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Abstract 
 

 

Accidents in process plant industry, loss of lives and damages to the environment are all 

showing the deficiencies of traditional design methods in process plant industry. Numerous 

research in this area shows human-error, lack of knowledge, late analysis on process safety, 

and improper usage of process data as some of the major causes in triggering these accidents.  

 

In this research, the application of Information modelling, mathematical modelling, and 

Artificial intelligence to reduce the risk in different phases, including design, to the operation 

of process plants, were investigated. First, Semantic web and knowledge engineering was used 

to create knowledge bases of process engineering diagrams. Then, new query methods were 

used to study the safety in the design. Second, automation of equipment arrangement design 

was investigated, using mathematical modelling of process equipment. An algorithm was 

developed to study and validate all possible design scenarios. Third, an algorithm was 

developed to develop all possible piping and support design in process plants. Also, machine 

learning classification algorithm was used to automate the stress analysis activity. Finally, 

information modelling was used to collect the data from 3D models of process plants. An 

algorithm was developed to shift the ‘field weld locating’ activity, from the construction phase 

to design phase and the benefits were illustrated. 

 

This thesis makes significant contributions to applying Artificial Intelligent-based methods in 

the automation of design, safety analysis, and data management in process plant industry. The 

contributions includes the development of machine-readable knowledge bases, mathematical 

modelling and automation of equipment arrangement and piping design, application of 

machine learning in stress analysis of piping design, and shifting field-weld joint selection to 

the design phase. This is the first time that each of these methods have been used in process 

plant design and they all have been tested on case studies and the results have been analysed 

and discussed in each chapter.  
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Chapter 1 Introduction 

1.1 Background of process plant accidents, prevention approaches, and 

integrating computer and data science 

The process industry is considered a hazardous industry for both human lives and the 

environment. Accidents in process plants occur in different stages of the plant lifecycle: 

construction, pre-commissioning, commissioning, operation, shutdown, and maintenance. 

There are various traditional methods for preventing accidents, depending on the nature of the 

potential hazards. Process hazard analysis (PHA) is one of the major approaches to accident 

prevention. A review of catastrophic process plant accidents from the past two decades reveals 

the importance of applying PHA in the early stages of the project (i.e., basic design). 

Studies in this area show that limited time, budget, human resources, and knowledge are some 

of the obstacles facing a comprehensive analysis in the early stages of design. Because there 

is a near-zero chance in increasing the available time and budget, new technologies should be 

sought and integrated to assist in this area. 

With new improvements in computer hardware and software systems, artificial intelligence 

(AI), knowledge engineering (KE), and expert systems (ESs) are developing and emerging in 

different fields. These new technologies can be used to increase the safety of process plants in 

the different stages of their lifecycle. 

A more recent definition of AI is about creating models to understand the past and predict the 

future. New core aspects of AI, including machine learning (ML), are introducing smarter 

ways of creating models, in which the algorithms are not generated by human beings, but by 

the machine itself. This approach has the capability to replace traditional methods in which 

predicting the accidents in process plant requires a time-consuming approach and developing 

algorithms is difficult. 

One of the new transitions in technology is from the information/data science field to KE. 

Although proper use of data and their analysis provides powerful tools, KE is able to create 

new leverage in different fields and it is not possible to develop them with pure data science 

approaches. On the contrary, human knowledge, in the form of human language, is required 

to be used for any machine-based analysis. Ontology-based platforms in KE are the basis for 

converting human knowledge into machine-readable knowledge. Different software systems 

in the process plant industry are constantly generating data, which presents the opportunity to 

use KE in this field, to create knowledge-based systems toward a more advanced PHA. 
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The powerful reasoning capabilities of KE systems, integrated with the automated 

programming possibilities of ML, are paving the way toward developing ESs to enrich safety 

analysis in the basic design phases of a process plant project. These ESs can be useful in 

preventing accidents in the commissioning, construction, operation, shutdown, and 

maintenance of process plants, by reviewing the design in the basic stages. 

The link between the process plant industry and AI, KE, and finally, ES, is established through 

the proper use of data, information, and knowledge in this field. Owing to a new set of software 

systems for different design stages of process plants (e.g., process analysis, plot plan 

development, detailed design 3D modeling, and mechanical stress analysis), it is now possible 

to access the required data in the early stages of a new project or to use data from existing 

projects. Extracting, exporting, saving, and importing the data from the first stages of the 

project is the key in developing ESs in this industry. 

1.2 Motivation for this work 

Recent accidents in the process plant industry, the loss of many lives, and irreparable damage 

to the environment demonstrate the unfortunate failure of human beings and the traditional 

methods of designing safe process plants for their whole lifecycle. The lessons learnt from 

these accidents and numerous studies in this area reveal some major causes triggering these 

accidents; for example, human-error, lack of knowledge, late analysis of process safety, and 

improper usage of process data. Integrating new technologies in AI with existing design 

methodologies, especially in the basic design phase, could be a proper approach to dealing 

with safety concerns in process plant industry. 

However, following challenges face the development of this method: 

• In order to use AI and KE in the methods of process safety analysis, all the data from 

the different process analysis platforms should be converted into one similar format. 

Additionally, human knowledge, in the form of human-natural-language, should be 

changed into a machine-readable language. The combination of process data and the 

machine-readable language (i.e., knowledge) should be the input for an analysis 

platform. This analysis platform will be a knowledge-based ES for PHA. 

• With a knowledge-based system for process safety analysis, a parallel query system is 

required to check different safety aspects in the piping and instrument diagram (P&ID) 

or process flow diagram (PFD) of the plant in the basic design/conceptual phase of the 

project. The query language should be able to interpret safety questions in the form of 

human language, verify the knowledge base, and answer the query in a human-

readable format. 
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• Along with the PFD, the plot plan and equipment arrangement are the most important 

deliverable documents in the basic phase of the project. They can also have a vital role 

in reducing the potential for hazard in the lifecycle of the plant. With a limited time in 

this phase, the equipment arrangement drawing should be developed as the basis for 

the architecture of the plant. In developing this important drawing, a combination of 

human knowledge and the project specifications is crucial. Additionally, with the 

number of equipment and the process plant area, there are thousands of possible 

equipment arrangement combinations for each plant. This is again the human 

knowledge and project specifications that filter out the approved combinations. In 

order to have a parallel safety analysis system, an ES is required to automatically 

design all the possible options for the equipment arrangement in a 2D environment 

and verify the human knowledge and specifications simultaneously. Developing such 

an automated system requires a platform to automatically design each equipment 

arrangement option. Data from the PFD should be used as a database for this platform. 

Moreover, safety knowledge and specifications (knowledge-base) should be imported 

as a part of the platform. Finally, an automated loop is required to read data from the 

PFD database, design the equipment arrangement, check the design with the 

knowledge base, and filter out the approved arrangements. 

• Because automation in the design of the equipment arrangement and parallel safety 

checking is proposed here, automation in the other design and analysis stages should 

be considered to reduce the design time and provide opportunities to perform the PHA 

on different design options. Piping route design, piping supporting, and mechanical 

stress analysis are the activities linked to the equipment arrangement. Any change in 

the equipment arrangement drawing implies that the piping route and piping support 

should be changed, and the mechanical stress/pipe flexibility should be checked for 

critical lines (i.e., piping lines with high temperature, pressure, or connected to rotary 

equipment). Engineering software (e.g., CAESAR II) has been used for stress analysis 

activities in process plant design for approximately 10 years. This process requires the 

piping route and piping supports to be modeled in the analysis software after any 

change in the design of the plant. Achieving the main goal, which is to develop 

different design options and parallel safety analysis, is in contradiction with the time-

consuming nature of this analysis method. Therefore, a better method is required to 

replace the design–analysis loop and the traditional use of analysis software. Existing 

databases of analyzed routes provide the opportunity to consider ML approaches to 

develop a predictive model to solve this issue and to reduce the amount of time 

required for design-analysis purposes. 
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• One of the other major potential sources of accidents in the process plant industry is 

its complex construction process, especially in piping installation. The traditional 

method involves generating a piping isometric drawing from a 3D model and sending 

it to the construction office. As in the design stage, there is a constraint time specified 

for the construction process. A lack of time, resources, software platform, and 

improper use of data are the reasons for accidents during piping installation and 

erecting the necessary scaffoldings. The “design for construction safety” concept, 

which is used in other construction fields, can be used here to prevent accidents. 

Applying this safety concept requires the schedule to be shifted back to the design 

phase. In other words, it requires the planning for piping installation to be shifted to 

the detailed design phase of the project. In order to achieve this, a knowledge-based 

ES should be integrated into the detailed design platform. Additionally, construction 

knowledge and safety concerns should be imported to this platform as the knowledge 

base. This combination should generate piping isometric drawings, which are ready 

for a safe assembly and scaffolding process. 

These challenges pose the following questions: 

 What type of machine-readable format is suitable to represent process data? 

 How can human knowledge and engineering specifications be converted into a 

machine-readable format? 

 What is the platform to combine process data with human knowledge and engineering 

specifications to create a knowledge-based system? 

 What is the query language to verify the safety of process design? 

 How can the data from the P&ID and PFD be used in an automatic generation of the 

equipment arrangement? 

 What is the platform and programming language to automatically generate equipment 

arrangements? 

 How is human knowledge integrated as a part of the programming algorithm to check 

the equipment arrangement design? 

 What is the database (i.e., “training” data) for creating the ML platform and a 

predictive model? 

 How is the piping design and piping support information automatically analyzed in 

the predictive model? 

 How can the “design for construction safety” concept be applied in the process plant 

industry? 
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This research was conducted to address these questions. 

1.3 Research methodology 

The overall goal of this project is to increase safety in the process plant lifecycle by integrating 

automation tools and AI methods in basic design, hazard analysis, KE, and data gathering. To 

achieve this goal, the following studies were carried out: 

1) Automation in P&ID safety analysis/HAZOP study: 

• Developing a machine-readable source for human knowledge and engineering 

specification: to be able to use human knowledge and engineering specification in 

a knowledge-based ES and for the machine to compare the process design with 

the traditional human-readable knowledge. 

• Developing conversion tools for process engineering data: to make process data 

readable for the machine in the knowledge base system.  

• Integrating machine-readable knowledge base and process data in an expert 

system: to combine both data and knowledge in one platform for safety analysis 

purposes. 

• Developing a query platform for automatic safety analysis: to make enquiries 

about safety concerns in the design of the PFD or P&ID. 

2) Automation of equipment arrangement and piping design: 

• Developing a database from process diagrams: to have the required input data for 

automatic design platform. 

• Mathematical modeling of each process equipment: to have a mathematical model 

of each equipment. 

• Mathematical modeling of all possible equipment arrangements: to identify 

different possible equipment arrangements. 

• Converting human knowledge and project specifications to applicable rules on 

mathematical models of arrangements: to be able to automatically apply human 

knowledge and project specifications to different mathematical models of 

arrangements. 

3) Automation of pipe routing and stress analysis: 

• Mathematical modeling of pipe routes: to identify different possibilities of pipe 

routes between two equipment in the arrangement. 

• Developing a machine-learning-based predictive model for stress analysis: to 

automatically check the safety and operability of the pipe under high temperature 

and pressure. 
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4) Design for safe construction in process plants: 

• Data collection from 3D detail design models: to create a database for construction 

safety analysis in the design phase. 

• Mathematical modeling of 3D model data: to have a model for applying 

construction safety rules. 

• Applying construction safety rules to the mathematical model: to reject the models 

with low safety aspects within them. 

The detailed research methodology to target the above objectives is outlined below: 

1) Machine-readable human knowledge 

This involves the conversion of human-readable knowledge and specifications into a machine-

readable format for automation purposes in safety analysis. Human knowledge and 

engineering specifications have traditionally been stored in a human-readable format. Current 

research on natural language processing (NLP) and KE is proposing new methods on 

generating machine-readable knowledge. Creating ontologies for the machine to understand 

the semantics of this field is the first major step in this phase. An approved knowledge and the 

latest engineering specifications can be generically generated and used in other projects 

without the necessity for regeneration. The interoperability of this knowledge base can be set 

as one of its features by following ISO 15926 chapters. 

2) Process design data 

The PFD and P&ID are not simply process engineering drawings, they can also be considered 

as engineering databases, which can be linked to other datasets or used for analysis purposes. 

This part of the study addresses the automatic generation of databases from these diagrams. It 

not only creates a database for linkage and analysis but also saves the time for future references 

and prevents human error in reading and interpretation the diagram, which could lead to 

disastrous decision-making in different phases of the project.  

3) Integrating process data and machine-readable knowledge 

Automation of safety analysis with respect to engineering specifications and human 

knowledge is impossible without combining the machine-readable process data and 

knowledge base. In this part of study, an ontology-based platform is used for combining these 

two datasets. This platform is where these datasets are linked and communicate with each 

other. Because this dataset follows a standard format, interoperability is one of its features and 

is able to link to other datasets from other projects. 
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4) Query platform 

Safety analysis of process diagrams and data extracted from the knowledge base is possible 

through using a query language that can read and interpret it. The nature of this query language 

is essentially similar to traditional database query languages, such as SQL. The difference is 

in the power of this language in understanding semantics. This query language has been used 

to compare the process data and knowledge base to identify possible flaws in the design. 

5) Mathematical models of process equipment  

Automation of equipment arrangement requires a mathematical model of each process 

equipment. The basic data for this modeling is gathered from the process diagrams. Process 

equipment models are spatial point-based matrices of each equipment and they include all the 

required data about each equipment for equipment arrangement purposes. The benefit of 

converting the process equipment to these mathematical models is that it allows their use in 

the automation algorithms. 

6) Human knowledge, project specification, and automation of equipment 

arrangement 

This stage is about developing automation algorithms for equipment arrangement. 

Mathematical models of all process equipment and the process layout are the input data for 

the algorithm. The developed algorithm generates mathematical models of all possible 

equipment arrangements and the knowledge base, as a part of the algorithm and the resulting 

code, filters the approved list of equipment arrangement models. The algorithm then converts 

the approved equipment arrangements from mathematical models into human-readable 

engineering diagrams for other uses in the lifecycle of the plant. 

7) Automation of piping design 

Extending the automation capabilities in process plants requires the automation of piping 

design to be added to the automation of equipment arrangement design. At this stage, an 

algorithm is developed to design all the possible 3D routes between two points. It generates 

the number of elbows, and their location in each possible route. It should be considered that it 

is not possible to filter the “best” pipe routes without pipe supporting and mechanical stress 

analysis. This algorithm should be combined with another automation platform for stress 

analysis (especially for critical lines with high pressure and temperature during testing and 

operation) to be able to generate the best list of possible piping routes. 



 

8 
 

8) Automation of stress analysis: 

Stress analysis is another major activity that should follow each equipment arrangement, 

piping, and support design. This especially is the case for the lines that are under high pressure 

and temperature during testing or operation. Overlooking this part of the design may lead to 

catastrophic accidents during the operation or hydro-testing of lines. Because this activity 

creates a time-consuming loop in the design phase, and it is normally considered an expensive 

task, this part of the study is dedicated to developing an automatic method of stress analysis. 

To achieve this, a number of different pipe routes and their stress analysis are used as the 

training dataset of an ML algorithm and a predictive model is developed to predict the analysis 

result of any change in the existing routes. For any changes in the equipment arrangement, the 

route, and the location of pipe supports, the predictive model provides an analysis to determine 

whether route remodeling is needed. This avoids running the model on the analysis software. 

Automaton of piping stress analysis is the last step in the automation process, from equipment 

arrangement to piping design. 

9) Design for safe construction 

Shifting the planning activities from the construction phase to the design phase of the project 

is one of the recent approaches in reducing casualties in the construction of a process plant. 

One major time-consuming activity during the construction is planning the field-fit-up 

welding. At this stage of the study, a mathematical model of piping routes is developed form 

the 3D model data. An algorithm generates a mathematical model of the required scaffolding 

for the piping model. Safety criteria are input as a knowledge base to the algorithm. The 

algorithm then generates all possible field-fit-up weld options and chooses the safest set of 

field weld points in the design phase. 

1.4 Research contributions 

This thesis makes significant contributions to applying AI-based methods and cutting-edge 

technologies in the automation of design, safety analysis, and data management in the process 

plant industry. 

The first contribution is the development of machine-readable knowledge bases for safety 

analysis in the process industry. This is the first time that such a new field in computer and 

data science (semantic technology and KE) is used in safety analysis in the chemical 

engineering field. Combining process data, human knowledge, and engineering specifications 

in a knowledge-base and developing a query platform to automate/assist in the safety analysis 

minimizes the required time for safety analysis, minimizes human error, and also provides the 

opportunity for process engineers to try different sets of process diagrams. 
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Another contribution is the development of mathematical models of process equipment and 

algorithms to automatically design equipment arrangements, piping routes, and supporting, 

and to choose the best models according to the knowledge and engineering specifications 

integrated with the algorithms. There have been very few attempts to automate the design in 

this field and there has been no success in developing a comprehensive algorithm that fully 

integrates human knowledge, best engineering practices, and project specifications in its flow. 

The type of mathematical models and the number of details therein, as well as the combination 

of knowledge-base in the flowchart in this study minimize the time required for trying different 

equipment arrangements and piping designs in the process plant, maximize the time for safety 

analysis (e.g., hazard and operability (HAZOP) study), and can add other variables (e.g., 

economic variables) into the list of variables in the design automation process. 

The third contribution is the application of an ML algorithm in mechanical stress analysis. 

Automation of equipment arrangement, piping, and support design without the automation of 

stress analysis would be a no-value-added attempt in this field. Every design should go through 

stress analysis (especially for high-pressure/temperature services) before approval for 

construction or operation. This is the first time that an AI-based automatic stress analysis 

method with ML is introduced in the process industry. The success of this method, along with 

the automation of equipment arrangement and piping design will optimize the material use, 

reduce human error, and increase the time for process safety analysis, which are all highly 

significant benefits to the process industry. 

Another contribution is the shift of a series of activities from the construction to the design 

phase to increase safety in construction. The traditional method of specifying field-weld points 

in the process industry includes the usage of piping isometric drawings in the construction 

phase of the project. A lack of data and usual shortage of time in the construction phase 

normally lead to human errors and loss of lives during piping assembly, as well as low-quality 

welding, which may lead to future leaks of dangerous materials during operation. This is the 

first time that such activity is proposed to be shifted to the detailed design phase of the project. 

This method benefits from the 3D model data in the detailed design phase, and it can reduce 

the human error and number of casualties during the construction phase and increase the 

quality of the piping installation for safe operation in the lifecycle of the plant. 

1.5 Outline of the thesis 

The structure of the thesis is summarized in Figure 1-1. Each chapter in Chapters 3–6 covers 

one of the four research contributions. The interactions of the sections are shown by arrows. 

The thesis is organized into a total of seven chapters. 
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Chapter 1 provides introductory material and gives the perspective of using AI-based methods 

in the process industry and motivations of the study. This chapter also discusses the problems 

and required investigations, and finally highlights the contributions of this thesis. 

