L                                                                                                        (4-1) 

where, CN  is the number of choice tasks and 
kL  is the number of attribute levels for 

the thk  attribute. 

As such, the design is only used when the number of attributes or attribute levels is 

relative small. Therefore, it is not suitable for a study with many attributes, and/or 

many attribute levels, to consider. 

(b)  Fractional factorial designs 

Another SC experimental design is the fractional factorial design, which is made up of 

a subset of choice situations from the full factorial design. Obviously, this reduces the 

design size, but sacrifices the amount of information considered in the design. In order 

to address this problem, a number of ways to select the scenarios in a systemic manner 

have been proposed. Two popular approaches are described below.  

(i) Orthogonal fractional factorial designs 

The orthogonal design, the most famous fractional factorial design, is defined by 

Bliemer (2016) in his lecture as “a design in which every pair of levels occurs equally 

often across all pairs of attributes (or when the frequencies for level pairs are 

proportional instead of equal)” One of the competing orthogonal designs is Optimal 

Orthogonal Choice (OOC), which maximises the difference among the attribute levels 

across alternatives so that the maximum amount of information can be obtained from 

the respondents, by trading off all the attributes presented on the questionnaires (Street, 

Burgess, & Louviere, 2005). Generally, this design will be used when analysts cannot 

determine priors and the experiment has been treated as unlabelled. However, the OOC 

designs have some disadvantages. Firstly, the design is not a complete orthogonal 

design in that the orthogonal property cannot exist across alternatives, but there can be 
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negative correlations across alternatives, and so it is usually applied to unlabelled 

choice experiments. Secondly, the number of attributes across the alternatives and the 

number of attribute levels for each attribute have to be the same. The OOC design was 

not used to design the SP experiment in the research even though all parameters in our 

experiment are likely to be treated as generic. The reasons were that different attribute 

levels were identified for different attributes and non-linear discrete choice models 

were applied to understand station choice behaviour, the desirable properties of which 

could be violated by the orthogonal fractional factorial design. 

Based on this, the alternative fractional factorial design-Efficiency Choice (EC) design 

- is proposed, which is seen to easily outperform orthogonal designs (Rose & Bliemer, 

2009).  

(ii) Efficient choice (EC) design  

In contrast to the OOC designs attempting to maximise the differences between 

attribute levels across alternatives, based on Rose and Bliemer (2005), effic ient 

choice(EC) design refers to a design that aims to minimise the asymptotic standard 

deviations, (i.e. the square roots of the leading diagonal of the Asymptotic Variance-

Covariance (AVC) matrix of a discrete choice model), so as to estimate more reliable 

parameters. The EC design is better than other methods as: ① prior values for the 

likely parameter estimates can be used as starting point values ② it can be used to 

estimate both generic and alternative specific parameters, and ③ it eases the 

requirements for attribute level balance across all attributes. Therefore, some 

researchers currently assert that the parameters estimates with the data from EC 

designs are more reliable than from orthogonal designs (given the availability of 

previous knowledge).  

There are many types of EC designs, which one is best depends upon its efficiency. 

Based on previous literature, the most commonly used measure for efficiency is D-

error. Usually, the D-error of an EC design will be low if the asymptotic (co)variances 

of the parameter estimates are low, and high if these (co)variances are high. Hence, 

the design with a minimum D-error is also called the D-optimal experimental design 

(Bunch, Louviere, & Anderson, 1996). However, the number of designs can increase 

exponentially with different combinations of attribute levels and it can be difficult to 

find the minimum D-error. Hence, an experiment with a low D-error is often, and more 

correctly, referred to as a D-efficient design. 
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Thus, we used the D-efficient approach to design the station choice experiment in the 

research. 

4. 4 SC experimental design  

According to Rose and Bliemer (2005), creating a stated preference experiment of 

station choice for P&R users includes three main steps: ① developing a utility function 

with all parameters to be estimated; ② determining an experimental design type based 

on the specification; and ③ constructing questionnaires (on paper, internet, CAPUI, 

etc.) based on the choice tasks determined in the experimental design. The detailed 

process is described below. 

4.4.1 Specify the utility function  

To develop a specific utility function of station choice, we should determine ① the 

attributes entering the utility function; ② which parameters should be generic and 

which parameters should alternative specific; ③ the attributes’ format, e.g., dummy, 

effect codes, etc.; ④ which effects (i.e. main effects, interaction effects, or both) 

should be estimated; ⑤ the coefficients of the parameters in the model; and ⑥ the 

form of the econometric model obtained using the experimental design data. These 

were considered as follows: 

(a) Determination of attributes 

The criteria used to determine the attributes entering the utility function were ① 

previous literature; ② the objectives of the research; and ③ train station surveys. 

(i) Literature review 

A number of factors including travel time, parking capacity, cost, access time, 

accessibility to the station, etc. have been identified as attributes affecting station 

choice in past studies related to railway station choice. Hence, these attributes were 

directly considered in the research.  

(ii) The objective of the research 

The research aims to model station choice under uncertainty for P&R users. To achie ve 

this objective, three uncertain environments influencing station choice were identified 

based on P&R users’ decision-making process for their trips. These included the 

environment driving to the station, the environment on-board the train, and the parking 
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environment. The uncertain measurement for each environment was determined based 

on previous literature (Li et al., 2009; Zheng Li & Hensher, 2013). Thus, three 

uncertain factors, (i.e. the travel time to the departure train station, parking search time 

and crowding on trains), influencing P&R users’ choice for departure station were 

identified.  

(iii) Surveys 

The train station survey ranking the significance of various factors on station choice 

showed that a number of factors, (e.g. safety, ticket, train frequency, etc.), that had not 

been taken into account in previous studies can play a role in affecting P&R users’ 

choice for departure train station. Therefore, these should also be included. 

Based on the above, all the factors used in modelling station choice under uncertainty 

were obtained and are summarised in Table 4.2. Their relationship looks similar to the 

structure of the Milky Way Galaxy. Station choice is at the core of the structure, the 

first layer contains the main four environments. Each environment is made up of 

different factors, which comprise the second layer. The factors in the second layer are 

also made of different attributes, which form the third layer. The factors in each layer 

can directly affect the station choice and also indirectly influence it via the factors in 

their higher layer. Their relationship can be in Figure 4.2. 

Table 4.2 Attributes entering the utility function 

Previous literature 
Investigation This thesis 

Factors Authors 

 Location of station 

 Access time 

 Frequency of service 

 Generalised cost 

Kastrenakes (1988)  Parking availability 

 Parking search time  

 Variation of parking 

search time 

 Travel time to the 
station  

 Variation of travel 

time 

 Seat availability on 
trains 

 Distance to station 

from home 

 Facilities at the 
station  

 Travel time to the station 

 Variation of travel time to 

the station  
 The frequency the travel 

time varies 

 Parking availability  

 Parking search time  
 The variation of parking 

search time 

 The frequency that 

parking search time varies 

 Crowding on trains 

 Seats availability on trains 

 The density of standees in 

a carriage 
 Transfer waiting time 

 Access time 

 Access mode to 

station 

 Distance to station 

from home 

 Additional facilities 

at the stations 

(Fan et al., 1993) 

 Travel time 

 Distance  

 Access time  

Davidson and Yang 

(1999), Lythgoe et al. 

(2004), Lythgoe and 

Wardman 

(2004),Wardman (1997) 
and (Horner & Groves, 

2007) 
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 Accessibility to the 

station  

 Rail service quality   

Debrezion et al. (2009) 

 Capacity of car parks 

 Safety 

 Ticket fare 

 Train frequency 
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Figure 4.2 The relationship of factors influencing station choice for P&R users
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(b) Attribute levels  

Attribute levels in the experiment were determined in three ways. The first was from 

previous literature. For example, the levels for density of passengers standing in a train 

car and the probability that seats have been taken were determined based on the paper 

by Zheng Li and Hensher (2013). The second was from the field surveys. For example, 

the levels for safety, tickets, etc. were from the train station survey conducted on July 

2, 2012. The last way, from a combination of the clustering approach and field survey, 

provided levels for factors such as travel time, parking search time, etc. 

Clustering, conceptually, is to divide data into different groups, (clusters), based on 

their traits, the data in the same group being more alike than the data in other groups. 

Traditionally, clustering approaches can be divided into two types, relocation and 

hierarchical. The former refers to initially allocating data to different groups on a 

somewhat random basis then moving each record, on by one, to the group it is most 

alike. This process continues iteratively until no record can be moved to a better 

matching group. (Willett, 1984). The latter is a nested approach where the data are 

initially grouped into a small number of clusters (nests). Each nest is then divided into 

a number of sub-nests and so on, until the desired number of clusters is obtained.  

(Murtagh & Contreras, 2011). Both approaches can be efficient and accurate on small 

datasets but less so on large data sets. However, they can still be efficient if the datasets 

can be initially separated into smaller datasets, such as in a two-stage clustering 

method (Silva et al., 2017; Zhang, Ramakrishaman, & Livny, 1996). The first stage 

divides the records into initial clusters using a sequential clustering approach, in which 

the main component is the construction of a modified cluster feature (CF) tree. A CF 

tree consists of nodes with each node containing at least one branch with a leaf (record) 

(see Figure 4.3). The second stage is to divide the CF tree into the desired number of 

clusters. 
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Figure 4.3 Example of a clustering feather tree 

The SPSS software has developed a tool, Classify, which has a sub-tool, TwoSteps. 

We used this sub-tool to identify attribute levels for some factors, such as regular, best 

and worst travel times, and regular, slowest and fastest parking search times.  

(i) Identifying attribute levels with TwoSteps tool in SPSS 

Taking parking search time (PST) as an example, the first step is to construct a CF tree 

(see Figure 4.4) based on the data from the intercept survey carried out at Oats St, 

Cannington, Greenwood and Edgewater stations, (the questionnaire can be seen in 

Appendix F).  

 

Figure 4.4 CF tree for identifying parking search time levels 
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Then the TwoStep tool was applied. Based on the clustering profiles, regular PST has 

three levels, namely, 1.5mins, 4.5mins and 10.0mins. The distribution of PST is also 

shown as follows. 

Table 4.3 Clustering profiles 

 
PST min PST max PST regular 

mean SD mean SD mean SD 

Cluster 1 2.5 .707 10.00 .000 4.50 2.121 

Cluster 2 0.0 .000 5.00 .000 1.50 .707 

Cluster 3 3.5 2.121 22.50 10.607 10.00 .000 

combined 2.00 1.897 12.50 9.354 5.33 3.983 

                             

Easy                                               Difficult                                          Very difficult   

Figure 4.5 Distribution of regular parking search time 

To test the results, the cumulative frequency of regular parking search time was 

calculated as well. The 25%, 50% and 75% thresholds correspond to PSTs of 0mins, 

5mis and 10mins respectively. The histogram is shown in Figure 4.6 
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Figure 4.6 Histogram of regular parking search time frequency 

Based on the above results and the requirement for even intervals, three levels were 

determined for the regular parking search time, namely, 1mins, 5mins and 10mins. 

(ii) Identifying attribute levels from previous literature  

The attributes whose levels were determined based on previous literature mainly 

included seat availability, density of standees in a passenger car and parking cost. 

The former two were determined based on the paper by Tirachini, Hensher, and Rose 

(2013) and Zheng Li and Hensher (2013). The last attribute was determined from 

Wang et al. (2004). 

(iii) Identifying attribute levels by field surveys 

The attributes whose levels were identified by field survey included safety, ticket fare, 

average journal time, train frequency, frequency of controlling illegal parking, parking 

capacity and parking availability. Their levels were determined based on their 

respective traits. For example, according to the train station survey, we found that 

safety at a train station is directly related to the frequency that security guards patrol 

the station. Therefore, we took the as a two-level dummy variable to measure 

perceived safety, i.e. safe or unsafe. The former refers to the situation where security 

guards patrol regularly and the latter to the situation where security guards are rarely, 

if ever, seen. 

Another example is parking availability which was identified as having three levels. 

We used the number of parking spaces left when a P&R user arrived at a station as an 

index of parking availability in the research. We investigated P&R capacity left from 

7:00am on 12 April, 2012 for all stations on the Armadale and Midland lines. The 
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results indicated that, on average, about 10%-20% of parking spaces were still 

available between 7:00am to 8:00am. Moreover, almost all P&R facilities were full 

after 8:00am. Due to the duration we studied, between 7:00am to 8:30am, parking 

availability in this experiment was identified as having three levels, namely, 0% 10% 

and 20%.  

All attribute levels are summarised in Table 4.4. 

Table 4.4 Attributes and attribute levels 

Number Attribute Levels Description  

1 Safety  2  Regular security patrol 

 Irregular, or no, security patrol 

2 Ticket fare 3  $2.5 

 $3.5 

 $4.5 

3 Train frequency  2  5mins/train 

 10mins/train 

4 Regular travel time to the station from 

origin (home) 

3  5mins 

 10mins 

 15mins  

5  Increase in travel time to the station 

from origin compared to regular travel 

time 

2  25% 

 50% 

6 Decreased in travel time to the station 

from origin compared to regular travel 

time 

2  15% 

 24% 

7 Probability that the average slowest 

travel time occurs 

2  5% 

 20% 

8 Probability that the average fastest 

travel time occurs 

2  5% 

 20% 

9 Parking availability  2  Unavailable   

 Available 

10 Regular parking search time (PST) 3  1mins 

 5mins 

 10mins   

11 Increase in PST compared to regular 

PST  

3  100% 

 400% 

 800% 

12 Probability that the longest PST occurs 2  5% 

 20% 

13 Capacity of park and ride car park  3  100 

 500 

 1000 

14 Arrival time at the station  2  7:00am 

 7:30am 

 8:00am 
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15 The density of passengers standing 

inside (or in) the train 

3  2passengers/m2 

 4passengers/m2 

 6passengers/m2 

16 The probability that seats have been 

taken 

3  50% 

 75% 

 100% 

17 In-vehicle travel time 3  10mins 

 20mins 

 30mins 

18 The probability too crowed to board 3  0 

 20% 

 40% 

(c)  Generic parameters 

The parameters in the experiment can be considered to be generic if two criteria are 

met, i.e. if the experiment is unlabelled (Rose & Bliemer, 2009) and if all the attributes 

in the experiment are weighted equally in the utility functions over the different 

alternatives (Debrezion et al., 2009; Hensher, 2006). Specific to the station choice 

experimental design, only two unlabelled train stations were presented to respondents 

and we assumed all attributes could be weighted equally over different alternatives. 

Therefore, it is reasonable that the parameters for all attributes in the experiment, 

except the constant specific for station one, were considered to be generic.  

Additionally, almost all attributes, except safety, in the utility specification were coded 

based on the value for each level; only safety was coded as a dummy variable, i.e. 1 

for a regular patrol and 0 otherwise. Moreover, all attributes were assumed to be 

independent and only the main effects were considered.  

(d) Choice tasks  

The choice sets should be small enough for respondents to be able to choose without 

being overloaded. According to Hensher (2004) and Hensher (2006), the number of 

choice tasks should be determined jointly by degrees of freedom of the utility function, 

the number of alternatives for each choice task and the least common multiple (LCM) 

of the attribute levels. Their relationship is shown in equation (4-2). 

 

1 2

1

( , , ) 1m

S J K

S n LCM AL AL AL n

  

  
                                                              (4-2) 

where S  is the number of independent choice tasks; J  is the number of alternatives 

for each choice task; K  is the number of parameters estimated; and 
iAL  is the number 

of attribute levels for thi  attribute. 

(e) Model type 
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A multinomial logit model (MNL) was used in the thesis to understand the station 

choice behaviour under uncertainty because of its simplicity. More importantly, the 

data from the experiment designed by MML can be used to estimate the different utility 

specifications in the research (Louviere, Hensher, & Swait, 2000; Yang, Chen, Chen, 

Luo, & Ran, 2014). 

(f) Utility specification estimated for the potential final model 

Assuming an MNL model formulation, the utility specifications of station choice based 

on the considerations mentioned above can be given by equation (4-3). 

1 1 0 1 1 1 1 1 1

2 2 2 2 2 2 2 2

( )

( )

i j TT TT PST PST Cr Cr sa sa C C tf tf

i

i j TT TT PST PST Cr Cr sa sa C C tf tf

i

U st u u u u u u u

U st u u u u u u u
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      

       

      




      (4-3) 

where  

( )U st  is the overall utility of the thi  train station; 

, ,sa C tfu u u  are the utility from safety, ticket cost, and train frequency at the thi  station; 

and 

0 , , , , , ,TT PST Cr sa C tf        are estimated parameter coefficients. 

The other parameters are complex and are explained below: 

 TTu  

TTu is the utility for travel time to the departure train station, which was calculated 

within CPT. According to Camerer and Ho (1994), the Power(Pwr) value function, 

together with a Tversky-Kahneman (TK) risk weighting function, can be the best fitted 

within CPT. Therefore, they were applied to develop the utility function of travel time. 

The utility function of travel time can be written as equation (4-4). 

 , , ,( )TT i TT i TT iu w p v                                                                                        (4-4) 

Where ,TT i  is the difference between regular travel time and bad (or good) travel time 

at station i ;  ,TT iv  is the value function of the thi difference in travel time (its 

specification is given in equation (4-4)); ,( )TT iw p  is the weighting function of the 

probability at which the thi  difference in travel time occurred in one month. It is given 

in equations (4-5) - (4-7). 
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where 

iRTT  is the regular travel time to station i  from the origin for a P&R user; 

,i iFTT STT  are the fastest travel time on a good day or the slowest travel time on a bad 

day at station i ; 

, ,,fttf i sttf ip p  are the probabilities of the fastest travel time (good day) or the slowest 

travel time, (bad day) occurring at station i ; and 

, , , ,      are estimated parameters, with the former two indicating the respondent’s 

risk attitude towards gains or losses respectively. 

 PSTu  

PSTu  refers to the utility of the parking search time. It can be estimated under two 

situations, i.e. parking available and unavailable at the station (Baum & Epstein, 1978). 

For the first situation, only the capacity of P&R car parks and the access time are 

assumed to contribute to the utility. Moreover, the effects of their interaction on the  

utility can be assumed to be exponential, so that the higher the capacity and the earlier 

that a P&R user arrives the station, the greater the utility. Based on these, the utility 

function of parking search time under parking available can be written as (4-8): 

  , ,exp max 100,0 /10000PST i i a iu PC T                                                            (4-8) 

where  

iPC is the capacity of the P&R car park at train station i; and  

,a iT is the access time of P&R users arriving at station i. 

When the demand for parking is greater than the capacity of the station car park, P&R 

users need to find an alternative parking space, e.g. on-street near the station or in a 

nearby shopping centre car park. The PST associated with this search could vary 

significantly depending upon the availability and locations of any alternative parking. 

Hence, the effects of PST on station choice when the P&R car park is full are a function 
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of the variability of PST. Similar to travel time, CPT is also applied to evaluate the 

effects of variations of PST on station choice. The value function of parking search 

time was also developed based on the two-part power functions and TK weighting 

function. The gain for PST was the difference between the shortest PST and regular 

PST and the loss was defined as the difference between the longest PST and the regular 

PST. The gain part in the research was ignored because it was generally found to be 

too small to affect P&R users’ station choice. The value function and weighting 

function of PST are given by equations (4-9) and (4-10) respectively. 

      
 

, , , , , ,

, ,

( ) 1PST i R i L i R i R i L i

R i L i

v PST PST PST PST Var

PST Var





 



            

   
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 
1

, , ,1i Lf i Lf i Lf ip p p
      

  
                                                                             (4-10) 

where  

,R iPST is the regular PST at train station i; 

,L iPST  is the longest PST at train station i;  

,L iVar  is the percentage increase in PST (over the regular PST); 

,Lf ip is the probability that the longest PST for station i occurs; and  

, ,   are the estimated parameters. Some researchers, such as Avineri (2004), 

Tversky and Kahneman (1992), etc., have proved that 2.25, 0.88, 0.69      can 

best fit the data, so these values were taken as the priors of these parameters in the 

experimental design. 

Integrating equation (4-8), (4-9) and (4-10), the utility function of PST is given by (4-

11): 

  
(1/ )
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( ) [ (1 ) ] 0
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   


 
     


(4-11) 

 Cru   

Cru  refers to the utility of crowding on trains.  

We started with the following assumptions: 
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 When the percentage of seats occupied is less than or equal to 50%, there 

is no crowding on the train;  

 When the percentage of seats occupied is greater than 50% and less than 

100%, there may be some passengers who stand voluntarily; and 

 When the percentage of seats occupied is equal to 100%, some passengers 

will be forced to stand. 

Then, the utility function of crowding on trains is given by a three-part power function. 

The specification is shown in equation (4-12): 
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                           (4-12) 

where 

,se iP is the probability of seats occupied at station i; 

,st iD  is the density of passengers standing in one carriage at station i; 

iIVT is the in-vehicle travel time from station i to the destination station  

r indicates risk attitude of P&R users, 
2 20min

0.5 20min

IVT s
r

IVT s


 



 and; 

wiT is the transfer waiting time at the station i  , here 
1 6

6

st

w

w st

D
T

T D


 



. 

By integrating equations (4-5), (4-6), (4-7), (4-11) and (4-12) into equation (4-3), the 

final utility specification was formed.  

4.4.2 Generate the experimental design  

After determining the form of the utility function, we commenced the generation of 

the experimental design. An experimental design generally aims to identify which 

hypothetical choice tasks should be presented to respondents in a stated choice 

experiment. Usually, an experimental design consists of a table, (matrix), with M  

rows and N  columns, in which each row is a choice task. The process to develop the 

matrix with D-Efficiency choice design is as follows. 

 Step 1, All the attributes with orthogonal coding are listed; 
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 Step 2, A matrix with orthogonal coding is randomly created. The same 

attribute in different alternatives must adopt different levels.  

 Step 3, The coding matrix is converted using the actual attribute level values. 

 Step 4, An initial matrix ( X ) is created and the probabilities that each 

alternative is chosen in the design are calculated. The parameter priors are 

determined based on previous literature.  

 Step 5, An Asymptotic Variance Covariance (AVC) matrix is constructed. The 

value in the AVC matrix with generic parameters is calculated based on 

equation (4-13), as proposed by Rose and Bliemer (2005). 
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 Step 6, A Fisher information matrix is established. According to Rose and 

Bliemer (2005), the AVC matrix is the negative inverse of the expected Fisher 

information matrix. Thus, the Fisher information matrix is given by equation 

(4-14) (Rose & Bliemer, 2005): 
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                                  (4-14) 

where  , ,NI X Y  is the Fisher information matrix; N is the number of respondents; 

and  , ,NI X Y   is the log-likelihood function as shown in equation (4-15) (Rose & 

Bliemer, 2005). 

