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Abstract 

 

The continuous increase in energy demand and depletion of conventional 

resources motivates the research towards the environment friendly renewable energy 

sources like solar and wind energy. These sources are best suitable for rural, urban 

and offshore locations, because of easy installation, less running cost and ample 

resources (sun light and wind). The remote locations are mostly islanded in nature 

and far away from technical expertise in case of troubleshooting. This motivates the 

research on development of fault tolerant converters. These fault tolerant converters 

increases the reliability, which provides the continuous power supply to critical 

loads. From the last few decades, the integration of multilevel inverters with 

renewable energy systems is also increasing because of advantages like, improved 

power quality, total harmonic distortion (THD) and reduced output filter size 

requirement. Employing conventional multilevel inverters for increasing the number 

of voltage levels increases the device count and isolated DC sources. As a result 

probability of semiconductor switch failure is more and energy balancing issue 

between sources, which in-turn degrades the reliability and performance of the 

inverter. The majority of conventional multilevel inverter topologies cannot address 

energy balancing issues between multiple photovoltaic (PV) sources, which may 

need because of partial shading, hotspots, uneven charging and discharging of 

associated batteries etc. If energy sharing not addressed effectively, the batteries 

which are connected to the shaded or faulty PV system will discharge faster which 

may cause total system shutdown and leads to under-utilization of healthier part of 

the system. To address these issues, fault tolerant multilevel inverter topologies with 

energy balancing capability are presented in this thesis. 

The major contributions of the proposed work are 

 Single phase and three phase fault tolerant multilevel inverter 

topologies. 
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 Energy balancing between sources and dc off set minimization (or 

batteries) due to uneven charging and discharging of batteries for 

five-level inverter. 

 Extending the fault tolerance and energy balancing for higher number 

of voltage levels. 

The first work of this thesis is focused to develop fault tolerant single phase 

and three phase multilevel inverter topologies for grid independent photovoltaic 

systems. The topologies are formed by using three-level and two-level half bridge 

inverters. The topology fed with multiple voltage sources formed by separate PV 

strings with MPPT charge controllers and associated batteries. Here the topologies 

are analyzed for different switch open circuit and/or source failures. The switching 

redundancy of the proposed inverters is utilized during fault condition for supplying 

power with lower voltage level so that critical loads are not affected.  

 In general, the power generation in the individual PV systems may not be 

same at all the times, because of partial shading, local hotspots, wrong maximum 

power point tracking, dirt accumulation, aging etc. To address this issue energy 

balancing between individual sources is taken care with the help of redundant 

switching combinations of proposed five-level inverter carried out in second work. 

Because of partial shading the associated batteries with these panels will charge and 

discharge unevenly, which results voltage difference between terminal voltages of 

sources because of SOC difference. The energy balance between batteries is 

achieved for all operating conditions by selecting appropriate switching 

combination. For example during partial shading the associated battery with low 

SOC is discharged at slower rate than the battery with more SOC until both SOC’s 

are equal. This also helps in minimization of DC offset into the ac side output 

voltage. The mathematical analysis is presented for possible percentage of energy 

shared to load by both the sources during each voltage level. 

 The third work provides single phase multilevel inverter with improved fault 

tolerance in terms of switch open circuit failures and energy balancing between 

sources. Generally multilevel inverters for photovoltaic (PV) applications are fed 
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with multiple voltage sources. For majority of the multilevel inverters the load 

shared to individual voltage sources is not equal due to inverter structure and 

switching combination. This leads to under-utilization of the voltage sources. To 

address this issue optimal PV module distribution for multilevel inverters is 

proposed. Mathematical analysis is carried out for optimal sharing of PV resources 

for each voltage source. The proposed source distribution strategy ensures better 

utilization of each voltage source, as well as minimizes the control complexity for 

energy balancing issues. This topology requires four isolated DC-sources with a 

voltage magnitude of Vdc/4 (where Vdc is the voltage requirement for the 

conventional NPC multilevel inverter). These isolated DC voltage sources are 

realized with multiple PV strings. The operation of proposed multilevel single phase 

inverter is analyzed for different switch open-circuit failures. 