In Chapter 2, a literature review of the accidents in the lifecycle of process plants, human 

error, importance of data, automation of design, and new application of AI-based methods in 

the process plant industry is presented. This chapter also thoroughly covers the gaps in the 

current state of research on AI in the process plant industry and the plan for further needed 

research. 

The challenges in developing applications with KE and semantic web technology to automate 

safety analysis in process plants are discussed in Chapter 3. An application has been developed 

on two different platforms and it is tested on a real case study, which highlights the 

contribution of this chapter and illustrates the potential for industrial usage of these platforms 

for automatic safety analysis in the basic phases of the process plant design. 

In Chapter 4, an algorithm for the mathematical modeling of process equipment, integration 

of human knowledge and engineering specifications, and finally, automation of equipment 

arrangement is discussed. The algorithm is implemented and tested to automatically design a 

part of a naphtha hydro-treater process plant as a case study. The accuracy of the design and 

its conformity to the human knowledge and project specifications is discussed; moreover, its 

possible contribution to the design automation of other larger process plants and its error 

detection capabilities in existing designs are illustrated. 

Developing an algorithm for piping design automation and using ML for the automation of 

stress analysis is discussed in Chapter 5. The algorithm verifies all the possible routes and 

piping supports between two points (equipment nozzles) in 3D space and automatically 

verifies the analysis without any analysis software. In developing this prediction model for 

stress analysis, a database of piping routes with their analysis results was used along with the 

gradient boosting algorithm to identify the statistically important features in the stress analysis. 

Additionally, the possible integration of this method in real industrial scenarios was discussed 

in this chapter to reduce the required design time and the human error. 

Chapter 6 is about developing an algorithm to shift some of the activities in the construction 

of process plants to the design phase. This algorithm gathers data from 3D information models 

and provides the best approach for scaffolding and pipe fit-up welding for the construction 

phase of the project. A case study is used to illustrate the benefits of using this algorithm to 

increase safety and efficiency in process plant construction. 
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Chapter 7 concludes the research based on the results from each chapter and makes 

suggestions for future research. 
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Chapter 2 Literature review 

The process plant industry faces catastrophic accidents with irreversible consequences for 

human beings and the environment. The number of casualties and the cost of damage resulting 

from incidents in the process plant industry have been significant. Some of examples area 

follows: the Flixborough incident in 1974 with 450 million dollars lost and 28 deaths, Piper 

Alpha accident in 1987 with 300 million dollars in damage and 167 deaths, and the BP disaster 

in 2005 in the US with 1.5 billion dollars in damage, 15 deaths, and 180 people injured. 

In this chapter, a literature survey is conducted to review the impact of human error in PHA 

and in the design of process plants. The importance of equipment arrangement and pipe 

routing/analysis is also discussed. Subsequently, previous efforts in automating equipment 

arrangement and pipe routing/analysis are highlighted and the application of AI in the design 

and safety analysis of process plants is presented. 

2.1 Human error and data handling in plant accidents 

Human error has been identified as the root cause for many process plant accidents, such as 

Esso Australia’s gas plant and Piper Alpha on the British continental shelf (Murphy, 2009). 

This factor has been thoroughly discussed by (Skogdalen & Vinnem, 2012) for the oil and gas 

industry. Human error can be traced as the cause in all these industrial disasters (Lundteigen 

& Rausand, 2008; Skogdalen & Vinnem, 2011, 2012). Studies on human reliability 

(Rasmussen, 1997) and human factors (Gould, Ringstad, & van de Merwe, 2012) in such a 

vulnerable industry are of great value (Skogdalen & Vinnem, 2011). Human error probability 

and human reliability can be quantified (Kujath, Amyotte, & Khan, 2010) and estimated by 

referring to operational experiences (Abbassi et al., 2015), dynamic Bayesian networks 

(Preischl & Hellmich, 2013), and databases (Cai et al., 2013). 

Data communication and communication among members of the team are important activities 

in different parts of the lifecycle of a process plant. It is crucial for the safety of the plant to 

use the proper means of communication and data transfer in every stage of the project. Many 

accidents in the process plant industry occur because of a lack of proper communication among 

teams involved in the design of the plant (Kariuki & Löwe, 2007). A shortage of time for error 

detection and modification is another factor of process plant accidents (Kletz, 2009). It has 

also been considered as a major reason for incomplete application of health and safety 

management in the industry (Williams, 2015). 
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Data play a major role in every step of decision-making (Berg, Gersinska, & Sievers, 2010). 

However, inappropriate handling of data during querying, integrating, and interpreting causes 

human error. 

Proper interoperability has a critical role in the competitive environment in which owners of 

capital facilities try to achieve lower costs in managing their facilities during their lifecycles 

(Gallaher, O’Connor, Dettbarn, John L, & Gilday, 2004). Different parties typically use 

different sets of words, terminology, and data formats (Eweje, Turner, & Müller, 2012), which 

prevents information interoperability. It is important for everyone involved in the information 

network to use the same “ontology” for the sake of interoperability. 

Vendors and manufacturers involved in the design and construction of process plants use their 

own specific software to produce engineering drawings and documents. These drawings are 

only human-readable and cannot be considered as a database. It is the responsibility of the end 

user to read and interpret data from these drawings, reach a reasonable conclusion, and make 

correct decisions. 

Traditional database systems (relational databases in particular) choose different schemas 

according to their database management system (DBMS). Every time users change the data, 

the database is updated, but it does not guarantee the change in any other databases, as they do 

not use the same database schema. It should also be noted that a major change in the data 

requires the whole schema to be changed. (Chapman, 2005) shows that relational database 

systems currently face major challenges in an era in which every industry is using big data 

with dynamic entry and access. 

There is always great potential for human error in traditional data capturing (Murphy, 2009). 

Traditional database systems, especially relational databases, use SQL-based query languages. 

However, these databases cannot cope with the nature, amount, and variety of data in the 

process plant industry. Moreover, such databases are not capable of storing human knowledge 

(in the form of human natural language) for querying and reasoning purposes. The lack of this 

capability is the reason for their weak reasoning platforms. A good database requires the whole 

set of knowledge to achieve the best results when queried. 

2.2 Process hazard analysis methods in different parts of the process plant 

lifecycle 

(Shariff & Zaini, 2013) have thoroughly reviewed the history of process plant accidents and 

discussed previous and future studies to reduce/mitigate the incidents in this field. 
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Depending on the phase of the project, there are different methods in the hazard analysis of a 

plant. One of the most common methods is PHA, which has various sub methods. HAZOP is 

a well-known method of PHA that is still widely used in various existing and new process 

plants, and a thorough literature review has been presented by (Hinze & Teizer, 2011). 

Another method of safety checking, especially for the operation of high-temperature/pressure 

pipes, is using analysis software during the plant design. Common software packages for 

piping stress analysis in the industry include CAESAR II (by coade), AutoPIPE (by Bentley), 

and CAEPIPE (by sstusa). 

Although methods such as HAZOP (Dunjó, Fthenakis, Vílchez, & Arnaldos, 2010a) and 

systemic safety management system (SSMS) (Dunjó, Fthenakis, Vílchez, & Arnaldos, 2010b) 

have been applied or proposed to increase safety in process plants, they are still not able to 

prevent accidents from occurring (Santos-Reyes & Beard, 2009). Traditional methods 

consider safety after the completion of the design (Fabiano & Currò, 2012); moreover, PHA 

lacks rule-based human experience from previous studies and accident analysis information in 

their databases (Hurme & Rahman, 2005). Market competition is forcing industries to balance 

the investments in safety with productivity (Suardin, Mannan, & El-Halwagi, 2007). A study 

has shown it is cheaper to apply safety in the early stages of the design (Houssin & Coulibaly, 

2011). 

Traditional PHA and HAZOP studies are time-consuming methods (Wang, Gao, & Wang, 

2012). The success of hazard analysis depends on the skill of the team members (Dunjó et al., 

2010a), and it is prone to failure because of the lack of skill, proper communication, and data 

(Qureshi, 1988). Other downfalls of HAZOP study were discussed by other researchers 

(Bullock, Mitchell, & Skelton, 1991). PHA also requires the input of lessons learned from real 

cases of accidents in the process industry (Jones, 1992).  

One of the first attempts at developing a rule-based platform for HAZOP was HAZOPEX 

(Parmar & Lees, 1987). (Heino, Suokas, & Karvonen, 1988) continued the trend and 

developed more knowledge-based systems for hazard analysis. (Venkatasubramanian & 

Preston, 1996) also illustrated a rule-based method for automation in HAZOP. AHA (Kang, 

Lee, Kang, Suh, & Yoon, 1999; Kang, Yoon, & Suh, 2001) is another automated hazard 

identification tool, in which three different knowledge bases were developed and used. Using 

logical statements and cause–effect relations in HAZOP study was introduced in literature 

(Galluzzo, Bartolozzi, & Rinaudo, 1999). HAZOPExpert (Venkatasubramanian & 

Vaidhyanathan, 1994) and the following modifications (Srinivasan & Venkatasubramanian, 

1996; Vaidhyanathan & Venkatasubramanian, 1995, 1996) were efforts at developing an ES 

and a support tool for HAZOP study. OptHAZOP (F. I. Khan & Abbasi, 1997a), TOPHAZOP 
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(F. I. Khan & Abbasi, 1997b), COMHAZOP (F. I. Khan & Abbasi, 1997b), and HAZOPTool 

(Karvonen, Heino, & Suokas, 1990) are other support systems using knowledge bases in PHA. 

(S. Rahman, Khan, Veitch, & Amyotte, 2009) introduced a knowledge-based system to 

automatically run HAZOP in the process design. (Bragatto, Monti, Giannini, & Ansaldi, 2007) 

developed a knowledge-based software application in which HAZOP study is integrated with 

the CAD/PLM systems. Using signed directed graphs (SDG) in computer-aided HAZOP was 

introduced by (Lü & Wang, 2007). Another example of using data in the P&ID was presented 

by (S. Rahman et al., 2009). Other attempts include a fuzzy inference system in HAZOP 

(Guimaraes & Lapa, 2006) and PROCOS (Guimaraes & Lapa, 2006), which analyzed error 

prevention and recovery in operation. Using ontologies in HAZOP studies were discussed in 

the literature (Cui, Zhao, & Zhang, 2010; Zhao, Cui, Zhao, Qiu, & Chen, 2009). 

2.3 Role of design in the safety of new process plant 

Although many accidents have been claimed to be rooted back to the operation (Mahnken, 

2001), they can still be traced further back to the design phase of the project. The design phase 

can be divided into the “basic” and “detailed” phases. Figure 2-1 shows the role of design in a 

cause–effect diagram. 

 

Figure 2-1: Cause-and-effect diagram: role of design in process plant accidents 

 “Design for safety” or “inherently safe design” is a concept that can be applied to the basic 

stages of the project to prevent future accidents. Inherent safety is based on the decision-

making in the conceptual/basic phase of the project. It is proven to be an economically 

attractive tool to reduce the risk of accidents in process plants (Chang & Lin, 2006).With the 

lack of information and with no proper design at this stage, decision-making is difficult (R 

Rusli, Shariff, & Khan, 2013) The inherent safety and design for safety concepts are responses 

to major disasters in the process plant industry and are proposed as alternative methods to 
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reduce the complexity of design. This complexity was increased by the number of add-on 

protection layers (M. Rahman, Heikkilä, & Hurme, 2005). This concept can be used in 

preventing accidents at different stages of the lifecycle of a process plant. Unfortunately, with 

the lack of tools and methodologies, inherent safety has not yet been fully applied in the 

process industry (Schupp, Hale, Pasman, Lemkovitz, & Goossens, 2006). 

Studies show the effect of the environment on human performance (F. I. Khan & Amyotte, 

2002; Kidam, Sahak, Hassim, Shahlan, & Hurme, 2016; Risza Rusli & Shariff, 2010). 

Decisions made in process plant construction sites can be affected by its challenging 

environment and lead to fatal injuries and losses. Figure 2-2 illustrates the roots of accidents 

during field fit-up weld. One common cause is the project being behind schedule. 

 

 

Figure 2-2: Cause-and-effect diagram: accidents during field fit-up welding 

Figure 2-3 illustrates the causes/sub-causes of delays in a project. Shifting the activities from 

the construction to the design phase could be an alternative to eliminate this delay and 

ultimately increase the safety in the construction during the field fit-up weld. 
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Figure 2-3: Cause-and-effect diagram: project behind schedule 

Two major parts of a process plant design are “equipment arrangement” and “piping” design. 

Both of these play an important role in the safety of the plant. The role of these design stages 

and drawbacks of traditional design methods are discussed below.  

2.3.1 Design of equipment arrangement  

A proper equipment arrangement is vital for avoiding domino effects and increasing safety 

(Darbra, Palacios, & Casal, 2010). It is considered the basis for the detailed equipment 

arrangement and also leads to other design activities, including civil, structure, piping, 

electrical, and instrumentation. Studies have shown that proper spacing, equipment 

arrangement, and following specifications can minimize the number of casualties and the 

degree of environmental disturbance (D I Patsiatzis, Knight, & Papageorgiou, 2004; Xu & 

Papageorgiou, 2009). Additionally, (Taylor, 2007) discussed the importance of the economical 

and safety aspects of layout design and proposed a method of automating this process. 

Although equipment arrangement design is an important part of the design and plays a major 

role in the lifecycle of the plant, traditional project scheduling allocates a very limited time for 

this document (Guirardello & Swaney, 2005). It is mostly based on experience and lessons 

learned from previous plant designs (Dimitrios I Patsiatzis & Papageorgiou, 2002) Moreover, 

there are hundreds of options under which equipment can be arranged in the plant. The 

traditional methods of equipment arrangement need hundreds of trial-and-error cycles to find 

the best fit that considers all the project specification requirements and best practices. This is 

not viable with the typical limitations in time and budget. Efforts to solve this problem through 

applying computer algorithms have been focusing on object-based method. Because all the 
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meta-data required for a comprehensive list of scenarios cannot be achieved in this way; a 

point-based method must be developed. 

Equipment arrangement study is a part of the famous facility layout problem (FLP) (Singh & 

Sharma, 2006), which is not limited to the chemical engineering field. Many research efforts 

have implemented optimization methods on single- and multiple-floor layouts (Ahmadi, 

Pishvaee, & Jokar, 2017), such as using mathematical optimization (Anjos & Vieira, 2017) to 

reduce the energy usage (Y. Wu, Wang, & Feng, 2016) or to minimize the sum of distances 

between facilities (Paes, Pessoa, & Vidal, 2017). In order to ensure safety and minimize costs, 

(Dimitrios I Patsiatzis & Papageorgiou, 2002) introduced a mathematical model to optimize 

the plant layout design in the basic stages of the project. A chemical plant layout can be 

designed to reduce risk (Alves, de Medeiros, & Araújo, 2016; Caputo, Pelagagge, Palumbo, 

& Salini, 2015). However, there is still lack of safety implementation in this research area 

(Neghabi & Ghassemi Tari, 2016).  

(Eini, Abdolhamidzadeh, Reniers, & Rashtchian, 2015) developed a tool to optimize the 

integration of inherent safety in the design of a process plant and also combined the cost linked 

to each method. An object-oriented method in the automation of process models was proposed 

by (Barth, Strube, Fay, Weber, & Greifeneder, 2009). The importance of the integrating 

knowledge and incomplete data at the conceptual phase of the project was emphasized by 

(Burdorf, Kampczyk, Lederhose, & Schmidt-Traub, 2004) and an automatic tool to generate 

a process model for making necessary decisions at the early stages of the project was therefore 

developed. Integrating data into a process design simulator was proved to be possible (Shariff 

& Leong, 2009). Some suggested to considering the design of process plants as a mathematical 

programming activity (Westerberg, 2004). 

2.3.2 Piping design and piping stress analysis  

Another major design activity is the piping design. Figure 2-4 shows the traditional workflow 

in the piping design and stress analysis loop. Piping and piping support failure is one of the 

root causes for accidents in the process plant industry (Persson, Santos, Tavares, & de 

Andrade, 2009). Ignoring a comprehensive stress analysis in the design increases the 

probability of pipes failures and leaks, which could be a risk to human beings (Brown, Seker, 

Revankar, & Downar, 2012; Kidam & Hurme, 2012; Kidam et al., 2016) and could be a 

triggering point for domino accidents following the leak of hazardous materials. 

To minimize human error, maximize the time for safety analysis, and reduce piping and 

support material costs, the design team should be provided with the opportunity to test 

different equipment arrangements, pipe routings, and choose various support locations and 

types. Considering the time and budget limitations of the project in the design phase, it is not 



 

19 
 

possible to try all the design possibilities. Moreover, every change in the piping design requires 

the stress analysis for high-pressure or high-temperature lines. The loop of “design change to 

stress analysis” is not only a bottleneck in the way of creativity and testing new designs but 

also prone to human error with respect to updating the design, revising the data for analysis, 

and communication among team members. 

The piping cost in a process plant can reach as high as 80% of the equipment cost (Peters, 

Timmerhaus, West, Timmerhaus, & West, 1968) which shows the necessity of applying new 

methods to reducing its cost (Akbarnia, Amidpour, & Shadaram, 2009). Automation of pipe 

route design with automation algorithms can save up to 50% of the total detailed design costs 

(Park & Storch, 2002). Some of the existing piping automation algorithms are as follows: 

Maze (Lee, 1961), Escape (Hightower, 1988), Network optimization (Nicholson, 1966), and 

GA (Ito, 1999). New methods of pipe routing and optimization have been proposed by other 

researchers (Montalvo et al. 2008; Kang & Lee 2017; Kim et al. 2013; Guirardello& Swaney 

2005). What is missing in all these automation and optimization methods is the integration of 

stress analysis. Although many pipe routes may be cost effective or able to detect obstacles in 

a fixed environment, there is no guarantee that they pass the stress analysis test. Additionally, 

it should be noted that the automation of design creates a dynamic environment in which 

obstacles (i.e., equipment and structures) constantly move in each proposed arrangement. 
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Figure 2-4: Piping design and stress analysis workflow 

 

As illustrated in the flowchart shown in Figure 2-4, piping design requires stress analysis of 

the piping, especially for critical lines with high temperature and pressure in the testing and 

operation. Considering the amount of time required for changing the design and the required 

stress analysis after that, an automation method for stress analysis should be added to the pipe 

routing automation algorithm. 

The automation of this loop removes this burden and helps by providing time for testing new 

equipment arrangements, piping design and supports, safety analysis, and material cost 

minimization, without going over budget during the design or falling behind schedule.  

Supervised ML algorithms can be used to find structure and correlations in data, which are 

normally imperceptible to humans, and the patters of which are impossible to simulate through 
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traditional programming in computer science (Ayodele, 2010). The gradient-boosting machine 

(GBM) algorithm could be helpful for this purpose. 

2.3.3 Design for construction safety 

Accidents in the process plant industry are not limited to the incidents during operation and 

maintenance. The construction of process plants claims many lives each year. Table 1 shows 

the number of construction fatalities from 2003 to 2009. 