 
1 1 1

, , log ( , )
N S J

N jsn jsn

n s j

I X Y y p X 
  

                                                           (4-15) 

 Step 7, The statistical efficiency of the design is evaluated using D-error. 

According to Rose and Bliemer (2005), it is equal to the determinant of the 

AVC matrix . Based on the information on the priors, three kinds of D-error 

(i.e., , ,z p bD D D ) can be produced. If there is no information on the priors, the 

zD  is preferred. If specific fixed and non-zero priors are used, pD is preferred 

and if the designs are optimised with the priors with Bayesian distribution, 
bD

is preferred. Given that the priors in the station choice experimental design 
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were determined based on previous literature, pD is used to measure the 

efficiency. It can be calculated using equation (4-16) (Rose & Bliemer, 2005). 

  
1

det ,
H

pD error X                                                                                    (4-16) 

 Step 8, Optimising the design. Repeat step 2 to step 7 in order to get the 

minimum pD -error. Evolver software, based on Genetic Algorithms   (GA), is 

applied in this step. All the attributes in the first alternative, (except for the 

percentage increase in PTS compared to the regular PTS, the density of 

standees in a carriage and the transfer waiting time), were set to be adjustable. 

Moreover, the design should be as balanced as possible. 

Following the above procedure, the efficiency of the experimental design for station 

choice was 0.000620159. 

4.4.3 Construction of the questionnaires 

(a) Construction  

Based on the experimental design above, the individual questionnaires were 

constructed. In practice, each individual questionnaire was produced by selecting a 

subset of relevant values from the full range of values identified in the experimenta l 

design stage. In other words, we converted the table of numbers into words that 

respondents would be able to understand. Each row in the table was translated into a 

choice task and recorded, with each column indicating a different attribute level for 

each different choice task. For example, to obtain a respondent’s choice between two 

hypothetical train stations based on crowding on trains, the experimental design could 

be per Table 4.5 and the questionnaire per Table 4.6.  

Table 4.5 Example of the experimental design 

 Station 1 Station 2 

 Probability that 

seats have been 

taken 

Density of 

standees 

Number of days 

per week on 

which trains are 
too crowded to 

board 

Probability that 

all seats have 

been taken 

Density of 

standees 

(passengers/m2) 

Number of 

days per week 

on which 
trains are too 

crowded to 

board 

Case 1 100% 4 1 100% 4  2 

Case 2 100% 4 1 75% 2 0 

Case 3 100% 2 0 75% 2 0 
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Table 4.6 Sample questionnaire 

Which of station would you choose? 

 

 

 
The questionnaires used in the station choice experiment were tables made up of values 

(numbers), words, and pictures. In-vehicle travel time, transfer waiting time, ticket 

fare, train frequency and parking capacity were presented to the P&R users with 

values, and safety was explained only in words. The level of crowding on trains is 

more complicated. According to Li et al. (2012) and Hensher, Rose, and Collins (2011) 
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visualization of the situation within the carriage, together with a description of the 

proportion of seats taken and the density of passengers standing in a train car, can 

provide a rich definition of the situation faced by passengers about to board. Therefore, 

the level of crowding situation in the experiment is described through pictures, 

numbers and words, (see Figure 4.7). The pictures were produced using Google 

SketchUp and showed the passengers density, (including the probability of all seats 

being occupied and the density of passengers standing in one carriage). In this 

experiment, each P&R user is presented with two pictorial representations, (see Figure 

4.7), with different passenger densities. 

 

Figure 4.7 Example of pictorial representation of crowding 

Initially, we also trialled using pictures to describe the parking availability at the 

station. Testing, however, indicated that a simple description in words was easier to 

understand. Three groups of attributes were used to show the difficulty of searching 

for and finding a parking bay. The following table shows an example of the 

questionnaire related to parking attributes. 

Table 4.7 Example of questionnaire related to parking attributes 

P&R Parking capacity  1000 bays 500 bays 

Parking availability within P&R car 
park at 7:30 am 

30% 30% 

Parking search time 

(time spent searching for parking 

before giving up such as trying 

another) 

Between 1 and 2 mins and only 

5% chance to reach to 2 mins 

Between 1 and 2 mins and only 

20% chance to reach to 2 mins 

Travel time to the station from the origin is described in words and numbers to allow 

more information to be included, such as the regular (usual), minimum and maximum 

travel times, the frequencies at which these occur, and the degree of variation from the  

regular travel time. An example of the travel time question format is provided in Table 

4.8. 
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Table 4.8 Example of the travel time question format 

Usual travel time 15mins 10mins 

Travel time on a good day About 7.5 mins on 4 days a month About 7.5 mins on 4 days a month 

Travel time on a bad day About 18.6 mins once a month About 12.4 mins on 4 days a month 

The complete questionnaire is shown in Appendix D.  

(b) Questionnaire testing  

Testing of the questionnaires comprised two components. The first was to test their 

readability, understandability and reliability, and the second was to test their valid ity, 

i.e. to test whether the data collected by the questionnaires could correctly sho w 

respondents’ preferences.  

We conducted several pilot surveys at the Curtin University campus and at train 

stations to ensure that the questionnaires could be easily understood and completed by 

respondents within an acceptable, (short), time period. 

We firstly aimed to test the questionnaires’ readability and validity. We started with a 

sample questionnaire using words, numbers and figures, (see Appendix E-1), and 

tested it at Curtin University in July 2013. Given that the questionnaire was complex 

and technical, many respondents couldn’t understand it correctly and it took up to 5 

minutes to complete. To simply the questionnaire, we changed replaced some words 

with graphs or tables, (see Appendices E-2 to E-4), but the results were not much 

better. Therefore, we, then, designed a table with three columns and many rows, in 

which succinct words and clear pictures were used. The columns showed two stations 

and each row presented one attribute. The last row presented two choices for the 

respondent. An example of this questionnaire can be seen in Appendix E-5. Even 

though the questionnaire had been improved greatly, there were still some respondents 

who thought that the pictures were too technical. Therefore, we replaced some of the 

figures with words that were more easily understood, (see Appendix E-6) and 

conducted a pilot survey with it at Curtin University and at some trains stations. The 

results were satisfactory with respect to readability and time taken but the choice 

results did not align with our expectations. For example, respondents did not appear to 

prefer a station that was safer. Hence, we changed some of the pictures back to simple 

words again, with only the level of crowding being described through pictures. The 

revised questionnaire can be seen in Appendix E-7. We conducted a final pilot survey 

using these revised questionnaires and made further minor refinements to the wordings 

to make questions as clear as possible. This final questionnaire was used to conduct 
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the main survey undertaken in November and December, 2014. The station choice 

model was developed with the data from the main survey.  

4.4.4 Determination of sample size 

There are several sampling methods to determine the minimum sample size 

requirements but almost none is appropriate for stated choice. This is because most 

current strategies to calculate minimum sample size requirements associated with SC 

experiments, are not concerned about how accurate and reliable the resulting parameter 

estimates are but instead concentrate on minimising the errors in the probabilities of 

the alternatives being chosen. However, the sampling theory proposed by Bliemer and 

Rose (2009) is completely different. They showed that the relationship between the 

AVC matrix and the square root of sample size was inversely correlated. Therefore, 

assuming the asymptotic standard deviations for the parameters estimates can be 

replaced by the square roots of the diagonal elements of the AVC matrix and the 

asymptotic t -ratios are equal to the estimations of the parameter coefficients divided 

by the asymptotic standard deviations, (see equation (4-17)), it is possible to derive the 

sample size based on the AVC matrix of the experimental design (Rose & Bliemer, 

2009) . 
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Rearranging equation (4-18), 
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Assuming a two-sided confidence interval of 95% and given that the degree of freedom 

in this experiment is 5, the t-ratio is 1.96. The minimum sample size required for each 

parameter is listed in Table 4.9. 

Table 4.9 Summary of sample size 

 1 2 3 4 5 6 

k  
0.3 0.08 -0.3 -0.2 0.2 0.3 

k
  

3.39 0.05 0.07 0.53 1.27 1.48 

Sample size 
k

N  
144 31 3 51 122 64 

Minimum 

observations 
1728 372 36 612 1464 768 

Based on Table 4.9, the minimum sample size required for the station choice 

experiment should be 144. Another method to quickly calculate the sample size 
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required, proposed by Orme (2005), was also used in the research. The sample size is 

determined based on experience, rules-of-thumb, and budget constraints. The equation 

is shown in (4-19) (Orme, 2005). 

*

500
l

N
J S

 


                                                                                                   (4-19) 

where 

N is the sample size; 

*l is the largest number of attribute levels in the experimental design; 

J is the alternative sets; and  

S is the number of choice tasks determined in the design. 

Substituting all of values in this experiment into equation 4-18, the sample size for the 

experiment is:  
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Figure 4.8 shows the relationship between the asymptotic standard errors 

corresponding to the D-efficient design and the sample size. This means that, the larger 

the sample size, the smaller the asymptotic standard error and, correspondingly, the 

more efficient the experimental design. Therefore, 144 respondents is the minimum 

sample size for this experimental design with statistically efficiency, as each 

respondent can complete 12 choice situations. However, a respondent can only answer 

four choice situations in 3-5 minutes according to the results from the pilot surveys. 

Hence, the minimum sample size of respondents for the experiment was determined 

to be 432, (i.e.144 12 / 4 ).  

 

Figure 4.8 Standard errors when using the D-efficient design for different sample sizes 

00.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.951
1.051.11.15

0 50 100 150 200

st
an

d
ar

d
 e

rr
o

r

sample size

β1

β2

β3

β4

β5

β6



86 

 

4.4.5 The bias in SP experiments 

Stated preference (SP) experiments have been broadly used in many fields, such as 

marketing, transport, health, etc., for many years due to its ability to elicit behavioura l 

responses and estimate individuals’ preferences. However, they are still criticised due 

to the biases, especially hypothetical bias, existing in SP experiments. 

(a) Sources of the bias in SP experiments  

Previous literature has identified many biases in SP experiments. In this research, we 

summarised the biases occurring in the two phases of a SP experimental design: 1) 

designing choice scenarios and 2) testing these scenarios.   

In the phase of designing choice scenarios, we can only include a limited number of 

scenarios in our questionnaires. The design of these scenarios may lead to biases, such 

as introducing implausible /unrealistic choice scenarios to the experimental design.   

In the phase of testing these scenarios, we may encounter hypothetical bias, which has 

been studied in many papers (List & Gallet, 2001; Little & Berrens, 2004; Murphy, 

Allen, Stevens, & Weatherhead, 2005). It is defined as the inconsistent choice made 

by respondents in hypothetical versus real situations (Hensher, 2010). There is no 

evidence indicating that hypothetical bias exists in all SP experiments, due to the 

difficulty in, and cost of, testing for it (Fifer, Rose, & Greaves, 2014).  Nevertheless, 

it is accepted that hypothetic bias is certainly an issue in many cases, e.g., hypothet ica l 

WTP typically exceeds the actual value by two or three times. Unfortunately, there is 

no widely accepted general theory to mitigate against this bias (Loomis, 2011). 

(b) Solutions  to mitigate the biases in a SP experiment 

We spent half a year to design our SP experiment and adopted different methods to 

mitigate these biases. 

Firstly, we adopted an iterative approach to mitigate the biases produced in the SP 

experimental design by applying a D-efficiency method (see section 4.4) and manually 

checking implausible /unrealistic choice scenarios. In this method, D-error is taken as 

the index indicating the magnitude of the bias in the experimental design.  Smaller D-

error indicates a better experimental design and fewer biases.   

In order to address the hypothetic bias, we conducted a number of pilot studies using 

three different groups, including transport research group in the School of Earth and 

Planetary Sciences, Cafés and Labs at the Curtin University and respondents at train 
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stations in the Perth Metropolitan area. To mitigate the biases in the testing phase, we 

asked respondents to explain the decision making process and propose suggestions for 

improving the questionnaires after completing the survey. Through these processes, 

we were able to identify any inconsistent choices made by respondents in hypothet ica l 

versus real situations. Based on these, we redesigned the questionnaires and repeated 

the process until we were confident with the questionnaires used in the main survey. 

4. 5 Eye tracking experiment  

4.5.1 Objective 

Eye tracking is a process that follows and records the movement of the eyes, the point 

of gaze, i.e. where the eyes are looking, and the duration of that gaze. It is considered 

to be a good technique to analyse any kind of human behaviour and has been widely 

applied in many fields including psychology, medicine, marketing and engineering.  

Eye tracking has been used in this research to test the validity of the questionna ires 

and the experimental design. It can explain the relationship between a human’s visual 

attention to the factors in the questionnaires and their decisions. In other words, we 

used the level of consistency of the results from the station choice model with the 

results from eye tracking experiment to validate the model. 

4.5.2 Hypothesis  

The eye tracking experiment started with a number of hypotheses: 

 The higher the frequency and the longer the time a respondent’s eyes 

fixed on a factor, the more likely that factor is to influence the choice 

made; 

 The greater the complexity of the questionnaire, the longer the 

duration of the fixation before a decision is made;  

 Repeating the questionnaires will result in shorter average fixation 

times by the respondents. 

4.5.3 Experimental setup  

The experimental setup consisted of a 60Hz Remote Eye- Tracking Device (RED) 

and a laptop, as shown in Figure 4.9. The RED is a sophisticated and contactless 

electronic device with sensitive cameras mounted on the laptop’s screen. It allows 

the  head to move freely within the range of 40cm (side to side) x 20cm (up and 
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down) at a distance of 70cm. It is widely used in many disciplines including fo r  

adolescents with Autism Spectrum Disorders (ASDs) (Horlin et al., 2013).  

 

Figure 4.9 Eye tracking device setup 

4.5.4 Questionnaires  

The questionnaires used for the eye tracking experiment were designed based on those 

used in the station choice experiment. Firstly, we took part of the information from the 

original questionnaires, based on our assumptions, and modified these to produce 14 

new questionnaires, (see Appendix F). Questionnaires 1-6 were used to assess the 

complexity of the questionnaire. Questionnaires 7-12 assessed how participants 

responded to the scenarios being repeated and questionnaires 13-14 were designed to 

test the impact of changing the order of the variables.  

From on these new questionnaires, we identified and drew the areas of interest (AOI), 

i.e. sub-areas on the forms where the eyes were fixated, based on the eye movement 

measurements. 

4. 6 Chapter summary 

This chapter described two experiments, one for collecting the SP data used to develop 

the station choice models and the other the eye tracking experiment used to validate 

these models. The first experiment was designed using the D-efficiency method. The 

utility function was developed within CPT and is a multinomial logit model with 

eighteen attributes. Each attribute has two or three levels. Twelve choice situations 

were determined by the SOLVER tools in EXCEL based on the value of the pD -error. 

From these we constructed questionnaires with simple words, numbers and pictures. 

The second experiment was an eye tracking experiment. We designed questionna ires 

by drawing the areas of interest on the questionnaire designed in the last experiment 

Eye tracking device  
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and used a 60Hz Remote Eye- Tracking Device (RED) connected to a laptop to record 

the responses to these questionnaires.  
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CHAPTER 5  STATION CHOICE SUB-MODEL FOR MERGING TRAVEL 

TIME UNCERTAINTY 

The previous chapter described how the data used for developing and validating the 

station choice models under uncertainty were collected. In the next three chapters, we 

will analyse the effects of three uncertain factors, (i.e. travel time, parking search time 

and crowding on trains), on a P&R user’s choice of departure train station,  

respectively. This chapter focuses on modelling station choice under uncertainty of 

P&R users based on the effect of travel time and measuring P&R users’ risk attitudes 

towards variations in travel time. From these, the influence of travel time variability 

on a P&R user’s station choice will be quantified. 

It is worth noting that most of the chapter is drawn from the paper written by Chen et 

al. (2017). This paper has been published and my contribution for the paper is about 

80%.  

5. 1 Research context  

As traffic congestion increases and climate change receives more attention from the 

public, promoting sustainable mobility is becoming a key objective of transport 

policymaking (Rietveld, 2010). Park and Ride (P&R), as one of the potential solutions, 

is widely recognised as an efficient travel mode, combining the private car with public 

transport and leading to reduced energy use and air pollution and better social equity. 

P&R is now used extensively by commuters throughout the world (Cairns, 1998; Ginn, 

2009). Currently, the capacity of the P&R facilities in Perth, Western Australia, is 

23,000, which is well below the level required to cater for the demand (Martinovich, 

2008). In addition, as predicted by the Commonwealth Government Bureau of 

Infrastructure, Transport and Regional Economics (BITRE) in 2007, the cost of 

congestion in Perth could reach $2.1 billion by 2020 (Bureau of Transport and 

Regional Economics [BTRE], 2007). This means not only increased car travel times 

generally but also substantial variability in travel conditions on the road network, 

adversely impacting on travel time reliability. 

A survey conducted by University of Western Australia and Curtin University in July 

2012, covering a subset of Perth’s train stations, confirmed that travel time variability 

was not only a major motivation for P&R users to combine car with train travel, but 

also affected their choice of departure train station.  
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Many factors were identified in the literature affecting station choice, includ ing 

location of station, access/arrival time, frequency of service, degree of overcrowding 

on the train, parking search time, generalised cost, travel time, access modes, 

accessibility and railway network services (Carrion & Levinson, 2012; Davidson & 

Yang, 1997; Debrezion et al., 2009; Fan et al., 1993; Hunt & Teply, 1993; Kastrenakes, 

1988; Lythgoe & Wardman, 2004; Lythgoe et al., 2004; Shao et al., 2015; Wardman, 

1997; Whelan & Johnson, 2004). Travel time variability is one of most common 

measures of the reliability of a railway service (Carrion & Levinson, 2012; Rietveld, 

2010). It includes two components, predictable (i.e. congestion), and unpredictab le 

(e.g., incidents and weather conditions), variability. The predictable part of travel time 

is expected, and can be anticipated by travellers, and, therefore, they can adjust their 

behaviour to avoid its consequences (Small & Verhoef, 2007). However, with irregular 

or non-recurring conditions this is not possible. The unpredictable variability of travel 

time was divided into three elements by Wong and Sussman (1973): ① unexpected 

seasonal or daily changes of travel time; ② variability caused by unpredictable events, 

such as weather or crashes; and ③ variations related to each traveller’s perception. 

One of earliest studies, conducted by Gaver (1968), found that individuals usually 

adjusted their departure time to compensate for uncertainty about the time needed to 

complete a trip. Later, Guttman (1979) and Menaske and Guttman (1986) modelled 

the effect of travel time uncertainty on access mode and route choice, by incorporating 

travellers’ risk attitudes. They found that travellers were risk averse, i.e. travellers 

would tend to choose the modes and routes with the more certain, namely, less 

variable, travel times. Travel time variability was found to introduce penalties in a 

variety of choice situations, including mode and station choice. In the context of P&R, 

P&R users limit the variability in car travel time on the road network by replacing a 

large part of their trip with a more reliable mode timewise, i.e. train, which has 

dedicated infrastructure and scheduled services. What is still affected by road network 

travel time variability is the travel by car from home to the station, i.e. access to the 

station. 

With respect to P&R, total travel time consists of access travel time, (i.e. from origin 

(or home) to the station), parking search time, waiting time for the train, in-vehic le 

(train) travel time and egress time (i.e. from alighting station to final destination). 

Recently, Li et al. (2010) examined the willingness to pay for travel time reliability 
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(variability) and found that travellers were risk averse towards travel time unreliability. 

In other words, they are willing to pay more to avoid unreliable travel. Parking search 

time and the degree of overcrowding on trains have been identified as uncertainty by 

Hunt and Teply (1993) and Whelan and Johnson (2004). The former developed a 

nested logit model of parking location choice based on the uncertainty of parking 

search time and the latter established the PRAISE (Privatisation of Rail Services) rail 

operations model based upon the uncertainty of crowding on trains. Rietveld (2010) 

analysed the impact of travel time unreliability on rail passengers’ access mode and 

departure station choice. He found that travel time reliability played an important role 

in station choice and that high travel time unreliability was related to a low public 

transport share. Uncertainty enters the decision process for choosing a station by way 

of a combination of day to day travel variability in the transport network and the 

travellers’ unfamiliarity with the network conditions (Circella et al., 2005). This 

chapter focuses on understanding travel time to stations and its uncertainty attributed 

to each traveller’s perception. 

There are numerous methods to estimate choice behaviour under uncertainty: discrete 

choice models (Bates, 1987; Ben-Akiva & Steven, 1985; Greene & Hensher, 2003; 

Small, 1987; Truong & Hensher, 1985), von Neumann-Morgenstern expected utility 

theory (Savage, 1972) and non-expected utility theory, such as weighted expected 

utility (Chew & MacCrimmon, 1979), rank dependent utility (Quiggin, 1993), and 

prospect theory (Kahneman & Tversky, 1979). Carrion and Levinson (2012) 

conducted a systematic review of the value of travel time reliability and recognised the 

role of travel time reliability in different choice situations, such as departure time, route 

and mode. However, there is limited research in relation to station choice with travel 

time uncertainty. 

The aim of this chapter is to develop methods to estimate a train station choice model 

for P&R users, based on the effect of travel time variability, by which P&R users’ risk 

attitude towards variability of travel time and its effect on the station choice can be 

explained. 

5. 2 Research method  

The method is based on the theoretical framework of discrete choice models and 

cumulative prospect theory. The mean-variance approach is used to measure access 

travel time reliability, which is incorporated into logit models to estimate the 
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probability of station choice of P&R users. The risk attitude towards travel time 

reliability is captured using cumulative prospect theory. Stated preference and revealed 

preference data are used to estimate the value of reliability. The developed method is 

implemented using a case study of three train stations in Perth, Western Australia.  

5.2.1 Data used 

Two types of data were used, revealed preference (RP) and stated preference (RP). 

The former were obtained from the train station survey conducted in July 2012 at seven 

train stations in Perth, WA. The latter were obtained from the station choice survey, as 

described in Chapter four. The specific RP data used were the travel times between the 

origins and the departure train stations, and the SP data used were the station choice 

data (see Figure 5.1). The SP data were used to develop the sub-model and the RP data 

mainly used to identify the relationship between an individual’s experience and his/her 

risk attitude. 