  All the presented topologies are simulated using MATLAB/Simulink and the 

results are verified with laboratory prototype. 
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Nomenclature 

Abbreviations 

SOC   : State of Charge 

PV   : Photovoltaic 

THD   : Total Harmonic Distortion 

MPPT   : Maximum Power Point Tracking 

SVPWM  : Space Vector Pulse Width Modulation 

MLI   : Multilevel Inverter 

NPC   : Neutral Point Clamped  

FC                           :  Flying Capacitor 

DER   : Distributed Energy Resource 

PCB   : Printed Circuit Board 

IGBT   : Insulated Gate Bipolar Transistor 

MOSFET  : Metal Oxide Semiconductor Field Effect Transistor 

TRAIC  : Triode for alternating current 

SVC   : Space Vector Control 

SHE   : Selective Harmonic Elimination 

SPWM  : Sinusoidal Pulse Width Modulation 

LED   : Light Emitting Diode 

FPGA   : Field Programmable Gate Array 

VHDL   : VHSIC Hardware Description    Language  

PD   : Phase Disposition 

POD   : Phase Opposition Disposition 

DSPACE  : Digital Signal Processing and Control Engineering 

Symbols  : Definitions 

F1, F2   : Fuse 

Vr   : Space vector 

V∝, Vβ   : Two dimensional space vectors 

VAO, VBO, VCO : Three phase voltages 

 𝐈𝐬𝐚   : PV module output current 

𝐕𝐬𝐚   : PV module output voltage 
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NP   : Number of parallel connected cells 

NS   : Number of series connected cells 

𝐑𝐬   : Series resistance 

𝐑𝐬𝐡   : Shunt resistance 

𝐈𝐩𝐡   : Light generated current 

𝐈𝐬𝐚𝐭   : Reverse saturation current 

A   : Ideality factor 

K   : Boltzmann’s constant 

T   : Cell temperature 

Q   : Electronic charge 

Vm   : Modulating signal 

Vtri   : Triangular signal 

ma   : Modulation index 

fm   : Modulation signal frequency 

fs   : Switching frequency 

M1, M2  : Relays 

Vdc-min   : Minimum battery voltage 

Sf1, Sf2   : Switch fault signal 

V1a, V1b, V1c  : Higher voltage level for a, b, c phases 

V2a, V2b, V2c  : Middle voltage level for a, b, c phases 

E   : Energy transferred to load 

𝑬𝑽𝟏𝒂
, 𝑬𝑽𝟏𝒃

, 𝑬𝑽𝟏𝒄
 : Energy transferred to load during higher voltage level 

𝑬𝑽𝟐𝒂
, 𝑬𝑽𝟐𝒃

, 𝑬𝑽𝟐𝒄
 : Energy transferred to load during middle voltage level 

𝑽𝒂𝒗𝒈   : Average output voltage 
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Chapter 1 
 

Introduction 

1.1 Importance of renewable energy system 

The demand for renewable energy systems is growing day by day because of 

continuous increase in energy demand, increase of global economy, rapid 

industrialization and population growth. In addition, the effects of fossil fuel energy 

sources like world climate changes (greenhouse gas emissions), which may leads to 

serious health issues of humans. The early day challenges like, uncertainty and high 

initial installation cost are limiting the efficient utilization of all renewable energy 

sources. The tremendous growth in harvesting technology, easy installation, reduced 

costs, low environmental impact, and recent developments in semiconductor 

fabrication technology has considerably reduced the initial cost and brought the 

renewable energy sources back to focus [1].  

 

Fig.1.1 Renewable power capacity and annual growth rate, 2000-2015[2] 
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The annual growth rate of renewable power capacity from 2000 to 2015 is 

shown in Fig.1.1 [2]. The renewable power generating capacity is exceeded 

1,811GW and accounted for more than 28% of global capacity by the end of 2015. 

Among these renewable energy sources, the share of solar Photo voltaic (PV) is 

increasing rapidly because of environmental friendly, available of abundant of 

sunlight and easy installation (at rooftop of houses). The rapid growth rate of solar 

PV global capacity by country/region from 2005 to 2015 is observed in Fig.1.2 [3]. 