 

Table 2-1: Number of fatalities in construction (F. Khan, Rathnayaka, & Ahmed, 2015) 

Year Fatalities 
2003 1131 
2004 1272 
2005 1224 
2006 1226 
2007 1204 
2008 969 
2009 607 

 

New technologies are being applied in construction industry to increase safety. Some of these 

technologies include visualization (Guo, Yu, & Skitmore, 2017), making prediction models 

(Zhu et al., 2016), using unmanned aerial systems (de Melo, Costa, Álvares, & Irizarry, 2017), 

and psychological monitoring of workers (Guo, Yu, Xiang, Li, & Zhang, 2017). Even robotics 

(Lundeen, Kamat, Menassa, & McGee, 2017) are currently being used to increase safety in 

construction. 

A better design can effectively increase the construction safety (Weinstein, Gambatese, & 

Hecker, 2005). “Design for safety” is a new proposed approach to increase safety in 

construction (Hongling, Yantao, Weisheng, & Yan, 2016). A study showed that 42% of the 

reviewed fatality cases were linked to the concept design for construction safety (Behm, 2005). 

Building information modeling (BIM) models can be highly beneficial in this approach 

(Malekitabar, Ardeshir, Sebt, & Stouffs, 2016). The aim of this study is to bring a part of 

construction into design and apply the “design for safety” concept.  

2.4 Artificial intelligence in process plant industry 

Considering the possibility of human error in making critical decisions, new methods of 

decision-making should be sought, using the capabilities of computers (i.e., AI) because it has 

become clear that smarter industry processes require new models of information (Gallagher, 

Underhill, & Rimmer, 2003). In other words, facing the challenges in the process industry and 

the consequences of human error (Bou-ghannam, 2013) requires innovative methods 
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(Sheridan, 2008) and innovation in every industry requires a new look at knowledge 

management (Noroozi, Khakzad, Khan, MacKinnon, & Abbassi, 2013). 

Although ML has been seen for years as merely a subset of AI, the truth is that ML is the core 

of AI (Du Plessis, 2007). The use of ML algorithms has gained momentum in different 

industries to increase productivity, quality, prediction capabilities, as well as reduce cost, and 

more. For example, reducing the cost of testing and personnel supervision by using ML 

methods has been thoroughly discussed in (Plasek, 2016). Integrating ML tools in industry is 

another challenge, which is the topic of much discussion (Shadravan, Tarrahi, & Amani, 

2015). 

Ontology is a knowledge representation for a specific domain. It can list the most important 

concepts and instances, describes the relation between objects, and is currently causing 

revolution on the World Wide Web (Rana, Staron, Hansson, Nilsson, & Meding, 2014). In 

order to create a machine-readable format of an ontology, it is written in Web ontology 

language (OWL). (C. Wu, Xu, Zhang, & Na, 2013) showed an example of using ontologies in 

HAZOP studies and (Mohammadfam, Kalatpour, Golmohammadi, & Khotanlou, 2013) have 

illustrated the usage of ontologies and knowledge bases in process equipment failures. As 

discussed by (Verhagen, Bermell-Garcia, van Dijk, & Curran, 2012), it is important to use 

ontologies to deal with interoperability issues in industry. OntoCAPE (Morbach, Yang, & 

Marquardt, 2007) is one of the ontologies developed in the process engineering field. 

OWL is a W3C standard language to represent ontologies in semantic technology and is an AI 

tool. OWL integrates two areas of data science and AI. Some branches of OWL (including 

OWL DL) are based on description logic, which itself is rooted from first-order logic. As 

defined by W3C, OWL is Web ontology language and ontology is a term that describes the 

entities in a specific domain and the relation between these entities. OWL includes classes, 

properties, and instances to respectively define the entities in the domain, their relations, and 

individuals. OWL DL is the most expressive sublanguage of OWL and is directly related to 

description logic, which makes it easy to create a machine-readable format of human 

knowledge in any specific domain and is used in this study as the language for knowledge 

representation in process engineering. It is worth mentioning that ISO 15926 is a standard 

being developed for data modeling of information in the process plant industry (“OWL - 

Semantic Web Standards,” 2012). One example for the data modeling of engineering 

drawings, by using ISO 15926, has been presented by (Leal, 2005). 
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2.5 Summary 

The complexity of design and safety analysis results in human error and catastrophic accidents 

in the lifecycle of plants. Although specifications suggest a thorough guideline for PHA, the 

competitive market is pushing for the design of these plants to be ready in a short time. 

Publications do not suggest a completely automated method in the design of important parts 

such as equipment arrangement, pipe routing, and piping stress analysis. Traditional design 

and safety analysis methods fail to simultaneously provide a complete set of drawings for safe 

operation and construction in the basic phases of the project. Additionally, with the rise of AI, 

publications still do not suggest a practical method of integrating it into the design and safety 

analysis of process plants. In this study, systematic research has been conducted to develop 

practical uses of information modeling, KE, ML, and design automation, for safety analysis as 

well as the development of equipment arrangement, pipe routing, and piping stress analysis. 
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Chapter 3 Logic-based knowledge representation for hazard 

identification in process plants 

 

Hazard identification in the process industry is one of the activities that relies on the integration 

of human knowledge and data from engineering documents. One of the main factors resulting 

in human error and improper hazard identification is the nature of data and data management, 

including issues regarding interoperability, data formats, database schema, query systems, and 

the lack a system integrating human knowledge into the current databases. In this chapter, to 

develop a smarter dataset, a machine-readable format of human knowledge and logical 

inferences from the knowledge base for hazard identification is proposed. This knowledge 

base includes machine-readable formats of engineering drawings and human knowledge and 

is a base for a knowledge-based ES for hazard identification. This method was applied to two 

case studies and the results are discussed. Finally, other benefits of using the knowledge base 

and future usages of this method in the process plant industry are discussed. 

3.1 Introduction 

Traditional hazard identification in the basic design of process plants requires many 

brainstorming sessions for experts in the field to discuss the basic engineering documents and 

identify the hazards according to their experiences, engineering specifications of the project, 

and the lessons learnt from previous incidents in the industry. The methodology is based on 

logical inferences based on general knowledge for an individual plant. 

The success of hazard analysis depends on the skill of the team members (Dunjó et al., 2010a) 

and it is prone to failure because of a lack of skill, human error, and lack of knowledge 

(Qureshi, 1988). Human error has been identified as the root cause for many process plant 

accidents, including Esso Australia’s gas plant and Piper Alpha on the British continental shelf 

(Murphy, 2009). A shortage of time for error detection and modification is also considered 

one of the other reasons for process plant accidents (Kletz, 2009). 

With new improvements in computer hardware and software systems, AI, KE, and ES are 

developing and emerging in different fields. These new technologies can be used in increasing 

the safety of process plants in their different lifecycle stages. The link between the process 

plant industry and AI, KE, and finally, ES, is established through the proper use of data, 

information, and knowledge in this field. 
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The proposed ES uses a machine-readable combination of engineering drawings, engineering 

specifications, and human knowledge, to automatically detect hazards in P&IDs. Figure 3-1 

shows its simplified algorithm. 

 

Human knowledge
Human natural language Simplified language-CNL

Description logicOntology language
Machine-readable format

Manual 
conversion

Ontology 
editor

Ontology 
editor

Engineering drawing

Tabular format

CAD 
export

Ontology 
editor

SPARQL query

Query in human language

Ontology 
editor

Ontology 
editor

Hazard Identification 
Result

 

Figure 3-1: Expert System for hazard identification 

 

The P&ID plays a major role in the process plant industry. It is developed from the PFD into 

a diagram that is used from the basic design, into the detailed design, and then during 

procurement, construction, testing, pre-commissioning, commissioning and operation. P&ID 

documents are generally developed by the process engineering team by using process analysis 

software (e.g., Aspen Hysys). Figure 3-2 shows an example of this diagram. 

All sources of data, including P&ID documents, have their own format. The process 

engineering department normally uses specific software to analyze the process from the PFD 

and provides the information required for the design of the plant. This information includes 

the pipe size, material, pressure, and temperature. The design and drafting department 

produces P&ID engineering drawings using computer aided design (CAD) software. P&ID 

drawings normally show the flow and the relation between equipment in a human-readable 

format. At present, certain software development companies offer “smart” P&ID documents, 

which are data-enriched. Engineering drawings are not only human-readable but also require 

an expert to follow a specific pattern in reading the data, integrating them with human 

knowledge and providing reasoning.  
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In order to create a machine-readable format of a P&ID, three layers of information should be 

considered: engineering symbols, human interpretation of a P&ID, and individual data in each 

P&ID. In other words, in order for the machine to “understand” a P&ID drawing, all these 

layers should be converted into a unique knowledge base.  

 

Figure 3-2: Sample P&ID (“Autodesk AutoCAD Plant 3D” 2014) 

 

Recent computer-aided drawing (CAD) software packages, which are used in process 

engineering as well as other industries, are able to include data through adding attributes to 

each part of the drawings. These data can be extracted in a comma separated format (.CSV), 

which is a tabular format for basic databases. Moreover, there are other databases in each 

process plant project in tabular format. Examples of these databases include line lists, 

equipment lists, and valve lists. 

3.2 Creating machine-readable formats of P&IDs 

In computer and information science, an ontology is defined as a set of representational basics 

to model a domain of knowledge (Gruber, Ontology, & Özsu, 2009). Ontology languages (e.g., 

OWL and RDF/XML) are used to develop ontologies in different domains. An ontology can 

be used as a knowledge base in process engineering and may include extracted data from 

engineering drawings. Ontology editors such as Protégé and Fluent Editor are used to develop 

the ontologies in each domain. There are certain existing ontologies in the process engineering 
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and oil/gas industries, but for the purpose of adding more data from other sources (which are 

described in other sections), a new ontology is developed here. 

The first part of the ontology development is using the schema in the extracted tabular data 

from engineering drawings. Ontology languages following a “triple” concept (subject-

predicate-object). Because the tabular data are convertible to triples, it is possible to create an 

ontology from all the extracted data from P&ID drawings. Figure 3-3 shows an example of 

the conversion from tabular to triple format. 

Predicate
Subject Object Subject-Predicate-Object

 

Figure 3-3: Tabular to triple conversion 

A proper ontology requires a better list of “predicates” to be provided. For interoperability 

reasons, the chosen predicates can be based on ISO 15926 and POSC Caesar (Topping, 2011). 

Figure 3-4 shows the conversion of column headers into proper predicates to be used in the 

ontology editor and its usage in converting tabular format to proper triple format. Figure 3-5 

shows the ontology developed for the equipment E-1s, discussed above, in the Protégé 

ontology editor.  

• Eq-1 Equipment tag TK-1002.
• Eq-1 Material Carbon Steel.

• Eq-1 hasEquipmentTag TK-1002.
• Eq-1 hasMaterialOfConstruction CarbonSteel.

Equipment tag Material
Eq-1 TK-1002 Carbon Steel

Schema column Ontology editor

Equipment tag hasEquipmentTag

Pressure hasDesignPressure

Pressure unit hasDesignPressureUnit

Material hasMaterialOfConstruction

 

Figure 3-4: Conversion of header titles to proper ontology predicates 

 

Figure 3-5: Ontology development in Protégé 
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Figure 3-6 shows a part of the P&ID, extracted data into related tabular data, and the graphical 

representation of a part of the ontology. 
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Figure 3-6: P&ID, extracted tabular data, and the ontology diagram 
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In addition to developing the ontological knowledge base from P&ID drawings, human 

knowledge, which is used in interpreting P&ID drawings, can be a part of this knowledge base. 

Integrating these two gives the machine the capability to interpret the data, which is 

conceptually converting this knowledge base into an interpreting system, and not solely 

another platform for storing data. 

Human knowledge for the interpretation of P&IDs is developed in an ontology editor by using 

“classes” and “predicates/properties.” For example, “Equipment” can be a class and has the 

property of “hasEquipmentTag.” “hasEquipmentTag” is defined as an “Asymmetric,” 

“Functional,” and “non reflexive” property between “Equipment” and “EquipmentTag” in 

order to set the concept in the ontology that an equipment should have an equipment tag, and 

each equipment has one, and only one tag. Figure 3-7 shows this concept in Protégé. 

 

Figure 3-7: Setting rules for the properties 

More human knowledge, in natural language format, can be added to the ontology. Below is a 

list of some examples that can be integrated into the ontology. 

• P&ID is an engineering drawing, including at least one equipment and one piping spool. 

• Shell and Tube Heat-Exchanger is a heat-exchanger type of equipment. 

• Heat-Exchanger is an equipment type. 

• Every nozzle is an equipment-part. 

• Nozzle can only be a part of an equipment. 

• “connect-to” is a symmetric relation. 

• A valve can only be in one piping spool. When a pipe “includes” a valve, it means the valve “is in” the 

pipe. 
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3.3 Developing the knowledge base-inclusion of other drawings 

In order to have a reliable database, all the new data should be integrated into the existing 

knowledge base. The knowledge base will be a platform to add other types of data from other 

sources. In the case of process plants, different forms of data are developed, depending on the 

phase of the project. In the detailed design phase, for example, mechanical datasheets are 

drawings that are normally developed in other departments than process engineering. 

Integrating the data from these drawings extends the capabilities of query and reasoning from 

the knowledge base, by linking the data from two sources. Such an integration will be helpful 

in applying model-based definition (MDB) (Kaufmann & Bernstein, 2010) in process plants. 

Therefore, the next step is to integrate information from the mechanical datasheet and the 

tabular data (shown in Figure 3-8) into the knowledge base. Classes such as 

“NumberOfNozzles” and relations such as “hasNumberOfNozzles” have been developed to 

cover the knowledge representation required for an “individual” such as “Equipment-1.” 
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Figure 3-8: Sample mechanical datasheet, extracted data, and ontology graph 
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Because two machine-readable knowledge bases are available from the P&ID and mechanical 

datasheet, it is now possible to combine them into one knowledge base. Figure 3-9 below 

shows the linked graph data that illustrate the developed knowledge base and the classes and 

relations by combining the P&ID and mechanical datasheet. It shows how different sources of 

data and information are now linked together in one unique knowledge base. 

 

Figure 3-9: Linked data graph 

3.4 Developing the knowledge base-Integrating of human knowledge 

The final step in creating a complete knowledge base for hazard identification is integrating 

human knowledge into this knowledge base. In order to achieve that, this knowledge should 

be converted into the ontology format. This conversion requires a brief introduction to DL and 

OWL. 

DLs are a family of logic-based languages for knowledge representation in different domains 

(Baader, Horrocks, & Sattler, 2008). DLs have reasoning capability and OWL is based on DL 

languages (Horrocks, Patel-Schneider, & Van Harmelen, 2003). Simplified sentences in 

human natural language can be illustrated in DL; Table 3-1 below shows some examples.  
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Table 3-1: Natural language to description logic 

Natural language DL format

Gate-valve is a type of valve. gate−valve valve

Ethylene is considered a
highly-flammable hydrocarbon.

{_Ethylene} highly−flammable−hydrocarbon

Kpa is one of the units for pressure. {_Kpa} pressure−unit
 

It is clear that manual conversion of human language into DL would not be possible, especially 

in the case that a huge number of sentences should be converted to DL. One possible approach 

is a combination of controlled natural language (CNL) grammar and an ontology editor that 

can support it. Figure 3-10 shows the process: 

Human knowledge
Human natural language Simplified language-CNL

Description logicOntology language
Machine-readable format

Manual 
conversion

Ontology 
editor

Ontology 
editor  

Figure 3-10: Machine-readable knowledge base from human natural language 

Although CNL is still a fuzzy term and there is no precise definition for it, it can be defined as 

a restrictive version of natural language and it has been used in different environments and 

disciplines (Kuhn, 2014). One of the examples is Attempto controlled English (Fuchs, 

Schwertel, & Schwitter, 1998). Another example is Ontorion Controlled Natural Language 

(OCNL), which is designed to be compatible with OWL (Seganti, Kapłański, & Zarzycki, 

2015). Table 3-2 shows some examples. 
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Table 3-2: OCNL and DL conversions of natural language 

Natural language OCNL format DL format

Gate-valve is a type of valve. every gate-valve is a valve. gate−valve valve

Ethylene is considered a
highly-flammable hydrocarbon.

Ethylene is a highly-flammable-
hydrocarbon.

{_Ethylene} highly−flammable
−hydrocarbon

Kpa is one of the units
for pressure.

Kpa is a pressure-unit. {_Kpa} pressure−unit
 

Semantic Web (SW) is considered the next generation of the Web and ontology languages 

such as RDF and OWL are used as its language (Lucanu, Li, & Dong, 2006). OWL was 

developed by the World Wide Web Consortium (W3C) to overcome the limited 

expressiveness of RDF Schema (Antoniou & Van Harmelen, 2004). Because OWL is based 

on DL (Yang, Dong, & Miao, 2008), all the simplified sentences above will be converted to 

OWL. Table 3-3 shows the ontology (OWL/XML encoded) version of DL formats. 

Table 3-3: OWL format from OCNL and DL formats 

OCNL format DL format Ontology format(OWL/XML)

every gate-valve is a valve. gate−valve

⊑

valve
<SubClassOf xmlns="http://www.w3.org/2002/07/owl#">

<Class IRI="GateValve" /> 
<Class IRI="Valve" />

Ethylene is a highly-flammable-
hydrocarbon.

{_Ethylene}

⊑

highly−flammable−hydrocarbon

<ClassAssertion 
xmlns="http://www.w3.org/2002/07/owl#">

<Class IRI="HighlyFlammableHydrocarbon" />
<NamedIndividual IRI="Ethylene" />

Kpa is a pressure-unit. {_Kpa}

⊑

pressure−unit

<ClassAssertion 
xmlns="http://www.w3.org/2002/07/owl#">

<Class IRI="PressureUnit" /><NamedIndividual 
IRI="Kpa" 

<NamedIndividual IRI="Kpa" /></ClassAssertion>  

Both data from engineering drawings and human knowledge are in a unique format, because 

both have been encoded into ontology/OWL format. These two knowledge bases can now be 

combined to form a unique knowledge base, which is illustrated in Figure 3-11. 

Human knowledge
Human natural language Simplified language-CNL

Description logicOntology language
Machine-readable format

Manual 
conversion

Ontology 
editor

Ontology 
editor

Engineering drawing

Tabular format

CAD export

Ontology 
editor  

Figure 3-11: Combination of knowledge bases 

Another part of human knowledge is the conditional relations. A conditional relation in logic 

is expressed as pair of propositions, where one of the propositions is expressed to be true if 
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the other is true. This part is more sophisticated than triple-made sentences. Some examples 

of conditional relations in the process industry are presented here: 

If a valve is a part of a line, then the same fluid passes through the line and the valve. 

If a valve is open, then it is not closed. 

Although these expressions seem simple, they are essential parts of a knowledge base for 

accurate logical inferences. 

Part of the engineering knowledge and project specifications can be introduced to the 

knowledge base through these conditional relations. Here is an example: 

If a tank is open and the tank does not have high-level control, then it may overflow. If the tank 

overflows, then humans are exposed to the material in the tank. If the material in the tank is 

hazardous material, then the site is not safe. 

