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Abstract

Few-shot learning algorithms aim to learn model param-
eters capable of adapting to unseen classes with the help
of only a few labeled examples. A recent regularization
technique - Manifold Mixup focuses on learning a general-
purpose representation, robust to small changes in the data
distribution. Since the goal of few-shot learning is closely
linked to robust representation learning, we study Mani-
fold Mixup in this problem setting. Self-supervised learn-
ing is another technique that learns semantically meaning-
ful features, using only the inherent structure of the data.
This work investigates the role of learning relevant feature
manifold for few-shot tasks using self-supervision and reg-
ularization techniques. We observe that regularizing the
feature manifold, enriched via self-supervised techniques,
with Manifold Mixup significantly improves few-shot learn-
ing performance. We show that our proposed method S2M2
beats the current state-of-the-art accuracy on standard
few-shot learning datasets like CIFAR-FS, CUB and mini-
ImageNet by 3 − 8%. Through extensive experimentation,
we show that the features learned using our approach gen-
eralize to complex few-shot evaluation tasks, cross-domain
scenarios and are robust against slight changes to data dis-
tribution.

1. Introduction

Deep convolutional networks (CNN’s) have become a
regular ingredient for numerous contemporary computer vi-
sion tasks. They have been applied to tasks such as ob-
ject recognition, semantic segmentation, object detection
[23, 64, 21, 24, 34] to achieve state-of-the-art performance.
However, the at par performance of deep neural networks
requires huge amount of supervisory examples for training.
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Generally, labeled data is scarcely available and data col-
lection is expensive for several problem statements. Hence,
a major research effort is being dedicated to fields such as
transfer learning, domain adaptation, semi-supervised and
unsupervised learning [15, 29, 45] to alleviate this require-
ment of enormous amount of examples for training.

A related problem which operates in the low data regime
is few-shot classification. In few-shot classification, the
model is trained on a set of classes (base classes) with abun-
dant examples in a fashion that promotes the model to clas-
sify unseen classes (novel classes) using few labeled in-
stances. The motivation for this stems from the hypothesis
that an appropriate prior should enable the learning algo-
rithm to solve consequent tasks more easily. Biologically
speaking, humans have a high capacity to generalize and
extend the prior knowledge to solve new tasks using only
small amount of supervision. One of the promising ap-
proach to few-shot learning utilizes meta-learning frame-
work to optimize for such an initialization of model param-
eters such that adaptation to the optimal weights of clas-
sifier for novel classes can be reached with few gradient
updates [49, 14, 52, 39]. Some of the work also includes
leveraging the information of similarity between images
[61, 56, 58, 3, 16] and augmenting the training data by hal-
lucinating additional examples [20, 63, 54]. Another class
of algorithms [48, 17] learns to directly predict the weights
of the classifier for novel classes.

Few-shot learning methods are evaluated using N -way
K-shot classification framework where N classes are sam-
pled from a set of novel classes (not seen during training)
with K examples for each class. Usually, the few-shot clas-
sification algorithm has two separate learning phases. In
the first phase, the training is performed on base classes to
develop robust and general-purpose representation aimed to
be useful for classifying novel classes. The second phase
of training exploits the learning from previous phase in the
form of a prior to perform classification over novel classes.
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The transfer learning approach serves as the baseline which
involves training a classifier for base classes and then subse-
quently learning a linear classifier on the penultimate layer
of the previous network to classify the novel classes [7].

Learning feature representations that generalize to novel
classes is an essential aspect of few-shot learning prob-
lem. This involves learning a feature manifold that is rel-
evant for novel classes. Regularization techniques enables
the models to generalize to unseen test data that is dis-
joint from training data. It is frequently used as a supple-
mentary technique alongside standard learning algorithms
[30, 27, 5, 60, 28]. In particular for classification prob-
lems, Manifold Mixup [60] regularization leverages inter-
polations in deep hidden layer to improve hidden represen-
tations and decision boundaries at multiple layers.

In Manifold Mixup[60], the authors show improvement
in classification task over standard image deformations
and augmentations. Also, some work in self-supervision
[18, 66, 11] explores to predict the type of augmentation
applied and enforces feature representation to become in-
variant to image augmentations to learn robust visual fea-
tures. Inspired by this link, we propose to unify the train-
ing of few-shot classification with the self-supervised and
Manifold Mixup [60]. The proposed technique employs
self-supervision loss over the given labeled data unlike in
semi-supervised setting that uses additional unlabeled data
and hence our approach doesn’t require any extra data for
training.