 

Figure 5.1 The data source 
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5.2.2 Method to develop station choice model  

The sub-model of station choice was developed within discrete choice theory, which 

was explained in Chapter three. Here we focus on which model is the best for 

developing the sub-model.  

Based on previous literature, four of the most commonly used discrete choice models 

are logit, GEV, Probits and mixed logit. Their characteristics are listed in Table 5.1. 

Table 5.1 Comparison of different discrete choice models (Train, 2003) 

 Logit model 

 

Generalized extreme 
value models (GEV) 

Probits Mixed logit model 

Distribution 
that unobserved 

factors followed 

IID extreme 
value 

distribution  

Generalisation of the 
extreme value 

distribution  

Jointly normal 
distribution 

Any distribution  

Advantage The most widely 
used, closed 

form  

Avoiding 
independence 

assumption 

Flexibility in 
handling 

correlations over 
alternatives and 
time  

High flexible and 
solved three 

limitation of 
standard logit 
models 

Limitation Independence 
assumption 

The extreme value 
distribution 
assumption 

Normal 
distribution 
assumption 

No closed form 

 

Based on table 5.1, the logit model has been chosen to capture the effect of travel time 

variability on station choice due to its closed form and being readily interpretable. Its 

specification is shown in equation (5-1) (Train, 2003): 
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                                                                                       (5-1) 

where is the probability that respondent  chooses alternative;
 

 is the attribute 

value for alternative i; and is an estimated parameter indicating decision-makers’ 

preferences. 

5.2.3 Method to establish the utility function of station choice 

This study adopted the mean-variance approach to estimate the utility of train stations 

resulting from travel time. Mean-variance models are mostly known in the context of 

risk-return models in finance. Decision makers can maximise the option’s return while 

minimising its associated risk (Fosgerau & Fukuda, 2012; Louviere, Beavers, Norman, 

& Stetzer, 1973). Jackson and Jucker (1982) introduced the approach into the 

transportation field. They took the expected travel time and its variability (or 

ni
P n

thi ix

i
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unreliability) as the main sources of disutility and assumed that travellers would 

choose the alternative that minimised the sum of the two terms. Its general 

specification is shown in equation (5-2): 

1 2T TU u                                                                                                           (5-2) 

where  is expected travel time of the trip, taken as a measurement of travel time 

distribution; is travel time variability and usually uses standard deviation of the 

travel time distribution; and 
1  and 

2   are the estimated coefficients. 

The decision maker ranks each alternative, with a risk prospect obtained from Eq. (5-

2), and chooses the alternative with the highest expected utility. The model is usually 

estimated via a discrete choice method, with the linear-additive specification given in 

(5-2), and used for choice of route, mode and departure time.  

5.2.4 Method to measure travel time variability 

Even though the mean-variance approach has been widely used due to its simplic ity 

and better performance (Brownstone & Small, 2005; Small, Winston, & Yan, 2005), 

it is still criticised on various grounds. One of the main criticisms is that the standard 

deviation of travel time is not an outcome of a trip. Therefore, the variability of travel 

time is not the standard deviation but rather the sum of the travel time variation. The 

variation is divided into two parts, faster variation, i.e. shorter travel time, which is the 

difference between mean travel time and travel time on a good day, and slower 

variation, i.e. longer travel time, which is the difference between the mean travel time 

and travel time on a bad day. Based on this idea, cumulative prospect theory (CPT) 

was used to measure the travel time variability. As explained in Chapter three, the 

choice process under the CPT can be divided into two stages: ① “editing” phase, 

where gains and losses relative to some neutral reference point ( ) are identified; and 

② “evaluation” phase, where choice is made based on the outcome of alternatives by 

evaluating their value function and weighting function (subjective probability 

function) .
.
 The utility function of prospect n under CPT is defined in equation 

(5-3) (Tversky & Kahneman, 1992): 
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' 'n n n n

i i i iu u s s                                                                                                 (5-4) 

Based on the CPT, and assuming that the regular travel time is taken as the reference 

point, the differences between the travel times on good days or bad days and regular 

travel time can be taken as gains or losses respectively. Correspondingly, the 

frequencies (or probabilities) that bad days or good days occurred in a month can be 

taken as weightings for gains or losses. Therefore, the utility of the station estimated 

under CPT can measure the travel time variability. 

Many different functional forms have been suggested for both the risk weighting and 

value functions within CPT. Based on a meta-analysis of different forms (Stott, 2006), 

this chapter tested the power value function and four popular risk weighting function 

forms. Their specifications are shown in equation (5-5): 

Value function:  
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                              (5-5) 

where parameters   and   (less than or equal to one) measure the level of sensitivity 

to changes in both directions from the reference point, while parameter  1 captures 

the degree of loss aversion. The value function under prospect theory is usually S-

shaped, generally concave for gains and commonly convex for losses, and steeper for 

losses than for gains, if it describes loss aversion. 

The four weighting functions used are shown in equations (5-6) – (5-9): 
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GE     
(1 )
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Prl-I          ln
r

p
p e

 
                                                                                           (5-8) 

Prl-II         ln
r

s p
p e

 
                                                                                          (5-9) 

where 
ip  is the probability that the thi  outcome occurs;  ip  is the subjective 

weighting function derived from the outcome cumulative probability; and   and s  

indicate the shape and location of the risk weighting functions.  
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5. 3 Station choice model under the effect of uncertain travel time 

5.3.1 Framework 

The logit model was applied for modelling station choice under travel time uncertainty 

for P&R users, given that it has closed form and is easy to interpret (Train, 2003). The 

travel time variability was established within CPT with the regular travel time taken 

as the reference point. The difference between regular travel time and travel time spent 

on good days was used to calculate the value function in the gain situation, and the 

difference between regular travel time and travel time spent on bad days to calculate 

the value function in a loss situation. As discussed, the value function used a power 

form, while the weighting function adopted four common forms. The parameters in 

the choice models were estimated using the Nlogit 5 Package (Li et al., 2010). The 

framework is shown in Figure 5.2. 

 

Figure 5.2 Framework for modelling station choice under travel time uncertainty 

5.3.2 Station choice model 

Based on the mean-variance approach, the observed utility of station choice i  (Vi) is 

given by equation (5-10). 

1 2iV RTT VTT                                                                                                  (5-10) 

Station choice model 

under uncertainty of 

travel time 

Utility function  
Discrete choice theory 
(Multinomial logit) 

Mean-variance 
Regular travel 

time 

Variability of 

travel time 

Cumulative 

prospect theory 

Value 
function 

Weighting 
function 
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where iRTT  is the regular travel time to the station i; iVTT  is the travel time variability 

when accessing the station i ; and 1 2,   
 
are estimated parameters which represent a 

respondent’s preference for the station i. 

The travel time variability in Eq. (5-10) was redefined based on the CPT. We identified 

the regular travel time as the reference point, then defined the differences between 

regular travel time and travel times on good days ( FRTT ) as gains and the differences 

between regular travel time and travel times on bad days ( SRTT ) as losses. Therefore, 

the value function  v for estimating the effect of travel time variability on station 

choice under CPT can be written as equation (5-11). 
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                        (5-11) 

Substituting Eq. (5-6) - Eq. (5-9) and Eq. (5-11) into (5-3), the utility for the travel 

time variability can be written as (5-12)-(5-15): 
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Where ,i ifrttf srttf  are the probabilities that “good traffic” days or “bad traffic” days 

travel time to the station occur in one month; and 3 1 2, , , , , ,s s      are estimated 
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parameters where ,   indicate a respondent’s risk attitude to the good or bad 

variation in travel time respectively.  

Substituting Eq. (5-12)-(5-15) into (5-10), the utility function based on the effect of 

travel time variability on station choice can be given by Eq. (5-16)-(5-19). 
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              (5-19) 

5. 4 Results 

The parameters in choice model Eq. (5-16)-(5-19) were estimated using a non-linear 

multinomial logit. The results are shown in Table 5.2. 

Table 5.2 Parameters estimated in the four MNL station choice models 

Variable 
MNL model with 
TK weighting 
function  

MNL model with 
GE weighting 
function  

MNL model with 
Prl-I weighting 
function  

MNL model with 
Prl- II weighting 
function  

Regular travel 
time 

-0.00278 -0.008096** -0.08082** -0.07929*** 

Variability of 

travel time 
0.11929 3.03276 2.74289 5.17999 

Bad variation of 

travel time
 

0.919943 13.6417 5.6 -44.7563 

  0.10195 0.29546 0.2963 0.03395 


 

0.10248 -1.71542** -1.72087** 0.0178 

     
0.02996 0.51817 0.26298 2.38435 

  
0.03375 3.40999 2.32824 -2.39625 

1s  
 2.43180  0.00340 

2s
  10.8864  0.01647 

Number of Obs.
 

2397 2397 2,397 2,397 
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AIC/N
 

1.392 1.37 1.37 1.375 

Log likelihood
 

-1661.38706 -1635.533048 -1,635.329 -1,639.536 

Chi-square
 

52.28218 52.28663 52.29 43.88 

Note: ***, **, * == > Significance at 1%, 5%, 10% confidence level. 

 

Table 5.2 indicates that the model with the GE weighting function has the best fit, 

followed by the model with the Prl-I weighting function. Across the models, only the 

regular travel time and the parameter   in the last three models have a significant 

effect, (at the 95% confidence level), on station choice for P&R users. Moreover, 

according to the results from the first three models, a longer regular travel time and 

greater travel time variability on “bad traffic” days have negative effects on station 

choice. In gain situations, the more travel time travellers save, the greater the 

likelihood of choosing that station, which is consistent with the a priori expectations. 

The parameter  is not statistically significant, but it has some effect on the shape of 

the function in gain situations and can indicate a respondent’s risk attitude towards 

time variability. Both values of the parameters ,   are less than 1, indicating that 

the shape of value of gains is concave and the shape of losses is convex (see Figure 

5.3). As none of the parameters 1 2, , ,s s   is significant, it is hard to draw conclusions 

on the shape of the weighting function. With the exception of the MNL model with 

TK weighting function, it is possible that the function has an inverse S shape (see 

Figure 5.4). The results also show that outcomes with low probabilities tend to be 

overweighed and the outcomes with high probabilities tend to be underweighted by 

respondents, which is aligned with the CPT assumption. Based on the data availab le 

here, the shape of the TK weighting function is convex and close to zero. The signs of 

the parameters 2 3, ,   in the last model in Table 5.2 are different from what we 

expected, so the MNL model with Prl-II weighting function has been excluded from 

further calculations. Based on all the results, the model with GE weighting function 

was chosen for modelling the travel time reliability. 
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Figure 5.3 Shape of TK value function 

Figure 5.4. 2. Shape of GE weighting function             Figure 5.4. 3. Shape of Prl-I weighting function 

Figure 5.4 Shape of weighting functions 

After substituting the parameters presented in Table 5.2 into (5-12), we found that 

the relationship within cumulative prospect theory may indicate the risk aversion 

attitude of the respondents (see Eq.5-20). 

      

      

i i i i i i

i i i i i i

frttf v frttf RTT FRTT v RTT FRTT

srttf v srttf SRTT FRTT v SRTT RTT





   

   
                                   (5-20) 

5. 5 Impact of respondents’ real travel time experience on their risk attitude 

towards station choice  

In this section, two research hypotheses were set up to understand the impact of 

respondents’ real travel time variation experiences on their risk attitude towards their 

station choice under travel time variability: 

H1: Respondents who have experienced higher travel time variations tend to be more 

risk averse towards their station choice than those who has experienced lower travel 

time variations.  

H2: Respondents with higher differences between perceived and objective travel times 

tend to be more risk averse towards their station choice than those who have 

experienced less travel time variation. 

p
  

 p
  

Neutral 

TK 

Figure 5.4.1. Shape of TK weighting function 
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In order to test these hypotheses, we set up three scenarios, which are based on three 

experiments conducted at three different stations. The access travel time for these three 

stations is different. The fundamental assumption in these experiments is that the 

objective travel time variation experienced by respondents and their perception of 

travel time could influence their perceptions of travel time variability. Table 4 

summarises the parameter   value for the three train stations (Murdoch, Warnbro, 

and Greenwood). The respondents at Murdoch station were more risk averse compared 

to those at the other two stations. Figure 5.5 illustrates the relationships between the 

value of travel time variability and travel time variation at the three stations. The curve 

generated from the Murdoch station scenario is much steeper than the other two, which 

supports our conclusions derived from Table 5.3.  

 

Figure 5.5 Comparison of respondents’ risk attitude for the three train stations 

5.5.1 Variation of travel time over a day 

The origins of all trips for the P&R respondents at the three stations were geocoded 

and their access travel times checked using Google Maps for 5 weekdays (from 

Monday to Friday). We found that the variation in travel time over the 5 weekdays was 

highest at Murdoch station and lowest at Warnbro station (see Table 5.3), which is in 

line with the risk attitude results. Therefore, there is support for hypothesis 1 that 

respondents who have experienced higher travel time variations tend to be more risk 

averse towards their station choice under travel time variability than those who has 

experienced lower travel time variations.  

Table 5.3 Summary of respondents’ risk attitude towards bad variability and 

variation of travel time to the three train stations 

  Murdoch station  Greenwood station  Warnbro station  

  0.00434 -0.1785 -0.01706 

Variation in travel time 1.8 1.08 0.45 
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The difference between 

stated travel time by 
respondents and the 
estimated travel time by 

Google 

Average 

(mins) 
8.9 3.461 2.571 

S.D. 
(mins) 

8.239 6.138 5.482 

Mean 

(mins) 
7.5 3 1 

5.5.2 Difference between perceived travel time by respondents and estimated travel 

time by Google 

Based on the differences between the estimated travel time and the stated travel time 

(as perceived by the respondents), we found that P&R users using Murdoch station 

had the highest differences, whereas P&R users at Warnbro had the smallest 

differences (see Table 5.3), which is in line with the risk attitude. Therefore, hypothesis 

2 that Respondents who have higher differences between perceived and objective 

travel time tend to be more risk averse towards their station choice under travel time 

variability than those who have experienced lower travel time variations appears to 

have some support. 

5.5.3 Summary 

Combining risk attitude, variation in travel time and the difference between perceived 

travel time by respondents and the estimated travel time by Google at three train 

stations, we found that P&R users at the stations with higher variations in access travel 

times and greater differences between perceived and estimated travel times, displayed 

more risk aversion than in other circumstances. 

5. 6 Conclusions and limitations 

In this section, P&R user station choice under travel time variability was analysed 

using multinomial logit models. According to our knowledge, this is the first attempt 

to understand P&R user station choice under travel time uncertainty based on a 

combination of cumulative prospect theory and discrete choice theory. The data used 

in the section were collected using a stated choice (SC) survey conducted at seven train 

stations in Perth, Western Australia. The questionnaires used in the survey were 

designed based on a D-efficiency approach. The SP data were modelled within discrete 

choice theory, and the utility function established by the mean-variance approach. The 

variability of travel time in the utility function was redefined within cumula t ive 

prospect theory. Four risk weighting functions were separately applied for the station 
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choice model. The results showed that the effect of travel time variability is not 

statistically significant, but respondents may display risk aversion for travel time 

variability. The model with the GE risk weighting function was found to have the best 

fit model and obvious non-linearity exists in the risk weighting function.  

A general conclusion from the results is that larger travel time variability in the losses 

situation, i.e. travel on “bad traffic” days, and longer regular travel time could lead to 

lower utility and hence a lower probability that a particular station is chosen. This 

result has two policy implications. Firstly, the station choice model indicated that P&R 

users showed risk aversion toward travel time variability. The highest risk aversion 

attitude was found among P&R users of Murdoch station, which has the highest 

variation in travel time. Therefore, we can conclude that risk aversion toward travel 

time variability has some influence on station choice. Secondly, we also investigated 

the impact of P&R users’ experiences and perceptions of travel time variability, which 

could affect their attitude toward travel. P&R users who have experienced higher travel 

time variations tend to be more risk averse towards their station choice under travel 

time variability than those who have experienced lower travel time variations. This 

might indicate that a traveller’s personal experience may play a vital role in risk 

attitude toward station choice under uncertainty. It could also indicate that a travelle r’s 

perceptions may play some role in risk attitude toward station choice under 

uncertainty. Although the SC survey was conducted based on hypothetical situations, 

the outcome of the choice model indicates that the choice model and cumula t ive 

prospect theory are powerful tools, able to capture choice under uncertainty behaviour.  

Further work is necessary to systematically review the factors affecting risk attitude in 

mode choice. In this study, the P&R users’ risk attitude towards station choice 

considered only travel time variability. However, parking search time, parking 

availability, ticket fare, and crowding represent additional determinants of P&R station 

choice that should be tested.  

Additional analysis is required to determine whether travel time variability is the main 

factor for station choice. One way is to use eye-tracking technologies to monitor the 

survey process. Visual attention could indicate the importance of factors, i.e. if 

participants pay more attention to a variable, this may suggest that it has more 

influence on the choice decision. Figure 5.6 shows a snapshot of a visual attention map 

(heatmap) of a participant. Each participant was shown two different questionnaires. 

For the questionnaire on the left, travel time was found to be the main centre of 
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attention, i.e. with the longest visual attention. However, when we increased the 

number of variables, or factors, on the questionnaire, attention shifted to parking 

instead of travel time. Therefore, the best way to design the SP survey, and balance 

the number and order of variables and levels of attributes of variables, to estimate 

choice behaviour in a most efficient way is still open to debate and more evidence is 

needed. 

 

Figure 5.6 Heatmap analysis for both questionnaires (different choice) 

5. 7 Chapter summary 

This chapter developed a sub-model of station choice based on the effect of travel time 

variability within a discrete choice theory framework. The mean-variance approach 

was used to estimate the utility of a station from the travel time attributes. CPT was 

applied to measure the effect of travel time variability. Based on the sub-model, we 

analysed P&R users’ risk attitude towards the variation in travel time and impact of 

their real travel time experience on their risk attitude towards station choice. 

The next chapter will analyse the effect of another uncertain factor on station choice 

for P&R users, i.e. crowding on trains. The concepts related to crowding on trains will 

be explained and the methods to develop the sub-model of station choice focusing on 

the effect of crowding discussed. 
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CHAPTER 6  STATION CHOICE SUB-MODEL MERGING THE EFFECT 

OF CROWDING ON TRAINS 

The last chapter developed a station choice sub-model based on the effect of the 

variation of travel time on the choice of departure train station for P&R users. Using 

this the model, the influence of travel time variability on station choice was 

investigated, P&R users’ risk attitudes towards variations in travel time were 

measured, and the impact of P&R users’ experiences and perceptions of travel time 

variability on their risk attitude were also analysed. This chapter continues the 

modelling of station choice under uncertainty, mainly focusing on the effect of 

variations in the level of crowding on the train. Similar to the previous chapter, the 

influence of crowding variability on station choice is investigated and the P&R users’ 

risk attitudes towards overcrowding are measured. The relationship between P&R 

users’ risk attitudes and rail ridership, and P&R users’ preference heterogeneity, led 

by individual differences, is also explored. 

6. 1 Research context 

Crowding on trains is technically known as, inter alia, “passengers in excess of 

capacity” (Government of UK, 2015), which is often taken as one of key service 

indicators for public transport (Hensher, Stopher, & Bullock, 2003). Crowding is the 

problem most frequently encountered by passengers in Australia and many other 

countries (Cox, Houndmont, & Griffiths, 2006; Thompson, L. Hirsh, S.Muller, & 

S.Rainbird, 2012). Generally, its effects can be analysed from two perspectives: the 

effects on passengers and the effects on operators. From a passenger’s perspective, the 

first effect is on rail passengers’ physiology and psychology. For example, Cox et al. 

(2006) and Katz and Rahman (2010) asserted that overcrowding on trains might make 

rail users more stressed. Lundberg (1976), Mahudin, Cox, and Griffiths (2011) also 

found that overcrowding on trains could increase anxiety and stress levels based on 

the rate of catecholamine excretion. Moreover, the feelings of discomfort might grow 

more intense as the density of passengers increased. Mahudin et al. (2011) found 

evidence that crowding led to more somatic symptoms such as sleeplessness, tension, 

headaches, etc. 

The second effect is its influence on rail passenger journey times. For example, 

Fernández (2011) and Tirachini et al. (2013) discovered that crowding could increase 
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riding time, boarding time, alighting time and waiting time. Moreover, the effect of 

crowding on alighting is greater than on boarding. 

The third effect is its influence on travel choice. A study, conducted by Hensher and 

McLeod (1977), identified in-vehicle crowding as one of the main determinants of 

travel choice. After that, a number of researchers successively investigated its 

influence on specific travel choice behaviour. For example, Leurent and Liu (2009), 

Schmöcker, Fonzone, Shimamoto, Kurauchi, and Bell (2011) and Raveau, Muñoz, and 

Grange (2011) found that passengers adjusted their routes to minimise their travel cost, 

as in-vehicle congestion increased the route cost in the studies of transit assignment 

models. Sumalee, Tan, and Lam (2009) and Hamdouch, Ho, Sumalee, and Wang 

(2011) found evidence that transit commuters changed their departure time to reduce 

their in-vehicle congestion cost, using a seat allocation model developed within a 

schedule-based framework. In contrast to the above, Davidson, Vovsha, Abedini, Chu, 

and Garland (2011) identified the effect of crowding on waiting time and in-vehic le 

travel time, and hence on route choice, by developing a crowding module. 

Additionally, Kim, Lee, and Oh (2009) revealed that travellers did not always choose 

the first bus to arrive if it had a high occupancy rate. They observed that that the higher 

the level of crowding on a bus, the lower the probability that a public transit user would 

choose to board that bus.  

From an operator’s perceptive, overcrowding can affect operating speed and cost of 

providing the service, as well as public transport ridership. Therefore, level of 

crowding was often considered as an index for evaluating and improving public 

transport service operation. Intervention strategies, such as increasing service 

frequency and/or using larger vehicles, have been implemented to reduce crowding 

levels. Batarce, Muñoz, and Ortúzar (2016) found evidence of the effect of crowding 

on a public transport system’s demand and user benefits by comparing outcomes from 

three transport policies that improved bus corridor operations. Tirachini et al. (2013) 

summarised the effect of crowding on public transport system reliability, optimal 

supply and pricing. Based on these, they suggested that public transport operators 

should determine the service frequency and capacity by considering, inter alia, the 

effects of crowding. 