In the SW, these conditional relations are defined as Semantic Web Rule Language (SWRL). 

Adding this part of the human knowledge is essential to create a knowledge base for accurate 

inferencing. As with other parts of the human knowledge, it is possible to convert the OCNL 

format of SWRL into DL and use them as part of the ontology/knowledge base. Table 3-4 

shows an example in which two engineering expressions are converted into the OCNL and DL 

format. As discussed, the DL format can be integrated as a part of the knowledge base, in 

OWL language. 

Table 3-4: SWRL from natural language to DL format 

DL format

When a pipe is connected to a nozzle, 
which ia a part of an equipment, then 
the pipe is connected to the equipment.

If a process-pipe(1) is-connected-to a nozzle(1) 
and the nozzle(1) belongs-to an equipment(1) 
then the process-pipe(1) is-connected-to the 
equipment(1).

⌂○process−pipe(?process−pipe−1) ○nozzle(?nozzle−1
)

⋀

be−connected−to(?process−pipe−1,?nozzle−1)

⋀

○no
zzle(?nozzle−1)

⋀

○equipment(?equipment−1)

⋀

belong−t
o(?nozzle−1,?equipment−1)→be−connected−to(?proce
ss−pipe−1,?equipment−1)

A vertical tank with pressre more than 
1000 Kpa is considerred a high-
pressure tank.

if a vertical-tank(1) has-operating-pressure an 
operating-pressure(1) and the operating-
pressure(1) has-value greater-than 1000 and the 
operating-pressure(1) has-pressure-unit Kpa then 
the vertical-tank(1) is a high-pressure-tank.

⌂○vertical−tank(?vertical−tank−1) ○operating−pressur
e(?operating−pressure−1)

⋀

have−operating−pressure(?v
ertical−tank−1,?operating−pressure−1)

⋀

○operating−pre
ssure(?operating−pressure−1)

⋀

°have−value(?operating−
pressure−1,?:value−tmp−1)

⋀

°>1000(?:value−tmp−1)

⋀

○operating−pressure(?operating−pressure−1)

⋀

have−pr
essure−unit(?operating−pressure−1,_Kpa)→○high−pres
sure−tank(?vertical−tank−1)

OCNL formatNatural language format

 

3.5 NO-SQL inferencing 

It is now possible to make a query from this knowledge base. Because this knowledge base is 

based on DL, a logical inference can be a part of the query. The query language for this OWL-

based knowledge base is SPARQL, which is a No-SQL query language and is the W3C-

recommended query language for SW. Figure 3-12 shows where the query can be made from 

the knowledge base. 
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Figure 3-12: SPARQL query from knowledge base 

Table 3-5 shows two examples: 

Table 3-5: Query in natural language and SPARQL 

Query(Natural language) SPARQL format

Equipment tag of Equipment1

PREFIX pro: <http://processplantontology.com/processontology20.owl#>
SELECT ?EquipmentTag
 WHERE { pro:Equipment1 pro:hasequipmenttag ?EquipmentTag.}

list of equipment tags which the 
equipment material is carbon steel

PREFIX pro: <http://processplantontology.com/processontology20.owl#>
SELECT ?EquipmentTag
WHERE
{
?Equipment pro:hasMaterialOfConstruction ?CarbonSteel.
?Equipment pro:hasequipmenttag ?EquipmentTag.
}

 

It is also possible to use CNL to convert simplified queries, in human natural language, into 

SPARQL format queries. The CNL grammar is used in this case is again OCNL, which was 

used for the content of the knowledge base. FE ontology editor can convert the OCNL format 

of the query into SPARQL, as illustrated in Table 3-6. 

Table 3-6: Query from natural language to SPARQL, using OCNL 

Query(Natural language) OCNL format SPARQL format

list of equipment tags which the 
equipment material is carbon steel.

Who-Or-What has-material-of-
construction Carbon-Steel?

PREFIX pro: <http://processplantontology.com/processontology20.owl#>
SELECT ?EquipmentTag
WHERE
{
?Equipment pro:hasMaterialOfConstruction ?CarbonSteel.
?Equipment pro:hasequipmenttag ?EquipmentTag.
}
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3.6 Case studies 

3.6.1 Phillips disaster 

Figure 3-13 shows a part of a P&ID in which a two-inch line is connected to a high-pressure 

tank (TK-1002) at its head and connected to the atmosphere at its tail. A logic-based 

knowledge representation is used to identify hazard(s) in the process design. First, an ontology 

is extracted from this part of the P&ID. In the next step, the engineering specification, in the 

form of human knowledge is presented in DL and OCNL formats. Finally, a combination of 

these two knowledge bases is used for a SPARQL/OCNL query about the safety of the design.  

 

Valve hasType isInLine hasMaterial hasManufacturer

V-1 SingleBlockValve PipingSpool 1 … …

Piping hasID hasHead hasTail hasMaterial

PipingSpool 1 2-CS300-P-1060 Nozzle 1 Atmosphere …

Nozzle hasTag isInEquipment hasMaterial hasSize

Nozzle-1 N-1 Equipment-1 … …

TK
-1

00
2

Atm.

2"
-C

S3
00

-P
-1

06
0

N-1

V-1

Equipment hasTag hasPressure hasMaterial isinPID

Equipment-1 TK-1002 1200 … P&ID-100
 

Figure 3-13: P&ID100 for case study 1: Line connected to high-pressure tank 
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The ontology editor is used to convert these tables into a part of the knowledge base. A part 

of this encoding is shown in Table 3-7 in two formats: OCNL and DL. 

Table 3-7: Triples converted to DL format 

DL
V-1 has-type Single-Block-Valve. {_V−1} (have−type).({_Single−Block−Valve})
Piping-Spool-1 has-valve V-1. {_Piping−Spool−1} (have−valve).({_V−1})
Piping-Spool-1 has-line-number "2-
CS300-P-1060".

{_Piping−Spool−1} (have−line−number).("2−CS300−
P−1060")

Triple-OCNL format

 

A graphical ontology is shown in Figure 3-14 below: 

 

Figure 3-14: Graphical representation of the P&ID Ontology 

There is also general engineering knowledge that should be added to the knowledge base for 

accurate reasoning (shown in Table 3-8). This part of the knowledge base is not limited to any 

specific project and can be applied to any P&ID: 

Table 3-8: Encoding general knowledge-from OCNL to DL 

DL
Every single-block-valve is a valve. single−block−valve valve
If a process-pipe(1) is-connected-to a 
nozzle(1) and the nozzle(1) belongs-to 
an equipment(1) then the process-
pipe(1) is-connected-to the 
equipment(1).

⌂○process−pipe(?process−pipe−1) ○nozzle(?nozzle−1)
⋀

be−connected−to(?process−pipe−1,?nozzle−1)

⋀

○nozzl
e(?nozzle−1)

⋀

○equipment(?equipment−1)

⋀

belong−to(?
nozzle−1,?equipment−1)→be−connected−to(?process−p
ipe−1,?equipment−1)

Open is a valve-status.
Close is a valve-status.

{_Open} valve−status
{_Close}

⊑

valve−status

OCNL format

 

Another layer that should be added here is the engineering specification, originally in the form 

of human natural language, into OCNL, and then DL format. The sentence below is the natural 

language format of the engineering specification. 
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“If a vertical tank’s operating pressure is above 1000 kPa, a connected pipe to this tank which 

leads to atmosphere on the other side MUST have a double block valve.” 

Table 3-9 below shows the conversion into the OCNL and DL format. 

Table 3-9: From SWRL in natural language to DL format 

Knowledge
Natural language

DL

if a vertical-tank(1) has-operating-
pressure an operating-pressure(1) and 
the operating-pressure(1) has-value 
greater-than 1000 and the operating-
pressure(1) has-pressure-unit Kpa then 
the vertical-tank(1) is a high-pressure-
tank.

⌂○vertical−tank(?vertical−tank−1) ○operating−pressur
e(?operating−pressure−1)

⋀

have−operating−pressure(?v
ertical−tank−1,?operating−pressure−1)

⋀

○operating−pre
ssure(?operating−pressure−1)

⋀

°have−value(?operating
−pressure−1,?:value−tmp−1)

⋀

°>1000(?:value−tmp−1)

⋀

○operating−pressure(?operating−pressure−1)

⋀

have−pr
essure−unit(?operating−pressure−1,_Kpa)→○high−pres
sure−tank(?vertical−tank−1)

If a process-pipe(1) has-line-tail 
Atmosphere and the process-pipe(1) is-
connected-to a vertical-tank(1) and the 
vertical-tank(1) is a high-pressure-tank 
then the process-pipe(1) must-have 
Double-Block-Valve.

⌂○process−pipe(?process−pipe−1) have−line−tail(?pro
cess−pipe−1,_Atmosphere)

⋀

○process−pipe(?process−p
ipe−1)

⋀

○vertical−tank(?vertical−tank−1)

⋀

be−connecte
d−to(?process−pipe−1,?vertical−tank−1)

⋀

○vertical−tan
k(?vertical−tank−1)

⋀

○high−pressure−tank(?vertical−ta
nk−1)→must−have(?process−pipe−1,_Double−Block−
Valve)

If a process-pipe(1) is-in-drawing a 
piping-and-instrument-diagram-
drawing(1) and the process-pipe(1) has-
line-tail Atmosphere and the process-
pipe(1) is-connected-to a vertical-
tank(1) and the vertical-tank(1) is a 
high-pressure-tank and the process-
pipe(1) does-not-have Double-Block-
Valve then the piping-and-instrument-
diagram-drawing(1) has-design-status 
Unsafe and Recommendation-1 have-
status Applicable.

⌂○process−pipe(?process−pipe−1)

⋀

○piping−and−instru
ment−diagram−drawing(?piping−and−instrument−diagra
m−drawing−1)

⋀

be−in−drawing(?process−pipe−1,?pipin
g−and−instrument−diagram−drawing−1)

⋀

○process−pip
e(?process−pipe−1)

⋀

have−line−tail(?process−pipe−1,_
Atmosphere)

⋀

○process−pipe(?process−pipe−1)

⋀

○verti
cal−tank(?vertical−tank−1)

⋀

be−connected−to(?process
−pipe−1,?vertical−tank−1)

⋀

○vertical−tank(?vertical−tan
k−1)

⋀

○high−pressure−tank(?vertical−tank−1)

⋀

○proces
s−pipe(?process−pipe−1)

⋀

doe−not−have(?process−pipe
−1,_Double−Block−Valve)→have−design−status(?pipin
g−and−instrument−diagram−drawing−1,_Unsafe)

Recommendation-1 has-content Line-
Connected-To-High-Pressure-Tank-
And-Atomosphere-Must-Have-A-
Double-Block-Valve.

{_Recommendation−1} (have−content).({_Line−Co
nnected−To−High−Pressure−Tank−And−Atomosphere
−Must−Have−A−Double−Block−Valve})

SWRL-OCNL format

“I
f a

 v
er

tic
al

 ta
nk

’s
 o

pe
ra

tin
g 

pr
es

su
re

 is
 a

bo
ve

 1
00

0 
K

pa
, a

 c
on

ne
ct

ed
 p

ip
e 

to
 th

is 
ta

nk
 

w
hi

ch
 le

ad
s t

o 
at

m
os

ph
er

e 
on

 th
e 

ot
he

r s
id

e 
M

U
ST

 h
av

e 
a 

do
ub

le
 b

lo
ck

 v
al

ve
.”

 

The SPARQL query for hazard identification is the reasoner that refers to the knowledge base, 

which is the DL combination of information from the P&ID and human knowledge. It is the 

reasoning engine/reasoner that can ultimately help with hazard identification. As discussed, 

the SPARQL query can be asked with the OCNL format. Table 3-10 below shows the question 

to check the safety of design in the P&ID above. 
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Table 3-10: Query about P&ID safety 

Query
Natural language Query-OCNL format Query result

Is P&ID design safe? Who-Or-What has-design-
status Unsafe?

P&ID-100
 

At this stage, the reasoner identifies the P&ID as “Unsafe,” but it cannot help the designer to 

modify the design. In order to add this ability, a “Recommendation” part has been added to 

the knowledge base. For example, in this case, because the root cause of the “Unsafe” status 

is the lack of a double block valve, a recommendation is initially added to the original human 

knowledge. Table 3-11 shows the complete query result. 

Table 3-11: Query result: Line connected to high-pressure tank 

Query
Natural 

language
Query-OCNL format Query result

Who-Or-What has-design-status 
Unsafe?

P&ID-100

Who-Or-What is a recommendation that 
has-status Applicable?

Recommendation-1 has-content Line-Connected-To-High-Pressure-Tank-
And-Atomosphere-Must-Have-A-Double-Block-Valve.

Is
 P

&
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 d
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? 
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 if
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This way, the knowledge base not only helps with hazard identification but also provides a 

recommendation to the process designer to modify it. In this case, the response to the query 

includes the recommendation: “Line-Connected-To-High-Pressure-Tank-And-Atomosphere-

Must-Have-A-Double-Block-Valve.” 

A revised P&ID, shown in Figure 3-15, considers two block valves for the line. This time, the 

reasoner approves the P&ID and identifies it as “Safe,” because a double-block valve has been 

used instead of a single-block valve. 
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Rejected Approved
 

Figure 3-15: Revised P&ID 

The case study discussed above was from the Phillips disaster in 1989 (F. I. Khan & Abbasi, 

1999) in which 23 people died and 130 people were injured. A thorough review and better 

P&ID design could have prevented the incident from occurring.  

3.6.2 Acid transfer line 

Figure 3-16 shows a part of a P&ID in which a line transfers phosphoric acid from a storage 

tank to a reactor. A logic-based knowledge representation is used to identify hazard(s) in the 

process design. The same steps as in case study 1 are followed; first, an ontology is extracted 

from this part of the P&ID. In the next step, the engineering specification, in the form of human 

knowledge is presented in the DL and OCNL formats. Finally, a combination of these two 

knowledge bases is used for a SPARQL/OCNL query about the safety of the design.  
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Valve hasType isInLine hasMaterial hasManufacturer

V-7 GateValve PipingSpool 1 CarbonSteel …

V-6

Line-1 Line-2

V-7

Phosphoric 
Acid Storage 
Tank

Ammonia 
Solution 
Storage 
Tank

Piping hasID hasHead hasTail Transfers isInP&ID
PipingSpool 1 Line-2 Nozzle 1 Nozzle 2 PhosphoricAcid P&ID-200  

Figure 3-16: P&ID 200 and the extracted data for case study 2 

The graphical ontology is shown in Figure 3-17 below: 

 

Figure 3-17: Graphical representation of the ontology 
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There is also general engineering knowledge that should be added to the knowledge base for 

accurate reasoning (shown in Table 3-12). This part of the knowledge base is not limited to 

any specific project and can be applied to any P&ID: 

Table 3-12: Conversion of certain OCNL expressions into DL format 

DL
Phosphoric-Acid is an acidic-service. {_Phosphoric−Acid} acidic−service

if a process-pipe(1) has-service a 
service(1) and the process-pipe(1) has-
valve a valve(1) then the valve(1) has-
service the service(1).

⌂○process−pipe(?process−pipe−1) ○s
ervice(?service−1)

⋀

have−service(?pro
cess−pipe−1,?service−1)

⋀

○process−pi
pe(?process−pipe−1)

⋀

○valve(?valve−1
)

⋀

have−valve(?process−pipe−1,?valve
−1)→have−service(?valve−1,?service−
1)

Monel is a material-of-manufacturing. {_Monel} material−of−manufacturing

OCNL

 

Engineering Knowledge: 

When a line is carrying acidic product, valve material should be Monel or 316 Stainless Steel 

and the flow rate should be checked at all time. 

Table 3-13 below shows the conversion into the OCNL and DL formats. 
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Table 3-13: Engineering knowledge, from natural language to DL 

Knowledge
Natural language

DL

if a valve(1) is-in-drawing a piping-and-
instrument-diagram-drawing(1) and the 
valve(1) has-service a service(1) and 
the service(1) is an acidic-service and 
the valve does-not-have-material-of-
manufacturing Monel then the piping-
and-instrument-diagram-drawing(1) has-
design-status Unsafe and 
Recommendation-4 have-status 
Applicable.

⌂○valve(?valve−1)

⋀

○piping−and−instrument−diagram−
drawing(?piping−and−instrument−diagram−drawing−1)
⋀

be−in−drawing(?valve−1,?piping−and−instrument−diag
ram−drawing−1)

⋀

○valve(?valve−1)

⋀

○service(?service
−1)

⋀

have−service(?valve−1,?service−1)

⋀

○service(?ser
vice−1)

⋀

○acidic−service(?service−1)

⋀

○valve(?valve−x
)

⋀

doe−not−have−material−of−manufacturing(?valve−x,
_Monel)→have−design−status(?piping−and−instrument
−diagram−drawing−1,_Unsafe)

⋀

have−status(_Recom
mendation−4,_Applicable)

if a process-pipe(1) is-in-drawing a 
piping-and-instrument-diagram-
drawing(1) and the process-pipe(1) has-
service an acidic-service(1) and the 
process-pipe(1) does-not-have-flow-
indicator a flow-indicator(1) then the 
piping-and-instrument-diagram-
drawing(1) has-design-status Unsafe 
and Recommendation-5 have-status 
Applicable.

⌂○process−pipe(?process−pipe−1)

⋀

○piping−and−instru
ment−diagram−drawing(?piping−and−instrument−diagra
m−drawing−1)

⋀

be−in−drawing(?process−pipe−1,?pipin
g−and−instrument−diagram−drawing−1)

⋀

○process−pip
e(?process−pipe−1)

⋀

○acidic−service(?acidic−service−
1)

⋀

have−service(?process−pipe−1,?acidic−service−1)

⋀

○process−pipe(?process−pipe−1)

⋀

○flow−indicator(?flo
w−indicator−1)

⋀

doe−not−have−flow−indicator(?proces
s−pipe−1,?flow−indicator−1)→have−design−status(?pipi
ng−and−instrument−diagram−drawing−1,_Unsafe)

⋀

hav
e−status(_Recommendation−5,_Applicable)

Recommendation-4 has-content Valve-
Contains-Acid-Should-Be-From-
Stainless-Steel-Or-Monel

{_Recommendation−4} (have−content).({_Valve−C
ontains−Acid−Should−Be−From−Stainless−Steel−Or−M
onel})

Recommendation-5 has-content Line-
Contains-Acid-Must-Have-Flow-
Indicator.

{_Recommendation−5} (have−content).({_Line−Co
ntains−Acid−Must−Have−Flow−Indicator})

SWRL-OCNL format
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Table 3-14 below shows the question, by the SPARQL/reasoning engine, to check the safety 

of the design in the P&ID above. 

Table 3-14: Query from P&ID-Acid transfer line 

Query
Natural language Query-OCNL format Query result

Is P&ID design safe? Who-Or-What has-design-
status Unsafe?