Many of the recent advances in few-shot learning exploit
the meta-learning framework, which simulates the training
phase as that of the evaluation phase in the few-shot setting.
However, in a recent study [7], it was shown that learning a
cosine classifier on features extracted from deeper networks
also performs quite well on few-shot tasks. Motivated
by this observation, we focus on utilizing self-supervision
techniques augmented with Manifold Mixup in the domain
of few-shot tasks using cosine classifiers.

Our main contributions in this paper are the following:

• We find that the regularization technique of Manifold
Mixup [60] being robust to small changes in data dis-
tribution also enhances the performance of few-shot
tasks.

• We show that adding self-supervision loss to the train-
ing procedure, enables robust semantic feature learn-
ing that leads to a significant improvement in few-shot
classification. We use rotation [18] and exemplar [11]
as the self-supervision tasks.

• We observe that applying Manifold Mixup regulariza-
tion over the feature manifold enriched via the self-
supervision tasks further improves the performance of
few-shot tasks. The proposed methodology outper-

forms the state-of-the-art methods by 3-8% over the
CIFAR-FS, CUB and mini-ImageNet datasets.

• We conduct extensive ablation studies to verify the ef-
ficacy of the proposed method. We find that the im-
provements made by our methodology become much
more pronounced with increasing N in the N -way K-
shot evaluation and also in the cross-domain evalua-
tion.

2. Related Work
Our work is associated with various recent development

made in learning robust general-purpose visual representa-
tions, specifically few-shot learning, self-supervised learn-
ing and generalization boosting techniques.

Few-shot learning Few-shot learning involves building
a model using available training data of base classes that
can classify unseen novel classes using only few examples.
Few-shot learning approaches can be broadly divided into
three categories - gradient based methods, distance metric
based methods and hallucination based methods.

One specific line of work in Gradient based methods
[49, 1] aims to use gradient descent to quickly adapt the
model parameters suitable for classifying the novel task.
The initialization based methods [14, 52, 39] specifically
advocate to learn a suitable initialization of the model pa-
rameters, such that adapting from those parameters can be
achieved in a few gradient steps. Distance metric based
methods leverage the information about similarity between
images to classify novel classes with few examples. The
distance metric can either be cosine similarity [61], eu-
clidean distance [56], CNN based distance module[58],
ridge regression[3] or graph neural network[16]. Hallucina-
tion based methods [20, 63, 54] augment the limited training
data for a new task by generating or hallucinating new data
points.

Recently, [7] introduced a modification for the simple
transfer learning approach, where they learn a cosine classi-
fier [48, 17] instead of a linear classifier on top of feature ex-
traction layers. The authors show that this simple approach
is competitive with several proposed few-shot learning ap-
proaches if a deep backbone network is used to extract the
feature representation of input data.

Self-supervised learning This is a general learning
framework which aims to extract supervisory signals by
defining surrogate tasks using only the structural informa-
tion present in the data. In the context of images, a pretext
task is designed such that optimizing it leads to more se-
mantic image features that can be useful for other vision
tasks. Self-supervision techniques have been successfully
applied to diverse set of domains, ranging from robotics to



Figure 1. Flowchart for our proposed approach (S2M2) for few-shot learning. The auxiliary loss is derived from Manifold Mixup regularization and
self-supervision tasks of rotation and exemplar.

computer vision [31, 12, 55, 53, 44].In the context of visual
data, the surrogate loss functions can be derived by lever-
aging the in-variances of the structure of the image.In this
paper, we focus on self-supervised learning techniques to
enhance the representation and learn a relevant feature man-
ifold for few-shot classification setting.

We now briefly describe the recent developments in self-
supervision techniques in the visual domain.

[9] took inspiration from spatial context of a image to
derive supervisory signal by defining the surrogate task of
relative position prediction of image patches. Motivated by
the task of context prediction, the pretext task was extended
to predict the permutation of the shuffled image patches
[40, 38, 42]. [18] leveraged the rotation in-variance of im-
ages to create the surrogate task of predicting the rotation
angle of the image. Also, the authors of [13] proposed to de-
couple representation learning of the rotation as pretext task
from class discrimination to obtain better results. Along the
lines of context-based prediction, [47] uses generation of
the contents of image region based on context pixel (i.e.
in-painting) and in [67, 68] the authors propose to use gray-
scale image colorization as a pretext task.

Apart from enforcing structural constraints, [6] uses
cluster assignments as supervisory signals for unlabeled
data and works by alternating between clustering of the im-
age descriptors and updating the network by predicting the
cluster assignments. [46] defines pretext task that uses low-
level motion-based grouping cues to learn visual represen-
tation. Also, [41] proposes to obtain supervision signal by
enforcing the additivity of visual primitives in the patches
of images and [43] proposed to learn feature representations
by predicting the future in latent space by employing auto-
regressive models.