Whether for passengers or operators, it is very important to understand the mechanics 

of overcrowding, evaluate it and then develop strategies to reduce it. However, the 

literature related to crowding on trains is limited but can be divided into three broad 
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classes: modelling the effect of crowding on travel choice (i.e. route choice, mode 

choice and departure time choice); measurements of crowding; and willingness to pay 

for reduced crowding. 

(a) Travel choice models based on the effect of crowding 

The studies can be traced back to the 1970s. Since Hensher and McLeod (1977) 

identified crowding as one of main determinants of travel choice, a number of authors 

has attempted to incorporate it into the utility related to travel choice. For example, 

Polydoropoulou and Ben-Akiva (2001) took seat availability as the indicator of 

crowding and introduced it into the utility related to public transport alternatives in 

their nested logit travel mode choice model. Hensher, Rose, et al. (2011) developed a 

stated choice experiment to explore commuters’ choice between the proposed new 

Metro and existing available modal alternatives, in which crowding, indicated by seat 

availability and the density of passengers standing in a train car, was compared in the 

existing and the new public transport modes. Davidson et al. (2011) developed a 

crowding model that took crowding as a negative factor in the user perception of transit 

service quality, then, together with the effect of capacity and delayed vehicle arrival, 

incorporated it into the mode choice model. Debrezion et al. (2009) developed a nested 

logit model to analyse rail passenger choice of departure train station based on the 

effect of accessibility into which crowding measurements were integrated. 

In summary, the research related to travel choice modelling that considered the effect 

of crowding is very limited and most were used to explore mode choice. Therefore, to 

efficiently reduce the effect of crowding on train trips, systematically exploring the 

effect of in-vehicle crowding on other travel choices, such as P&R access station 

choice, departure time choice, etc., should be one direction for future research. 

(b) Measurements of in-vehicle crowding  

Generally, two types of crowding measurements have been identified, objective and 

subjective (Cox et al., 2006; Day & Day, 1973; Evans & Wener, 2007; Li & Hensher, 

2011; Mahudin, Cox, & Griffiths, 2012; Sundstrom, Busby, & Asmus, 1975; Turner, 

Corbett, O’Hara, & & White, 2004; Zheng Li & Hensher, 2013). The main difference 

is whether the measurement can reflect an individual’s perception or not. Objective 

measurement refers to the metrics that can be used to objectively and quantitative ly 

assess material circumstances. They include load factor, i.e. the ratio of the actual 
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number of passengers inside a vehicle to the number of seats (Whelan and Crockett, 

2009); passenger loading in terms of levels of service (Lam, Cheung, & Lam, 1999); 

the percentage of passengers standing (Blunden et al., 2011); standing passenger area 

(i.e. space (m2) per standing passenger); number of standing passengers per square 

meter, and rolling hour average loads and length of standing time (Zheng Li & 

Hensher, 2013). Among these measures of crowding, the density, i.e. the ratio of 

passengers to space, is taken as the most common measurement of crowding on a 

public transport system (Li & Hensher, 2011; Mahudin et al., 2012), even though it 

still cannot fully capture an individual’s perception of crowding in a given space (Cox 

et al., 2006; Day & Day, 1973; Turner et al., 2004). In reality, a rail passenger’s 

perception is subjective and may be affected by many factors, such as physical 

antecedents, inter-personal, individual personality and previous experience (Evans & 

Wener, 2007; Sundstrom et al., 1975; Turner et al., 2004). Therefore, subjective 

crowding should be measured based on the objective crowding measurement plus an 

individual’s previous experiences with crowding, tolerance and personal opinion. 

However, few quantitative metrics of subjective crowding have been identified (Zheng 

Li & Hensher, 2013). In this context, limited research used subjective measurements 

of crowding, even though it does directly influence choice behaviour. 

(c) Willingness to pay 

Other studies of crowding estimated the value of crowding (VOC) and explored public 

transport passengers’ willingness to pay (WTP) for reduction of crowding. For 

example, Lu and Wardman (2008) estimated the VOC with two groups of stated 

preference data. One was from the experiment by adding task complexity and another 

was by adding cheap talk, (i.e. a term implying that nothing needs to be paid for the 

communication). The results showed that the VOC from the former experiment was 

larger than from the latter. Li and Hensher (2011) reviewed the published studies 

related to value of crowding and the results indicated that the average value of 

crowding was £7.23 per person hour in the UK and $9.92 per person hour in Australia. 

Overall, the research related to the VOC is relatively scarce and mainly focused on 

UK and Australia. 

Studies related to crowding have been conducted for many years but there are still a 

number of gaps including how to measure crowding, how in-vehicle crowding affects 

train station choice and how much passengers are willing to pay for reduced crowding. 
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In this chapter, we identify a more efficient indicator of crowding, model train station 

choice under the effect of crowding for P&R users, analyse the respondents’ risk 

attitudes towards crowding and measure the effect of an individual’s personality on 

station choice. 

6. 2 Research method 

6.2.1 Introduction  

This section starts with the identification of crowding measurements, then its  

characteristics, (certain or uncertain) are distinguished. Based on these, appropriate 

decision making theories to explore station choice under crowding uncertainty are 

determined and choice models are developed to meet the research objectives. 

The objective measurements of crowding mentioned above, i.e. the probability that 

seats taken and the density of passengers standing in a carriage, are used in this chapter. 

However, in contrast to the load factor metric used in previous literature, they are 

independent, but interactive in the research. In the literature to date, the pictorial 

display of crowding shown to survey respondents was from above (i.e. a bird’s eye 

view), so that both load factors can be taken as two independent indices and separately 

analysed (see Figure 6-1). However, the pictorial display of crowding used in this 

research is a horizontal view, (i.e. the view passengers waiting to board have when the 

carriage doors open), (see Figure 6-2). In this situation, it is difficult for respondents 

to clearly identify both load factors, especially when the carriage is over-crowded or 

people are clustered near the doorways rather than moved down inside the carriage. 

The level of crowding boarding passengers view, and therefore perceive, is an 

interaction between both load factors, as standing passengers can block the view of the 

carriage and any spare seats. The crowding measures in the research consider this 

interaction between the two load factors. The unit is passengers/m2 

 

Figure 6.1 Crowding displayed from bird’s eye view 
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Figure 6.2 Crowding displayed from horizontal view 

According to Knight (1921), risk is a situation where there is a range of possible 

outcomes faced by the decision maker. Given that the new crowding measures vary as 

the probability of seats taken and the density of passengers standing in a carriage 

change throughout the day and from day-to-day, it is reasonable to identify crowding 

as a risk factor for a boarding passenger. Correspondingly, station choice based on the 

effect of variations in the level of crowding can be defined as choice under risk. Two 

decision making theories under risk or uncertainty, namely expected utility theory 

(EUT) and extended expected utility theory (EEUT), have been applied to model 

station choice behaviour under the effect of crowding on trains. Specific to the EEUT 

model, the value function adopted the power form and the probability weighting 

functions used four popular forms, i.e. Tversky-Kahneman (TK), Goldstein-Einhorn 

(GE), PrelecI (Pr1-I) and PrelecII (Pr1-II). The detailed framework to model station 

choice based on the effect of variation of crowding on the train is presented on Figure 

6.3. 
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Figure 6.3 Framework to model station choice under crowding risk 

6.2.2 Utility function related to station choice incorporating the effect of variations 

in crowding 

Based on the findings of the station choice survey, we determined that crowding and 

discomfort on trains were the main factors contributing to the utility related to station 

choice under crowding risk, and that their effects were linear-additive. Thus, the utility 

specification for station choice under the effect of crowding can be written as equation 

(6-1). 

   1 2U U C U DCo                                                                                         (6-1) 

where U is the utility related to station choice; C  is the crowding on trains; DCo  is 

the discomfort on trains;  U C  and  U DCo  are the utilities for crowding on train and 

discomfort on train respectively; and are estimated coefficients. 

For the discomfort on train utility, we surmised that it could be measured by the 

interaction between the probability of seats taken and in-vehicle travel time, so the 

utility function for discomfort on train can be written as equation (6-2). 

1 2, 
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 U DCo IVT StP                                                                                              (6-2) 

where is the in-vehicle travel time, i.e. the amount of time spent travelling on the 

train; and is the probability that all seats are taken in a train carriage. 

We separately applied Expected Utility Theory (EUT) and Extended Expected Utility 

Theory (EEUT) to estimate the crowding on train utility, on the assumption that it 

introduced risk into the choice process. The EUT model and the EEUT model are 

discussed below. 

(a) The utility function related to the effect of crowding on station choice within 

Expected Utility Theory (EUT) 

Based on the EUT mentioned in Chapter 3, all reasonable decision makers choose the 

alternative with the maximum expected utility values. In detail, when they make a 

choice with risky or uncertain outcomes, they calculate the expected utility value for 

each alternative by multiplying the value of the outcome by the probability of it 

occurring. The simplest specification within EUT is shown in equation (6-3) (Einhorn 

& Hogarth, 1981; Neumann & Morgenstern, 1994).  

                                                                                                (6-3) 

where  is the expected utility of choosing a train station; m is a set of outcomes; 

 is the objective probability of outcome m; and  is the utility of outcome m. 

Based on the data we collected related to crowding, i.e. the crowding level on a typical 

week day Ct , the extreme crowding level  Ce  and their relative probabilities, the 

linear utility function of crowding on trains within the EUT is the sum of the product 

of the crowding level and its probability. Its specification is shown in equation (6-4) 

                                                                              (6-4) 

where  is the expected utility produced by crowding on trains;  is the 

crowding level on a typical week day, (equal to the production of the proportion of 

seats taken and the density of standees based on the definition of the new crowding 

measures in the section);  is the extreme crowding level, (here 8 passengers/m2 and 

with all seats assumed to be taken);  is the probability that the extreme situation 

occurs, (calculated based on the number of days per week on which trains are too 

IVT

StP

 ( ) m mm
E U p x

 E U
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crowded to board , i.e. ); and  is the probability that the typical 

crowding level occurs (equal to ). 

EUT models also postulate non-linear functional forms. A power form utility function 

was used in the section (see Eq. (6-5)).  

                                                                                        (6-5) 

where  is an estimated coefficient indicating a decision maker’s risk attitude towards 

the outcomes.  

Substituting the crowding levels and their relative probabilities from equation (6-4) 

into equation (6-5), i.e. combining the non-linear EUT model attributes with the linear 

EUT model and the risk attitude parameter, results in equation (6-6). This equation not 

only explains a P&R user’s preference for the factors influencing their choice but also 

reveals their risk attitude towards these factors. 

 ( ) 1 t eEU C Ct p Ce p                                                                                 (6-6) 

(b) Utility function related to the effect of crowding on station choice within Extended 

Expected Utility Theory (EEUT) 

Given that the probability weighted outcomes in EUT models use objective 

probabilities, they do not necessarily align with respondents’ perceptions based on 

their experiences and knowledge. Therefore, non-linear probability weighting was 

introduced into the non-linear EUT models to produce an extended expected utility 

theory (EEUT) model, (as proposed by Li et al. (2009)), in which the probabilities can 

over-weight or under-weight the objective probabilities. Based on this, the utility 

function within the EEUT is given by equation (6-7). 

  ( ) m mm
EE U w p x                                                                                       (6-7) 

where  w  is a probability weighting function.  

Four popular probability weighting functions - TK, GE, Pr1-I, and Pr1-II - were used, 

as given by equations (6-8 to 6-11). 
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Pr1-I      ln p
w p e


 

                                                                                          (6-10) 

Pr1-II    lns p
w p e


 

                                                                                           6-11) 

where , s are estimated coefficients. 

Replacing the probabilities in equation (6-6) with those from equations (6-8) to (6-11), 

the utility functions of crowding within the EEUT can be written per equations (6-12) 

to (6-15) respectively. 
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(c) Utility functions related to station choice incorporating crowding uncertainty 

Substituting equations (6-2), (6-4), (6-6), and (6-12) to (6-15) into equation (6-1), the 

linear and non-linear utility functions of crowding within the EUT and the non-linear 

utility functions of crowding within the EEUT are presented in equations (6-16) to (6-

21). 

(i) Linear EUT model 

 1 21 t eU Ct p Ce p IVP Stp                                                               (6-16) 

(ii) Non-linear EUT model 

 1 21 t eU Ct p Ce p IVP Stp                                                            (6-17) 

(iii) Non-linear EEUT models 
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6.2.3 Risk attitude and its measurement 

Based on both EUT and EEUT, risk aversion implies that the probability of an 

alternative with a potentially poor outcome being chosen is lower than its objective 

probability. Conversely, risk seeking implies that the probability of an alternative with 

a potentially good outcome being chosen is greater than its objective probability. 

Based on these concepts, the value function is concave for risk aversion and convex 

for risk seeking. Figure 6.4 indicates risk aversion in the four different quadrants.  

 

Figure 6.4 Risk aversion under EUT and EEUT 

Usually, under EUT and EEUT, an individual’s attitude is risk averse. Different 

methods have been developed to measure the scale of risk aversion. The most 

commonly and frequently used measures include the Arrow-Pratt measure of absolute 

risk-aversion (ARA) and relative risk-aversion (RRA) named by Pratt (1964) and 

Arrow (1971). Here, we use the coefficient of relative risk aversion (CRRA) to 

measure risk aversion, given that it is a unit-free measurement of sensitivity 

(Rubsinstein, 2006). Its specification is shown in equation (6-22)  

                                                                                            (6-22) 

where  and  are the first and the second derivatives of the utility function 

Based on equation (6-22), the coefficient of relative risk aversion for crowding on 

trains in the section can be inferred as equation (6-23): 

                                                                       (6-23) 

 

 

''

'
( )

xu x
CRRA x

u x
 

 'u  ''u

 
 

 

''

'
1

Ctu Ct
CRRA Ct

u Ct
   



117 

 

The larger its absolute value, i.e. the greater the curvature of the utility function, the 

more risk averse the respondent. 

6.2.4 Analysis of individual heterogeneity 

In the chapter, we use a latent class model to investigate the heterogeneity of 

individuals. The latent class model (LCM) is a semi-parametric approximation to the 

random parameter multinomial logit model that resembles the mixed logit model. 

Within the LCM, each individual’s behaviour is determined from the observable 

attributes and potential similarities within each class, (homogeneity within 

heterogeneity), for factors that cannot be unobserved, (known), by the assessor. 

Assuming that individuals are divided into Q  classes and the mixing distribution 

 is discrete, then the choice probability can be calculated by equation (6-24). 

                                                                                              (6-24) 

where is the probability that the respondent chooses the alternative; is the 

share of the population in segment ; is the number of the class; and is the 

estimated coefficient for the class. 

6. 3 Results 

6.3.1 Estimation of coefficients 

We started with the EUT models, then developed the non-linear EEUT models. All 

coefficients in the models were estimated within a multinomial logit model using the 

Nlogit5 package. 

(a) The EUT models 

The coefficients in the linear and non-linear EUT models are summarised in table 6.1. 

Table 6.1 Estimation of coefficients for EUT models 

 Linear EUT model Non-linear EUT 

model 

Crowding -0.01341 0.000001 

Discomfort -0.01310*** -0.02070*** 

  
 10.4431*** 

Constant specific for 

station one 
0.11392*** 

0.08967*** 

Log Likelihood -1648.25247 -1641.85502 
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Inf.Cr.AIC 3302.5 3291.7 

Chi-square [d.f.] 15.65955[2] 37.85124[4] 

Significance level 0.00040 0.00000 

Note: ***, **,* == >Significant at 1%, 5% and 10% confidence levels 
 

For the linear EUT model, all estimated parameters are statistically significant at the 

99 percent confidence interval, with the exception of crowding on trains. The 

coefficient estimate for is negative, which means that the more seats taken or the 

longer the travel time, the lower the utility of the train station, which is aligned with 

expectations. The station one specific constant is positive, which indicates that the 

sampled respondents prefer the first alternative, all other factors being equal. 

When compared to the linear EUT model, the non-linear EUT model delivered a 

similar behavioural response, even though the latter model introduced an extra 

parameter, i.e. a risk attitude parameter. The only difference between the results of the 

two models is the values of the parameter coefficients. The coefficients in the non-

linear EUT model are a little larger than those in the linear EUT model. Focusing on 

the non-linear EUT model, coefficient , indicating respondents’ risk attitude, is 

significant at the 99 percent confidence interval, which means it does have an effect 

on station choice. Based on its value of 10.4431, the value function’s shape is concave, 

(i.e. is in the lower right quadrant of Figure 6.4), and as shown on Figure 6-5.  This 

indicates that P&R users’ attitudes towards crowding on trains on a typical weekday 

should be risk averse. Even though both EUT models can fit the collected data based 

on their significance levels and their coefficient estimates are similar, we consider that 

the non-linear EUT model is better than the EUT model due to it having a smaller AIC 

index, (Akaike Information Criterion) - the smaller the AIC index the better the model. 

The index for the non-linear EUT model is 3291.7, which is smaller than the linear 

EUT model’s 3302.5. Therefore, the non-linear EUT model was adopted as the 

preferred model to explore station choice behaviour for P&R users. 

2


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Figure 6.5 The value function in non-linear EUT utility function 

(b) The EEUT model 

The coefficients in the EEUT model with TK weighting risk function (see equation (6-

18)) were estimated using Nlogit 5, with the results presented in Table 6.2. 

Table 6.2 Estimation of coefficients in the EEUT model with TK weighting function 

Choice Coefficient 
Standard 

Error 

z Prob. 

│z│>Z* 

95% Confidence 

Intervals 

Crowding -0.27669 0.57896 -0.48 0.6327 -1.41142 0.85805 

Discomfort -0.03335*** 0.00680 -4.90 0.0000 -0.04667 -0.02002 

  
2.65367*** 0.81942 3.24 0.0012 1.04763 4.25970 

 

0.17229 0.16932 1.02 0.3089 -0.15957 0.50415 

Constant specific 

for station one 
0.05243 

0.06224 0.79 0.4286 -0.0774 0.18226 

Log Likelihood -751.04433 

Inf. Cr. AIC 1512.1 

Chi-square 38.08438 

Significance level 0.000000 

Note: ***, **,* ==> Significant at 1%, 5% and 10% level 

 

Similar to the non-linear EUT model, the sign of the specific constant for station one 

is positive and the parameters’ coefficients, and , are significant at the 99 percent 

confidence level. Moreover,   is greater than 1, which means that respondents’ 

attitudes towards crowding on a typical day in the EEUT model are also risk averse. 

Again, the curve of its value function is in the lower right quadrant (per Figure 6.4) 

and its shape is concave (see Figure 6.6). Additionally, the CRRA for the EEUT model 

with TK weighting function is -1.65367.  




 
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Figure 6.6 The value function in EEUT model 

6.3.2 Comparison of the non-linear EUT model with the EEUT Model 

Comparing the non-linear EUT model with the EEUT model with TK weighting 

function, we found their results were similar, including P&R users’ responses to station 

choice and risk attitude towards crowding. Moreover, both models had a good fit with 

the collected data, (significance level is near zero). Nevertheless, the EEUT model was 

considered to be better than the non-linear EUT model for three main reasons. The 

first was that the coefficient of crowding on trains estimated under the non-linear EUT 

model was zero, which means that crowding has no influence on the station choice for 

P&R users. This is not aligned with what we surveyed and expected. Secondly, both 

the AIC and Log Likelihood statistical indices from the EEUT model are less than 

those from the non-linear EUT model (i.e. AIC: 1521.1 vs 3291.7 and Log Likelihood : 

│-751.0443│ vs │-1641.85502│), indicating that the EEUT model had a better fit 

with the collected data. Thirdly, the respondents’ risk attitude measurements from the 

EEUT model were more reasonable. 

Therefore, the following study will be carried out using the EEUT model with TK 

weighting function. 

6.3.3 Comparison of the EEUT models 

Three further popular weighting functions, GE, Pr1-I, Pr1-II, together with a value 

function in the power form, were also tested. The coefficients in these models were 

estimated within an MNL model, with the results presented in Table 6.3. 

Table 6.3 Estimation of coefficients in the EEUT models 

 EEUT model 
with TK 

weighting 

function 

EEUT model 
with GE 

weighting 

function 

EEUT model 
with Pr1-I 

weighting 

function 

EEUT model 
with Pr1-II 

weighting 

function 

Crowding
 

-0.27669 6.03511 -0.18290*** 12.4712*** 

Discomfort
 

-0.03335*** -0.02117*** -0.02219*** -0.01590*** 
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 2.65367*** -0.19928 1.49265*** 5.30915 

 0.17229 0.24472 0.29140 -2.61314*** 

  6.29036  0.30639D-04 

Constant specific for 
station one 

0.05243 0.07004 0.07101* 0.09837** 

Log Likelihood -751.04433 -1638.87008 -1638.81661 -1645.21150 

Inf. Cr. AIC 1521.1 3289.7 3287.6 31.13828 

Chi-square 38.08438 43.82113 43.92807 3302.4 

Significance level 0.00000 0.0000 0.000000 0.00002 

Note: ***, **,* ==> Significance at 1%, 5% and 10% level 

 

The results in Table 6.3 show that the EEUT model with TK weighing function fits 

the collected data the best, based on all statistical indices, and specifically for AIC, 

which indicates how well the statistical model fits the observed data (Akaike, 1974). 

The AIC from the EEUT model with TK weighting function is 1521.1 which is much 

lower than its values for the other three EEUT models.  

From Table 6.3, we also found that only the estimations from the models with TK and 

Pr1-I weighting functions were aligned with expectations. In detail, the effects of the 

attributes associated with crowding on station choice for P&R users in both models 

are negative, which implies that the more crowded a train is and the higher the level of 

discomfort, the lower the utility at the station. Moreover, the shape of value function 

is concave, (see Figure 6.7), and the respondents’ attitude towards crowding on trains 

is risk averse, which are consistent with expected utility theory. Furthermore, the 

estimations of  , (0.17229 and 0.29140 respectively), although not statistica l ly 

significant, do indicate that they have an effect on station choice. Their common 

feature is that high probability outcomes are likely to underweight. However, the two 

models have some differences, one is the coefficients estimated by the model with TK 

weighting function are a little larger than those of the model with Pr1-I function. All 

indices from the model with TK weighting function are smaller than those from the 

model with Pre1-I weighting function, especially the AIC (TK 1521.1 vs Pre I 3287.6). 