 

Fig. 1.2 Solar PV global capacity, by country/region 2005-2015 [3] 

 

Fig.1.3 Power converter as interface between renewable energy source and load and/or grid 

1.2 Importance of power electronic converters for renewable energy system 
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Power electronic converter plays an important role for conversion of 

renewable source energy to standardized form of electricity, as shown in Fig.1.3. The 

power converter uses semiconductor devices to perform switching action to achieve 

desired conversion strategy [4]. Therefore efficient design of power converter is 

needed to ensure good power quality and reliability. The dc output of the renewable 

energy sources like solar energy is converted into ac in a two stage process [5], [6] 

and [7], which is depicted in Fig.1.4. The first stage is to boost or buck the output 

voltage of the PV array and to extract maximum power from it using a suitable 

MPPT technique, with the help of a dc to dc converter. Second stage is for 

converting to ac by using inverter. Generally, the two stage process uses a two level 

inverter which will introduce considerable harmonic content along with the 

fundamental voltage. These harmonics increases loss in the system, which reduces 

the system efficiency. To improve the efficiency of the total solar system the two 

stage conversion process is reduced to a single stage process using three-phase boost 

inverter with SVPWM as explained in [8] and [9]. But, here also relatively the 

harmonics in the output voltage is high. There are many methods are available to 

improve the THD of output voltage, of which multilevel inverter is one of the option. 

 

 

Fig.1.4 (a) Two stage conversion process of PV generation system. (b) Load Output voltage 
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1.3 Introduction to multilevel inverters (MLI) 

Conventional multilevel inverters are introduced to improve the harmonic profile 

of output voltage [10], [11]. Multilevel inverter technology has been widely used in 

PV applications, because of its improved output voltage quality, better harmonic 

performance, less voltage stress on power electronic devices and etc. [12], [13]. The 

basic concept of multi-level inverters is, connecting power electronic switches in 

series/parallel along with more number of DC sources to synthesize the staircase 

waveform. The basic conventional multilevel inverter topologies are diode clamped 

(Neutral point clamped), flying capacitor and Cascaded H-bridge multilevel inverters 

[B1]. 

1.3.1 Diode Clamped multilevel inverter or neutral point clamped 

inverter (NPC) 

The multilevel inverter topology for induction motor drives is proposed in the 

year 1981 [14] by Nabae, Takahashi and Akagi. The five-level diode clamped 

multilevel inverter with separate sources is shown in Fig.1.5. 

 

Fig.1.5 Topology of Single leg of five-level NPC inverter 
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Table 1.1 

Switching combination for generating five-level output voltage 
 

Switches in on Output Voltage Level 

S1, S2, S3, S4 +
Vdc

2
 

S2, S3, S4, S1’ +
Vdc

4
 

S3, S4, S1’,S2’ 0 

S4, S1’,S2’,S3’ −
Vdc

4
 

S1’,S2’,S3’,S4’ −
Vdc

2
 

The diode clamped multilevel inverter consists of dc bus capacitors, switches 

and clamping diodes. For an n-level inverter the number of dc bus capacitors 

required are (n-1), number of clamping diodes is (n-1)*(n-2) and 2(n-1) switches. 

The voltage across each dc bus capacitor is Vdc/ (n-1). The five-level output voltage 

is generated using switching combination given in Table 1.1. The drawback of diode 

clamped inverter is, it requires more number of clamping diodes. The reliability 

issues of this inverter are increases as the number of voltage levels increases because 

of more number of devices. In case of isolated voltage sources (instead of capacitors) 

the power balancing is an issue due to unequal load sharing. If a fault occurs in any 

one of the middle switch, it is difficult to operate the inverter. 

1.3.2 Flying capacitor multilevel inverter (FCMLI) 

The flying capacitor multilevel inverter is introduced by T.A Meynard and 

H.Foch in the year 1992 [15]. Flying capacitor multilevel inverter is derived from 

diode clamped multilevel inverter topology. Here the diodes are replaced with series 

connected flying capacitors. N-level FCMLI inverter requires (n-1) dc bus capacitors, 

2(n-1) switching devices and (n-1)*(n-2)/2 clamping capacitors. The single leg of 

five-level flying capacitor multilevel inverter is shown in Fig.1.6. The five-level 

output voltage is generated using switching combination given in Table 1.2. This 

topology does not require any clamping diodes, but it requires more number of 

capacitor banks. These capacitor bank voltages should be controlled within allowable 

voltage ripple. Here redundant switching states are possible for middle voltage 

levels. But, it doesn’t have fault tolerance if any one of the switch fails.  
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Fig.1.6 Topology of Single leg of five-level FC multilevel inverter 