Some of the pretext tasks also work by enforcing con-
straints on the representation of the feature. A prominent
example is the exemplar loss from [11] that promotes rep-
resentation of image to be invariant to image augmenta-
tions. Additionally, some research effort have also been put
in to define the pretext task as a combination of multiple
pretext task [10, 32]. For instance, in [32] representation

learning is augmented with pretext tasks of jigsaw puzzle
[40],colorization [67, 68] and in-painting [47].

Generalization Employing regularization techniques for
training deep neural networks to improve their generaliza-
tion performances have become standard practice in the
deep learning community. Few of the commonly used reg-
ularization techniques are - dropout [57], cutout [8], Mixup
[28], manifold Mixup [60]. Mixup [28] is a specific case
of Manifold Mixup [60] where the interpolation of only in-
put data is applied. The authors in [60] claim that Manifold
Mixup leads to smoother decision boundaries and flattens
the class representations thereby leading to feature repre-
sentation that improve the performance over a held-out val-
idation dataset. We apply a few of these generalization tech-
niques during the training of the backbone network over the
base tasks and find that the features learned via such regu-
larization lead to better generalization over novel tasks too.
Authors of [35] provide a summary of popular regulariza-
tion techniques used in deep learning.

3. Methodology

The few-shot learning setting is formalized by the avail-
ability of a dataset with data-label pairs D = {(xi, yi) :
i = 1, · · · ,m} where x ∈ Rd and yi ∈ C, C being the
set of all classes. We have sufficient number of labeled data
in a subset of C classes (called base classes), while very
few labeled data for the other classes in C (called novel
classes). Few-shot learning algorithms generally train in
two phases: the first phase consists of training a network
over base class data Db = {(xi, yi), i = 1, · · · ,mb} where
{yi ∈ Cb ⊂ C} to obtain a feature extractor, and the second
phase consists of adapting the network for novel class data
Dn = {(xi, yi), i = 1, · · · ,mn} where {yi ∈ Cn ⊂ C}
and Cb ∪ Cn = C. We assume that there are Nb base
classes (cardinality ofCb) andNn novel classes (cardinality
of Cn). The general goal of few-shot learning algorithms is
to learn rich feature representations from the abundant la-
beled data of base classes Nb, such that the features can be
easily adapted for the novel classes using only few labeled



instances.
In this work, in the first learning stage, we train aNb-way

neural network classifier:

g = cWb
◦ fθ (1)

on Db, where cWb
is a cosine classifier [48, 17] and fθ is

the convolutional feature extractor, with θ parametrizing the
neural network model. The model is trained with classifica-
tion loss and an additional auxiliary loss which we explain
soon. The second phase involves fine-tuning of the back-
bone model, fθ, by freezing the feature extractor layers and
training a new Nn-way cosine classifier cWn

on data from
k randomly sampled novel classes in Dn with only classifi-
cation loss. Figure 1 provides an overview of our approach
S2M2 for few-shot learning .

Importantly, in our proposed methodology, we leverage
self-supervision and regularization techniques [60, 18, 11]
to learn general-purpose representation suitable for few-
shot tasks. We hypothesize that using robust features which
describes the feature manifold well is important to obtain
better performance over the novel classes in the few-shot
setting. In the subsequent subsections, we describe our
training procedure to use self-supervision methods (such
as rotation[18] and exemplar[11]) to obtain a suitable fea-
ture manifold, following which using Manifold Mixup reg-
ularization [60] provides a robust feature extractor back-
bone. We empirically show that this proposed methodology
achieves the new state-of-the-art result on standard few-shot
learning benchmark datasets.

3.1. Manifold Mixup for Few-shot Learning

Higher-layer representations in neural network classi-
fiers have often been visualized as lying on a meaningful
manifold, that provide the relevant geometry of data to solve
a given task [2]. Therefore, linear interpolation of feature
vectors in that space should be relevant from the perspec-
tive of classification. With this intuition, Manifold Mixup
[60], a recent work, leverages linear interpolations in neural
network layers to help the trained model generalize better.
In particular, given input data x and x′ with corresponding
feature representations at layer l given by f lθ(x) and f lθ(x′)
respectively. Assuming we use Manifold Mixup on the base
classes in our work, the loss for training Lmm is then for-
mulated as:

Lmm = E(x,y)∈Db

[
L
(
Mixλ(f

l
θ(x), f

l
θ(x
′)),Mixλ(y, y

′)
)]

(2)
where

Mixλ(a, b) = λ · a+ (1− λ) · b (3)

The mixing coefficient λ is sampled from a β(α, α) distri-
bution and loss L is standard cross-entropy loss. We hy-
pothesize that using Manifold Mixup on the base classes

provides robust feature presentations that lead to state-of-
the-art results in few-shot learning benchmarks.