This implies that the EEUT model with TK weighting function is better than the model 

with Pr1-I. Therefore, the EEUT model with TK weighting function was adopted as 

the preferred model to explain P&R users’ choice of departure train station. 



s
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Figure 6.7 Value functions of both models 

6.3.4 Analysis of respondents’ risk attitudes  

In this section, we apply the recommended model to measure respondents’ risk 

attitudes towards crowding on trains on a typical week day by different train stations 

and explore the impact of risk attitude on station boardings. In detail, we re-estimated 

the coefficients in the recommended model using data for each train station separately 

and hence derived the risk attitude for each individual train station. From these, a 

relationship between the risk attitude parameter and station boardings was developed. 

The  s for each train station are summarised in Table 6.4. The respondents at all 

stations, except Warnbro and Warwick, showed risk aversion towards crowding on 

trains. Moreover, the respondents at Claremont station were most risk averse, while 

the respondents from Midland and Murdoch stations showed less risk aversion than 

others (see Figure 6.8). This might be a function of their locations. Midland station is 

located at the end of a train line and Warnbro station is the second to last station on 

the Mandurah line, (and with large spacing to adjacent stations), so that train users 

from these stations are more captive and therefore more tolerant of crowding. 

Table 6.4 Coefficient estimation for seven train station with the recommended model 

 Greenwood Cannington Claremont Midland Warwick Warnbro Murdoch 

Crowding
 

-0.22580 -0.23691 -137.69 -0.83389 -0.05970 0.13158 -0.07884 

Discomfort
 -

0.04244*** 

-

0.03614*** 
-0.01658 -0.04853 

-

0.02630*** 
-0.00658 -0.00954 

 2.64657** 2.59025* 3.95820 1.39738 0.13191 -0.62075 1.78158 

 0.2163 0.20395 0.04882 0.68065 0.13327 0.52732 0.39311 

Constant 

specific for 

station one 

-0.26022** 0.39772*** 0.06668 0.22340 0.21237** -0.16785 0.13672 

Log 

Likelihood 
-219.86746 -223.80053 

-

206.40577 

-

74.36110 
-249.37362 

-

193.65504 

-

343.99830 

Inf. Cr. AIC 449.7 457.6 422.8 158.7 708.7 397.3 698.0 

Chi-square 20.51481 34.82937 3.07678 6.54278 16.58065 11.94269 5.15059 

Significance 

level 
0.001 0.0000 0.68815 0.25692 0.00537 0.03558 0.39778 



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number of 

observation 
332 348 300 112 516 288 500 

CRRA -1.64657 -1.59025 -2.95820 -0.39738   -0.78158 

Note: ***, **,* ==> Significance at 1%, 5% and 10% level 

 

 

Figure 6.8 Risk attitude for respondents at different train stations 

Additionally, we explored the relationship between crowding levels and the scale of 

respondents’ risk attitude at the same train station. In order to test the relationship, we 

set up a hypothesis: the greater the level of crowding at the train station, the lower the 

aversion to risk exhibited by passengers at that station. To test the hypothesis, we 

compared train boardings by station on an average weekday with the   estimated 

separately using the data from four train stations (see Table 6.5). The results show that, 

the smaller the 
'  value for a station, the more train boardings at that station. 

Assuming that train boardings in the peak period as a proportion of daily boardings is 

broadly the same at the four stations, and the more train boardings at a station the more 

crowded trains stopping at the station are, the relationship shown in Table 6-5 implied 

that the lower risk-aversed passengers using a station are, the more crowded trains 

stopping at that station would be. Taking Claremont station as an example, it’s   is 

the largest and train boardings is least among the four stations. This means the 

passengers at Claremont station maybe have the highest risk aversion to crowding, and 

that the trains at Claremont station are the least crowded, which is aligned with the 

hypothesis set up above. 
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Table 6.5 Relationship between risk attitude and rail ridership 

 Claremont Greenwood Cannington Murdoch 

 3.95820 2.64657 2.59025 1.78158 

Average train boardings 

(on weekday) 
1431 1921 2201 6369 

Train frequency during 
peak hours 

5mins 5mins 5mins 5mins 

6.3.5 Sensitivity analysis for policy implication  

A sensitivity test was conducted to identify the effect of crowding on trains on the 

probability that a train station was chosen, by holding other attributes at their mean. 

We set up two scenarios, each of which included two train stations, (see Figure 6.9). 

The only difference between the two scenarios was the crowding attributes level for 

station one. We set the density of standing passengers and the probability that seats 

had been taken for station one in scenario one as 6 passengers/m2 and 100% 

respectively, with 2 passengers/m2 and 0.75 for scenario two (see Table 6.6). This 

design aimed to test whether the probability that a station was chosen would change 

as the crowding level varied, i.e. to test our hypothesis that the greater the level of 

crowding on the train, the lower the probability that the station would be chosen by 

P&R users.  

The crowding level for station one is 6 passengers/m2 in scenario one and 1.5 

passengers/m2 in scenario two, which resulted in probabilities of choosing station one 

of 26% and 54% respectively. A comparison of the two groups of data revealed that 

the station choice probability was negatively correlated with crowding on trains and 

four times less crowding on trains led to a doubling of the probability of the station 

being chosen. Based on this, we can conclude that reducing crowding on trains would 

be an efficient way to increase a station’s attractiveness for P&R users. 

Table 6.6 Relationship between crowding level and probability that a station is 

chosen 

 Density of standing 

passengers in a carriage 

(passengers/m2) 

Probability 

that seats 

taken 
 

Crowding level  Probability of 

choosing station 1 

Scenario1 6 1 6 passengers/ m2 26.06% 

Scenario2 2 0.75 1.5 passengers/m2 54.16% 

Ratio of scenario 1 to 

scenario 2 

  
4 2 

 


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Figure 6.9 The hypothetical scenarios 

6.3.6 P&R users’ preference heterogeneity led by individual personalities  

In the section, we test the effect of personal heterogeneity, (in this case annual income), 

on an individual’s choice of departure train station. In contrast to previous studies, 

annual income was not taken as an independent variable and simply introduced into 

the choice model. We took it as a latent variable and assumed that its effect on station 

choice would be indicated by differences in the responses to crowding on the train. 

Based on this, a latent class model was set up. After testing 2, 3, 4 and 5 classes, four 

latent classes were identified as giving the best fit. The resulting coefficient estimates 

are shown in Table 6.7. 

Table 6.7 Estimated LCM: Utilities 

 

Multinomial 

logit model 

(MNL) 

Class utility model 

Class one Class two Class three Class four 

Crowding
 

-0.01341 8.19232 -13.1238 5.90785 -0.49485 

Discomfort
 

-0.1310*** -2.33463 -0.45409 2.48048 -0.17198 

Constant specific 

for station one 
0.11392 -5.94053 -7.18746 19.9449 -0.98766 

Class probability model 

Constant  -0.06271 -7.0121 -0.0265 0.0 

Annual Income  -3.7879* -0.40290 -0.03812 0.0 

Log Likelihood  -1648.25247 -1622.73492 

Inf. Cr. AIC 3302.5 3281.5 

Note: ***, **,* ==> Significance at 1%, 5% and 10% level 

 

The coefficient estimates for the four classes are completely different, which indicates 

that P&R users with different income levels have heterogonous preferences for each 

crowding attribute and, therefore, may make different choices. The results are aligned 

with our hypothesis. Additionally, we compared the probability of choosing a different 

station for the four classes by applying the LC model into the left scenario in Figure 
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6.9. We found that respondents in class one preferred station one with a higher level 

of crowding, while respondents in the other three classes tended to choose station 2 

(see Table 6.8). The differences in choice probabilities amongst the different classes 

also indicate that an individual’s heterogeneity would affect their choice, which further 

confirmed our hypothesis.  

Table 6.8 Individuals’ preference heterogeneity 

 Class one Class two Class three Class four 

Chosen 

probability 

Station 1 99.92% 0.00% 0.00% 14.44% 

Station2 0.08% 100.00% 100.00% 85.56% 

Prior class probability  18.5% 9.5% 33.9% 38.2% 

Posterior class probability  21.27% 9.63% 32.69% 36.41% 

Annual income  1.186701 1.15487 2.018626 2.18566 

 

We also analysed the characteristics of each latent class through the estimation of 

conditional class probability. The results showed that the estimated conditional class 

probabilities, (i.e. posterior class probability), are similar to the prior probabilit ies, 

which implies that the model is valid. Moreover, the results revealed that the 

individuals in latent class four were wealthier than those in the other three latent classes 

and had a greater preference for station 2, which had a lower level of crowding. The 

individuals in latent class one were poorer than other latent classes, (except class two), 

and preferred station 1. 

Given the effect of individual preference heterogeneity, it is suggested that public 

transport providers consider the heterogeneity of passengers’ personalities when 

developing their services, in order to attract more passengers and increase rail 

ridership. For example, pricing tickets differently based on crowding levels on trains 

could satisfy the different demands of passengers with different annual incomes. 

6. 4 Model validation 

According to Miller, Hui, and Tierney (1991), models developed for prediction need 

to be properly validated to reassure users of their output that they adequately perform 

the functions for which they are intended. The station choice model developed in this 

section is part of the demand model for prediction of rail ridership and therefore needs 

to be validated.  

A Chi-square test was used to validate the station choice model developed in this 

chapter. Firstly, we predicated the probabilities with the model for the 12 scenarios 

used in the survey (see Table 6.9), then compared them with their observed outcomes, 
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and got a Chi-square value of 0.98. Assuming a significance level of 0.05 and 11 

degrees of freedom, the critical value is 19.675. Given that the critical value is greater 

than the Chi-square, the difference between prediction and observation is not 

statistically significant. 

Table 6.9 Comparison of the observed and predicted probabilities that a station is 
chosen 

Scenarios 
Observation Prediction 

Station 1 Station 2 Station 1 Station 2 

1 57% 43% 68% 32% 

2 43.2% 56.9% 57.5% 42.5% 

3 55.3% 44.7% 70.9% 29.1% 

4 35.7% 64.3% 43% 57% 

5 57.2% 42.8% 29.7% 70.3% 

6 57.2% 42.8% 69.2% 30.8% 

7 52.2% 47.8% 35.9% 64.1% 

8 42.3% 57.7% 45.1% 54.9% 

9 56.8% 43.2% 66.4% 33.6% 

10 55.8% 44.2% 27.1% 72.9% 

11 63.5% 36.5% 29.4% 70.6% 

12 61.1% 49.9% 75.6% 24.4% 

6. 5 Conclusions and limitations  

Crowding is likely to threaten the health and safety of rail passengers. Therefore, it is 

very important to quantify its effect on passengers so that its adverse impacts can be 

mitigated. The sub-model of station choice incorporating the effect of variations in 

crowding levels is a multinomial logit model in which crowding and comfort on trains 

were taken as the main components of utility related to station choice. The effect of 

variations in crowding was evaluated within EEUT, in which the crowding measures 

were assumed as the interaction between the probability that all seats were taken and 

the density of standees. The value function and weighting function adopted, 

respectively, the power form and the TK form. Based on the sub-model, we can 

conclude that respondents’ attitudes towards crowding were risk averse and the more 

crowded the train, and the longer the time that seats have been occupied by others, the 

lower the utility of that station.  

Furthermore, the model was applied to the seven surveyed train stations, the results 

revealing that the greater the risk aversion displayed by the respondents, the lower the 

number of individuals boarding at the station. 

Additionally, we found that the effect of crowding on respondents’ train station 

preference was heterogeneous with respect to annual income. Individuals with higher 

incomes would be more likely to choose a station that had less crowding on trains. 
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This implies that commuters with higher incomes value a comfortable travel 

environment more than those with lower incomes, and would presumably be prepared 

to pay more to have it. 

The sub-model still has a number of limitations. The first is that we adopted the 

interaction of both classic crowding measures as a new crowding measure in the 

research, given that the crowding is presented at eye level rather from above. However, 

we are not sure whether this is the best measurement to explore the effect of crowding 

on station choice, especially for the scenario in which the density of standees is low. 

Another limitation is that the sample size at some stations was insufficient and the 

scenarios for some stations did not meet the required number of choice tasks, (12), so 

that not all the parameter estimates displayed statistical significance. Therefore, further 

work would be to review the factors affecting station choice and test their effect on 

station choice, with sufficient data for each station. 

The third limitation of the research is the data used in the paper were collected with 

other attributes in the same questionnaire. Therefore, we are not sure that the attributes 

mentioned above are the most important factors affecting P&R users’ choice of access 

train station. To test this, we used eye-tracking equipment to monitor respondents’ 

eyes, then identified the significance of each factor for station choice based on their 

visual attention. We assumed that the more attention participants paid to a variable, 

the greater the influence that variable had on the choice decision. Figure 6.10 shows a 

snapshot of a visual attention map (heatmap) of a participant. For the same participant, 

we displayed two different scenarios. For the questionnaire on the left the area with 

the crowding picture was found to be the centre of attention, i.e. had the longest visual 

attention.. However, when we increased the number of factors in the survey, attention 

shifted to other factors instead of crowding. Therefore, the best way to design the SC 

experiment and balance the number, order and levels of variables to explore choice 

behaviour in an efficient way is still open to debate and more evidence is needed.  
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Figure 6.10 Heatmap analysis for both 
questionnaires (different choice) 

6. 6 Chapter summary 

This chapter reviewed the studies related to the effect of crowding on the public 

transport system, re-designed the pictorial display of crowding in the SP experiment 

and created a new crowding measure based on it. Given that the new measurement of 

crowding can vary randomly, the station choice based on the effect of crowding is 

defined as a choice behaviour under risk. Correspondingly, both EUT and EEUT were 

applied to explore the behaviour. Finally, the linear EUT model, the non-linear EUT 

model and the non-linear EEUT models, with four popular probability weighting 

functions, were developed and the non-linear EEUT model with power form value 

function and TK form weighting function was found to be the preferred model based 

on the results of the statistical analysis. The sub-model was estimated within MNL 

with Nlogit 5. Based on the model, respondents’ risk was measured and the 

relationship between the respondents’ risk attitude and boarding numbers at the same 

station was identified, which provides useful information for public transport operators 

to improve service quality. 

The next chapter will analyse the effect of parking search time uncertainty on station 

choice for P&R users. The methods to develop the sub-model of station choice 

focusing on the effect of variation of parking search time will be discussed. 
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CHAPTER 7 STATION CHOICE SUB-MODEL WITH PARKING SEARCH 

TIME UNCERTAINTY  

The previous chapter explored the effect of crowding on trains on P&R users’ choice 

of departure train station, analysed their risk attitude towards variations in the level of 

crowding and proved individuals’ preference heterogeneity for station choice. This 

chapter focuses on investigating the effect of parking attributes, in particular parking 

search time (PST), on P&R users’ choices and estimating P&R users’ risk attitude 

towards variations in PST. This provides a basis to improve station choice models 

under uncertainty and could assist public transport operators in improving the service 

quality of their P&R facilities.  

It is worth noting that most of the chapter is from the paper written by Chen et al. 

(2015). This paper has been published and my contribution for the paper is about 80%.  

7. 1 Research context 

Parking search time (PST) is defined as the time spent searching for a parking bay after 

arriving at a train station and can be considered as a factor in choosing the departure 

train station when P&R demand is close to or above the capacity of the P&R facility. 

According to the Public Transport Authority (2012-2017), the total capacity of all the 

P&R facilities serving the Perth train system is about 21,000, (in 2016), which is well 

below the level required to cater for the latent demand estimated to be around 23,000. 

Therefore, the PST, from a theoretical viewpoint at least, could be a key factor in 

station choice for P&R users in Perth. Moreover, the train station choice survey 

conducted during July 2012 (see Chapter 3) also indicated that the PST was, in 

practice, one of the main factors influencing a P&R user’s choice of departure train 

station. PST can vary significantly for users who arrive at the time when parking bays 

are full or close to full as they search for one of the few remaining spaces. If none is 

available they may then need to search for parking on the surrounding streets or at an 

alternative car park. To date, few studies have been undertaken to develop an 

understanding of the effect of variations in the PST on P&R users and their choice of 

departure train station. 

Most of the literature related to the effect of PST on travel choice has focused on 

investigating its influence on route choice (e.g., Leurent and Boujnah (2012), 

Balijepalli, Shepherd, and Kant (2013), etc.) or parking type and location choice (e.g., 

Polak and Axhausen (1990), Hilvert, Toledo, and Bekhor (2012), etc.). Only very 
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limited literature was found relating specifically to the effect of PST on station choice. 

In summary, the parking attributes included in previous station choice models were 

primarily parking charge (Miller & Cheah, 1991), parking capacity (Davidson & Yang, 

1997; Fan et al., 1993; Vijayakumar et al., 2011), parking availability (Debrezion et 

al., 2007; Mahmoud et al., 2014; Vijayakumar et al., 2011) and parking cost 

(Mahmoud et al., 2014). Additionally, Kastrenakes (1988) initially took parking 

availability and parking fee into account, but then removed them from the model due 

to their counter-intuitive signs. 

Therefore, it is considered to be time to study the effect of PST on station choice. This 

chapter explores the effect of parking attributes on departure train station choice for 

P&R users by testing the effect of variations in PST on station choice and measuring 

respondents’ risk attitude towards these variations. 

7. 2 Research method 

Chapter 3 outlined the general methods used to develop the station choice models. This 

chapter focuses on the development of the utility function related to station choice 

under PST uncertainty. In other words, the effect of variations in the PST on station 

choice and the P&R users’ risk attitude towards it are investigated. 

7.2.1 Framework 

On the assumption that parking availability is a constraint in station choice, a hybrid 

function has been used to measure the utility related to station choice from parking 

attributes. When parking spaces are available, (i.e. the P&R car park is not full), 

parking capacity, parking availability, access time to the station, and parking fee are 

considered to be the main components contributing to station choice utility. When 

parking is not available, (i.e. the P&R car park is full), the usual PST, the variability 

of the PST, the parking fine and the frequency of patrols for illegal parking were taken 

as the main components. The effect of the variability of the PST was calculated within 

the CPT and the coefficients in the utility function related to station choice under PST 

uncertainty were estimated with a mixed logit model, given that it can capture 

individuals’ preference heterogeneity (Train, 2003). Based on this, the framework to 

model station choice under the PST uncertainty is given in Figure 7.1. 
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Figure 7.1 Framework to model station choice under PST uncertainty 

7.2.2 Data used in the chapter  

Per Chapters 5 and 6, the data used in this chapter are from the train station choice 

survey, which was described in Chapter four. The data used in the chapter are part of 

station choice data but focus on that related to parking attributes, (see Figure 7.2). 
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Figure 7.2 The data source 

7.2.3 Method to develop the utility function  

According to the framework above, when parking is available in the P&R facility, the 

number of parking bays remaining at the time of access time and the parking fees 

represent the main components of utility; when parking is not available, (i.e. the car 

park is full), the usual PST and its variation, the parking fines for illegal parking and 

the parking violation patrol frequency are the determinants of utility considered in the 

station model. Thus, the observed part of the utility function in the mixed logit model 

is a hybrid function with two parts. Its specification is shown in equation (7-1). 
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where  is the parking fee at station i; is the fine for illegal parking around 

station i; is the frequency of patrols for illegal parking around station i; and 

is the number of unoccupied parking bays at station i . The latter depends on the 
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parking capacity ( pc ), parking availability ( pa ) and the time of access to the chosen 

station ( at ). Their relationship can be written as equation (7-2). 

   pbay

iN pc pa g at                                                                                         (7-2) 

The demand for parking bays increases during the morning with most car parks being 

fully occupied within the AM peak. In other words, the later the time of arrival at the 

train station, the fewer available parking spaces and the greater the competition 

between P&R users for those remaining bays. Here, we took 7:00am as the time 

reference point and assumed the relationship between the variables to be per equation 

(7-3). 

 
 7:00 kat atpbay

i i iN pa pc                                                                                         (7-3) 

where 7:00at  means the time of access to the chosen station is 7:00am; and kat  a time of 

access of k  am. 

In order to accurately identify the effect of remaining parking bays on station choice, 

we tested three forms of the utility function, namely, linear, power, and exponentia l. 

The linear form is preferred based on the performance of the model (see Table 7.1). Its 

formula is shown in equation (7-4). 

1 2

pbay p

i i iV N fee                                                                                                 (7-4) 

where 1 2,   are estimated coefficients. 

In order to avoid overly large numbers during calculation, we divided by 100 to 

decrease its magnitude. 

Table 7.1 Statistical results for three specification forms of the utility function 

 Linear Power Exponential 

1 2

pbay p

i i
N fee   

 
3

1 2

pbay p

i i
N fee



   
1 2

pbay
iN p

i
e fee   

Log likelihood -817.89 -827 -885.76 

Inf. Cr. AIC 1645.8 1663 1781.5 

 

 in equation (7-1) is the variability of PST at station i  , which is the difference 

between the worst PST and the usual PST; ( )
i

V VPST  is a utility function of the 

variations in PST, developed under the CPT. The general function form of utility 

within CPT includes the value function  v x  and the weighting function  ip  as 

shown in equation (7-5). 

Ni
pbay

i
VPST
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V(xi, pi ) = p (pi )
i=1

n

å n(Dxi )
 

                                                                                      (7-5) 

The value function in CPT is defined separately over gains and losses. Here, x  is used 

to indicate the difference between the real value and a reference point with x  greater 

than or equal to zero indicating a gain, and x  less than zero a loss. ip  is the 

probability that the thi  outcome occurs,  ip  is the subjective weighting function 

derived from the thi  outcome cumulative probability and  iv x  is a value function 

depending on gains or losses, with a power form. Their specifications are shown in 

equations (7-6) - (7-8). 
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                                                                   (7-6) 

     1 0i i n i np w p p w p p i n   

                                            (7-7) 

     1 0j m j m jp w p p w p p m j   

                                       (7-8) 

where ,   are the respondents’ risk attitude towards gains and losses;  ip 
 is 

cumulative probability that the thi  gain outcome occurs;  ip 
 is cumula t ive 

probability that the 
thj  loss outcome occurs; and ,n m  are the number of gain outcomes 

and loss outcomes respectively.