 

Table 1.2 

Switching combination for generating five-level output voltage 

Switches in on 
Output  

Voltage Level 

S1, S2, S3, S4 +
Vdc

2
 

 S1, S2, S3, S1′ +
Vdc

4
 

S1, S2,  S2′,  S4′ +
Vdc

4
 

S1, S3′,  S4,  S3 +
Vdc

4
 

S1, S2,  S1′,  S2′ (or)  S3, S4,  S3′,  S4′ (or)  

S1, S3,  S1′,  S3′ (or) S1, S4,  S2′,  S3′ 
0 

 S1,  S1′, S2′,  S3′ −
Vdc

4
 

S4,  S2′,  S3′,  S4′ −
Vdc

4
 

S3,  S1′,  S3′,  S4′ −
Vdc

4
 

 S1′, S2′,  S3′,  S4′ −
Vdc

2
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1.3.3 Cascaded H-bridge multilevel inverter 

. Cascaded multilevel inverter is another popular topology for high-power 

medium voltage drives [16]-[18], because it doesn’t have capacitor voltage 

unbalancing issues. The five-level cascaded multilevel inverter requires less number 

of components than the diode clamped and flying capacitor MLI’s, as shown in 

Fig.1.7. The disadvantage of cascaded H-bridge multilevel inverter is as the number 

of levels increases, it requires more number of isolated dc sources. The five-level 

output voltage is generated using switching combination given in Table 1.3. Because 

of switching redundancies, the five-level cascade H-bridge topology has fault 

tolerant capability if any one of the switch fails. During fault it can able to generate 

three-level output voltage using redundant switching combinations. But, it has no 

fault tolerance capability if any leg of the H-bridge cell fails. As the number of 

voltage levels increases the components required for the topology increases and also 

the control complexity to control semiconductor devices and reliability issues 

increases.   

 

Fig.1.7 Five-level cascade H-bridge multilevel inverter 
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Table 1.3 

Switching combination for generating five-level output voltage 

Switches in on 
Output  

Voltage Level 

S1, S4′, S1′, S4 +
Vdc

2
 

 S1, S4′, S2′, S4 +
Vdc

4
 

 S1, S1′, S3′, S4 +
Vdc

4
 

S1′, S4, S2, S4′ +
Vdc

4
 

S1, S3, S2′, S4′ 0 

S1, S3, S1′, S3′ 0 

S2, S4, S2′, S4′ 0 

S2, S4, S1′, S3′ 0 

 S3, S2′, S4′, S2 −
Vdc

4
 

S3, S1′, S3′, S2 −
Vdc

4
 

S3′, S2, S4, S2′ −
Vdc

4
 

S3, S2′, S3′, S2 −
Vdc

2
 

 

1.3.4 Inverter topologies with reduced number of switches 

In literature many multilevel inverter topologies with reduced number of 

components for achieving higher number of voltage level is presented [19]. In 

Fig.1.8 five-level inverter topology is presented for multistring distributed energy 

resources (DER), it requires six semiconductor devices where as conventional 

multilevel inverter topologies requires eight semiconductor devices. Thereby it 

requires less number of driver circuit and components compared to conventional 

multilevelinverter topologies. If any one of the switch fails, this topology doesn’t has 

the fault tolerance capability.   
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Fig.1.8 Single phase multistring five-level inverter topology [19] 

 

The single phase five-level inverter topologies are proposed in [20], [21] with 

less number of components as compared to conventional five-level inverter 

topologies. The five-level inverter topology presented in [20] is formed by one H-

bridge cell and two extra switches connected between sources, as shown in Fig.1.9. 