Training using loss Lmm encourages the model to pre-
dict less confidently on linear interpolations of hidden rep-
resentations. This encourages the feature manifold to have
broad regions of low-confidence predictions between dif-
ferent classes and thereby smoother decision boundaries, as
shown in [60]. Also, models trained using this regularizer
lead to flattened hidden representations for each class with
less number of directions of high variance i.e. the represen-
tations of data from each class lie in a lower dimension sub-
space. The above-mentioned characteristics of the method
make it a suitable regularization technique for generalizing
to tasks with potential distribution shifts.

3.2. Charting the Right Manifold

We observed that Manifold Mixup does result in higher
accuracy on few-shot tasks, as shown in Section 4.2.3.
However, it still lags behind existing state-of-the-art perfor-
mance, which begs the question: Are we charting the right
manifold? In few-shot learning, novel classes introduced
during test time can have a different data distribution when
compared to base classes. In order to counter this distribu-
tional shift, we hypothesize that it is important to capture
the right manifold when using Manifold Mixup for the base
classes. To this end, we leverage self-supervision methods.
Self-supervision techniques have been employed recently
in many domains for learning rich, generic and meaning-
ful feature representations. We show that the simple idea of
adding auxiliary loss terms from self-supervised techniques
while training the base classes provides feature representa-
tions that significantly outperform state-of-the-art for clas-
sifying on the novel classes. We now describe the self-
supervised methods used in this work.

3.2.1 Self-Supervision: Towards the Right Manifold

In this work, we use two pretext tasks that have recently
been widely used for self-supervision to support our claim.
We describe each of these below.

Rotation [18]: In this self-supervised task, the input im-
age is rotated by different angles, and the auxiliary aim of
the model is to predict the amount of rotation applied to
image. In the image classification setting, an auxiliary loss
(based on the predicted rotation angle) is added to the stan-
dard classification loss to learn general-purpose representa-
tions suitable for image understanding tasks. In this work,
we use a 4-way linear classifier, cWr

, on the penultimate
feature representation fθ(xr) where xr is the image x ro-
tated by r degrees and r ∈ CR = {0◦, 90◦, 180◦, 270◦}, to
predict one of 4 classes in CR. In other words, similar to
Eqn 1, our pretext task model is given by gr = cWr ◦ fθ.



The self-supervision loss is given by:

Lrot =
1

|CR|
∗
∑

x∈Db

∑
r∈CR

L(cWr
(fθ(xr)), r) (4)

where |CR| denotes the cardinality of CR. As the self-
supervision loss is defined over the given labeled data ofDb,
no additional data is required to implement this method. L
is the standard cross-entropy loss, as before.

Exemplar [11]: Exemplar training aims at making the
feature representation invariant to a wide range of image
transformations such as translation, scaling, rotation, con-
trast and color shifts. In a given mini-batch M , we cre-
ate 4 copies of each image through random augmentations.
These 4 copies are the positive examples for each image and
every other image in the mini-batch is a negative example.
We then use hard batch triplet loss [26] with soft margin on
fθ(x) on the mini-batch to bring the feature representation
of positive examples close together. Specifically, the loss is
given as:

Le =
1

4 ∗ |M |
∑
x∈M

4∑
k=1

log

(
1 + exp

(
− max
p∈{1,··· ,4}

D
(
xik, x

i
p

)
+ min
p∈{1..4},i6=j

D(xik, x
j
p)
))

(5)
Here, D is the Euclidean distance in the feature representa-
tion space fθ(x) and xik is the kth exemplar of x with class
label i (the appropriate augmentation). The first term inside
the exp term is the maximum among distances between an
image and its positive examples which we want to reduce.
The second term is the minimum distance between the im-
age and its negative examples which we want to maximize.

3.2.2 S2M2: Self-Supervised Manifold Mixup

The few-shot learning setting relies on learning robust and
generalizable features that can separate base and novel
classes. An important means to this end is the ability to
compartmentalize the representations of base classes with
generous decision boundaries, which allow the model to
generalize to novel classes. Manifold Mixup provides an ef-
fective methodology to flatten representations of data from
a given class into a compact region, thereby supporting this
objective. However, while [60] claims that Manifold Mixup
can handle minor distribution shifts, the semantic difference
between base and novel classes in the few-shot setting may
be more than what it can handle. We hence propose the
use of self-supervision as an auxiliary loss while training
the base classes, which allows the learned backbone model,
fθ, to provide feature representations with sufficient deci-
sion boundaries between classes, that allow the model to