P&ID-200
 

At this stage, the reasoner identifies the P&ID as “Unsafe,” but it cannot help the designer to 

modify the design. In order to add this ability, a “Recommendation” part is added to the 

knowledge base. For example, in this case, because the root cause of the “Unsafe” status is the 

wrong material of the valve and the lack of a flow indicator, two recommendations are initially 

added to the original human knowledge, as shown in Table 3-15 below: 
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Table 3-15: Query results: Acid transfer line 

Query
Natural 

language
Query-OCNL format Query result

Who-Or-What has-design-status 
Unsafe?

P&ID-200

Who-Or-What is a recommendation that 
has-status Applicable?

Recommendation-4 has-content Valve-Contains-Acid-Should-Be-From-
Stainless-Steel-Or-Monel.

Recommendation-5 has-content Line-Contains-Acid-Must-Have-Flow-
Indicator.
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This way, the knowledge base not only helps with hazard identification, but it can provide a 

recommendation to the process designer to modify it. In this case, response to the query will 

include the recommendation: “Valve-Contains-Acid-Should-Be-From-Stainless-Steel-Or-

Monel.” and “Line-Contains-Acid-Must-Have-Flow-Indicator.” 

A revised P&ID, Figure 3-18, considers a Monel valve and a flow indicator for this line. This 

time, the reasoner approves the P&ID and identifies it as “Safe.” 

 

 

V-6

Line-1 Line-2

V-7

Phosphoric 
Acid 
Storage 
Tank

Ammonia 
Solution 
Storage 
Tank
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Acid 
Storage 
Tank

Ammonia 
Solution 
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F I

CS Monel

Rejected Approved  

Figure 3-18: Original and revised P&ID 
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3.7 Discussion 

With the development of data science, there are now alternatives to SQL, called No-SQL in 

general, which can boost the existing capabilities of SQL by introducing new formats of data. 

One of the main reasons for developing the knowledge base is to be able to query it by using 

No-SQL. As discussed, there are many situations in the process plant lifecycle in which it is 

critical to get the right answer for the query, and answering the query requires multiple 

documents, drawings, and documents, with their latest revisions, to be sought.  

An example of that would be the hazard identification in process engineering diagrams (e.g., 

the P&ID). It is obvious that, without the knowledge base, answering this question would 

require the design validation team to refer to different drawings, specifications, lessons learnt 

from previous incidents, and find mistakes in the process diagram. This is actually the 

traditional method of hazard identification in the process engineering field, which is normally 

conducted by a group of experts in the field; it is not only time-consuming but also inevitably 

introduces human error. The two case studies in this chapter illustrate the accuracy and speed 

of using a knowledge base, and their reasoning engine for hazard identification. 

It should be noted that developing such a knowledge base for a process plant requires a digital 

format of engineering drawings (e.g., the P&ID). Although a part of this ES requires the time 

and effort to convert human knowledge and engineering specifications into the CNL format, 

it should be that once this is complete, the knowledge base can be used in different projects, 

without the requirement that this part be done again. 

Another major benefit in this method is the capability of using the ISO 15926 standard, which 

is a developing standard. Following ISO 15926 standardizes the assignment of “predicates” in 

the triples and data extraction from CAD platforms. 

The idea is not limited to the design of new process plants, but with the current challenges of 

process plant owners in managing their facilities, while trying to keep their personnel safe and 

the environment intact, it is possible to model all types of information from existing plants (as 

shown in Figure 3-19) for the purpose of any reasoning during the operation and maintenance. 

Moreover, it may be used in conjunction with “Internet of Things” (IoT) technology (F. I. 

Khan & Abbasi, 1999). 

The aim of ontology-based modelling and analysis is to reduce the amount of time, effort, and 

money that is required to do process hazard analysis in the future. It requires an investment in 

time and money, but the return of this investment is worth the time and effort since it is 

eliminating the repetitive (and unnecessary) activities. Besides, it minimizes the human error 

in future hazard analysis. 



 

46 
 

On the other hand, current advancements in Natural Language Processing is benefiting this 

process in converting natural language, into a machine-readable format. This research is aimed 

to apply NLP in converting human-readable scripts into semantic language in the next steps. 

 

 

Figure 3-19: Creating a comprehensive knowledge base 

 

3.8 Conclusions and future work 

In this chapter, state-of-the-art semantic technology and ontology language were used to 

address safety issues in the process industry, and their roots in data query and reasoning and 

successful application to two case studies were illustrated. The contribution here lies in 

developing machine-readable knowledge bases for safety analysis in the process industry. This 

is the first time that such a new field in computer and data science (semantic technology and 

KE) is used in safety analysis in the chemical engineering field. Combining process data, 

human knowledge, and engineering specifications in a knowledge base and developing a query 

platform to automate/assist in the safety analysis minimize the required time for safety 

analysis, minimize human error, and also provide the opportunity for process engineers to try 

different sets of process diagrams. 

Developing a knowledge base (ontology), including the data from engineering drawings (e.g., 

P&ID and mechanical datasheet), using CNL, DL, and OWL language was proposed. Using a 

No-SQL language (e.g., SPARQL) and built-in reasoners in ontology editors to gain accurate 

responses for complex questions during the lifetime of a plant were also illustrated. The 
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flexibility of a knowledge base in integrating data from different sources and its data 

visualization and unique identifier features were also presented. 

Because the roots of this methodology are a part of semantic technology and AI development, 

it can be linked to other AI systems and applications to create a type of process plant that acts 

smarter in each phase of the project (i.e. design, construction, operation, and shutdown and 

maintenance). The development of applications for design automation can be named as such 

futuristic applications because the machine stores human knowledge and it can read other 

formats of existing data. Therefore, the future of this research will be about using the human 

knowledge in a machine-readable format for reviewing the design, as well as automating the 

design. 
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Chapter 4 Automation of equipment arrangement and design 

validation in process plants 

In this chapter, an algorithm for the automation of equipment arrangement in process plants is 

first developed. Mathematical models of equipment in the PFD are then established. The 

algorithm is applied to equipment models to generate multiple scenarios of equipment 

arrangement. Human knowledge and engineering specifications are integrated to the algorithm 

to check the scenarios and filter the best arrangements 

4.1 Algorithm and preliminary data extraction  

Figure 4-1 shows the algorithm flowchart. Data from the PFD and preliminary equipment 

dimensions are used in creating data matrices of the layout and equipment with mathematical 

modeling. All possible scenarios for the equipment arrangement are created and different 

matrices are developed for each scenario. The project specification and best engineering 

practices are then applied to each scenario model to filter the scenarios and choose the 

approved list. 

Start

Data from 
Process Flow 

Diagram (PFD)

Database

Preliminary 
equipment 
dimensions

Create point-data 
matrix for each 

equipment

Create scenarios of 
equipment 

arrangement

Specification 
rules

Convert spec rules to 
logical/programmable 

rules

Check scenario 
matrices with rules

Add scenario to list 
of ‘not-approved’ 

scenario list

Add scenario to list 
of ‘approved’ 
scenario list

ApprovedNot Approved

End

Best Practice 
according to 

previous 
experiences

 

Figure 4-1: Flowchart for equipment arrangement and validation 
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At the first stage, a database is developed which includes the data from process flow diagram 

(PFD) and the preliminary equipment dimensions. It is worth mentioning that the equipment 

manufacturers in the process plant industry have preliminary dimensions, based on the process 

information. For example, a centrifugal pump with specific operation/test pressure and 

temperature and in/out nozzle dimensions has a rectangular shape with certain dimensions; 

these dimensions are normally in a (somehow) similar range among centrifugal pump 

manufacturers. The same concept is correct for other equipment in this field (i.e. heater, heat 

exchanger, towers).  

In the next stage, the algorithm develops data models, in form of matrices, for each equipment, 

by converting each equipment into data-enriched nodes. Combination of these data models 

creates multiple scenarios for equipment arrangement. 

Another part of the algorithm is about integrating the engineering specifications into the code; 

in other words, equipment arrangement rules (e.g. clash prevention, safe distance, and 

orientations) can become a part of the code script. 

In the last stage, rules (included as a part of the code) are going to check each equipment 

arrangement scenario and approves its validity. 

PFDs normally show the relation between the process equipment at the early stages of the 

project. PFDs are human-readable diagrams and include information about the relations among 

the equipment. It is a common practice in the process plant industry for, with the preliminary 

information in the PFD, the preliminary dimensions of the process equipment to be generated 

as a database for the preliminary design of the equipment arrangement. These data are based 

on the lessons learned and previous similar process plants. Figure 4-2 below shows an example 

of this. 
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L 2

PFD
Preliminary sizing of 

2D equipment

 

Figure 4-2: Preliminary equipment dimensions from PFD 
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4.2 Mathematical modeling of process equipment 

In order to apply the design automation algorithm, each process equipment should be 

converted into a 2D spatial data matrix using mathematical modeling. This way, instead of a 

mere object, each equipment is illustrated as a matrix of spatial data points. Each point in each 

process equipment not only has a spatial data but is also linked to meta-data. A mathematical 

model defines the relation between the points in each equipment, and the algorithm generates 

different arrangements of these points and the knowledge base checks the validity of the 

design. Figure 4-3 below shows the basic conversion of a pump into spatial points. 

 

Figure 4-3: Spatial data points of a pump 

4.2.1 Creating spatial point coordination 

Two approaches have been investigated to create the mathematical model of the spatial points 

in each process equipment. The first is the “inward spiral guideline” and the second is the 

“coil-shaped guideline.” Figure 4-4 below shows both guidelines on a similar equipment. 
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Figure 4-4: Inward spiral vs. coil-shaped guideline for mathematical modeling 

 

Creating a mathematical model with the inward spiral guideline is a complex task. The coil-

shaped guideline provides a simpler approach to develop a mathematical model that can 

predict the location of the points and other features from the number of each point. The 

coordination of each point ( )_ _,P No P NoX Y  is based on the coordination of the base point 

( )0 0,X Y  and the orientation of the equipment ( )α  in the layout area. Figure 4-5 illustrates 

the coordination of points for an equipment in four different rotations. 

Following the coil-based guideline, each point’s coordination can be expressed as follows: 

( ) ( )( )( ) ( ) ( ) ( ) ( )( ) ( )( )( )( ) ( )

( ) ( )( )( ) ( ) ( ) ( ) ( )( ) ( )( )( )( ) ( )

_ 0 0

_ 0 0

:
:
:

_ mod 1 sin _ _ mod 1 1 1 cos

_ mod 1 cos _ _ mod 1 1 1 sin

P No

P No

L Length
W Width

Rotation Angle

X Y P No W X P No P No W W

Y Y P No W X P No P No W W

α

α α

α α

−

 = + + × + + − + × + − ×
 

 = + + × − + − + × + − ×
    
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v

90oα =

180oα =

270oα =

Layout area (XP_No,YP_No)

(X0,Y0)

 

Figure 4-5: Process equipment spatial point coordination with respect to base point and rotation in the layout 
area 

4.2.2 Creating equipment data matrix 

As discussed above, creating a matrix from each process equipment gives us the opportunity 

of adding more meta-data to each point. Figure 4-6 shows the difference between the amount 

of data in a mere object and a matrix conversion of the same equipment. It shows limited data 

from the “object” when compared with the mathematical model. 
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Figure 4-6: Data matrix vs. limited data of an object 

 

An integrated knowledge base in the algorithm requires a reference to the meta-data of each 

point in the process equipment data matrix, such that the equipment arrangement design may 

be validated. This is a combination of different data matrices. Therefore, each equipment data 

matrix should have enough information in each row. Figure 4-7 below shows the nature of 

data in each column of the data matrix and each row refers to a point in the equipment. 
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Figure 4-7: Points and matrix 
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4.2.3 Critical spatial points 

Because some parts of the checklist in the algorithm are around the border, corner, and nozzle 

points of each process equipment, it is important to consider them in the data matrix and 

mathematical model of each equipment. The following rules should be considered in the 

mathematical modeling of the equipment: 

Corners 

( )( )( )
( )( )( )

_1 _ 2 _ 3 _ 4

_1 1 _ 3 _1

_ 2 1 _ 4 _ 2

_ int , , ,

1 1

1 1

Co Co Co Co

Co Co Co

Co W Co Co

Corner Po s P P P P

P P P P L W

P P P P L W+

 =  

= → = + × + +

= → = + × + +
  

Border/perimeter points 

Below is the rule for detecting the list of points positioned on the border/perimeter of the 

equipment: 

( )( ) ( )( )
( ) ( )( )( ) ( ) ( )( )

_1 _ 2 _

_1 _ 2 _ 3 _ 4

_ int , , ,

_ _

_ mod 1 1 0 _ mod 1 0

_ _ int

Bo Bo Bo n

Co Co Co Co

Border Po s P P P

if P P No P P P No P

P No W P No W

P No Border Po s

 =  

≤ ≤ ∨ ≤ ≤ ∨

+ − = ∨ + =

→ ∈



  

Nozzle points 

Nozzle locations are also used in the algorithm and should be recorded as part of the data 

matrix.  

[ ]
( )

1 2

_ _1 _ _1

_ , ,

_ _P No Nozz P No Nozz

Nozzle List Nozz Nozz

if X X Y Y P No Nozzle List

=

= ∧ = → ∈



  

Figure 4-8 below shows the location of two nozzles and their mirror points on the spatial point 

graph of the process equipment.  
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Figure 4-8: Nozzles on spatial point graph of the equipment 

4.2.4 Adding more meta-data 

As discussed, further details can be added to the mathematical models for equipment. This 

includes meta-data about the points in the operation, maintenance, and other required zones 

around each equipment. Assigning data rows to the matrix to cover these points will be helpful 

in future, because rules about each set of points will be added to the equipment arrangement 

algorithm. Figure 4-9 below shows “operation” and “maintenance” spaces added to the data 

matrix. 
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Figure 4-9: Operation and maintenance areas 

 

4.2.5 Modeling scenarios 

Now that the mathematical model for the process equipment data matrix is defined, it is 

possible to extend it to multiple pieces of equipment simultaneously and to create a data matrix 

of different scenarios. Each scenario represents a unique arrangement of all the process 

equipment in a PFD.  

In order to cover all possible scenarios, the first step is to consider the process area as a spatial 

data matrix. The algorithm sets an order for the process equipment and assigns a point in the 
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process area as the base point for one equipment at a time. Another degree of freedom in the 

algorithm for each equipment is the angle, or direction of the equipment with respect to the 

north of the plan. Therefore, each equipment not only has the freedom to choose its base point, 

but also can set its direction (North, South, East, or West). Figure 4-10 shows a process area 

with the specified length and width of L and W. It shows a possible coordination and direction 

for the base point of one simple equipment. 

(X01,Y01)

(X02,Y02)

 

Figure 4-10: Sample scenarios for the base point of a process equipment 

 

If the number of equipment in the PFD is K, then the number of scenarios is ( ) 4KL W× × . 

Figure 4-11 shows two different scenarios and the corresponding generated matrix. It shows 

two orientations and two different base points for the same equipment, which generates two 

different matrices of point data:  
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Figure 4-11: Two scenarios of the same equipment and their data matrices 

 

Figure 4-12 below shows an example of a scenario (scenario n) with five equipment. Each 

equipment has the freedom to set its first point and orientation in the layout. Accordingly, five 

matrices are generated and the information of the specific scenario is recorded among other 

thousands of other possible scenarios. 
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Figure 4-12: Sample scenario with five different process equipment 

 

4.2.6 Combining matrices 

In order to apply rules to each scenario, the separate matrices in each scenario should be 

concatenated as one mathematical model in the form of a matrix. Equation (4.1)  below shows 
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the concatenation of the matrices from the example above. This final matrix for each scenario 

has all the information about the process equipment in one place, which makes it possible to 

apply the knowledge base part of the algorithm to each scenario. 

( ) ( ) ( ) ( ) ( )( )4 4 4 4 4
1 2 3 4 5

m m n k s
Scn n E E E E E− =  (4.1)

  

The result would be as follows: 

1 1 1 1 1 5 1 1 1

2 2 2 2 2 5 2 2 2

3

1 2 . . .

1 2 . . .

E i E i E i E i E i E i E i E i E i

E i E i E i E i E i E i E i E i E i

E i

X Y Loc SP SP Conn Nozz Eq Name Orientation Eq Conn

X Y Loc SP SP Conn Nozz Eq Name Orientation Eq Conn

Scn n X

− − − − − − − − −

− − − − − − − − −

−− =

        

        

        

3 3 3 3 5 3 3 3

4 4 4 4 4 5 4 4 4

5 5 5 5

1 2 . . .

1 2 . . .

1

E i E i E i E i E i E i E i E i

E i E i E i E i E i E i E i E i E i

E i E i E i E i

Y Loc SP SP Conn Nozz Eq Name Orientation Eq Conn

X Y Loc SP SP Conn Nozz Eq Name Orientation Eq Conn

X Y Loc SP S

− − − − − − − −

− − − − − − − − −

− − − −

        

        

5 5 5 5 52 . . .E i E i E i E i E iP Conn Nozz Eq Name Orientation Eq Conn− − − − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            

 

4.3 Algorithm validation 

As discussed, a part of the algorithm includes a knowledge base for human knowledge and 

engineering specifications of the process plant. Human knowledge and engineering 

specifications can be converted into a simplified version, and then into a logical format, in 

order to be included in the algorithm and to be applicable to the data matrices. Logical 

expressions have been used here to express the simplified knowledge. In order to show how 

the algorithm works with this knowledge and data matrices, three activities in validating the 

design have been conducted: clash checking, safety distances checking, and parallel equipment 

checks. 

4.3.1 Clash check 

Because the algorithm can provide all possible equipment arrangements, the first activity in 

checking the validity of the design should be clash checking. As discussed, that which is 

referred to here as a “design” is in fact a data matrix. In order to check the clash, the algorithm 

checks whether any two different equipment have any points in the same location (i.e., similar 

X and Y) and divide the complete list of scenarios into “Approved” and “Not-Approved” lists 

for this part of the validity check. The conditional statement in Equation (4.2) sets up the range 

and the statement. The logical expressions in Equation (4.3) set the hypothesis and check 

whether the validation refers to two different equipment and whether they have similar X and 
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Y coordination. Expressions (4.4) and (4.5) are the possible conclusions for the hypothesis 

checking and put the tested scenario into either the “Approved” or “Not-Approved” list of 

equipment arrangement scenarios. 

{ } ( ) ( )1,2,..., ,n TotalScn p n q n∀ ∈ →  (4.2) 

( ) { }
( ) ( )( ) ( ) ( )( )

( ) ( )( )
1 1 2 2

9 9

: , 1, 2,..., ,

i j i j

i j

p n i j m

Scn n Scn n AND Scn n Scn n

AND Scn n Scn n

∃ ∈

− = − − = −

− ≠ −

  (4.3) 

( ) { } ( ):q n NotApprovedScn Scn n−   (4.4) 

( ) { } ( ):t n ApprovedScn Scn n−   (4.5) 

Figure 4-13 below shows a clash between two equipment and the overlapped area that creates 

similar (X, Y) coordinates in their corresponding matrices. 
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Figure 4-13: Clash between two equipment 

  

4.3.2 Safety distance check 

Checking safety distances is one of the most important activities in validating equipment 

arrangement design. Ignoring this may result in catastrophic accidents in process plants, as 

any failure may be a triggering point for a domino effect where fire or smoke in one equipment 

or part of the plant spreads to other parts of the plant without control.  