However, this topology is unable to generate output voltage at load under H-bridge 

switch failures. Another interesting five-level inverter topology is presented in [21], 

which is formed by one H-bridge cell, one unidirectional switch and bidirectional 

switch shown in Fig. 1.10. The bidirectional switch has capable of conducting 

current and blocking voltage in both directions. This bidirectional switch is currently 

available in markets as a module. This module requires only one isolated power 

supply instead of two for the gate driver. The topology requires same number of gate 

drive circuits as the topologies presented in Fig. 1.8 and Fig.1.9. But, it also has no 

fault tolerance if any switch of the H-bridge cell fails. 
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Fig 1.9 Single phase five-level inverter configuration [20] 

 

Fig 1.10 Single phase five-level inverter configuration [21] 

1.4 Importance of fault tolerant multilevel inverter for stand-alone PV 

system 

The 2010 international energy agency report says that around the world still 1.4 

billion people without accesses to electricity even though with the continuous 

improvement in energy sector [22]. This strongly supports the need of stand-alone 

renewable generation system to those people and also for areas which are far away 

from grid and remote locations. Generally, multilevel inverters requires more 
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semiconductor devices to improve the harmonic profile of output voltage, if any fault 

occurs in these stand-alone power converters i.e. semiconductor switches and/or 

source failure leads to total shutdown of the system. These locations are far away 

from technical expertise in case of trouble shooting and have to operate at least some 

of the important loads. This brings in need of fault tolerant converter for islanded PV 

generation system. 

 

 

Fig.1.11 (a) Distribution of faults in power converter (b) Stress sources of fault [26] 

 

1.4.1 Fault tolerant multilevel inverter configurations 

The necessity and importance of reliability of power converters are discussed in 

[23], [24], [B6]. Generally, inverter failures occur due to semiconductor device 

failure, gate driver failure and PCB failures [25]. The percentage of different type of 

failures in power converter and sources of failure is shown in Fig.1.11 [26]. The 

semiconductor device failure is mainly because of short circuit and open circuit fault. 

The causes of short circuit fault are over voltage, high temperature and wrong gate 

voltage. This short circuit fault leads to abnormal current flow in power converter, 

which causes the serious damage to other parts of power converter with in very short 

time. Several reasons for open circuit fault are gate drive fault, lifting and cracking of 

bonding wires in IGBT modules due to thermal cycling. Compared to short circuit 

fault the open circuit fault cannot cause serious damage to power converter. Hence, 

fault detection techniques and control of fault tolerance are needed in power 
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electronic systems [27]. The different methods for detection of short circuit and open 

circuit faults and fault tolerant strategies are presented. The different open circuit 

fault and short circuit fault methods along with their comparison are presented in 

Table 1.4 and Table 1.5. 

Table 1.4 [26] 

Comparison of Different Open circuit fault Methods 

Methods Effectiveness 
Diagnosis 

Time 

Considered 

Parameters 

Implementation 

Effort 

Tuning 

Effort 

Additional 

Hardware 

Current 

vector 

shape 

method 

[28-32] 

Poor at small 

current 

Within Two 

fundamental 

Periods 

3-Phase 

currents 
Low Medium 

Not 

required 

Slope of 

space 

vector’s 

trajectory 

methods 

[32], [33] 

Poor at small 

current 

Average two 

fundamental 

periods 

3-phase 

currents 
Low High 

Not 

required 

Direct 

average 

current 

method 

[34], [35] 

Poor at small 

current 

Within 1.5 

fundamental 

Periods 

3-phase 

currents 
Low Medium 

Not 

required 

Modified 

normalized 

average 

current 

method 

[34], [36] 

Good 

Within 1.5 

fundamental 

Periods 

3-phase 

currents 
Low Low 

Not 

required 

Method 

based on 

switching 

function 

model [37] 

Good 
Fast but not 

defined 

Switch 

voltage, 

signal 

Medium Low Required 

Lower 

switch 

voltage 

measuring 

method 

[38] 

Good but the 

location 

cannot be 

identified 

Approximately 

2.7ms 

Lower 

switch 

voltage 

Medium Low Required 
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Table 1.5 [26] 

Comparison of Different short circuit fault Methods 

Method Reliability 
Considered 

Parameters 

Implementatio

n Effort 
Turn-off Remarks 

Desaturation 

detection 

method 

[39]-[41] 

Medium 
Collector 

voltage 
Low Abrupt 

Device 

turn-off not 

assured 

di/dt 

feedback 

control 

method 

[42], [43], 

[44] 

Medium Device current High soft 

Stray 

inductance 

difficult to 

control 

Gate voltage 

monitoring 

method 

[45], [46] 

Low Gate voltage Low abrupt 

Requires 

complex 

circuitry 

Gate voltage 

comparison 

method 

[47],[48],[4

9] 