Algorithm 1 S2M2 feature backbone training

begin
Input: {x, y} ∈ Db;α; {x′, y′} ∈ Dval
Output: Backbone model fθ
. Feature extractor backbone fθ training
Initialize fθ
for epochs ∈ {1, 2, ..., 400} do

Training data of size B - (X(i), Y (i)).
L(θ,X(i), Y (i)) = Lclass + Lss
θ → θ − η ∗ ∇L(θ,X(i), Y (i))

end
val acc prev = 0.0
val acc list = [ ]
. Fine-tuning fθ with Manifold Mixup
while val acc > val acc prev do

Training data of size B - (X(i), Y (i)).
L(θ,X(i), Y (i)) = Lmm + 0.5(Lclass + Lss)
θ → θ − η ∗ ∇L(θ,X(i), Y (i))
val acc = Accuracyx,y∈Dval

(Wn(fθ(x)), y)
Append val acc to val acc list
Update val acc prev with val acc

end
return fine-tuned backbone fθ .

end

extend to the novel classes. This is evidenced in our re-
sults presented in Section 4.2.3. Our overall methodology is
summarized in the steps below, and the pseudo-code of the
proposed approach for training the backbone is presented in
Algorithm 1.

Step 1: Self-supervised training: Train the backbone
model using self-supervision as an auxiliary loss along with
classification loss i.e. L+ Lss where Lss ∈ {Le, Lrot}.

Step 2: Fine-tuning with Manifold Mixup: Fine-tune
the above model with Manifold Mixup loss Lmm for a few
more epochs.

After obtaining the backbone, a cosine classifier is
learned over it to adapt to few-shot tasks. S2M2R and
S2M2E are two variants of our proposed approach which
uses Lrot and Le as auxiliary loss in Step 1 respectively.

4. Experiments and Results
In this section, we present our results of few-shot classi-

fication task on different datasets and model architectures.
We first describe the datasets, evaluation criteria and imple-
mentation details1.

Datasets We perform experiments on three standard
datasets for few-shot image classification benchmark, mini-
ImageNet [61], CUB [62] and CIFAR-FS [4]. mini-
ImageNet consists of 100 classes from the ImageNet [51]
which are split randomly into 64 base, 16 validation and 20

1To improve reproducibility of our results, we will open-source our
code after publication



Method mini-Imagenet CUB CIFAR-FS
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

MAML [14] 54.69 ± 0.89 66.62 ± 0.83 71.29 ± 0.95 80.33 ± 0.70 58.9 ± 1.9 71.5 ± 1.0
ProtoNet [56] 54.16 ± 0.82 73.68±0.65 71.88±0.91 87.42 ± 0.48 55.5 ± 0.7 72.0 ± 0.6

RelationNet [59] 52.19 ± 0.83 70.20 ± 0.66 68.65 ± 0.91 81.12 ± 0.63 55.0 ± 1.0 69.3 ± 0.8
LEO [52] 61.76 ± 0.08 77.59 ± 0.12 68.22 ± 0.22 78.27 ± 0.16 - -
DCO [36] 62.64 ± 0.61 78.63 ± 0.46 - - 72.0 ± 0.7 84.2 ± 0.5

Manifold Mixup 58.45 ± 0.63 76.71 ± 0.81 75.66 ± 0.86 87.00 ± 0.46 69.45 ± 0.37 83.31 ± 0.56
Rotation 64.0 ± 0.21 80.00 ± 0.56 73.11 ± 0.34 87.16 ± 0.77 70.5 ± 0.62 84.03 ± 0.71
S2M2R 64.99 ± 0.18 83.07 ± 0.13 81.36 ± 0.83 91.64 ± 0.43 74.45 ± 0.81 87.50 ± 0.54

Table 1. Comparison with prior/current state of the art methods on mini-ImageNet, CUB and CIFAR-FS dataset.

Dataset Method ResNet-18 ResNet-34 WRN-28-10
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

mini-Imagenet

Baseline++ 53.56 ± 0.32 74.02 ± 0.13 54.41 ± 0.21 74.14 ± 0.19 57.53 ± 0.10 72.99 ± 0.43
Mixup (α = 1) 56.12 ± 0.17 73.42 ± 0.13 56.19 ± 0.17 73.05 ± 0.12 59.65 ± 0.34 77.52 ± 0.52