 Assuming that the usual PST is the reference point, gains refer to the difference 

between the best (i.e. shortest) and the usual PST, and losses are the difference between 

the worst (i.e. longest) and the usual PST. Because the data from the pilot and main 

surveys indicated very low gains, their influence has been disregarded as negligible in 

this research. According to Stott (2006), the weighting function with the Tversky-

Kahneman (TK) form, together with the power form of the value function, can better 

model choice behaviour under the CPT. Avineri and Prashker (2004) also successfully 

applied them in their studies of route choice. Therefore, the weighting function here 

also adopted the TK form. Its specification is shown in equation (7-9). 

 
1

(1 )i i i iw p p p p                                                                                        (7-9) 

where  iw p
 is the weighting function for the probability that the thi  loss or gain 

happens; and   is the estimated coefficient. 
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7. 3 Utility function related to station choice incorporating variations in the 

PST 

7.3.1 Utility function incorporating variations in PST 

Based on equations (7-6) and (7-9), the value function and weighting function of the 

variations in PST can be written as equations (7-10) and (7-11). 

     i i i iv VPST VPST wpst upst
 

                                                            (7-10) 

   
1

1i i i iw wpstf p wpstf wpstf
     

 
                                                          (7-11) 

where wpst  is the worst PST; upst  is the usual PST; ,   are estimated coeffic ients 

with   indicating P&R users’ risk attitude towards variations in the PST; and iwpstf  

is the frequency at which the worst PST occurs in one month at station i. 

Substituting equations (7-10) and (7-11) into equation (7-5), the utility function for the 

variations in PST is shown as equation (7-12). 

     
1

( ) (1 )i i i i i i i iV VPST p v x wpst rpst wpstf wpstf wpstf
                

(7-12)
 

7.3.2 Utility function related to station choice  

Substituting equations (7-4) and (7-12) into equation (7-1), the observed part of the 

utility function related to station choice can be written as equation (7-13). 
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     (7-13)

  

Assuming that respondents park their cars in the P&R area when spaces are availab le, 

the overall utility function can be written as equation (7-14). 
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(7-14) 

where ,pa iV  is the observed utility at station i when ipa  is greater than zero; ,npa iV  is 

the observed utility when 
i

pa equals zero; and i  is the unobserved utility at station i . 
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7. 4 Results 

7.4.1 Estimation of coefficients 

The coefficients of the station choice model were estimated using multinomial logit 

and mixed logit models with the Nlogit 5 software (Hensher, Rose, & Greene, 2005). 

In the mixed logit model, coefficients 1 2,   are assumed to be random and to follow 

the normal distribution. The results are summarised in Tables 7.2 and 7.3.  

Table 7.2 Multinomial logit model with linear utility function 

Choice Coefficient 
Standard 

error 
z 

Prob. 

 

95% Confidence Interval 

Unoccupied 
parking bays 

1486*** 0.00534 ******** 0.0000 1486.85 1486.87 

Parking fee -1.04886*** 0.05379 -19.50 0.0000 -1.15429 -0.94342 

Parking search 

time 

-

0.020488*** 
0.00548 -3.74 0.0002 -0.03123 -0.00974 

Parking fine -0.00279 0.00548 -1.05 0.2927 -0.008 0.00241 

Constant specific 

for station one  
-0.16444** 0.07789 -2.11 0.0348 -0.3170 -0.01177 

Inf. Cr. AIC 1873.6 

Log likelihood -931.79661 

Chi-square 86.83265 

Note: ***, **, * = >Significance at the 1%, 5%, 10% confidence levels 

 

Table 7.2 indicates that the number of parking bays in the P&R facilities, the parking 

fee and variability of the PST all have a significant effect on station choice for P&R 

users. A high availability of parking bays, low parking fee and lower variability of 

PST at a station increase the probability of that station being chosen. 

Table 7.3 Mixed logit model with random parameters following normal distribution 

Choice Coefficient Standard error z 
Prob. 

 

95% Confidence Interval 

 Random parameters in utility functions 

Unoccupied 

parking bays 
91.0325 691.5102 0.13 0.8953 -1264.3027 1446.3676 

Parking search 

time 
-0.1165D-04 0.000091 -0.01 0.9898 -0.17989D-02 

0.177566D-

02 

 Non-random parameters in utility functions  

Parking fee -0.15764*** 0.05926 -2.66 0.0078 -0.27380 -0.04148 

Parking fine -0.00503 0.00371 -1.35 0.1757 -0.0123 0.00225 

  6.51412 6.33082 1.03 0.3035 -5.98406 18.92229 

  0.30832 2.35560 0.13 0.8959 -4.30858 4.92521 

 Distns. ofRPs. Std. Devs or limits of normal 

1
Ns  10.2233 769.2380 0.01 0.9894 -1497.4554 1517.9020 

3
Ns  0.56768D-04 0.00444 0.01 0.9898 -0.86746D-02 

0.87611D-
02 

Inf. Cr. AIC 1644.4 

Log likelihood -814.4886 

Note: ***, **, * = >Significance at 1%, 5%, 10% confidence levels 

z Z

z Z
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The coefficients in Table 7.3 were estimated for a mixed logit model with 1 2,   

following the normal distribution. Even though the values of the parameter 

coefficients are different to those in Table 7.2, their signs remains the same. The 

model has better goodness-of-fit results, so it is recommended in the research, even 

though they suggest that the parameters’ coefficients may not be random or normal 

random. 

7.4.2 Respondents’ risk attitude 

As for extended expected utility theory, the coefficient over the gains or losses value 

can indicate respondents’ risk attitude for gains or losses. In the recommended model, 

parameter   can show the respondents’ risk attitude for larger variations in PST. In 

the model, the estimate of   is 6.5. Although it is not statistically significant, it does 

have an effect on the shape of the value function can be seen in Figure 7.3, in which 

zero is taken as the reference point and the losses are calculated as differences between 

the worst PST and the usual PST. The shape of the value function is concave for losses 

but the figure can still show that: ① the higher the loss, the lower the value function; 

and ② the risk neutral value, ( 1  ), is greater than the value for losses. Therefore, 

the respondents are risk averse based on the data used in the research. 

 

Figure 7.3 Non-linear value function 

Furthermore, the estimate of is 0.30832. As for  , it is also not statistica l ly 

significant, but it does have an impact on the shape of the risk weighting function (see 

Figure 7.4). The results suggest that the outcomes with low probabilities tend to be 

slightly overweighed and the outcomes with high probabilities tend to be 

underweighted by respondents. 


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Figure 7.4 Non-linear risk weighting function 

7. 5 Conclusions 

In this chapter P&R users’ station choice was analysed using multinomial and mixed 

logit models. According to our knowledge, this is the first attempt to understand P&R 

users’ station choice under uncertain PST using a combination of cumulative prospect 

theory and discrete choice theory.  

In the chapter, the utility function was established separately for two situations, (i.e. 

parking available and not available in the P&R areas). When parking is available, a 

linear function was used to capture the effect of the number of available parking bays 

remaining in the P&R facilities at a given access time on station choice for P&R users. 

The mixed logit model with parameters of normal distribution was found to be better 

fit model, although the results suggest non-random parameters for parking availability 

and parking fee. When parking is not available in the P&R facilities, variations in PST, 

parking fine and the frequency of patrolling for illegal parking were considered in the 

model. In order to capture the effect of variations in PST, part of utility function was 

developed within CPT and the coefficients were estimated. The results showed that 

the effect of variations in PST is not significant but that respondents may display risk 

aversion for variations in PST and very weak non-linearity in the risk weighting 

function. Larger variations in PST, higher parking fines and more frequent patrols for 

illegal parking, lead to lower utility functions and smaller probabilities that the station 

is chosen. The results of our study could provide useful insights for implementation of 

public transport policies (such as ticket pricing policy). 

7. 6 Chapter summary 

This chapter developed a sub-model of station choice focusing on the effect of 

variations in PST by combining discrete choice theory, cumulative prospect theory 

and the mean-variance approach. It measured P&R users’ risk attitude towards 

variations in PST based on the sub-model.  
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The next chapter tests the other factors in the train station choice survey and, together 

with the three sub-models developed in the previous chapters, develops an overall 

station choice under uncertainty. Additionally, the analysis of individuals’ preference 

heterogeneity on station choice is included. 
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CHAPTER 8 OVERALL MODEL OF STATON CHOICE UNDER 

UNCERTAINTY FOR PARK AND RIDE USERS 

The last three chapters respectively explored the effects of variations in travel time to 

station, parking search time and crowding on trains on station choice for P&R users, 

and developed three different sub-models of station choice under uncertainty. This 

chapter develops and evaluates an overall model to understand how these three factors 

combined affect P&R users’ choice of departure train station and the influence of 

individuals’ preference heterogeneity on their choice. Using this information, transport 

planners and transit operators would be able to make better policy decisions, (such as 

location and size), to improve the overall efficiency, operation and effectiveness of the 

P&R facilities. 

8. 1 Research context 

Given that the three models mentioned in Chapters 5 to 7 addressed the effects of the 

factors related to one uncertain situation individually, it is worthwhile investiga t ing 

the combined impact of these three factors on a P&R user’s choice of departure train 

station. Therefore, we developed an overall station choice model by combining these 

three models into a single model.  Our review of current literature indicated that 

research relating to station choice is very limited and also only considered the effects 

of a few factors. For example, the station choice model developed by Kastrenakes 

(1988) includes four factors: whether the station is located in residential areas, access 

time to the chosen station, train frequency at the station and generalised cost. Fan et 

al. (1993), Davidson and Yang (1997), Wardman and Whelan (1999), Davidson and 

Yang (1999), Lythgoe and Wardman (2004), Lythgoe et al. (2004) Fox et al. (2011) 

and Givoni and Rietveld (2014) modelled access mode and station choice, and 

included more attributes, such as access mode, parking capacity, accessibility, railway 

network, etc. In general, the attributes related to parking, crowding on trains, safety, 

train frequency, etc. were barely covered in the previous literature. Therefore, this 

study establishes an overall model that considers a broader range of factors. More 

importantly, we can identify the degree of significance of each factor on a P&R user’s 

station choice, which could provide public transport operators with advice on how, 

(and where), best to improve the rail service, especially where budgets are limited.  

Moreover, we also identified only limited research into station choice under 

uncertainty in the previous studies. However, a consensus has been reached in the 
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literature that variations in the factors do affect people’s choice (Cascetta, 1989; Chang 

& Mahmassani, 1988; Iida, Akiyama, & Uchida, 1992). In the previous three chapters, 

we also identified the impacts of variations in travel time to the departure train station, 

parking search time and crowding on trains on the choice of departure train station, 

and therefore the overall station choice model considers both certain and uncertain 

factors. 

8. 2 Research methodology 

8.2.1 The method to develop the overall models 

The two key objectives in developing the overall model are to identify the degree of 

effect of each factor on a P&R user’s choice for departure train station and to explore 

the effect of individuals’ preference heterogeneity on station choice. In order to 

achieve both objectives, we needed to develop a mixed logit (ML) model of station 

choice. The theory related to ML models can be seen Chapter 3. The tasks undertaken 

to develop the ML model were: 

 Identifying the factors to be used in the ML model; 

 Selecting the random coefficients (or parameters); 

 Specifying the distribution of the random coefficients; and 

 Estimating the coefficients in the model. 

The detailed process to develop the overall model of station choice under uncertainty 

is shown in Figure 8.1 and discussed below. 
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(a) Identifying the factors used in  the ML model 

An intercept survey was conducted to identify the factors to be used in the model of 

station choice. We conducted the survey on 2 July 2012 at the seven Perth train 

stations, (see Appendix C). We asked P&R users to rank a list of potential factors 

influencing their choice, as prepared by us, and to also write down any other factors 

affecting their choice, i.e. not included in our list. Based on the survey results, we 

identified 15 factors that could materially influence a P&R user’s choice of departure 

train station, including travel time to the station, (divided into usual travel time, good 

day travel time and bad day travel time), parking searching time, parking capacity, 

parking availability, parking fee, parking fine, the frequency of patrols for illega l 

parking, crowding on trains, number of days per week on which the trains are too 

crowded to board, in-vehicle travel time, safety, ticket fares and train frequency. 

We divided these factors into four types, namely, the factors related to travel time to 

the station, the factors related to parking, the factors related to crowding on trains, and 
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Figure 8.1 The flowchart to develop the main model 
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all other factors. Each type included more than one factor. The effects of the first three 

types of factors on station choice have already been tested, separately, in the three 

independent models. Here we have integrated these three models into a single overall 

model. We took the disutility of station choice under travel time uncertainty, under 

parking search time uncertainty and under crowding on train uncertainty as three 

different independent variables, and added three other variables to estimate overall 

utility of station choice for P&R users. The three other variables are safety, ticket fare 

and train frequency. The three models were, therefore, considered as three sub-models 

to the overall model. The relationship between the factors influencing station choice 

and the station choice models can be seen in Figure 8.2. 
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Figure 8.2 Attributes used to develop the overall model of station choice 
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(b) Selecting the random parameters  

The random parameters in an ML model can reflect not only the degree of unobserved 

heterogeneity, (by the standard deviation of the parameters), but also an individua l’s 

preference heterogeneity, (based on an individual’s personality and social-economic 

status, e.g. income, age, gender, education level etc.). Currently, the most popular way 

to select random coefficients is from the statistical results for the estimation of 

parameters in an ML model in which all attributes have random parameters (Hensher 

& Greene, 2003). In other words, the statistical index of parameter estimates can 

indicate whether the parameter is random or not. 

Specific to this research, only two parameters were considered as random. There were 

two reasons for this: ① the focus of the research is to explore the effects of uncertain 

factors on station choice, so we only assumed the parameters of the three uncertain 

attributes to be random; and ② the estimation of parameters within the ML model 

(see Table 8.1) showed that the parameter of the effect of crowding is statistica l ly 

insignificant. Thus, only two uncertain attributes, (i.e. the effect of travel time and 

parking search time), were taken as factors having random parameters.  

Table 8.1 Estimation of random parameters within ML assuming normal distribution 

 Coefficient  
Standard 

Error 
z 

Prob. 

│z│>Z* 

5% Confidence  

Interval 

 Random parameters in utility functions 

Effect of travel 

time(TT)  
5.0552** 2.04581 2.47 0.0135 1.04581 9.06523 

Effect of parking 

(P) 
8.64750** 3.59659 2.4 0.0162 1.59832 15.69668 

Effect of crowding 

on trains(CR) 
-0.31488 2.88679 -0.11 0.9131 -5.97288 5.34312 

 Non-random parameters in utility functions  

Safety  2.76134*** 1.06889 2.58 0.0098 0.66636 4.85633 

Ticket fare -8.09251** 3.41569 -2.37 0.0178 
-

14.78715 
-1.39787 

Headway (train 

frequency) 
-0.86976 1.16262 -0.75 0.4544 -3.14845 1.40894 

Station one 

reference  
-0.84469** 0.41679 -2.03 0.427 -1.66158 -0.0278 

 Distns. Of RPs. Std. Devs or limits of triangular 

NsNUTT 3.22349 5.60302 0.58 0.5651 -7.75823 14.20521 

NsNUP 0.6147 1.61639 0.38 0.7037 -2.55337 3.78276 

NsNUC 6.05980 4.91894 1.23 0.2180 -3.58113 15.70074 

Log likelihood -814.69719 

Chi-square [10 
d.f.] 

253.19337 

Significance level 0.0000 

Pseudo-
2R  0.1344922 

Inf.Cr.AIC 1649.4 

Note: ***, **,* == >Significance at 1%, 5% and 10% confidence levels respectively 
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(c) Specifying the distributions of the random parameters 

Before developing the ML model, we needed to define the distribution of the selected 

random parameters. Currently, the four most popular distribution forms are normal, 

uniform, triangular and lognormal. However, we cannot readily determine which one 

is the best because all are in common use and each has its advantages and 

disadvantages. Empirically, the uniform distribution is often used for dummy variables 

and the lognormal distribution is often used when the parameter needs to be positive 

(Hensher & Greene, 2002). Focusing on the overall model, given that the two variables 

with random parameters are not dummy variables and the parameter estimates do not 

have to be positive, we only tested the normal and triangular forms for the random 

parameters. The general specifications in terms of normal and triangular distribution 

are shown as follows: 

 : mean SDn
Normal i N                                                                            (8-1) 

 : mean SPt
Triangular i t                                                                         (8-2) 

where  

   ,n ti i   indicate the thi  random parameter with normal distribution or triangular 

distribution for its mean; 

mean  is the mean of parameter estimates; 

SD  is the standard deviation of the normal distribution; and 

SP is the spread of the triangular distribution. 

Our challenge was therefore to determine whether the random parameter distributions 

should be normal or triangular. Two approaches were considered. The first was an 

empirical method, namely, the random parameter’s distribution was determined based 

on the shape of individual parameter estimates over the sample population. In practice 

it was difficult to directly estimate each individual’s parameter due to the limitat ions 

of the data size. Moreover, most of the parameter estimates based on individual data 

were not aligned with what we would have expected. In order to resolve these issues, 

we applied the method suggested by Hensher and Greene (2003), namely, we 

estimated a model with data from all but one sampled respondent, only one respondent 

was removed each time and the model was re-estimated. The difference between the 

parameters estimates of the model based on the full sample size N  and the model 
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based on 1N  sample size can give us a clue about individuals’ preference 

heterogeneity.  

Another way to specify the distribution of random parameters is based on statistica l 

indices for the models with different distributions. In order to use this approach, a 

hypothesis needs to be set up, namely, the better the ML model, the closer the 

distribution of random parameters in the model is to their real behavioural profile. 

Then, the statistical indices among the ML models are compared with the combination 

of different distributions of random parameters. Based on this comparison, the 

distribution used in the best model was considered as their real distribution. 

Focusing on the research, we firstly used the empirical method proposed by Hensher 

and Greene (2003) to estimate individual parameters, then plotted the parameter 

estimates of the effects of travel time and parking using the kernel density estimator in 

Nlogit 5. The results are presented in Figures 8-3-1 and 8-3-2. 

   

8-3-1. The effect of travel time                          8-3-2 The effect of parking 

Figure 8.3 Kernel density estimates for the random parameters 

Based on the empirical shape of the random parameters, we can conclude that both 

random parameters broadly follow the normal distribution. 

Next, we applied another method to test the results. We assumed four situations: ① 

that both random parameters followed the normal distribution; ② that both followed 

the triangular distribution; ③ that the parameter of the effect of travel time followed 

the normal distribution and that of parking the triangular distribution; and ④ the 

parameter of the effect of travel time followed the triangular distribution and parking 

the normal distribution. Then, we estimated the parameters within these ML models 

with different combinations of distribution of random parameters. The results are 

presented in Table 8.2 and show that the model in which the random parameters 
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followed the normal distribution is the best, based on the Chi-square statistical index, 

even though the parameter estimates in the different models are similar, which aligns 

with the findings of Hensher and Greene (2003).  

Table 8.2 Estimation of parameters within ML assuming different distribution forms 

 
(n,n) (t,t) (n,t) (t,n) 

Random parameters in utility functions 

Effect of travel time 

(TT) 
4.07279*** 6.12289* 7.29343 5.12048*** 

Effect of parking(P) 6.22644*** 8.81689** 9.96410 7.63670*** 

 Non-random parameters in utility functions  

Effect of crowding on 

trains(CR) 
0.55589 0.15883 1.04859 0.53073 

Safety  2.11804*** 3.21333** 3.78058 2.71194*** 

Ticket fare -5.62747*** -8.20432** -9.68540 -7.18964*** 

headway -1.13206 -1.31669 -1.04859 -1.26238 

Station one reference  -0.57*** -0.78572* -0.97143 -0.70972** 

 Distns. Of RPs. Std. Devs or limits of triangular 

NsNUTT 3.36388 18.9962 9.62430 14.6579 

NsNUP 0.10998 0.46078 1.74519 0.25584 

 Statistical indices  

Log likelihood -815.99316 -815.13434 -814.53984 -815.85821 

Chi square 250.60143 252.31906 253.50806 250.87132 

Note: ***, **,* ==> Significance at 1%, 5% and 10% confidence levels respectively 

Based on these results, we specified the distribution of the effect of travel time and 

parking as the normal form. 

(d) The analysis of heterogeneity around the mean of the random parameters 

According to Hensher and Greene (2002), whether there is heterogeneity around the 

mean estimate of the random parameter depends on the interaction between the mean 

parameter estimate and a covariate. It is reasonable to believe the heterogeneity around 

the mean from the observed covariates exists if the interaction is statistica l ly 

significant, otherwise we can only assume that the heterogeneity around the mean can 

exist but be from other unobserved covariates. 

8.2.2 Data sources  

Two sets of data were used to develop the overall model of station choice. The first 

contained the data directly related to the railway service, such as safety, train ticket 

fare, and train frequency, the effects of which on station choice were not tested in the 

three sub-models. They were collected from the train station choice survey mentioned 

in Chapter four. The second set was the output from the three utility models developed 

in the Chapters 5 to 7. 
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8. 3 Results 

8.3.1 Estimation of parameters  

The overall model of station choice is made up of six attributes. The effects of travel 

time and parking have random parameters and both follow normal distributions. All 

parameters in the overall model were estimated within a mixed logit model by Nlo git 

5. The results are shown in Tables 8-3 and 8-4. 

Table 8.3 Estimation of parameters in the overall model within initial MNL 

 Coefficient 
Standard  

Error 
Z 

Prob. 

│z│>Z* 
95% Confidence Interval 

Effect of travel 

time(TT)  
3.42090*** 

0.65297 5.24 0.0000 2.14109 4.70070 

Effect of parking 

search time(PST) 
5.33058*** 0.97410 5.47 0.00000 3.42138 7.23979 

Effect of crowding 
on trains(CR) 

0.84618 1.72063 0.49 0.6229 -2.52620 4.21857 

Safety 1.76494*** 0.25315 6.97 0.0000 1.26878 2.26110 

Headway(train 

frequency) 
-1.14915* 0.69025 -1.66 0.0959 -2.500203 0.20372 

Ticket fare -4.81797*** 0.74505 -6.47 0.000 -6.27824 -3.35771 

Station one 

specific constant 
-0.51107*** 1.14779 -3.46 0.0005 0.80073 -0.22140 

Log Likelihood -816.833377 

Chi-square [6 d.f.] 237.21264 (6) 

Inf. Cr. AIC/N 1.213 

Note: ***, **,* ==>Significance at 1%, 5% and 10% confidence level respectively 

Table 8.4 Estimation of parameters in the overall model within ML with two random 

parameters 

 Coefficient  
Standard 

Error 
z 

Prob. 