Low Gate voltage Low soft 

Requires 

complex 

circuitry 

Current 

mirror 

method [42] 

Medium Device current Low Abrupt Expensive 

Protection 

using 

snubber and 

clamped 

circuit [50] 

Low  Device voltage High N/A Expensive 

Protection 

by slow 

turn-off of 

IGBT [50] 

Low Gate voltage High soft 

Requires 

complex 

circuitry 

 

The different techniques for fault detecion are presented to isolate the system 

from fault but not much literature is presented to operate the system after post fault 

conditions to continue the operation of the essential loads.  
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Fig. 1.12 Five-level inverter topology with fault tolerant ability [51] 

In [51], a fault tolerant topology is presented for improving the reliability of 

the system, as shown in Fig. 1.12. The advantage of this topology is to maintain same 

number of output voltage levels during fault condition. The fault tolerance is 

achieved by using redundant states of the voltage states that is by modifying the 

control signal. However, it requires more number of semiconductor devices to make 

fault tolerant system. The topology uses 22 semiconductor devices (conventional 

five-level requires 8 semiconductor devices) for five-level fault tolerant operation. In 

[52], fault tolerant topology for grid connected PV application using coupled Scott 

transformer is proposed. In normal condition the topology operates with less number 

of switches, but during fault it requires additional leg to replace the faulty switch. 

Different fault tolerant topologies for neutral point clamped (NPC) and three phase 

two level inverter are shown in Fig.1.13 and Fig. 1.14 [53-55]. To provide open 
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circuit fault tolerance in three-level NPC inverter the clamping diodes are replaced 

with extra switches, as shown in Fig.1.13 (a). The purpose of these switches is to 

provide redundant switching states to provide fault tolerance, when any switch of one 

leg fails. Fig.1.13 (b) shows NPC with triac connected between neutral point of the 

sources and midpoint of NPC leg. The purpose of this TRIAC is to connect the faulty 

leg to the neutral point of the converter under open circuit switch faults.  

 

Fig. 1.13 NPC Fault tolerant converter leg (a) Solution I [53], (b) Solution II [54] 

 

The four-leg three phase two-level inverter topology is shown in Fig. 1.14 (a). 

It requires two additional IGBTs, three TRIACs, and six fast-acting fuses. The fourth 

leg is inoperative for normal operation. The purpose of TRIAC is to isolate the 

faulty- leg as well as for connecting the fourth leg under fault condition. If a short-

circuit fault occurs in any switch of the leg A, the fuses F1 and F2 will blow when 

the complementary switch turns ON. The requirement for selecting the power device 

is that the integral current square of the fuses and must be less than the tolerable 

value of the power switch. Because the faulty leg is replaced by the fourth leg, it 

must be controlled as if it were the isolated faulty leg. Therefore, space vector 

modulation (SVM) modification is not required. Fig. 1.14 (b) shows the four-leg 
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inverter circuit after a fault has occurred in phase A. The disadvantages of these 

topologies are using extra circuitry to make the system fault tolerant.  

 

 

Fig. 1.14 (a) Fault tolerant solution for three phase two level inverter (b) Three phase two-level 

inverter after post fault [55] 

 

1.5 Energy Balancing issue of Multilevel inverters for Stand-alone 

Photovoltaic systems 

The block diagram of multilevel inverter with multiple PV strings with MPPT 

charge controller and associated batteries are shown in Fig. 1.15. The multilevel 
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inverters like diode clamped and cascaded H-bridge multilevel inverters are more 

popular for PV applications [56-58]. But, there may be a chance of energy unbalance 

between sources due to partial shading of PV panels and/or switching selection to 

generate multilevel voltages.  A case study is explained for five level diode clamped 

inverter is shown in Fig.1.5 with four separate sources with equal power rating. 

Assume each source as separate PV string with battery backup. If there is partial 

shadow on any one of the PV string the corresponding batteries will charge and 

discharge unevenly. The battery with low state of charge (SOC) will dry out faster 

and causes total system shutdown, this leads to underutilization of healthier 

components. Another issue with diode clamped multilevel inverter is unequal share 

of load energy by sources. The switching combination to generate five level voltages 

is given in Table 1.6.  From this table, it is observed that the sources V2, V3 are 

supplying more energy to load during Vdc/2 and Vdc/4 voltage level compared to V1 

and V4. To avoid this issue, the energy balancing between sources has to be 

explored.  