Manifold Mixup 55.77 ± 0.23 71.15 ± 0.12 55.40 ± 0.37 70.0 ± 0.11 58.45 ± 0.19 76.71 ± 0.21
Rotation 58.96 ± 0.24 76.63 ± 0.12 61.13 ± 0.2 77.05 ± 0.35 63.07 ± 0.24 80.00 ± 0.53
Exemplar 56.39 ± 0.17 76.33 ± 0.14 56.87 ± 0.17 76.90 ± 0.17 62.2 ± 0.45 78.8 ± 0.15
S2M2E 56.80 ± 0.2 76.54 ± 0.14 56.92 ± 0.18 76.97 ± 0.18 62.33 ± 0.25 79.35 ± 0.16
S2M2R 64.06 ± 0.18 80.58 ± 0.12 63.74 ± 0.18 79.45 ± 0.12 64.99 ± 0.18 83.07 ± 0.13

CUB

Baseline++ 67.68 ± 0.23 82.26 ± 0.15 68.09 ± 0.23 83.16 ± 0.3 70.4 ± 0.81 82.92 ± 0.78
Mixup (α = 1) 68.61 ± 0.64 81.29 ± 0.54 67.02 ± 0.85 84.05 ± 0.5 68.15 ± 0.11 85.30 ± 0.43

Manifold Mixup 70.57 ± 0.71 84.15 ± 0.54 72.51 ± 0.94 85.23 ± 0.51 75.66 ± 0.86 87.00 ± 0.46
Rotation 72.4 ± 0.34 84.83 ± 0.32 72.74 ± 0.46 84.76 ± 0.62 79.32 ± 0.80 89.64 ± 0.27
Exemplar 68.12 ± 0.87 81.87 ± 0.59 69.93 ± 0.37 84.25 ± 0.56 71.58 ± 0.32 84.63 ± 0.17
S2M2E 71.81 ± 0.43 86.22 ± 0.53 72.67 ± 0.27 84.86 ± 0.13 74.89 ± 0.36 87.48 ± 0.49
S2M2R 71.43 ± 0.28 85.55 ± 0.52 72.92 ± 0.83 86.55 ± 0.51 81.36 ± 0.33 91.64 ± 0.43

CIFAR-FS

Baseline++ 59.67 ± 0.90 71.40 ± 0.69 60.39 ± 0.28 72.85 ± 0.65 67.5 ± 0.64 80.08 ± 0.32
Mixup (α = 1) 56.60 ± 0.11 71.49 ± 0.35 57.60 ± 0.24 71.97 ± 0.14 69.29 ± 0.22 82.44 ± 0.27

Manifold Mixup 60.58 ± 0.31 74.46 ± 0.13 58.88 ± 0.21 73.46 ± 0.14 69.45 ± 0.37 83.31 ± 0.16
Rotation 59.53 ± 0.28 72.94 ± 0.19 59.32 ± 0.13 73.26 ± 0.15 70.5 ± 0.22 84.03 ± 0.21
Exemplar 59.69 ± 0.19 73.30 ± 0.17 61.59 ± 0.31 74.17 ± 0.37 70.05 ± 0.17 84.01 ± 0.22
S2M2E 61.95 ± 0.11 75.09 ± 0.16 62.48 ± 0.21 73.88 ± 0.30 72.63 ± 0.16 86.12 ± 0.26
S2M2R 63.66± 0.17 76.07± 0.19 62.77± 0.23 75.75± 0.13 74.45 ± 0.31 87.50 ± 0.24

Table 2. Results on mini-ImageNet, CUB and CIFAR-FS dataset over different network architecture.

novel classes. Each class has 600 samples of size 84 × 84.
CUB contains 200 classes with total 11,788 images of size
84 × 84. The base, validation and novel split is 100, 50
and 50 classes respectively. CIFAR-FS is created by ran-
domly splitting 100 classes of CIFAR-100 [33] into 64 base,
16 validation and 20 novel classes. The images are of size
32× 32.

Evaluation Criteria We evaluate experiments on 5-way
1-shot and 5-way 5-shot [61] classification setting i.e us-
ing 1 and 5 labeled instances of each of the 5 classes as
training data and Q instances each from the same classes as
testing data. For mini-ImageNet and CIFAR-FS we report
the average classification accuracy over 10000 tasks where
Q = 599 for 1-Shot and Q = 595 for 5-Shot tasks respec-
tively. For CUB we report average classification accuracy
with Q = 15 over 600 tasks. We compare our approach
S2M2R against the current state-of-the-art methods, LEO

[52] and DCO [36] in Section 4.2.3.

4.1. Implementation details

We perform experiments on three different model archi-
tecture: ResNet-18, ResNet-34 [22] and WRN-28-10 [65]
which is a Wide Residual Network of 28 layers and width
factor 10. Average pooling is applied at the last block of
each architecture for getting feature vectors. ResNet-18
and ResNet-34 models have 512 dimensional output fea-
ture vector and WRN-28-10 has 640 dimensional feature
vector. For training ResNet-18 and ResNet-34 architec-
tures, we use Adam optimizer for mini-ImageNet and CUB
whereas SGD optimizer for CIFAR-FS. For WRN-28 train-
ing, we use Adam optimizer for all datasets.