│z│>Z* 

95% Confidence  

Interval 

 Random parameters in utility functions 

Effect of travel 
time(TT)  

4.62924*** 1.56510 2.96 0.0031 1.56170 7.69678 

Effect of parking(P) 7.02911*** 2.08879 3.37 0.0008 2.93515 11.12306 

 Non-random parameters in utility functions  

Effect of crowding 

on trains(CR) 
0.48521 2.32328 0.21 0.8346 -4.06834 5.03876 

Safety  2.43142*** 0.75117 3.24 0.0012 0.95915 3.90370 

Ticket fare -6.37722*** 1.88068 -3.39 0.0007 
-

10.06329 
-2.69115 

Headway -1.21434 0.94453 -1.29 0.1986 -3.06558 0.63689 

Station one specific 

constant  
-0.62974** 0.24909 -2.53 0.0115 -1.11795 -0.14154 

 Distns. Of RPs. Std. Devs or limits of triangular 

NsNUTT 4.77377* 2.75816 1.73 0.0835 -0.63123 10.17966 

NsNUP 0.10679 1.29036 0.08 0.9340 -2.42228 2.63585 

Log likelihood -815.09673 

Chi-square [9 d.f.] 252.39428 

Significance level 0.0000 

Pseudo-
2R  0.1283 

Inf. Cr. AIC/N 1.213 

Note: ***, **,* ==>Significance at 1%, 5% and 10% confidence levels respectively 
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The results started with the parameter estimates within an MNL model, (see Table 

8.3), which are the initial values of the parameters in the ML model and required by 

Nlogit 5. The initial MNL model is statistically significant, (Chi-square value of 

237.21264 with 6 degrees of freedom), and all the parameters are statistica l ly 

significant, except for the effect of crowding on train with a p-value of 0.6229, and 

met our expectations / assumptions. In other words, the effects of travel time, parking 

and safety all have positive signs. This means that the higher the utility for travel time 

and parking and the safer a train station is perceived to be, the more likely that station 

is to be chosen. In the case of the effect of travel time above, the “utility” has a negative 

value and is usually expressed as a disutility, i.e. the larger its negative value, the 

greater the disincentive to travel, and the less the station’s utility, which aligns with 

the findings of early studies related to travel time (Li et al., 2010; Mackie et al., 2003). 

Thus, the positive coefficient of the effect of travel time means that the larger the 

disutility of travel time to a particular station, the lower the probability that that station 

would be chosen, which is as we would expect.  

The parameters for ticket fare, headway and station one specific constant have negative 

signs. The first two imply that the more expensive the ticket and the longer the time 

between trains at a particular station, the lower the probability of that train station 

being chosen. 

Based on Table 8.3, only the parameter of the effect of crowding on trains is 

statistically insignificant. However, it does still have some impact on P&R users’ 

choice. Similar to the effect of travel time, its values are negative and crowding should 

also be taken as one of the components of overall disutility of station choice for P&R 

users. Therefore, the positive parameter of the effect of crowding on trains means that 

the greater the disutility of crowding on trains, the lower the probability that the station 

would be chosen.  

In general, the signs of these parameters estimated in the MNL model are reasonable 

and align with expectations. 

Based on the initial parameter estimates within the MNL model, Nlogit 5 re-estimated 

all parameters in the overall model within the ML model. The results are shown in 

Table 8.4. The model is statistically significant, with a Chi-square value of 252.39428 

with 9 degrees of freedom, a p value of 0.0000 and a pseudo- 2R  of 0.13, which 
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indicate that the data can fit the overall ML model. However, when compared to the 

MNL model used to estimate the starting values for the parameter estimates, we are 

unable to conclude that the fitted ML model is any better, based on the results of the 

2  test. This is because the Chi-square value, calculated with the two log likelihood 

values in the two models, is 3.46 (i.e. (   2 816.83377 815.09672     )), which is 

less than the Chi-square critical value with two degrees of freedom of 5.991. 

Additionally, we compared the AIC/N values of the two models and found their values 

to be almost the same. Therefore, there were no obvious differences between the two 

models. 

Based on Table 8.4, we also concluded that the mean of both random parameters over 

the sampled population is statistically different to zero, i.e. the p  value for the effect 

of travel time parameter is 0.0031 and for the effect of parking is 0.0008, which are 

less than alpha equal to 0.05, (i.e. the 95% confidence interval). Table 8.4 also shows 

that the parameter estimates for the derived standard deviations for the effect of travel 

time are statistically significant, which implies the parameter coefficients around the 

mean parameter estimate over the sample population is heterogeneous, (i.e. parameter 

estimates is individual-specific and may be different from the sample population mean 

parameter estimate). However, the dispersion of the effect of parking parameter is 

statistically insignificant, which indicates parameter estimates may be same over 

sample population and can be captured within the mean. Therefore, we had to re-

estimate the overall ML model, retaining only the effect of travel time parameter as a 

random parameter. The results are given in Table 8.5. 

Table 8.5 Estimation of parameters within ML based on only retaining the effect of 

travel time as a random parameter 

 Coefficient  
Standard 

Error 
z 

Prob. 

│z│>Z* 

5% Confidence  

Interval 

 Random parameters in utility functions 

Effect of travel 
time(TT)  

4.60317*** 1.50224 3.06 0.0022 1.65883 7.54750 

 Non-random parameters in utility functions  

Effect of parking 

(P) 
7.00052*** 2.03170 3.45 0.0006 3.01846 10.98258 

Effect of crowding 
on trains(CR) 

0.47763 2.30914 0.21 0.8361 -4.04819 5.00346 

Safety  2.41836*** 0.71987 3.36 0.0008 1.00745 3.82928 

Ticket fare -6.34539*** 1.80603 -3.51 0.0004 -9.88513 -2.80564 

Headway -1.20726 0.932338 -1.29 0.1954 -3.03470 0.62018 

Station one 

specific constant  
-0.62653*** 0.24238 -2.58 0.0097 -1.10158 -0.15148 

 Distns. Of RPs. Std. Devs or limits of triangular 
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NsNUTT 4.72447* 2.65998 1.78 0.0757 -0.48901 9.93794 

Log likelihood -815.10021 

Chi-square [8 d.f.] 252.38753 

Significance level 0.0000 

AIC/N 1.212 

Note: ***, **,*==> Significance at 1%, 5% and 10% confidence levels respectively 

Comparing Table 8.5 with Table 8.4, we found that there were no significant 

differences between the two models, with just the parameter estimates in Table 8.5 

being less than the ones in Table 8.4. Nevertheless, we considered that the model with 

one random parameter was still better than the model with two random parameters, 

based on the model fitness (AIC/N: 1.212 vs 1.213). Thus, the effect of the travel time 

parameter ( )ETT  can be written per equation (8-3): 

4.60317 4.72447ETT N                                                                                   (8-3) 

8.3.2 Revealing preference heterogeneity 

The above section has proven the existence of heterogeneity in the mean of effect of 

travel time parameter estimates over the sampled population. In this section, we 

explore the possible sources of the heterogeneity. We compared the effect of travel 

time random parameter with each individual’s personal attributes, (such as age, gender 

and annual income), to test whether the heterogeneity in the effect of travel time 

parameter is the result of differences in individuals’ attributes. The results are shown 

in Table 8.6. 

Table 8.6 Individuals’ preference heterogeneities of the random parameter 

 Coefficient  
Standard 

Error 
z 

Prob. 

│z│>Z* 

5% Confidence  

Interval 

 Random parameters in utility functions 

Effect of travel 

time(TT)  
4.92254*** 1.77899 2.77 0.0056 1.43641 8.40867 

 Non-random parameters in utility functions  

Effect of Parking 
(P) 

5.51980*** 1.93371 2.85 0.0043 1.72980 9.30979 

Effect of crowding 

on trains(CR) 
2.43479 2.73706 0.89 0.3737 2.92976 7.79933 

Safety  2.36643*** 0.77899 3.04 0.0024 0.83963 3.89322 

Ticket fare -5.73641*** 1.83821 -3.12 0.0018 -9.33924 -2.13357 

Headway -2.0618* 1.15097 -1.79 0.0732 -4.31767 0.19406 

Station one specific 
constant  

-0.69657** 0.28292 -2.46 0.0138 -1.25109 0.14205 

 Heterogeneity in mean, Parameter: Variable 

NUTT:AGE -0.18146 0.13907 -1.3 0.1920 -0.45403 0.09111 

NUTT:GEN 0.68795 0.63418 1.08 0.2780 -0.55502 1.93092 

NUTT:INC 0.01295 0.2810 0.46 0.6449 -0.04212 0.06802 

 Distns. Of RPs. Std. Devs or limits of triangular 

NsNUTT 5.15902 3.19925 1.61 0.1068 -1.11140 11.42944 

Log likelihood -676.58094 

Chi-square [11 d.f.] 193.94263 
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Significance level 0.0000 

Adjust R-square 0.1167 

Inf. Cr. AIC/N 1.232 

Note: ***, **,* ==> Significance at 1%, 5% and 10% confidence levels respectively 

Table 8.6 shows that the overall model is statistically significant, (Chi-square value of 

193.94263 with 11 degrees of freedom). The overall model fit, obtained from the 

pseudo- 2R , is 0.12 which is statistically acceptable for this class of model. 

Focusing on the output pertaining to the random parameters, the dispersion of the 

effect of travel time parameter is statistically insignificant, indicating that the 

differences in the marginal utilities held for the effect of travel time cannot be 

explained completely by the differences in these individuals’ attributes (i.e. age, 

gender and annual income). However, the results do indicate a relationship between 

them as the values of NUTTs are not zero. The heterogeneity in the mean parameter 

estimates for age of -0.18 implies that sensitivity to the effect of travel time, over the 

sampled population, decreases as an individual’s age increases, given that the effect of 

travel time is negative. In other words, younger individuals are more sensitive to travel 

time than elder individuals. The heterogeneities in the mean parameter estimates for 

income and gender are positive, which means the higher- income individuals tend to 

be more time-sensitive than those with smaller incomes and that females are more 

sensitive to the effect of travel time than males, due to gender being represented as a 

dummy variable with male = 1 and female = 0. 

8.3.3 Elasticity analysis for key factors 

Elasticity is a ratio of the variation in percentage of the dependent variable to the 

percentage change of some independent variables, which is generally used to analyse 

the relationship between the variation of percentage of the quality demanded and 

variation of percentage of some factors (Hensher et al., 2005). 

In the research, we used it to investigate the relationship between the percentage 

change of station choice probabilities and percentage change of the six factors. The 

results are shown in the following table. 

Table 8.7 Elasticity analysis 

 
Partial 
Effect 

Standard 
Error 

z 
Prob. 

│z│>Z* 
95% Confidence 

Interval 

Safety 0.23067*** 0.02215 10.42 0.0000 0.18726 0.27407 

Ticket fare -0.57283*** 0.10240 -5.59 0.000 -0.77354 -0.37212 

Headway -0.47128*** 0.04429 -10.64 0.000 -0.55808 -0.38448 
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Effect of travel 

time 
0.54741*** 0.04917 11.13 0.000 0.45104 0.64377 

Effect of 
crowding on 

trains(CR) 

0.43404*** 0.06336 6.85 0.000 0.30985 0.55822 

Effect of 
Parking (P) 

0.23401*** 0.02683 8.72 0.000 0.18143 0.28659 

Note: ***, **,* ==> Significance at 1%, 5% and 10% confidence levels respectively 

Based on the table 8.7, all of the elasticities are statistically significant at the 99% 

interval confidence level. The elasticities for safety, the effect of travel time, the effect 

of crowding on trains and the effect of parking are positive, which imply that a 1 

percentage increase in these attributes will increase the probability of station choice 

separately by 0.23, 0.55, 0.43, and 0.23. The elasticities for ticket fare and head way 

are negative, which means that a 1 percentage of the both attributes will decrease the 

choice probabilities of train stations by 0.57 and 0.47. Comparing all absolute elastic ity 

values, we found the elasticity for ticket fare is biggest, which means the effect of its 

variation on station choice is biggest, next is the effect of travel time, the third and the 

fourth are headway and the effect of crowding on trains respectively, the safety and 

the effect of parking are relative inelastic. This comparison can provide transport 

planners and railway industries with evidence to improve rail patronage. 

8. 4 Evaluation of experiment and the main model using eye tracking methods 

8.4.1 Method 

In order to evaluate the overall model, we designed an eye tracking experiment based 

on the questionnaires used in the station choice survey mentioned in Chapter 4. The 

data from the experiment are the measurements of visual attention given to each 

attribute in the questionnaire by each respondent. With these data, we can rank the 

level of significance of each attribute for P&R users’ choice within the discrete choice 

model. A comparison of these rankings with the results of the overall model, developed 

in terms of SP data, allowed us to evaluate the model and determine its consistency 

with the observations.  

The process for evaluating the overall model was as follows: 

 Step1: Data collection  

The data used to develop the new station choice model were from an eye tracking 

experiment and used on the basis that respondents in the eye tracking experiment and 

those in the station choice survey are affected in a similar way by the factors 

influencing station choice. We firstly designed the questionnaires based on our 
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objectives, as mentioned in Chapter 4, and the questionnaires used in the station choice 

survey. They were then input into the eye tracking instrument, consisting of a 60Hz 

Remote Eye Tracking Device (RED) and a laptop. The experiment was implemented 

at Curtin University. Thirty- five respondents were invited to attend. Two types of 

visual attention data were obtained, the durations of the fixations on each particular 

area of interest (AOI) on the questionnaire and the frequencies of these fixations. A 

sample questionnaire showing the AOIs is presented in Figure 8.4. 

 

Figure 8.4 Sample questionnaire with AIOs 

 Step 2: Creating an index for visual attention  

The new station choice model was developed based on the visual attention data. In 

order to simplify the model, avoid missing any information and minimise the bias that 

each datum could produce, we created a new index, (called average fixation), by 

combining both duration and frequency of fixation. For each AOI, we summed the 

duration of all the fixations on that AOI, then divided by the number of times 

(frequency) the eye fixed on that AOI, i.e. to produce the mean fixation time. The 

results were presented graphically using a heatmap which displays a respondent’s 

visual attention in colour, ranging from green, (low attention), to red, (high attention). 

An example heatmap can be seen in Figure 8.5. 

 

Figure 8.5 Example Heatmap 
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 Step 3: Estimating the station choice model and ranking the factors 

Based on the visual attention data, we developed a multinomial logit model to explore 

station choice behaviour. All of the parameters’ coefficients were estimated with 

Nlogit 5, which indicated the weights for each factor in the model. Then, all the factors 

were ranked based on their weights. 

 Step 4: Ranking the factors in the overall model developed based on the SP 

data 

 Step 5: Comparison of both rankings 

8.4.2 Station choice model based on the eye tracking data 

Using the data from the eye tracking experiment, we developed a multinomial logit 

model exploring station choice behaviour. In contrast to the SP data in the station 

choice survey, the factors in the eye tracking experiment were determined based on 

the AOIs in the questionnaires used in the eye tracking experiment. To compare the 

model with the eye tracking and the overall model with the SP data, we reorganised 

the eye tracking data based on the variables in the overall model developed based on 

the SP data. In other words, we divided the eye tracking data into six groups with the 

same variables as in the overall model based on the SP data, i.e. travel time, parking, 

crowding, safety, headway (train frequency) and ticket. Based on these eye tracking 

variables, the utility function related to station choice can be written as follows: 

i TT TTi p pi Cr Cri sa sai C Ci tf iU u u u u u tf                                                        (8-4) 

where , , , , ,TT p Cr sa C tf       are the estimated coefficients, the values of which 

indicate the weight of the relevant parameter. 

8.4.3 Results and discussion 

This model was also developed using Nlogit 5, with the results shown in Table 8.8. 

Table 8.8 Estimation of parameters in the model with the duration of fixation 

 Coefficient 
Standard 

Error 
Z 

Prob. 

*z Z   
95% Confidence Interval  

The effect of travel 

time 
-0.00026 0.00040 -0.65 0.5171 -0.00105 0.00053 

The effect of Parking 0.00034 0.00027 1.28 0.2010 -0.00018 0.00086 

The effect of Crowding 0.00155*** 0.00060 2.59 0.0096 0.00038 0.00273 
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Safety 0.00052 0.00077 0.67 0.4997 -0.00099 0.00204 

Ticket fare 0.0045*** 0.00121 3.71 0.002 0.00212 0.00688 

Headway 0.00084** 0.00034 2.46 0.0138 0.00017 0.0015 

Station one specific 

constant 
-0.08560 0.15777 -0.54 0.5874 -0.39481 0.22362 

Log Likelihood -120.17314 

Chi-square [6 d.f.] 36.89259 

Pro chi-squared > value 0.000000 

Note: ***, **,*==>Significance at 1%, 5% and 10% confidence levels respectively 

Table 8.7 shows that the model is statistically significant, (Chi-square of 36.89259 

with 6 degree of freedom and a p value of 0.000000). The overall fit of this model 

is adequate. However, only three attributes are statistically significant and only one 

uncertain factor is included. Among the six attributes, the most important factor is the 

train frequency, followed by safety, ticket fare (cost), then the other three uncertain 

factors in which parking is the most important, then travel time and lastly crowding.  

Similar to the ranking process above, we also ranked the factors based on the 

parameter estimates from the model (4-3) with the MNL approach. The results are 

also shown in Table 8.9. The ranking sequence based on the both experiments, 

except the crowding, is completely different, so that we cannot conclude that the 

longer respondents fix their eyes on an attribute, the more important that attribute is 

for respondents in choosing a train station. This can be the fact that the eye tracking 

experiment was conducted at the university and it cannot be assumed that all the 

respondents were P&R users. Additionally, we analysed the uncertain factors and the 

results were consistent, i.e. parking, travel time and crowding are ranked as first, 

second and third place respectively. This aligned with our expectations as P&R users 

are car users and the attributes affecting their parking and driving of cars should be 

critical to P&R travel. Therefore, it is reasonable that the effect of parking attribute is 

the most important and the travel time is ranked second.  

Table 8.9 Comparison of the significance of attributes between the eye tracking data 
and SP data 

 1 2 3 4 5 6 

Model (4-3) 
SP Data 

Parking  
Ticket 

fare 
Safety Travel time  

Train 
frequency 

Crowding 

Model (8-4) 

Eye Tracking 
Data 

Train 

frequency  
Safety  Ticket fare  Parking  Travel time  Crowding  
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8. 5 Chapter summary 

In this chapter, an overall model of station choice under uncertainty, combining the 

three sub-models established in the previous chapters and other factors in the station 

choice survey, has been developed. The ML approach was applied to estimate the 

model, in which the effect of travel time was taken as a random parameter, and its 

distribution assumed to be normal, based on individuals’ parameter estimates.  

With this model, we found that the mean of the effect of travel time random parameter 

is statistically different to zero over the sampled population, which indicated that 

preference heterogeneity existed. Moreover, we found that age, gender and annual 

income do affect preference heterogeneity even though their estimates are statistica l ly 

insignificant. This means that the young people, females and individuals with higher 

incomes are more sensitive to the effect of travel time.  

Moreover, elasticity analysis was also conducted in the chapter. The results showed 

that the percentage increase in safety, the effect of travel time, the effect of crowding 

and the effect of parking will increase the probability of station choice, while the 

percentage increase in ticket fare and headway will decrease the probability of station 

choice, which can provide transport planners and railway industries with the evidence 

to improve rail patronage. 

Additionally, we used an eye tracking experiment to test which factors are important 

to respondents in their choice of departure train station. The experiment assumed that 

the higher the frequency and the longer the duration of the eyes’ fixation on an 

attribute, the more that attribute is likely to influence a respondent’s choice behaviour. 

Based on this assumption, an MNL model was developed using the respondents’ 

duration of fixation on the factors. 

The results showed that the rankings for the factors, (except crowding), in the two 

models are different, which implies that the factors respondents pay more time looking 

at are not as important as other factors in the process for choosing departure train 

stations. Possible reasons include the questionnaire design being complex and the 

wording for some attributes may be ambiguous or difficult to understand, requiring 

respondents to spend more time on that particular attribute than would be expected, 

based on its actual importance. 
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 

9. 1 Introduction  

This chapter summarises the major findings and key achievements of the research into 

modelling station choice under uncertainty for P&R users, and discusses the 

limitations in data collection, sample size and model development. Recommendations 

for improvements and directions for future research are also included. Additiona lly, 

the research objectives and relative sub-objectives are revisited to determine whether 

they have been achieved or not. 

The research primarily aims to explore the station choice behaviour of P&R users 

under uncertainty, which was proposed and explained in Chapter 1. In order to achieve 

this objective, Chapter 2 first reviewed the previous research related to station choice, 

P&R mode and travel choice under uncertainty. Based on this, the research gaps in 

station choice modelling were identified and the need to undertake the research 

confirmed. Then, Chapter 3 outlined the methodology used to develop the station 

choice models for P&R users under uncertainty. In order to implement the station 

choice models developed by this study, an SC experiment and an eye tracking 

experiment were set up and discussed in Chapter 4. Using these data, Chapters 5, 6, 

and 7 separately outlined the effects of three different uncertain factors, (namely, travel 

time to departure train station, parking search time and crowding on trains), on station 

choice and measured the respondents’ risk attitude towards each uncertainty. The 

effect of individuals’ experiences on their risk attitude and the relationship between 

the respondents’ risk attitude and boarding numbers at the same train station were also 

analysed. The output of these models may be very useful in assisting transport planners 

to more accurately and reliably predict P&R demand, local governments to make 

investment decisions and price P&R facilities, and public transport operators to 

improve the service quality of P&R facilities. Lastly, Chapter 8 developed an overall 

station choice model under uncertainty by combining the effects of these three 

uncertain factors with the three certain factors. By using the model, the probability that 

a train station is chosen can be calculated, individuals’ preference heterogeneity for 

the effect of travel time to stations can be analysed and elasticity analysis can be 

investigated. 
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9. 2 Revisiting the thesis objectives 

The research aimed to model the choice of departure train station for P&R users under 

the uncertainties of travel time to station, parking search time and crowding on trains. 

In order to achieve the objective, four sub-objectives were set up. They are checked 

below to see that they have been met. 

(a) Develop a novel framework for estimating P&R users’ station choice under 

uncertainty  

While studies involving station choice modelling have been conducted for more than 

40 years, there is only limited research available in the literature. Most previous station 

choice models were estimated using discrete choice techniques, the utility functions of 

these models being linear, and they didn’t consider the effects of variations in the 

factors affecting station choice and respondents’ risk attitudes to these variations.  