An “equipment spacing” chart is normally a part of the engineering specifications of the 

project for any type of process plant. This chart can be included in the knowledge base of this 

automation algorithm as a matrix to check whether the safe distance between equipment in the 
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arrangement is considered. Figure 4-14 shows a matrix for the list of equipment in a PFD and 

the required safety distance of equipment from each other. This matrix is developed along with 

the development of the PFD and obtains its values from the engineering specifications of the 

project. 

 

Figure 4-14: Equipment spacing (safe distance) matrix 

In order to check the safe distance, the algorithm lists all possible distances between “border” 

points of each two equipment, finds the minimum, and compares that with the safe distance 

matrix. Figure 4-15 illustrates some of the distances between “border” points of two 

equipment.  

In the mathematical description, the problem statement and logical check are represented by 

Equation 4.6 and 4.7. It also computes the minimum distance between “border” points and 

compares it with the safe distance matrix. In the case that the minimum distance is less than 

the identified safety distance in the safe distance matrix, the scenario is identified as “Not-

Approved.” Expressions (4.8) and (4.9) show the possible conclusions for the hypothesis 

checking and put the tested scenario in either the “Approved” or “Not-Approved” list. 

{ } ( ) ( )1,2,..., ,n TotalScn p n q n∀ ∈ →  (4.6) 

( ) { }

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

2 2

1 1 2 2 9 9

3 3

9 9

: , 1, 2,..., ,

min ,

' '

i j i j i j

i j

i j

p n i j m

Scn n Scn n Scn n Scn n SD Scn n Scn n

AND Scn n Scn n Border

AND Scn n Scn n

∃ ∈

  
− − − + − − − 〈 − −     

− = − =

− ≠ −

  (4.7) 

( ) { } ( ):q n NotApprovedScn Scn n−   (4.8) 

( ) { } ( ):t n ApprovedScn Scn n−
  (4.9) 
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Figure 4-15: Distances between “border” points 

4.3.3 Parallel equipment arrangement check 

For some equipment in the equipment arrangement design, being parallel to each other is one 

of the major aspects of their positioning in the layout. This simplifies their operation, 

maintenance, and piping design. Some of these cases include stand-by pumps, compressors, 

or a series of shell-and-tube heat exchangers. Figure 4-16 shows an example of two parallel 

equipment and their corresponding matrices. For this equipment, being parallel is not only 

about the orientation of the equipment, but more importantly, it is about the location of 

connected nozzles in relation to each other. The algorithm checks the type of point, its 

connected nozzle on the PFD and the coordination of these two points in relation to each other. 

Statement (4.10) shows the logical expression for this rule. 
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Figure 4-16: Parallel equipment 
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  (4.10) 

4.4 Case study – process flow diagram 

To validate the above activities (clash checking, checking safety distances, and parallel 

equipment checks), below are some of the rules that can be integrated into the knowledge base 

of the algorithm. This case study demonstrates the automation of a part of the equipment 

arrangement in a section of a naphtha hydro-treater plant (Bausbacher & Hunt, 1990). 

Figure 4-17 shows the flow diagram used in this case study and Figure 4-18 shows the part for 

which the equipment arrangement will be applied. It should be noted that it is a common 

practice in the design of process plants to divide the PFD into separate parts and arrange the 

equipment in each part separately. Later in the design stage, these separate parts are combined 

to create a complete set of equipment arrangement for the entire PFD. 
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Figure 4-17: Process flow diagram 
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Figure 4-18: Selected part of the PFD for automatic equipment arrangement 

As shown in Figure 4-19, there are different sources for the knowledge base of the algorithm; 

one part of data comes from the PFD, which is helpful in specifying the preliminary 

dimensions of the process equipment. Another part is from the engineering specifications and 

human knowledge. As discussed, this part of knowledge can be simplified into logical rules 
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and encoded as part of the algorithm. The algorithm is used to generate different possible 

scenarios for the equipment arrangement and to validate them with the knowledge base.  
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Figure 4-19: Data flow and algorithm 

Figure 4-20 to Figure 4-22 show three different scenarios generated by the algorithm as well 

as the results of the validity check with the design knowledge base. 

These figures show that scenario 1 is rejected for the clash, non-parallel positioning of the 

pumps, and for not considering the minimum safety distance between the pump and the drum. 

There is no clash in scenario 2 and the safety distance is considered, but the pumps are not in 

a parallel situation, as required in the knowledge base of the algorithm. Scenario 3 is approved 

for complying with all the necessary requirements. 
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Figure 4-20: Scenario 1 
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Figure 4-21: Scenario 2 
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Figure 4-22: Scenario 3 
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4.5 Case study-complete plant  

By expanding the rules and integrating them into the algorithm, it is possible to cover the entire 

process plant. Figure 4-23, Figure 4-24, and Figure 4-25 show three possible scenarios for the 

entire plant.  

 

Figure 4-23: Complete plant scenario 1 
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Figure 4-24: Complete plant scenario 2 
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Figure 4-25: Complete plant scenario 3 

 

The comments in red are the flaws in the equipment arrangement that were detected by the 

algorithm and its knowledge base. Incorrect orientation of equipment, clashes in the 

arrangement, incorrect location for installation, and ignoring safe distance and equipment 

spacing are some of the examples here. The last figure (scenario 3) with comments in green is 

one of the scenarios with no flaws detected by the algorithm. The equipment arrangement here 

considered the right location, right orientation, and safe distance between equipment. It should 

be emphasized that in the background, the algorithm worked on a large set of data matrices of 

2D spatial points, with their associated meta-data, which is how it was able to try all the 

possible scenarios and validate each arrangement. 
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4.6 Summary and discussion 

Considering the time/resource limitations for equipment arrangement, its important role for 

the safety of the plant, as well as the huge number of possible scenarios to arrange equipment 

in each process plant and large number of specifications and engineering practices that should 

be checked for each scenario, it is important to consider an automated method to assist in this 

case. In this chapter, a new algorithm was proposed to automate the equipment arrangement 

in the process industry. This algorithm created point-based mathematical models of each 

equipment and the plant area, created all the possible scenarios for equipment arrangement 

and checked the validity of the design in each scenario. Best practices and engineering 

specifications (e.g., safe distance between equipment) were encoded into the program 

environment for validation. The case studies show its accuracy in detecting arrangement faults 

and its ability to short-list the best scenarios. 

the effectiveness of this algorithm is because it eliminates the time/resource limitations for 

equipment arrangement in the basic design of process plants. Besides, it adds another safety 

layer during the design stage. It provides the design team with the opportunity to check all 

possible equipment arrangement scenarios, without affecting the traditional routine in 

developing plot plans in process plants and works as a safe assistant in ensuring the safe and 

economic design, in a very limited time. 
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Chapter 5 Automation of piping and stress analysis 

Piping design, pipe support design, and piping stress analysis are considered as some of the 

activities that are prone to human error in the process plant industry. A failure in a 

comprehensive analysis may result in the loss of human lives during pre-commissioning, 

commissioning, or operation, as well as catastrophic effects on the environment through the 

leakage of hazardous material. 

A lack of communication between the design and analysis team members could be considered 

as one of the main drawbacks in the design process. Traditional methods of design require the 

designers to update the stress analysis team regarding any changes in the equipment 

arrangement, pipe routes, or pipe support locations and type. A failure in proper 

communication and updating the analysis team will result in a plant design, prone to failure 

due to a lack of a proper stress analysis. In this chapter, the automation of piping and pipe 

supporting design and piping stress analysis has been proposed to deal with current challenges 

in the industry. This chapter is divided into three main sections. Section 5.1 illustrates the 

details of the algorithm for piping design between two equipment and the algorithm for the 

automation of pipe support. Section 5.2 introduces an ML approach for the automation of 

stress analysis. Finally, in Section 3, the use of supervised ML for stress analysis and the results 

of the developed prediction model are further discussed in a case study. 

5.1 Automation of piping design and supporting 

Figure 5-1 illustrates the transformation from the traditional design–analysis workflow to the 

automated flow, in which ML is being used. It starts with capturing data from the equipment 

arrangement. These data are then used in creating all possible pipe routes and pipe supports 

between each two pieces of equipment. ML is then used in the automation of piping stress 

analysis. 
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5.1.1 Generating possible pipe routes 

The required data at this stage are the coordinates of the start and end points of the route of the 

pipe, and the direction of the route from each equipment. Figure 5-2 below is shows an 

example in a 3D environment: 

 

 

Figure 5-2: Two equipment, two nozzles in a 3D environment 

A 3D grid pattern (Figure 5-3) is required to set the points in the space between two points. 

 

Figure 5-3: 3D grid pattern between two nozzles 

Then, the distances in each direction are 

0 1

0 1

0 1

DistEW X X

DistNS Y Y

DistUD Z Z

= −

= −

= −   

The next step is to define the range for each of the distances in the different directions: 
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R DistEW

R DistNS
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=

=

=





   

Traveling from point 1 to point 2 for the pipe implies to complete the gap between two points 

in each axis. There could be thousands of route options from point 1 to point 2. A sub-list of 

routes that satisfy this condition is selected: 

For EW axis, EW k EWR R− ⊂ and EWi EWR R∈ ,  

[ ]1 2, , ,EW k EW EW EWnR R R R− =   is accepted,  

1
If:  

i n

EWi
i

R DistEW
=

=

=∑  

If approved, EW kR −  is renamed to EW App kR − − . 

For each axis, there exists a list of approved combinations: 

1 2

1 2

1 2

, , ,     (for EW axis)

, , ,     (for NS axis)

, , ,     (for UD axis)

EW App EW App EW App EW App m

NS App NS App NS App NS App n

UD App UD App UD App UD App p

R R R R

R R R R

R R R R

− − − − − − −
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 =  
 =  
 =  





   

A combination of them is creates a pipe route that travels from point 1 to 2. That is: 

For EW App i EW AppR R− − −∈  ,  andNS App j NS AppR R− − −∈  UD App k UD AppR R− − −∈  : 

, ,t EW App i NS App j UD App kCombination R R R− − − − − −
      =          

It should be noted that not all these combinations are approved. For example, in the case that 

both equipment nozzles are in the UD axis, the number of items in UD AppR −  should be more 

than 2. The comprehensive list of logical conditions for approved combinations is as follows: 
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, , 1_ ' ' 2 _ ' ' 2

t t NS App i t NS App i

t t NS App i t EW App i

App Combination Combination R App Combination P Dir NS P Dir NS len R

App Combination Combination R App Combination P Dir EW P Dir EW len R

App Com

− − − −

− − − −

∀ − ⊂ ∈ − = ∧ = → >

∀ − ⊂ ∈ − = ∧ = → >

∀ − ( )
( )

, , 1_ ' ' 2 _ ' ' 2

, , 1_ ' ' 2 _ ' ' 1

t t UD App i t UD App i

t t NS App i t NS App i

bination Combination R App Combination P Dir UD P Dir UD len R

App Combination Combination R App Combination P Dir NS P Dir NS len R

App Combination

− − − −

− − − −

⊂ ∈ − = ∧ = → >

∀ − ⊂ ∈ − = ∨ = → >

∀ − ( )
( )

, , 1_ ' ' 2 _ ' ' 1

, , 1_ ' ' 2 _ ' ' 1

t t EW App i t EW App i

t t UD App i t UD App i

Combination R App Combination P Dir EW P Dir EW len R

App Combination Combination R App Combination P Dir UD P Dir UD len R

− − − −

− − − −

⊂ ∈ − = ∨ = → >

∀ − ⊂ ∈ − = ∨ = → >   

An approved combination will be a set like the example below. 
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Because the algorithm works on the sequence of lists, in order to create other possible 

combinations, i.e., other routes, items inside each sub-list can be shuffled to its ultimate 

combination limit. Therefore, depending on the length of each sub-list, there are other 

combinations of points for each approved combination. 

 

After all approved combinations have been developed, depending on the direction of the first 

and end points, the first items of each related list are stored separately. 

For example, for the case that we have P1_Dir = NS and P2_Dir = UD, the first items of both 

NS points and UD points are selected and used as the first and last sections of the pipe route: 

 

Figure 5-4 below shows the result of using the first and last section of the combination of 

which the length in NS axis is _ 1NS AppR  and the length in UD axis is _ 1UD AppR . 

 

 

Figure 5-4: Specifying two pipe sections for two equipment: Constraint in axis and direction 

In the next step, all three lists in the 3 axes are combined and shuffled to create another 

combination: 
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The final combination may look like the list shown below: 

1 2 2 2 1, , , , , , ,i NS App EW App NS App EW Appm UD Appp NS Appn UD App UD AppApp Combination R R R R R R R R− − − − − − − − − =     

A 3D representation of the list above is shown in Figure 5-5 : 

 

 

Figure 5-5: Possible route from exchanger to pump 

 

Another possible combination can be represented as below: 

1 2 2 2 1, , , , , , ,j NS App UD App NS App UD Appp EW App NS Appn EW Appm UD AppApp Combination R R R R R R R R− − − − − − − − − =     

A 3D representation of it is illustrated in Figure 5-6: 

 

 



 

76 
 

 

Figure 5-6: Another possible route from exchanger to pump 

5.1.2 Determination of elbow number and location 

One of the major types of input data for the stress analysis automation algorithm is the number 

of elbows and their location. In order to calculate the number and location of elbows in each 

combination, the algorithm iterates through the list and identifies the items that are different 

from the previous ones. Meanwhile, it creates a summary of each section’s length to calculate 

the location of the elbow. 

 

From the coordination of the elbows, a list of coordination for all the points between the start 

and end points of the route can be developed. Figure 5-7 shows the graphical representation. 

( ) ( ) ( ) ( ) ( )0 0 0 0 0 1 0 0 2 0 1 0 0 2 0 1 2 0 1 1 1

Total_Points

, , , , , , , , , , , , , , , , , ,NS App EW App NS App EW App NS App NS AppX Y Z X Y R Z X R Y R Z X R Y R R Z X Y Z− − − − − −

=

 + + + + + +    
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Figure 5-7: All the points on the pipe route 

5.1.3 Piping support combination 

If we consider “Shoe,” “Guide,” and “Anchor” as three main piping support types for any 

piping route, and set the maximum of n supports for each route, the possible combinations for 

support types are given by: 

 ( ) [ ]
( ) ( )

[ ] [ ] [ ]11 12 1 21 22 2 1 2

Total_Points
Support_Types ST , ,

Possible_Combinatons m _ 3

Support_Combinations , , , , , , , , , , , ,

n n

n n m m mn

n
Shoe Guide Anchor

len Support Types

S S S S S S S S S

〈

=

= =

 =     

  

The next step is to randomly assign a pipe support to each point. Various combinations of 

point-supports can be developed and analyzed by this method. Below is an illustration of two 

combinations and Figure 5-8 shows the 3D model design for this configuration. 
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Figure 5-8: Two possible support design for the same pipe route 
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5.2 Machine learning for stress analysis 

With the completion of the piping design and pipe support design, and with access to extracted 

data from both these activities, the piping stress analysis can begin. In order to automate the 

stress analysis, a supervised ML algorithm for classification, called GBM, is proposed. It 

should be noted that the classical supervised learning approach requires enormous (and often 

expensive) tasks in order to provide the explanatory and target variables in a specific domain. 

A database of 3D models and the resulting stress analysis helps in creating the predictive model 

to predict the failure/non-failure of the new pipe routes. 

GBM is an ML process for regression and classification, in which new models are fitted in 

order to create a better estimate of the predicted variable. It uses an ensemble of weak learners 

(e.g., decision trees) to create a more complex prediction tool. 

GBM has been very successful in industry and also in ML competitions (Bissacco, Yang, & 

Soatto, 2007; Hutchinson, Liu, & Dietterich, 2011; Johnson & Zhang, 2014; Pittman & Brown, 

2011). The GBM algorithm starts with the process of computing the deviation of residuals for 

each partition and continues with determining the best data partitioning in each stage. Next, 

the successive model fits the residuals from the previous stage and develops a new model to 

reduce the residual variance. The reduction in the residual variance follows the functional 

gradient descent technique, in which it minimizes the residual variance by descending its 

derivatives. 

Below is the algorithm GBM (Max Kuhn, n.d.): 
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5.2.1 Prediction model formulation  

Because “supervised learning” is proposed, each pipe route should be modeled in stress 

analysis software (e.g., CAESAR II) along with the supports. Data about the pipe, including 

the material, thickness, diameter, and design and operation temperature and pressure, should 

be entered. After finalizing the analysis, the result (i.e., failure or non-failure) should be 

recorded along with the data for developing the prediction model. These data include the 

location of elbows, supports, type of supports, location of head and tail of the pipe, and all the 

other data that were previously entered into the analysis application. The result (i.e., failure or 

non-failure of the pipe route) is be considered as the “target variable” and the remaining 

variables (e.g., number of elbows and number of supports) are “explanatory variables” for the 

ML model and are used to predict new pipe routes, with new explanatory variables. The 

prediction model can be used to predict new pipe routes. Any route is introduced as a new 

“test” dataset and the stress analysis result can be predicted. Figure 5-9 shows the workflow. 
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Data set

Training dataset Testing dataset

Creating GBM 
model

Prediction

Pipe route-1

Pipe route-2

Pipe route-3

…
..

Pipe route-n

Prediction

Random split

Machine Learning Stage

Stress analysis result prediction stage

Accuracy of 
the model

Stress analysis 
result

 

Figure 5-9: Creating prediction model with GBM and using it to predict the stress analysis result of new pipe 
routes 

The variables for the GBM method are defined as follows: 

p: predictive variable 

r: response variable 

M: number of iteration steps for optimization 

: parameter estimationθ   

0̂f : initial guess 
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{ }M

iif 1
ˆ

= : function increments (boosts) 

λ : shrinkage parameter 

maxM : maximum number of iterations 

K: cross-validation parameter 

K: Number of data points 

The result of the stress analysis is the dataset ( ) 1, =i
Nrp , where ( )dppp ,,1 =  is the 

list of explanatory variables and y is the response variable label. 

The explanatory variables ( )dppp ,,1 = , in the case of piping stress analysis and for 

this study, are those variables affecting the analysis report. They are listed below: 

TH: pipe tail location 

n: number of elbows 

m: number of supports 

EL_iP ( { }1, ,i n∈  ): elbow locations 

EL_icd ( { }1, ,i n∈  ): elbow change in direction 

SUP_jP ( { }1, ,j m∈  ): support locations 

SUP_jty ( { }1, ,j m∈  ): support types 

The response variable r here is: 

r: analysis result (failure or non-failure of pipe) 

Td: design temperature 

To: operation temperature 

Pd: design pressure 

Po: operation pressure 

Dnom: nominal diameter of pipe 

Ps: pipe service 
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5.2.2 Machine learning algorithm: gradient boosting method 

The model training is carried out based on the theory of the GBM method (Natekin & Knoll, 

2013) using the piping design data. 