4.2. Performance evaluation over few-shot tasks

In this subsection, we report the result of few shot learn-
ing over our proposed methodology and its variants.



Figure 2. UMAP (2-dim) [37] plot for feature vectors of examples from novel classes of mini-Imagenet using Baseline++, Rotation, S2M2R (left to right).

4.2.1 Using Manifold Mixup regularization[60]
All experiments using Manifold Mixup randomly sample
a hidden layer (including input layer) at each step to ap-
ply mixup as described in equation 1 for the mini-batch
with mixup coefficient (λ) sampled from a β(α, α) distribu-
tion with α = 2. We compare the performance of Manifold
Mixup [60] with Baseline++ [7] and mixup [28]. The re-
sults are shown in table 2. We can see that the boost in few-
shot accuracy from the two aforementioned mixup strate-
gies is significant when model architecture is deep (WRN-
28-10). For shallower backbones (ResNet-18 and ResNet-
34), the results are not conclusive.

4.2.2 Using self-supervision as an auxiliary loss

We evaluate the contribution of rotation prediction [18] and
exemplar training [11] as an auxiliary task during back-
bone training for few-shot tasks. Backbone model is trained
with both classification loss and auxiliary loss as explained
in section 3.2.1. For exemplar training, we use random
cropping, random horizontal/vertical flip and image jitter
randomization [66] to produce 4 different positive variants
of each image in the mini-batch. Since exemplar training
is computationally expensive, we fine-tune the baseline++
model for 50 epochs using both exemplar and classification
loss.

The comparison of above techniques with Baseline++ is
shown in table 2. As we see, by selecting rotation and ex-
emplar as an auxiliary loss there is a significant improve-
ment from Baseline++ ( 7-8%) in most cases. Also, the
improvement is more prominent for deeper backbones like
WRN-28-10.

4.2.3 Our Approach: S2M2

We first train the backbone model using self-supervision
(exemplar or rotation) as auxiliary loss and then fine-tune
it with Manifold Mixup as explained in section 3.2.2. The
results 2 are shown in table 2 . We achieve the best results

2We implemented LEO for CUB dataset and report those results

Method 10-way 15-way 20-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline++ 40.43 56.89 31.96 48.2 26.92 42.8
LEO [52] 45.26 64.36 36.74 56.26 31.42 50.48
DCO [36] 44.83 64.49 36.88 57.04 31.5 51.25

Manifold Mixup 42.46 62.48 34.32 54.9 29.24 48.74
Rotation 47.77 67.2 38.4 59.59 33.21 54.16
S2M2R 50.4 70.93 41.65 63.32 36.5 58.36

Table 3. Few-shot accuracy as N in N -way classification in-
creases.

through this approach. We show its comparison with cur-
rent state-of-the-art [52] [36] and other existing few-shot
approaches [56] [59] in Table 1. As we can observe from
table, our approach S2M2R beats the most recent state-of-
the-art results , LEO [52] and DCO [36], by a significant
margin on all the three datasets. We find that using only ro-
tation prediction as an auxiliary task during backbone train-
ing also outperforms the existing state-of-the-art methods
on mini-Imagenet dataset.

5. Discussion and Ablation Studies
To understand the significance of learned feature rep-

resentation for few-shot tasks, we perform various experi-
ments and analyze the findings in this section. We choose
mini-ImageNet as the primary dataset with WRN-28-10
backbone for the following experiments.

Effect of varying N in N -way Classification For exten-
sive evaluation, we test our proposed methodology in com-
plex few-shot settings. We vary N in N -way K-shot eval-
uation criteria from 5 to 10, 15 and 20. The corresponding
results are reported in table 3. We observe that our approach
S2M2R outperforms other techniques by a significant mar-
gin. The improvement becomes more pronounced as N in-
creases. Fig 2 shows the 2-dimensional UMAP [37] plot
of feature vectors of novel classes obtained from different
methods. It shows that our approach has more segregated
clusters with less variance. This supports our hypothesis
that using both self supervision and Manifold Mixup regu-



Method mini-Imagenet =⇒ CUB
1-Shot 5-Shot

DCO [36] 44.79 ± 0.75 64.98 ± 0.68
Baseline++ 40.44 ± 0.75 56.64 ± 0.72

Manifold Mixup 46.21 ± 0.77 66.03 ± 0.71
Rotation 48.42 ± 0.84 68.40 ± 0.75
S2M2R 48.24 ± 0.84 70.44 ± 0.75

Table 4. Comparison in cross-domain dataset scenario.