However, the previous literature did identify that uncertainty or variations in variables 

such as travel time, parking search time and crowding on trains can affect station 

choice and that an individual’s personality, (such as attitude to risk), may also 

influence station choice. Therefore, it is necessary to develop a new framework to 

explore P&R users’ choice of departure train station under uncertainty. The framework 

is shown on Figure 9.1 and described in detail in Chapter 3. In order to explore station 

choice under uncertainty for P&R users, we developed four station choice models 

including three sub-models and an overall model. Generally, these models were 

developed within discrete choice models, the specifications included the multinomia l 

logit model, the latent class model and the mixed logit model. The utility functions 

within them were non-linear and developed with the mean-variance approach, in which 

the utility contributed by the variation of uncertain factors was evaluated based on 

decision making theories under uncertainty (or risk), i.e. cumulative prospect theory 

and extended expected utility theory. With these models, the probability that a 

departure train station is chosen and a respondent’s risk attitude towards variations in 

the uncertain factors are measured. Their influence on station choice is also estimated 

and an individual’s preference heterogeneity for station choice can be captured. 



162 

 

 

Figure 9.1 Framework for modelling station choice under uncertainty 

(b) Investigate and identify the key factors, (both certain and uncertain), affecting train 

station choice for P&R users 

In the research, two ways were used to identify key factors influencing train station 

choice for P&R users. They were introduced in Chapters 2 and 3. Firstly, Chapter 2 

summarised the key factors used in previous station choice models. Then, we 

conducted a train survey, in which we listed all factors in the previous literature and 

asked respondents to identify any other factors they considered important but were not 

included in the previous literature, (see Appendix C). In Chapter 3, we built up a 

decision tree to summarise all the factors influencing P&R users’ choice for departure 

train station, which further tested the completeness of the factors. By these actions, 

possible factors influencing P&R users’ choice for departure train station were 

identified. 

(c)  Develop station choice models under uncertainty for P&R users 

Four station choice models were developed in the research. They are the station choice 

sub-model under travel time uncertainty, the station choice sub-model based on the 

effect of variability of crowding on trains, the station choice sub-model for the 

variability of parking search time and the overall station choice model under 

uncertainty. The method to develop the models, their specifications and their results 

were presented separately in Chapters 5, 6, 7 and 8 respectively. 
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The effect of 
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Decision making theories 
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(d) Implement and evaluate the station choice models.  

These were investigated in Chapters 5, 6, 7 and 8. Chapter 5 applied the sub-model of 

travel time uncertainty to three train stations in Perth and found that respondents’ 

attitudes towards travel time uncertainty is risk averse. Moreover, it revealed that a 

P&R user’s experience and perception could play vital roles in their risk attitude 

toward station choice under uncertainty, which provides useful information for 

transport planners to improve the local network around train stations. Chapter 6 

validated the station choice sub-model of the effect of variability of crowding on trains 

with the chi-squared test. Moreover, a sensitivity test of the sub-model and an analysis 

of the effect of individuals’ preference heterogeneity on station choice were conducted. 

The results revealed that the wealthier an individual is, the less likely he/she is to use 

crowded trains, which provides public transport authorities with evidence to propose 

a graded service. For example, differently priced ticket fares (e.g. business first and 

second class), could be offered according to the level of crowding on the train, and 

passengers could choose different tickets based on their income levels. Chapter 7 

applied the station choice sub-model under parking search time uncertainty to measure 

respondents’ risk attitude towards parking search time uncertainty, which provides a 

basis for government to invest in P&R facilities. Chapter 8 validated the overall station 

choice model under uncertainty with an eye tracking experiment. 

In summary, the thesis has modelled station choice under uncertainty for P&R users 

and all four sub-objectives derived from the overall goal have been achieved. 

9. 3 Conclusions of the research  

This section highlights the major conclusions and findings of the research. 

9.3.1 The introduction of new factors into station choice models 

Station choice decision making is complex and can be influenced by many factors. 

Previous studies identified some, such as, in-vehicle travel time, train frequency, 

safety, travel time, cost, parking cost, parking capacity, etc. In the research, new 

explanatory variables were included in the station choice models, such as crowding 

attributes, (i.e. the probability that all seats have been taken and the density of 

passengers standing in a carriage), parking search time, parking availability, etc. Given 

that some of them have been identified as uncertain, the attributes reflecting their 

variations were also introduced. For example, travel time to train station, in the prior 
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studies, was a fixed value for each level, but in the research, we divided travel time 

into three states, i.e. normal, bad days and good days. For each normal travel time, bad 

day and good day travel time and their frequencies varied across all alternatives. Based 

on these, four extra attributes reflecting travel time uncertainty were introduced. 

Similar to travel time to train station, regular parking search time, the worst parking 

search time in a month, and their relative frequencies, and regular crowding and the 

frequency that trains were too crowded to board in a month were introduced to 

respectively reveal the variations in parking search time and crowding on trains. With 

these new factors, we can not only better understand station choice behaviour, but 

more importantly, can better predict station choice under uncertainty. 

Generally, the station choice models, involving both the new added factors and the 

factors identified in the previous literature, can better explain the choice behaviour 

under uncertainty and make a basis for more accurately predicting P&R demand. 

9.3.2 Development of new station choice models 

All previous station choice models were developed within a discrete choice theory 

framework, but they are either multinomial logit or nested logit, (or cross-nested logit), 

models with access mode choice. All these models have a closed form and can readily 

calculate choice probability. However, they are restricted in the extreme value 

distribution, especially for multinomial logit (MNL), and it assumed that the 

unobserved utility is not correlated over individuals, which is not consistent with 

reality. Therefore, the research tried another advanced logit model (i.e. mixed logit) to 

explore station choice behaviour, as it is more flexible and can approximate any 

random utility model. Moreover, it resolved the three limitations of the MNL by 

considering individual variations in the random variables, and allowing patterns to be 

substituted without restrictions and the unobserved factors to be correlated with respect 

to time. Furthermore, the choice probabilities can be simply computed through 

simulation. The application of the mixed logit model for modelling station choice not 

only realistically explained the choice behaviour but also clearly revealed individua l’s 

preference heterogeneity.  

Additionally, a Latent class (LC) model was firstly used to analyse the individua l’s 

heterogeneity on station choice. With this model, we successfully proved the effect of 

the heterogeneity of P&R users with different income levels on station choice.  
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9.3.3 Creation of a new decision framework for station choice 

In contrast to the prior decision frameworks for station choice, the decision framework 

in the research took the effects of uncertain factors on station choice into account. As 

an example, in previous studies travel time to train station was an independent factor 

contributing to the utility related to station choice. Nevertheless, in the new 

framework, travel time was divided into different types, i.e. regular travel time, the 

best and the worst travel times. Thus, by assessing the effect of each type separately,  

the effect of variations in travel time was introduced into the station choice models. 

Given that the effect of uncertainties was being considered, decision making theories 

under uncertainty (or risk) were introduced into the framework of station choice. It is 

worth noting that expected utility theory (EUT), which is a normative decision making 

theory under uncertainty (or risk) and widely used in studies of travel choice, was not 

used. Instead cumulative prospect theory (CPT) and extended expected utility theory 

(EEUT) were applied to evaluate the effect of uncertainties on station choice. In 

contrast to the EUT, in which the probabilities weighting each outcome are objective, 

the probabilities weighting each outcome in both the CPT and the EEUT are more 

subjective. Hence, the utilities related to the variation of uncertainties evaluated within 

the CPT and the EEUT can reflect individuals’ preference heterogeneity. Additiona lly, 

non-linear value functions developed within the CPT and the EEUT, similar to the 

EUT, can indicate respondents’ risk attitudes. Therefore, the models developed within 

the new framework may better explore station choice behaviour than the previous 

station choice model due to consideration of the effect of variations in uncertainty, 

individuals’ risk attitudes and individuals’ preference heterogeneity.  

9.3.4 Creation of a new picture display of crowding closer to the real situation 

In previous literature, crowding levels in the stated choice (SC) experiments were 

displayed pictorially from a bird’s eye view, so that seat availability and the density of 

standees were often taken as two independent crowding measurements presented to 

respondents. However, in this research in-vehicle crowding levels in the SP 

experiment were displayed from the front, i.e. the view respondents would see looking 

into the carriage when the doors open.  

Moreover, a new crowding measure was created based on the pictorial display. 

Respondents cannot distinguish seat availability from the density of standees once the 
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door is opened, especially in overcrowding situations or when passengers are clustered 

close to the doors rather than moving down inside the carriage. The crowding level 

they perceive is therefore a function of, and interaction between, both available seats 

and density of standees. Hence, the interaction between seat availab ility and density 

of standees was taken as the crowding measurement in the research. 

9.3.5 Main conclusions from the station choice models 

(a) Travel time sub-model of station choice 

The travel time sub-model of station choice is a multinomial logit model, in which the 

utility function is established using a combination of CPT and the mean-variance 

approach. Based on the goodness of fit test with the SP data in the research, the non-

linear utility specification with power value function and GE risk weighting function 

is the preferred model. With this model, we concluded that: ① greater travel time 

variability in the loss situation, i.e. travel on “bad traffic” days, and longer regular 

travel times could lead to lower utility and lower probability that a station is chosen; 

② P&R users’ attitudes towards travel time variability were risk averse; ③ the risk 

attitude toward travel time variability has some influence on station choice; and ④ 

P&R users who have personally experienced higher travel time variations and greater 

differences between perceived and estimated travel times tend to be more risk averse 

towards their station choice under travel time variability than those who have 

experienced or perceived less travel time variations. This indicates that P&R users’ 

experiences and perceptions could play vital roles in risk attitude toward station choice 

under uncertainty. 

(b) Crowding sub-model of station choice 

The sub-model of station choice based on the effect of crowding variability is also a 

multinomial logit model, in which the utility function is developed with the 

combination of EEUT and the mean-variance approach. The non-linear specifica t ion 

developed in EEUT is made up of a power value and TK risk weighting functions, in 

which the crowding measurement is created based on the interaction between seat 

availability and density of standees. The results from the sub-model showed that: ① 

the more crowded a train is and the longer time individuals spend  boarding the train 

at a station, the less utility that station has; ② respondents’ attitude towards crowding 
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on trains is risk averse; and ③ the greater risk aversion respondents displayed, the 

fewer individuals boarding at the train station. A latent class model of station choice 

under crowding variability was also developed. With this model, we found that 

individuals with higher incomes were likely to choose the station where the trains were 

less crowded. This indicates that commuters with higher incomes place a higher value 

on, and potentially are prepared to pay more for, a more comfortable travel 

environment than those with lower incomes, i.e. that respondents’ preference for the 

effect of crowding on station choice under annual income is heterogeneous.  

(c) Parking search time sub-model 

The sub-model of station choice under the variability of parking search time is an ML 

model, in which the utility of a train station is measured by a hybrid function defined 

by two sub-functions for two situations, i.e. parking available or not available in the 

legal P&R areas. When parking is available, parking availability at a given access time 

and parking fee are the main considerations for P&R users in choosing their departure 

train stations. When parking is not available in legal P&R areas, (i.e. all spaces are 

occupied), the utility of a train station is a combination of the variation in parking 

search time (PST), (estimated by CPT based on the normal PST, the worst PST, and 

their frequencies in one month), the parking fine and the frequency of patrolling for 

illegal parking. With this sub-model, we found that P&R users showed risk aversion 

to the variations in PST. Larger variations in PST, higher parking fines and more 

frequent patrols for illegal parking, lowered the utility at a train station and the reduced 

the probability that the station was chosen, which provides useful insights for the 

implementation of public transport policies (such as ticket price policy). 

(d) Overall model 

The overall model of station choice under uncertainty for P&R users was developed 

with an ML approach based on the utilities from the above three sub-models and other 

factors in the station choice survey, in which the utility of travel time was tested as a 

random parameter with normal distribution. From the overall model, we obtained the 

ranking of factors influencing station choice for P&R users. The results showed that 

the effect of parking attributes on station choice is the most important for P&R users, 

followed by ticket fare and safety, then the effect of travel time to train station, train 

frequency, and lastly the effect of crowding on trains. This provides public transport 
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operators with useful information to focus improvements to station service quality to 

attract more P&R users, especially when budgets are constrained. Moreover, the model 

results revealed that the young, females and individuals with higher incomes are more 

sensitive to the effect of travel time, which indicates that there is individual preference 

heterogeneity for the effect of travel time. Furthermore, the elasticity analysis based 

on the model provide transport planners and railway industries with the evidence to 

improve rail patronage.  

Additionally, by eye tracking techniques, we found that the factors respondents pay 

more time looking at are not necessarily more important than other factors in the 

process for choosing departure train stations. 

9. 4 Research limitations 

To our knowledge, this is the first attempt to model station choice behaviour for P&R 

users under uncertainty. The research has some limitations due to time constraints and 

limits in experience of the researcher. This section discusses the limitations in the 

identification of uncertain factors, data collection, sample size and the methods used.  

(a) Inadequacies of uncertain factors considered in the station choice models  

In the research, three factors, i.e. travel time to departure train stations, parking search 

time and crowding on trains, were taken as uncertain. These three factors prove that 

station choice is a decision under uncertainty and that models considering their 

variations can better explain station choice behaviour than the previous station choice 

models. As well as these three, there are a number of other uncertain factors that could 

influence station choice such as crime rate, (which can vary from time to time and 

from station to station), departure time, (which can vary by time-of-day and day-to-

day depending on the required arrival time and the traffic situation on the road network 

around the station), and in-vehicle travel time, (which is normally fixed and calculated 

based on the train timetable but can be adversely affected by incidents and weather 

conditions). The station choice model under uncertainty could therefore be further 

improved by adding the effects of more of these uncertain factors. 

(b) Limitation of survey implementation  

The data used to model station choice under uncertainty in the research were collected 

by train station choice surveys conducted at the seven train stations from 9:00 am to 

3:00 pm for every surveying day. Although the seven train stations were proposed by 
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our industry and government partners, met the research’s selection criteria and were 

representative, Perth has 70 train stations and we cannot assume that the survey 

covered the opinions of all P&R users at the seven stations or at the other stations on 

the Perth train network. 

Another limitation is the time we were permitted by the Public Transit Authority to 

collect the data is inconsistent with the time that most of P&R users usually travel (i.e. 

before 9am). Legal P&R facilities in Perth are usually full or almost full before 8:30am 

every weekday. Therefore, not all of the respondents in the surveys were P&R users. 

Even though it is reasonable that train passengers were taken as potential P&R users, 

their choice or considerations may be somewhat different from those of actual P&R 

users. In the survey, we asked respondents to make a station choice assuming they are 

P&R users. 

(c) Limitation of sample size  

The total sample size used to model station choice under uncertainty is 600, which is 

greater than the minimum requirement (84) derived based on the sampling method 

proposed by Rose and Bliemer (2009) and the experience method proposed by Orme 

(2005). However, the sample size for some of the individual stations didn’t meet the 

minimum requirement. For example, the sample size for Midland is 29, Warnbro 83, 

Greenwood 72. Given that these models were also applied for specific analyses 

focusing on single stations, some parameters estimated with the data from single 

train stations may not be significant. Therefore, more data may to be collected for 

each train station to test the hypotheses for each individual station in the research in 

the future.  

(d) Limitations of modelling  

In the research, the data used to estimate the sub-models and the overall model were 

from the same questionnaire, due to the limitations of time and resources. Generally, 

the data collected from the station choice survey can be divided into four parts, i.e. 

related to parking, travelling to train station, crowding on trains and other factors. The 

first three sets of data, together with the station choice, were used to estimate the three 

sub-models respectively. A choice made by an individual should be based on trading-

off all the factors presented to him/her. In the research, all factors were listed in the 

same questionnaire. Therefore, without any specific techniques in the SC survey, we 
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cannot assume that the choice in sub-models is made only based on the factors related 

to the sub-model, rather than other factors. Hence, studies using special techniques to 

remove, or at least decrease, the interference among multipurpose data should be 

conducted in the future. 

9. 5 Recommendations and Future research directions 

This section discusses recommendations and directions for future research related to 

modelling station choice and the opportunities for strengthening and expanding the 

current approach.  

9.5.1 Future tasks related to data  

As the requirements for comfort on trains and P&R demand have increased, the factors 

related to comfort, (such as the probability that all seats are taken, the density of 

standees in a carriage), and the parking conditions, (such as parking search time), were 

introduced into station choice models in the research. The model considering these 

new factors did explain station choice behaviour in the current context. As individua ls’ 

demand and preferences change over time, more new factors affecting station choice 

could be identified in the future. 

The second task is to update the selection criteria of sample train stations, enlarge the 

sample station sets and collect data from these stations as Perth’s railway system is 

further expanded and travel characteristics change. 

The third task is to enlarge the sample size for each station by more scientific sampling 

methods and re-estimate the station choice models. 

The final task is to undertake a household survey to collect data to be used to explore 

station choice behaviour in the future due to its complexity and the difficult in 

predicting it, especially within the short time period of this research.  

9.5.2 Future work related to the models 

Within CPT, a number of different forms have been proposed for the value functions 

and their associated probability weightings (Tversky & Kahneman, 1992). Value 

functions include linear, logarithmic, quadratic exponential, Beli, and Hara., Risk 

weighting functions include linear, power, Wu-Gonzalez, etc. (Stott, 2006). In the 

thesis, we only tested the power value and four popular risk weighting functions within 

CPT. Therefore, different functional forms of cumulative prospect theory based on the 
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different combinations of value functions and risk weighting functions should be 

further investigated in future research with the station choice data. 

There are many descriptive decision-making theories that can be used to analyse 

choice behaviour under uncertainty (or risk). In the thesis, only CPT and EEUT were 

used to explore P&R users’ choice of departure train station under uncertainty. 

Therefore, the application of other decision making theories under uncertainty, (or 

risk), such as Savage’s theory, rank dependent utility theory or dual theory of expected 

utility, etc., for modelling station choice behaviour should be included in future 

research. 

9. 6 Chapter summary 

It is very important to accurately model P&R users’ station choice under uncertainty, 

which can not only provide a basis for improving current P&R demand models, but 

also provide public transport operators with evidence for improving the service 

quality level. However, station choice is a complex behaviour, which is affected by 

many factors. To date, none of the research can fully explain, and therefore reliably 

predict, it. In the research, more factors were identified, the effects of variations in 

uncertain factors were evaluated by the combination of the decision making under 

uncertainty (or risk) and mean-variance approach, the respondents’ attitudes towards 

uncertainty were measured, individuals’ preference heterogeneities were analysed, 

and respondents’ willingness to pay for the deduction of one unit of effect of 

uncertainty was estimated. The results of the research have significant benefits from 

both scientific and socio-economic perspectives.
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APPENDIX B STATIONS’ FACILITIES SURVEY QUESTIONNIARES
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APPENDIX B-1 The Basic Information of Train Stations on Armadale Line (Example only) 

Nu
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er 

Name of 

station 

Platform Park  and  Ride Bike ‘n’Ride 

Bus Rail 

Ticke

t 

machi

ne 

Ticke

t 

check

ing 

machi

ne 

emergency lighting 

Publi

c  

teleph

one 

informa

tion 

chairs 

Undercover 

waiting 

room 

Toilet office 
Security 

personal 

clean

er 

Disable 

path/lift 
Conven

ience 

store 

Water 

foundat

ion 

unlocked 
Locke

d 

Have

/ not 

roo

m 
number 

Have/not number 

1 Perth                        

2 McIver                        

3 Claserbrook                        

4 East perth                        

5 Mount                         

6 Lawley                        

7 Meltham                        

8 Bayswater                        

9 Ashfield                        

10 Bassendean                        

11 Success Hill                        

12 Guildford                        

13 
East 

Guildford 

                       

14 Woodbridge                        

15 Midland                        
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APPENDIX B-2 The Information about P&R Facilities on Armadale Line (Example only) 

Number Name of station Investigating time 

Legal bays 

Illegal  bays 
The number stopping  Number of Disable bays The number of taxi The number of  PTA 

bays 

The 

number 

of M/C 

Locked  unlocked Dv lighting charge 

1 Perth             

2 McIver             

3 Claserbrook             

4 East perth             

5 Mount              

6 Lawley             

7 Meltham             

8 Bayswater             

9 Ashfield             

10 Bassendean             

11 Success Hill             

12 Guildford             

13 East Guildford             

14 Woodbridge             

15 Midland             
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APPENDIX B-3 Land Use around Train Stations on Armadale Line (Example only) 
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1 Perth                       
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Claserbroo

k 

                      

4 East perth                       

5 Mount                        

6 Lawley                       

7 Meltham                       

8 
Bayswate

r 

                      

9 Ashfield                       

10 
Bassende

an 

                      

11 
Success 

Hill 

                      

12 Guildford                       

13 
East 

Guildford 

                      

14 
Woodbri

dge 

                      

15 Midland                       
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APPENDIX C TRAIN STATION SURVEY (EXAMPLE ONLY)  
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APPENDIX D TRAIN STATION CHOICE MAIN SURVEY 

QUESTIONAIRES (EXAMPLE ONLY) 
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APPENDIX E STATION CHOICE PILOT SURVEY QUESTIONNIARES 
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APPENDIX E -1 Train Station Choice Pilot Survey Questionnaires 1 (Example 

only) 
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APPENDIX E - 2 Train Station Choice Pilot Survey Questionnaires 2 (Example 

only) 
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APPENDIX E - 3 Train Station Choice Pilot Survey Questionnaires 3 (Example 

only) 
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APPENDIX E - 4 Train Station Choice Pilot Survey Questionnaires 4 (Example 

only) 
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APPENDIX E - 5 Train Station Choice Pilot Survey Questionnaires 5 (Example 

only) 
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APPENDIX E - 6 Train Station Choice Pilot Survey Questionnaires 6 (Example 

only) 
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APPENDIX E - 7 Train Station Choice Pilot Survey Questionnaires 7 (Example 

only) 
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APPENDIX F Parking Search Time Survey (2014.5.13) 
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APPENDIX F TRAIN STATION CHOICE PILOT SRUVEY 

QUESTIONNIARES (EXMAPLE ONLY) 

Questioner 1 

 

Questioner 2 

 

Questioner 3 
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Questioner 4 

 

Questioner 5 

 

Questioner 6 
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Questioner 9 
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Questioner 11 
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