In the GBM method, an unknown functional dependence rp f→  is reconstructed with 

 ( )f p  in order to minimize the specified loss function ( )fr,ψ : 

( )
( )

( )
( )( )pfrpf

rpf

pf

,ˆ
,ˆ

minarg ψ=

=

 

The response variable here is binary, i.e., { }1,0∈r  in which, “0” indicates the failure of the 

pipe route in the stress analysis test and “1” illustrates the approval of the route. Because the 

response variable is binomial, a binomial loss function ψ can be used for creating the 

predictive model. 

Here the optimization problem is changed to parameter estimation, by: 

( ) ( ),ˆ,ˆ θpfpf =  

( )( )ˆ , ,arg min p rE E y f p p
θ

θ ψ θ =    
 

With N iterations, the parameter estimation can be illustrated as below: 

1

ˆ ˆ
N

i
i

θ θ
=

= ∑
 

Here, the “steepest gradient descent” is used for the parameter estimation. With K data points 

in ( ) 1
, K

i
p r

= , the empirical loss function ( )θJ  is required to be reduced: 

( ) ( )( )
1

ˆ, ,
K

i i
i

J r f pθ ψ θ
=

= ∑
 

0θ̂ is then estimated for each iteration t and a compiled parameter estimate tθ̂ is obtained: 

1

0

ˆ ˆ
t

t
i

i
θ θ

−

=

= ∑
 

The gradient of the loss function ( )θJ∇  is calculated: 
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( ) ( ){ } ( )
( ) ti

i J
JJJ

θθ
θ
θθθ

ˆ=









∂
∂

=∇=∇
 

A new incremental parameter estimate is then calculated and added to the ensemble: 

( ) tJ θθ ˆ→∇−  

It should be noted that a boosting method has been used here instead of conventional ML 

techniques for optimization. The main difference is that the function estimate f̂  is 

parameterized in the additive functional form. 

 

A new function is required to be the most parallel to ( ){ } 1
K

t i i
g p = : 

( ) ( )( )
( ) ( ) ( )pfpf

rt
t

p
pf

pfrEpg
1ˆ

,
−=









∂

∂
=

ψ

 

Using the “least-squares minimization” method for optimization purposes: 

( ) ( ) ( ) 2
,

1
, arg min ,

K

t t t i i
i

g p h pρ θρ θ ρ θ
=

 = − + ∑
 

The result depends on ( )fr,ψ  and ( )θ,ph . Therefore, the next step is to choose the right 

“loss function” and “base-learner.” 

Classifying the loss function depends on the response variable. As the response variable is 

categorical here (i.e., { }1,0∈r ), either a Binomial or Adaboost loss function can be used. If 

12 −= rr  and { }1,1−∈r  are assumed, the probability of the response can be calculated by 

(also called the Bernoulli loss): 

( ) ( )( )fpfp 2exp1log, −+=ψ  

or the Adaboost loss: 

( ) ( )fpfp −= exp,ψ  

The base-learner can be chosen from either “decision trees,” “linear models,” or “smooth 

models.” 

Although many other models can be used in gradient boosting, “decision trees” are one of the 

most common base models. Every decision tree can be used to reduce some loss function. We 
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add a root node for the tree and all nodes receive a list of rows as input and the root receives 

the entire training set. Each node asks a true/false question about one of the features and in 

response to this question, we split the data into two subsets. These subsets then become the 

input to two child-nodes we add to the tree. The goal of the question is to un-mix the labels as 

we proceed down. In other words, we are trying to create the purest possible distribution of 

the labels in each node. Creating effective trees is achieved through using information gain, to 

quantify the effectiveness of a question to reduce the uncertainty, and “Gini impurity,” to 

quantify the amount of uncertainty in a single node. The process of asking questions continues 

until we obtain the final result and no further question could be asked. 

Figure 5-10 below is an illustration of boosting for decision trees: 

 

 

Figure 5-10: Boosting for decision trees 

One of the major problems in ML is “overfitting.” This is when the ML model predicts the 

training set instead of the new data. In this case, overfitting means that the model can predict 

the failure/non-failure of a pipe route from the training data, but it fails when it comes to the 

new pipe routes and new support positions. There are some general approaches in ML to 

prevent the model from overfitting, which can be used in the GBM method. 

One of the best methods of preventing a model from overfitting is “cross-validation,” which 

is used in developing the model here. In this method, all the data are used and different models 

are tested by different portions of the data. 

5.3 Case study 

In this case study, base data were adopted through the application of the Caesar II stress 

analysis software package. One hundred pipe routes were analyzed and the results (failure or 
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non-failure) of the routes were recorded. Table 5-1 shows part of this dataset. The dataset is 

first analyzed via explanatory data analysis and a graphical representation of its content. GBM 

is then used to create the prediction model; 75% of the dataset is used as a training dataset and 

25% is used to check the accuracy of the prediction model. Finally, 10 new pipe routes are 

introduced to the prediction model and the prediction results are compared to the stress 

analysis result using the analysis software (Caesar II). 

5.3.1 Data generation 

In order to increase the size of the training dataset, all the pipe routes, along with their 

supports were rotated around the gravity axis (i.e., the Y-axis in in this case). This is done 

with the knowledge that rotating pipes around the gravity axis does not affect the final result. 

This way, every data point from the analysis is extended to 36 data points, with different 

elbow and support locations. It improves the size of the dataset, in its training process toward 

developing a prediction model. Figure 5-11 shows the graphical model of this process.

 

Figure 5-11: Extending the training dataset by rotating the pipes around the gravity axis 
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The variables in the dataset are defined as shown in Table 5-2 . 

Table 5-2: Variables in the dataset 

Var. 
number

Variable name Variable description

1 POS.H.X  X coordination of the head of the pipe (Constant)

2  POS.H.Y  Y coordination of the head of the pipe (Constant)

3 POS.H.Z  Z coordination of the head of the pipe (Constant)

4 POS.T.X  X coordination of the tail of the pipe

5  POS.T.Y  Y coordination of the tail of the pipe

6 POS.T.Z  Z coordination of the tail of the pipe

7 POS.EL.n.X  X coordination of the nth elbow in the pipe (1<=n<=6)

8 POS.EL.n.Y  Y coordination of the nth elbow in the pipe (1<=n<=6)

9 POS.EL.n.Z  Z coordination of the nth elbow in the pipe (1<=n<=6)

10 DI.EL.n.NO  No direction change for the nth elbow in the pipe (1<=n<=6)

11 DI.EL.n.YES  Direction change for the nth elbow in the pipe (1<=n<=6)

12  POS.SUPP.n.X  X coordination of the nth support in the pipe (1<=n<=6)

13 POS.SUPP.n.Y  Y coordination of the nth support in the pipe (1<=n<=6)

14 POS.SUPP.n.Z  Z coordination of the nth support in the pipe (1<=n<=6)

15 TY.SUPP.n.GUIDE  Guide support type for the nth support in the pipe (1<=n<=6)

16 TY.SUPP.n.NOSUPP  No support for the nth support in the pipe (1<=n<=6)

17 TY.SUPP.n.SHOE  Shoe support type for the nth support in the pipe (1<=n<=6)

18 TY.SUPP.n.STOP  Stop support type for the nth support in the pipe (1<=n<=6)

19 NU.ELL  Number of elbows in the pipe

20 NU_SUPP  Number of supports in the pipe

21 SUSFail  Failure or non-failure of pipe
 

The constants and constraints under consideration include: 

• Design, test, and operation temperature 

• Design, test, and operation pressure 

• Pipe schedule/thickness 

• Pipe head coordination 

• Equipment nozzle allowable loads 

• Maximum number of elbows: 6 

• Maximum number of pipe supports: 6 
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5.3.2 Explanatory data analysis 

In the section below, the correlation between the failure of a pipe route and the explanatory 

variables of the models is visualized and interpreted for 3600 data points in the training dataset. 

It is important to consider that the failure/non-failure of every data point in the dataset depends 

on a variety of variables (i.e., explanatory variables) and cannot be relied/predicted by 

individual parameters. To help with the understanding, Figure 5-12 to Figure 5-16 are used to 

illustrate the pipe failure in relation to the number of elbows, supports, and head-to-tail 

distance. 

Elbow and failure: 

 

Figure 5-12: Effect of number of elbows on pipe failure rate 

Figure 5-12 above shows an obvious relation between the number of elbows and the failure 

rate in the dataset; with the increasing number of elbows, the failure rate decreases. 

Support and failure: 
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Figure 5-13: Effect of number of pipe supports on failure rate 

From Figure 5-13, except for when the number of supports increased from 2 to 3, the general 

trend depicts that increasing support number causes an increased failure rate. It should be noted 

that the type of pipe support (i.e., shoes and guides) has different effects on the analysis with 

respect to their force axes. This graph only shows a total number and does not consider the 

type of support. This is the primary focus on the explanatory data analysis in the next two 

graphs. 

Failure and number of shoe supports: 

 

 

Figure 5-14: Effect of number of “Shoe” supports on failure rate 
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As discussed above, the number of supports, by itself, cannot be considered as the only support 

parameter related to the failure rate. It is also necessary to consider the type of support. The 

graph above (Figure 5-14) shows the relationship between the number of shoe supports and 

the failure rate in the whole dataset. There is obviously an increase in the failure rate with the 

increase in shoe supports and the slope is higher than the gradient of the supports–failure rate 

graph in Figure 5-13. 

Failure and number of guide supports: 

 

Figure 5-15: Effect of number of “Guide” supports on failure rate 

The relationship between the number of guide supports and the failure rate (Figure 5-15) shows 

a very different trend from the shoe supports. Introducing one guide can reduce the failure 

from 0.63 to 0.55; however, two guide shoes brings the risk of higher failure (maximum of 

0.72). The different impact from these two types of supports is due to the force axes; the shoe 

support is mostly used as a weight support, whereas the guide support stops the movement of 

the pipe along the perpendicular line on the axis of the pipe. 

Head-to-tail distance: 
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Figure 5-16: Effect of head-to-tail distance on failure rate 

Figure 5-16 shows the head-to-tail distance in each route for all 3600 data points in the dataset. 

It is clear that the failed/non-failed routes are distributed around this graph and they are not 

separable. This shows a low correlation between the head-to-tail distance and the analysis 

result. 

As discussed, GBM is an ensemble of classification trees, which takes individual decision 

trees and aggregates them to form a better predictor than a single decision tree would have 

been. 

5.3.3 Accuracy verification 

The dataset is split into two groups, 75% for training and 25% for testing, and GBM is used to 

create the model.  

The variable importance is one of the outputs of the prediction model. It shows the importance 

level of each model input variable. Table 5-3 shows the variables in order of importance. 
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Table 5-3: Variable importance level: result of GBM model 

Variable Importance

POS.EL.2.Y 12.9553693
TY.SUPP.4.NOSUPP 7.8768705

POS.SUPP.2.Y 6.9308737
POS.EL.5.Y 6.1576681

POS.T.Y 5.2387948
TY.SUPP.2.SHOE 4.8641372

DI.EL.3.NO 3.5644723
NU_SUPP 3.5346972

POS.EL.6.Y 3.4808724
TY.SUPP.3.GUIDE 3.2831595
TY.SUPP.6.SHOE 3.2454378

DI.EL.5.NO 3.2082149
POS.SUPP.3.Y 2.8952452

NU.ELL 2.8773052
TY.SUPP.5.NOSUPP 2.6422876

POS.EL.1.Y 2.1370942
TY.SUPP.4.SHOE 2.0606916

TY.SUPP.6.NOSUPP 1.9041312
TY.SUPP.2.STOP 1.7380178
TY.SUPP.1.STOP 1.3891927

POS.SUPP.4.Y 1.368184
TY.SUPP.1.GUIDE 1.3667232

POS.SUPP.2.X 1.2471682
POS.EL.4.Y 1.2333643
POS.EL.3.Y 1.1414419

POS.SUPP.1.Y 1.126258
POS.SUPP.5.Y 0.9804106
POS.SUPP.6.Y 0.870888
POS.SUPP.2.Z 0.8139176

TY.SUPP.5.SHOE 0.6561795

… …

POS.EL.2.Z 0.14409755
POS.T.Z 0.12409378

POS.SUPP.6.X 0.11163119
POS.EL.3.X 0.08204836

POS.SUPP.3.X 0.06787305
POS.EL.3.Z 0.0667646
POS.EL.5.Z 0.02979592

POS.H.X 0
POS.H.Y 0
POS.H.Z 0

DI.EL.1.NO 0
DI.EL.1.YES 0
DI.EL.2.NO 0
DI.EL.2.YES 0
POS.EL.4.X 0
POS.EL.4.Z 0
DI.EL.4.NO 0
DI.EL.4.YES 0
POS.EL.6.X 0
POS.EL.6.Z 0
DI.EL.6.NO 0

POS.SUPP.1.Z 0
TY.SUPP.1.NOSUPP 0

POS.SUPP.3.Z 0
TY.SUPP.3.STOP 0

POS.SUPP.4.Z 0
TY.SUPP.4.GUIDE 0  
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The 10 most important (i.e., most influential on the prediction model) variables are graphically 

shown in Figure 5-17. In a manual modification of the pipe route and pipe support design, 

these most important variables could be used to change the stress result. Increasing the training 

dataset would change the importance level of the variables. 

 

 

Figure 5-17: Ten most important variables in predicting stress analysis result 

The relationship between the tuning parameters and the estimates of performance is shown in 

Figure 5-18. The GBM model tunes the parameters to gain the best accuracy by trading off 

between complexity and the training dataset size (Figure 5-18). 
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Figure 5-18: GBM tuning parameter results 

Upon running the prediction on 25% test data, over 99% accuracy is achieved, as shown in 

Table 5-4. 
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Table 5-4: Results of running GBM prediction model on test dataset 

Pipe 
No.

Prediction
Ceasar II 

result
1 Not_App Not_App
2 Not_App Not_App
3 Not_App Not_App
4 App App
5 App App
6 Not_App Not_App
7 Not_App Not_App
8 Not_App Not_App
9 Not_App Not_App
10 Not_App Not_App

… … …

273 Not_App App

… … …

832 Not_App App

… … …

894 App App
895 App App
896 App App
897 App App
898 Not_App Not_App
899 App App
900 Not_App Not_App
901 Not_App Not_App
902 Not_App Not_App
903 Not_App Not_App
904 Not_App Not_App  

Accuracy: 0.992256637168142 

The accuracy of 99.2%, achieved from the GBM method, demonstrates the possibility of using 

ML methods in automating piping stress analysis. The required training data in this case were 

provided through the application of the Caesar II stress analysis software package. It should 

be noted that there are existing plants of which the design data can be collected and used as 

the training dataset to increase the accuracy of the GBM prediction model. 

5.3.4 Stress analysis prediction result 

Ten new pipe routes are now analyzed using stress analysis software, and then introduced to 

the GBM prediction model. Table 5-5 shows a part of the dataset and the stress analysis report, 

from the software (Caesar II). This dataset is then introduced to the GBM prediction model; 

Table 5-6 illustrates the prediction results. This shows that the prediction model accurately 

predicted the stress result. 
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Table 5-6: Prediction of test dataset 

Test Line
Caesar II 

result
Prediction

TestLine-1 Not_App Not_App
TestLine-2 Not_App Not_App
TestLine-3 Not_App Not_App
TestLine-4 Not_App Not_App
TestLine-5 Not_App Not_App
TestLine-6 Not_App Not_App
TestLine-7 App App
TestLine-8 Not_App Not_App
TestLine-9 App App
TestLine-10 App App  

5.4 Conclusions 

The failure of piping routes is still considered a major hazard for all types of process plants. 

Ideally, the engineering design team ensures sufficient safety provisions during the detailed 

design stage. Such a provision method is considered time/budget-consuming and prone to 

human error. It also creates a bottleneck in checking different design options (i.e., equipment 

arrangement, pipe routing, and supporting) and PHA activities in a time/budget-constrained 

project schedule. 

This work discussed the application of automation algorithms in piping/piping support design, 

and an ML algorithm in the stress analysis of piping routes. The aim of this study is to develop 

a predictive model to accurately predict the result of stress analysis (i.e., failure or non-failure) 

of pipe routes and pipe supporting, without using stress analysis software or manual 

calculations. 

Applying a gradient boosting model on the developed dataset, and testing the prediction model 

on the testing dataset revealed that the prediction model is capable of predicting the stress 

analysis result with 99% accuracy. The existing results of stress analysis reports of different 

process plants can be used as a training dataset for extending the capabilities of such a 

prediction model. 

This chapter illustrated a simplified approach in predicting stress analysis reports. A complete 

model/platform at the industrial stage would require a comprehensive database of previous 

analysis results and a major effort by a team of engineers and AI experts. 
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This algorithm is an assistant for the design team to cover all the possible piping routes, 

without missing the vital stress analysis step. This method can be easily integrated into the 

traditional methods of process plant detail design and ensures a safe and economic design. It 

can save time and resources without ignoring the safety of the plant in the operation and 

maintenance stages. 
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Chapter 6 Process Information Modelling for safe piping 

installation for process plants 

The unique nature of each construction project, multidisciplinary activities, and usage of 

different plant and equipment are some of the reasons for accidents in construction industry. 

Process plants are considered as mega industrial projects. Construction of these projects is 

considered as one of the most sophisticated construction activities. One of the major sources 

of hazard in the lifecycle of the process plant is the lack of quality in piping joint welds. Lack 

of quality in weld joints poses a threat as the hazardous material can leak from these joints 

during the operation phase. Studies are showing the correlation between quality of weld with 

the environment and safety of the location for fit-up and welding activity. 

This chapter proposes a method in which Field Fit-up Weld (FFW) points can be chosen at the 

design phase of the project, using 3D BIM models of the process plant. In this method, all the 

information from the 3D model are extracted and analyzed in order to find the best 

combination of FFW points to create a faster and safer construction method to complete a 

higher quality piping installation. An algorithm developed for this method has been tested on 

a case study which shows a clear difference between the numbers of hours required to work at 

height in the traditional and the new method. It also demonstrates the difference in productivity 

and cost of project using these two different methods. 

6.1 Piping installation and field fit-up welds 

Piping installation is one of the most complex activities in completing the construction of 

process plants. It includes the installation of scaffolding, shop and field stress relieve 

installation, shop and field welding, transportation to site, using cranes to hold the pipes before 

complete installation, sand blast and painting, hydro-test, and radiographic test. In order to 

install pipes, scaffolding is required to be set up as a temporary support for pipes and also as 

a working deck for all the activities around piping installation. A usual practice in installation 

of pipes is to prepare spools in a shop, transfer them to the construction site, and weld them 

together to complete the route. This process is like putting different pieces of a 3D puzzle 

together. 

Although it is much faster and more convenient for the team to prepare and weld spools in a 

controlled environment like fabrication shop, some activities are required to be done at the 

construction site. There are two major reasons for that. First is the transportation of spools to 

the site which should consider the limitation of shipping box. For example in the case of using 

a flat-bed truck or a shipping container, maximum dimension of spools to be transported can 
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be 12 × 3 × 3 meters. The second reason is the possibility of the equipment footings or the 

equipment not being in the right position or any mistake in the manufacturing of the 

equipment. For this reason, some field fit-up welds (FFW) should be considered (at least one 

for each X, Y, and Z axis in an imaginary Cartesian system). Normally 150 mm of extra length 

of pipe is considered for each FFW point for required adjustments by the fitter and welder. 