Method Base + Validation
1-Shot 5-Shot

LEO [52] 61.76 ± 0.08 77.59 ± 0.12
DCO [36] 64.09 ± 0.62 80.00 ± 0.45

Baseline++ 61.10 ± 0.19 75.23 ± 0.12
Manifold Mixup 61.10 ± 0.27 77.69 ± 0.21

Rotation 65.98 ± 0.36 81.67 ± 0.08
S2M2R 67.13 ± 0.13 83.6 ± 0.34

Table 5. Effect of using the union of base and validation class for
training the backbone fθ .

larization helps in learning feature representations with well
separated margin between novel classes.

Cross-domain few-shot learning We believe that in
practical scenarios, there may be a significant domain-shift
between the base classes and novel classes. Therefore,
to further highlight the significance of selecting the right
manifold for feature space, we evaluate the few-shot clas-
sification performance over cross-domain dataset : mini-
ImageNet =⇒ CUB (coarse-grained to fine-grained dis-
tribution) using Baseline++, Manifold Mixup [60], Rotation
[66] and S2M2R. We train the feature backbone with the
base classes of mini-ImageNet and evaluate its performance
over the novel classes of CUB (to highlight the domain-
shift). We report the corresponding results in table 4.

Generalization performance of supervised learning over
base classes The results in table 2 and 3 empirically sup-
port the hypothesis that our approach learns a feature man-
ifold that generalizes to novel classes and also results in
improved performance on few-shot tasks. This generaliza-
tion of the learned feature representation should also hold
for base classes. To investigate this, we evaluate the per-
formance of backbone model over the validation set of the
ImageNet dataset and the recently proposed ImageNetv2
dataset[50]. ImageNetV2 was proposed to test the gener-
alizability of the ImageNet trained models and consists of
images having slightly different data distribution from the
ImageNet. We further test the performance of backbone
model over some common visual perturbations and adver-
sarial attack. We randomly choose 3 of the 15 different per-
turbation techniques - pixelation, brightness, contrast , with

Methods I I2 P C B Adv
Baseline++ 80.75 81.47 70.54 47.11 74.36 19.75

Rotation 82.21 83.91 71.9 50.84 76.26 20.5
Manifold

Mixup 83.75 87.19 75.22 57.57 78.54 44.97

S2M2R 85.28 88.41 75.66 60.0 79.77 28.0

Table 6. Validation set top-1 accuracy of different approaches
over base classes and it’s perturbed variants (I:ImageNet;
I2:ImageNetv2; P:Pixelation noise; C: Contrast noise; B: Bright-
ness; Adv: Aversarial noise)

Figure 3. Effect of increasing the number of self-supervised (de-
grees of rotation) labels.

5 varying intensity values , as mentioned in the paper [25].
For adversarial attack, we use the FGSM attack [19] with
ε = 1.0/255.0. All the evaluation is over the 64 classes of
mini-Imagenet used for training the backbone model. The
results are shown in table 6. As it can be seen that our pro-
posed technique has the best generalization performance for
the base classes also.

Effect of using the union of base and validation classes
We test the performance of few-shot tasks after merging

the validation classes into base classes. In table 5, we see
a considerable improvement over the other approaches us-
ing the same extended data, supporting the generalizability
claim of the proposed method.

Different levels of self-supervision We conduct a sepa-
rate experiment to evaluate the performance of the model
by varying the difficulty of self-supervision task; specif-
ically the number of angles to predict in rotation task.
We change the number of rotated versions of each im-
age to 1 (0◦), 2 (0◦, 180◦), 4 (0◦,90◦,180◦,270◦) and 8
(0◦,45◦,90◦,135◦,180◦,225◦,270◦,315◦) and record the per-
formance over the novel tasks for each of the corresponding
4 variants. Figure 3 shows that the performance improves
with increasing the number of rotation variants till 4, after
which the performance starts to decline.



6. Conclusion
We observe that learning feature representation with rel-

evant regularization and self-supervision techniques lead
to consistent improvement of few-shot learning tasks on a
diverse set of image classification datasets. Notably, we
demonstrate that feature representation learning using both
self-supervision and classification loss and then applying
Manifold-mixup over it, outperforms prior state-of-the-art
approaches in few-shot learning. We do extensive experi-
ments to analyze the effect of architecture and efficacy of
learned feature representations in few-shot setting. This
work opens up a pathway to further explore the techniques
in self-supervision and generalization techniques to im-
prove computer vision tasks specifically in low-data regime.
Finally, our findings highlight the merits of learning a robust
representation that helps in improving the few-shot tasks.
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