 

 

Fig.1.15 Multilevel inverter fed with multiple sources 
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Table 1.6 

Switching sequence to generate five-level output voltage 

Voltage 

level 
S1 S2 S3 S4 S1’ S2’ S3’ S4’ 

Sources 

chosen 

Vdc/2 1 1 1 1 0 0 0 0 V1, V2 

Vdc/4 0 1 1 1 1 0 0 0 V2 

0 0 0 1 1 1 1 0 0 0 

-Vdc/4 0 0 0 1 1 1 1 0 V3 

-Vdc/2 0 0 0 0 1 1 1 1 V3, V4 
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Fig.1.16 Block diagram of seven-level cascade H-bridge inverter [59] 

Similar to the diode-clamped MLIs, the cascaded H-bridge inverters has 

limitations in terms of energy balancing issues. The energy balancing issue is 

addressed for seven-level cascade H-bridge inverter by using switching redundancies 

of H-brides in three fundamental cycles [59]. The seven-level cascade H-bridge 

inverter with three separate PV strings, MPPT converter and associated batteries is 

shown in Fig. 1.16.  The gating pulses for the 7-level inverter are generated using in-

phase disposition level shifted carrier pulse width modulation. The gating pulse for 

the each H-bridge is generated by comparing modulating signal with corresponding 

carrier signals. On rotation basis cyclically the pulses are applied to each H-bridge, 

so that the energy supplied to load by individual H-bridge is equal in three 

fundamental cycles. But, there is small dc voltage offset injected into ac output 

voltage side because of small difference in battery terminal voltage. This dc voltage 

offset causes saturation of transformer and other inductive loads. 

 

Fig.1.17 Five-level inverter topology 

 

Fig.1.17 represents the five-level topology, which is realized by using Marx 

inverter structure and H-bridge. T1, T2, T3 and T4 are the H-bridge switches and T5, 

T6 and T7 are semiconductor switches in the Marx inverter structure [60]. T5, T6 

and T7 Switches used are bidirectional to avoid their undesirable switching, short 

circuiting of the source and to maintain constant output voltage levels [61]. The 
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bidirectional switches present in this topology has low ON state voltage drop and it 

requires only one gate driver circuit. Considering  the  dc  link  capacitor  to  be  

charged  by  same rating distributed energy source, average voltage of V1  and V2   

is  same.  The look up table for modulation scheme is shown in Table 1.7. Since  

both  the  sources  deliver  power  to  same load in  alternate  cycle,  average  value of  

source  current  for two cycles is same for both sources. Total power delivered to the 

load is equally distributed by both the sources in two fundamental cycles and hence 

power balancing among the sources is achieved. However, this topology takes two 

fundamental cycles to balance the power between sources and also the issues related 

to voltage balancing of DC sources is not addressed. 

Table 1.7 

Look up table for modulation scheme 

V1+V2 T1, T4, T6 

V1 T1, T4, T7 

0 T1, T3 

-V1 T2, T3, T7 

-(V1+V2) T2, T3, T6 

V1+V2 T1, T4, T6 

V2 T1, T4, T5 

0 T2, T4 

-V2 T2, T3, T5 

-(V1+V2) T2, T3, T6 

1.6 Pulse Width Modulation Strategies 

The modulation methods are classified based on switching frequency used for 

multilevel inverters, which are shown in Fig.1.18 [62], [63]. The fundamental 

switching modulation methods are Space vector modulation (SVM) and selective 

harmonic elimination (SHE) method [64], [65]. The high switching frequency 

modulation methods are space vector pulse width modulation (SVPWM) and 

sinusoidal pulse width modulation (SPWM) methods [66], [67].  
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Fig.1.18 Multilevel Inverter Modulation methods 

Space vector modulation (SVM) is one of the preferred real-time modulation 

techniques and is widely used for digital control of voltage source inverters [68], 

[B2].The operating status of the switches in the two-level inverter can be represented 

by switching states. Each pole voltage in a two-level inverter can independently 

assume two values namely 0 and Vdc .There are eight possible combinations of 

switching states in the two-level inverter which are  the switching states of the 

inverter given as V1 (+--), V2 (++-), V3 (-+-), V4 (-++), V5 (--+), V6 (+-+), V7 (---), 

V8 (+++) which is depicted in Fig.1.19. In Fig. 1.19, the symbols ‘+’ and ‘-’ 

respectively indicate that the top switch and the bottom switch in a given phase leg 

are turned on. 