Figure 6-1 shows an example in which the pump has been installed in a wrong place. 

Adjustments are required to be made in the piping in order to rectify the problem and connect 

the pipe to the pump. 

 

 

Figure 6-1: Wrong position of pipe and adjustment required in piping 

 

In order to complete the piping installation, and, depending on the position of FFW points, a 

team of fitters, welders, and testers may be required to climb up the scaffolding (mostly 

through provided ladders). It means that finishing this activity not only requires work at height, 

but also requires the team to climb up and down the scaffolding. Both activities are working 

at height activities and are considered high-risk. Fall from height is considered as one of the 

major reasons for fatalities in construction industry (Haslam et al., 2005). Therefore, any effort 

in reducing the number of points higher than 2 meters can reduce the risk of injury. 

Normally, FFW points are chosen from piping isometric drawings at the site during the 

construction. Construction is at fast pace and decision makings in that phase are normally 

bound by mistakes. Besides, in normal practices and facilities at construction site, it is not 
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possible for the team to put all the parameters together and choose the safest combination of 

FFW points. 

Pipe failure may result in secondary accidents, including pool formation, a cloud or a jet 

(Delvosalle, Fievez, Pipart, & Debray, 2006). A comprehensive database about pipe failures 

is introduced in reference (Lydell & Riznic, 2008). Kletz has listed major leaks of hazardous 

material and showed that pipe failure accounted for half of these incidents (Kletz, 2009). It 

also emphasis the need for focus on the design and construction to prevent these accidents 

from happening. 

6.2 Methodology Development 

The proposed method will be applied in a project schedule. Part of the activity in construction 

(i.e. field weld specification) is removed and shifted to design phase of the project. Besides, it 

shifts 2 other super ceding activities (piping pre-fabrication and piping installation) to an 

earlier stage of the project (Figure 6-2).  

 

 

Figure 6-2: Alternative schedule 

 
6.2.1 Information gathering from 3D model 

Process plants BIM (data enriched 3D models) are capable of providing the required data for 

each pipe. After data pre-processing, the algorithm could be applied in developing the best 

combination. Figure 6-3 illustrates the algorithm. 
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Figure 6-3: Algorithm to choose the best combination of welding points 

 
Number of welding points (NOP) in each pipe is gathered here: 
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Also, all the information about pipes can be gathered in one place. These information includes  

the name of the pipe (Pk), number of welding points (NOPk), and size of the pipe (Sk): 
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Figure 6-4 shows part of the plant in which all the required information from each pipe is 

gathered in different matrices. 

 

 

Figure 6-4: Creating matrices for each pipe 

For each pipe, the information about every weld point is also gathered from the model. Figure 

6-5 shows different matrices for each pipe and for every single welding point. All these 

matrices will eventually be combined in one matrix for each pipe.  
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Figure 6-5: Developing matrices for each spool 

 
6.2.2 Creating Field Weld Points 

Choosing the field weld points creates different combinations for each pipe. 

From here, points for spool number “n” will be split according to their directions into groups. 

So for pipe ‘k’, and for j number of points in East-West axis (EW), t number of points in North-

South axis, and i number of points in Up-Down (UD) axis; we will have the arrangements as 

shown below: 
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And the number of combinations for pipe ‘k’ is as shown below: 
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( ) ( ) ( )_ _ _
 kNumber of Combinations

1 1 1
NOP EW NOP NS NOP UDk k k

n n n
X X

     
=      

     
     

 

 

The combinations for pipe ‘k’ to include all three axis are as follows: 
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Figure 6-6 illustrate an example in which 2 combinations have been developed for one pipe 

with different welding points. 
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Figure 6-6: Two different welding combinations for one pipe 
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6.2.3 Spool dimension check for transportation 

Each combination creates a number of field fit-up weld points and it means that the pipe itself 

will be split into spools. These spools need to be transported to site. One important thing that 

should be considered here is the dimension of each spool. Due to the size limitation of the 

shipping box. If a combination creates even one spool that has bigger dimensions than the 

shipping box, that spool, and also the combination, will be rejected as it is not possible to 

transport it to site. 

For each combination, as discussed, there are: 

 

( )2
1 kHEWjn XXL −=  ( )2

1 kHEWjn YYW −=  ( )2
1 kHEWjn ZZH −=  

( )2
2 EWjNSjn XXL −=  ( )2

2 EWjNSjn YYW −=  ( )2
2 EWjNSjn ZZH −=  

( )2
3 NSjUDjn XXL −=  ( )2

3 NSjUDjn YYW −=  ( )2
3 NSjUDjn ZZH −=  

( )2
4 UDjkTn XXL −=  ( )2

4 UDjkTn YYW −=  ( )2
4 UDjkTn ZZH −=  

 

Figure 6-7 shows the spool dimensions for combinations 1 and 2 in the pipe, shown in  

Figure 6-6. 
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Figure 6-7: Spool length-to be checked with shipping box dimension 
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From here we check the dimension of truck and compare it with combination-dimensions to 

prepare a list of approved combinations (Figure 6-7). Figure 6-8 shows the important 

dimensions on a flat-bed truck. Dimensions here are considered as the ‘shipping box’ 

dimension for the transportation of spools, from the manufacturing yard to the construction 

site. 

Logical expression to choose the approved combinations for transportation purposes is as 

below: 

{ }nNOCk ,,3,2,1 =  

{ }4,3,2,1=kNOS  

kNOCi ∈  

kNOSj ∈  

ttt HWL ≡〉  

( ) ( ) ( )( ) { }iLHLWLLji ktijtijtij Re:, →〉∨〉∨〉∀  

( ) ( ) ( )( ) ( ) ( ) ( )( )( ) { }iHHHWHLWHWWWLji ktijtijtijtijtijtij Re:, →〉∨〉∨〉∧〉∨〉∨〉∀  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ) { }iApHHHWHLWHWWWLLHLWLLji ktijtijtijtijtijtijtijtijtij →〉∨〉∨〉∧〉∨〉∨〉¬∧〉∨〉∨〉¬∀ :,  

 

c

 

Figure 6-8: Important dimensions on a flat-bed truck 
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Approved combinations for spool ‘k’ is defined as: 
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6.2.4 Weld point distance from ground 

For each of the approved combinations in each spool, summation of point distances from the 

ground is recorded (Ground level = G.L.): 
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This loop will be repeated for all the spools, from 1 to n, and approved combinations for all 

the spools will be recorded. 

Number of approved combinations for each spool: 
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Number of total possible combinations: 

  
NACT= NAC1 × NAC2 × NAC3 × …× NACn 

 

 

6.2.5 Choosing the best combination 

This final matrix lists all the combinations for the plant: 
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As discussed, the best combination is the one that has the lowest summation of distances from 

the ground which will reduce the number of hours working at height, the number of hours 

climbing the scaffolding. In turn the job efficiency is increased as well as the safety. 

The best combination is a combination ‘r’ which is ∑ ∑
=
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. 

This algorithm will be demonstrated next using the case study below to show the difference between 
cost, efficiency, and safety risk of the job in different combinations, in a quantified manner. 

6.3 Case study 

A  Naphtha hydro treater unit (Bausbacher & Hunt, 1993) has been modelled and the geometry 

data (including the coordination of all welding points, pipe numbers, pipe size, and weld point 

direction) has been collected from the 3D model (Figure 6-9). 
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Figure 6-9: Naphtha hydro treater unit 

 
15 pipes were randomly chosen to see the effect of different combination of points (Figure 

6-10).  

 

 

Figure 6-10: Part of the process plant-15 pipes chosen for the analysis 
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Table 6-1: Welding points information for 15 chosen pipes 

 
 

At least 3 field weld points had to be chosen to leave enough room for required adjustments at 

the construction site. Information has been exported from the 3D model and formatted to show 

the required data for the analysis (Table 6-1). These information includes the number of pipes, 

size, number of welding points, direction/axis of welding points, and location of each point. 

The algorithm was applied on the dataset and the best combination (with the lowest summation 

of distances from the ground) was chosen along with other combination, for comparison 

purposes. In this case, the best set of field fit-up welding joints is as below: 
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Pipe 1: {1: [10000, 10000, 100], 2: [11150, 9850, 100], 3: [11150, 8850, 250]}, 

Pipe 2: {1: [11000, 10000, 100], 2: [12150, 9850, 100], 3: [12150, 8850, 250]}, 

Pipe 3: {1: [12300, 10000, 100], 2: [12150, 9850, 100], 3: [12150, 8850, 250]}, 

Pipe 4: {1: [13300, 10000, 100], 2: [13150, 9850, 100], 3: [13150, 8850, 250]}, 

Pipe 5: {1: [14000, 10000, 100], 2: [15150, 9850, 100], 3: [15150, 8850, 250]}, 

Pipe 6: {1: [15000, 10000, 100], 2: [16150, 9850, 100], 3: [16150, 8850, 250]}, 

Pipe 7: {1: [17150, 10000, 1000], 2: [17150, 9850, 100], 3: [17300, 9000, 2400]}, 

Pipe 8: {1: [18150, 10000, 1000], 2: [18150, 9850, 100], 3: [18300, 9000, 2400]}, 

Pipe 9: {1: [19000, 8550, 100], 2: [20150, 8700, 100], 3: [20150, 8850, 250]}, 

Pipe 10: {1: [21000, 8550, 100], 2: [22150, 8700, 100], 3: [22150, 8850, 250]}, 

Pipe 11: {1: [22000, 10000, 100], 2: [23150, 9850, 100], 3: [23150, 8850, 250]}, 

Pipe 12: {1: [25300, 10000, 100], 2: [25150, 9850, 100], 3: [25150, 8850, 250]}, 

Pipe 13: {1: [27000, 10000, 100], 2: [28150, 9850, 100], 3: [28150, 8850, 250]}, 

Pipe 14: {1: [11150, 15000, 1000], 2: [11150, 14850, 100], 3: [11300, 14000, 2400]}, 

Pipe 15: {1: [10000, 8550, 100], 2: [11150, 8700, 100], 3: [11150, 8850, 250]} 

The results from the analysis of 15 pipes in the plant are discussed below. 

1) Increased number of hours required to work above 2 meters (working at height): 
Figure 6-11 shows that the number of hours for working at height in this case (including 

welding, sand blasting, painting, and radiographic test). This number increases from 0 hours 

to around 350 hours which dramatically increases the risk of falling from height by choosing 

the wrong combination. 

 

 

Figure 6-11: Sorted number of hours working at height 
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2) Increase in the number of hours climbing above 2 meters 
Figure 6-12 shows that the number of meters required to climb the stairs of scaffolding. This 

number increases from 0 to 2 meters which not only increases the risk of falling from height, 

but also reduces the efficiency of work by increasing the number of hours required to finish 

the same amount of job. 

 

 

Figure 6-12: Sorted number of meters climbing of the scaffolding 

 

3) Decrease in productivity 
Here, productivity (welding per hour) is defined as “total output/total input”. In this case, the 

output, which is the total number of field fit-up welds, is constant. On the other hand, the input, 

which is the total amount of time required to finish the FFW welding, changes with the chosen 

combination: 

( ) 2 2NumberOfWeldings WeldingHoursAbove M WeldingHoursBelow M 
+ 

 
∑ ∑  

Figure 6-13 shows that the productivity decreases from 0.25 to 0.05 (20 % decrease) by 

choosing the wrong combination of field-weld points.  
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Figure 6-13: Decrease in productivity 

 

4) Increase in cost 
Figure 6-14 shows that the price of welding (with an average of 100 AUD/hour rate of payment 

for pipe welding in construction site) increases from around 12000 AUD to around 54000 

AUD.   

The cost is calculated by: 

( ) HourtWeldingCosngbScaffoldiCMowWeldingBelMveWeldingAbo ×++∑ ∑ ∑ lim22
 

 

 

Figure 6-14: Increase in the cost of the project 
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6.4 Complexity analysis of the algorithm 

In order to develop the complexity analysis of the algorithm, it was run on a supercomputer 

platform with access to 48 GB RAM and parallel computing. Figure 6-15 shows the 

complexity analysis. 

 

Figure 6-15: Complexity analysis 

6.5 Conclusions 

The traditional methods of choosing field fit-up welds, scheduling the activity for construction 

phase, and using hard copy piping isometric drawings are all creating a high-risk environment 

for fitters, welders, sandblast and painting, and radiographic test team members. Besides, with 

millions of combinations to choose from, it is almost impossible for the team at construction 

site to choose the safest and most-economic option. Construction of complex mega projects, 

such as process plants, requires the engagement of data from 3D models, shifting the activities 

to the design phase, and developing domain algorithms that can increase safety and reduce the 

potential for hazard. 

An algorithm was developed (using 3D models) to find the best combination for this activity 

(with minimum working hours at height). Application of the algorithm to a 15-pipe case study 

suggested that this method could help in reducing the number of hours working/climbing at 

heights, therefore, improving efficiency of the project. 

  



 

118 
 

Chapter 7 Conclusions and Recommendations 

Hazardous nature of process plant industry and its potential to create a catastrophic disaster 

for the human being and nature is still not under control. Throughout the years, different 

techniques have been introduced to reduce the risk in design, construction, operation, and 

maintenance of these mega projects. With the rise of Artificial Intelligence and capabilities of 

computer and data science in the past decade, it is time to propose methods that integrate AI’s 

best practices into the process industry to reduce the risk in different phases of such projects. 

The review on the literature and previous studies revealed the lack of practical proposals that 

can be applied into the real world practices. These methods should reach for a union with 

existing methodologies in industry and go beyond academic theories to deal with current 

problems. The aim of this research was to assess the opportunities in using information, 

Artificial Intelligence, and Semantic knowledge in risk analysis, risk deduction, and 

automation of design in process plant industry. This study successfully: 

• Developed ontology-based information models from Piping and Instrument diagrams; 

• Created machine-readable knowledge bases from engineering specification and lesson 

learned in process industry without Natural Language Processing; 

• Combined human knowledge and engineering drawings, and used Description Logic 

for design analysis; 

• Developed an algorithm to integrate engineering knowledge and extract data from 

P&ID to automate equipment arrangement design; 

• Developed an algorithm to automate pipe routing and pipe supporting; 

• Used Logistic regression methods in Machine learning to automate piping stress 

analysis; 

• Developed an algorithm to optimise the selection of ‘field fit-up weld’ points, reduce 

risk in construction and increase speed and efficiency in construction of process 

plants. 

Conclusions and recommendations, achieved from applying these methods, are discussed 

below. 

7.1 Conclusions 

• In this study, knowledge engineering and semantic technology were used for risk 

analysis in process industry. Its application on two case studies were successfully 

illustrated. This study shows that creating a comprehensive knowledge base and 

accompanying a logical query platform can minimize the time for safety analysis and 
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minimizes human error. Furthermore, in this part of the study, flexibility of ontology 

knowledge base in integrating data from different sources, including data from 

engineering drawings, engineering specifications, and human knowledge were also 

presented. Also, using Controlled Natural Language to convert human natural 

language to ontology language were discussed and presented. Using a built-in logical 

reasoner to accurately gain response from the knowledge base was illustrated. 

• A new algorithm to automate the equipment arrangement was proposed. This 

algorithm was successfully applied on two case studies and the results illustrated its 

power and accuracy in automating a time consuming task. The first part of the 

algorithm is about converting equipment objects into point matrices. In the second 

part, engineering specifications and practices for equipment arrangement are encoded 

to be a part of the code. Using this algorithm, it is now possible to use extracted data 

from P&ID drawings to integrate them with engineering specifications, in the 

programming language format, to create multiple scenarios and filter the approved 

ones. 

• An algorithm was developed to create all possible pipe routes and pipe supports. Also 

a machine-learning algorithm was used to automate the process of piping stress 

analysis. Both algorithms were successfully used in 2 case studies. The pipe route and 

support algorithm created all possible design scenarios for pipe route and support 

between 2 points in a 3D model area. Applying the machine-learning algorithm and 

using the prediction model revealed its potential to reach 99% accuracy in predicting 

the stress analysis result of new pipe routes, with new supporting system. 

•  The study also proposed the use of data in process plant 3D models to choose the best 

(i.e. safest) set of FFW points during the design stage. Testing the developed algorithm 

in a case study showed its potential in decreasing the amount of hour required to work 

at height and climbing the scaffolding and also decrease in project cost and increase 

in productivity. 

7.2 Recommendations 

1) In order to create ontologies from process drawings (e.g. Piping and Instrument 

Diagrams), data-enriched CAD drawings need to be developed and meta-data should 

be added to different components. Currently used drawings in the industry are limited 

in their data and are not providing opportunities to apply semantic knowledge systems 

on them.  

2) Creating a knowledge base to combine data from drawings and knowledge 

specifications requires the human language to be converted to a machine-readable 
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format and compatible with other part of the knowledge base (i.e. engineering drawing 

data). Since Natural Language Processing (NLP) is not developing semantic language 

format of knowledge (i.e. in the form OWL language), it is recommended that the 

human knowledge and engineering specifications to be converted to OWL language. 

Controlled Natural Language (CNL) and FE ontology editor can be used in this case. 

It is recommended that ISO 15926 standard to be used in converting natural language 

to CNL, and to OWL. 

3) It is recommended that the equipment arrangement algorithm to run along with the 

development of the P&ID for a better collaboration between process and mechanical 

design teams. Future study in the section focuses on developing 3D models of the 

equipment arrangement to reach the capabilities beyond 2D models. Along with 

development of the 3D equipment arrangement models, it is recommended that the 

pipe routing and pipe support design algorithm to run to provide opportunities for 

design review in the early stages of the project. Future study in this field links this 

information model to a cost estimation platform to compare the cost of material in 

different design scenarios. 

4) In order to gain more accurate results in the industrial usage of machine learning for 

piping stress analysis, it is recommended that the information from piping models (e.g. 

geometrical location of elbows, supports, etc.) and their stress analysis results in the 

existing process plants to be recorded in a data base and used as the ‘training’ data 

base for the machine learning algorithm. Future study in this area focuses on linking 

the piping design algorithm to the analysis platform, so that the automatic design and 

analysis could be performed simultaneously. 

5) It is recommended that the Field Fit-Up weld selection activity to be shifted, from 

construction phase to the design phase of the project. It can reduce the error in the 

selection process and ultimately increase the efficiency and safety. Future study in this 

area can be extended to scaffolding and machineries (e.g. cranes). 

 

Safety analysis in the basic phases of a process plant project is a significant industrial problem. 

By application of the modern techniques in Artificial Intelligence, semantic web, knowledge 

engineering, machine learning, Information Modelling, and Automation of design, a safer 

design for the lifecycle of a process plant could be achieved. The results could be beneficial 

to all process industries. We’re looking forward to making contributions to further 

improvement and advances in this area.  
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