 

Fig. 1.19 voltage space vector diagram of three phase two level inverter 
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Space  vector  (Vr )  is  nothing  but  a  resultant  representation  of  all  three  phase 

voltage phasors given as [B3], [B4] 

0 0120 240j j

r AO BO COV V V e V e                  (1.1) 

The two dimensional representation of space vector is represented as  

rV V jV                     (1.2) 

The relation between 𝑉∝, 𝑉𝛽 and instantaneous phase voltages given as (1.3) and 

inverse transformation represented in (1.4). 
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From the Fig.1.19 (voltage space vector diagram), it can be observed that, all the 

three poles of the inverter are connected to the same node for voltage vectors V7 and 

V8. Therefore, it is effectively shorting the load that results no transfer of power 

between the dc-link and the load. Hence, V7 and V8 are known as zero voltage 

vectors. In  case  of  the  remaining  six  vectors,  power  gets  transferred between 

the dc-link and the load. Therefore, these voltage vectors (V1, V2, V3, V4, V5, and 

V6) are known as active voltage vectors. 

Sinusoidal carrier pulse width modulation technique is very popular method for 

industry applications for generating multilevel output voltage [69-71]. The three 

different carrier pulse width modulation techniques for generating odd number of 

voltage levels are alternative phase opposition and disposition, phase opposition 

disposition and in-phase disposition pwm technique [B5]. In this carrier pulse width 

modulation technique sinusoidal reference signal is compared with triangular carrier 

signal to generate pulses to the semiconductor switches. The three different carrier 
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modulation techniques for generating five level output voltage is shown in Fig.1.20. 

Here the modulating signal is compared with four triangular carriers to generate five-

level output voltage across load.  

 

Fig. 1.20 Different carrier pwm techniques (a) In phase disposition (b) Phase opposition (c) Alternate 

phase opposition disposition 

1.7 Scope of the thesis 

This thesis presents different fault tolerant multilevel inverter topologies (fault 

tolerance for different switch open circuit faults and source failures) with energy 

balancing techniques for off-grid PV applications. In literature many multilevel 
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inverters with fault tolerance are presented, but these topologies have limitations in 

terms of more semiconductor devices and source failure conditions are not discussed. 

Moreover, the energy balancing issues due to the unequal load sharing or partial 

shading of PV panels and the issues related to dc-offset minimization are need to be 

explored.  

 In chapter one, importance of renewable energy sources and the advantages of 

multilevel inverters over two-level inverter is presented. The operation of five-level 

conventional NPC and FC multilevel inverters are explained, but these MLIs are 

suffers from fault tolerance and capacitor voltage balancing issues. If a source or 

switch fails in these topologies complete system has to be shutdown. For improving 

the reliability of system many fault tolerant MLI topologies are presented in the 

literature. The energy balancing issue of multilevel inverters for stand-alone PV 

systems is discussed.  

 In second chapter, fault tolerant single phase five-level inverter for off-grid PV 

applications formed by using two-level T-type half bridge inverter and three level 

diode clamped inverter is presented. The proposed topology has a fault tolerant 

capability for switch open-circuit fault or source fault or complete leg fault. This 

topology is extended to three phase system. This topology is modified for improving 

the reliability, which is formed by full bridge with two bidirectional switches. The 

fault tolerant operation is extended to dual inverter configuration fed to open end 

transformer. All these topologies are analyzed for different switch open circuit faults 

and source failures. 

In chapter three, the energy balancing issues of the single-phase and three-phase 

five-level inverters during partial shading of PV panels are addressed. In these 

topologies the load is supplied by two separate PV strings with associated batteries. 

Mathematical analysis is presented for calculating the energy associated with each 

voltage level. In addition, the energy supplied by individual source is adjusted 

according to the availability of energy at individual source. The dc-off set issue is 

also addressed in this chapter by controlling the SOC of the batteries. 
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In fourth chapter, a nine level inverter with optimal PV panel distribution is 

presented. The energy associated with each individual source is analyzed for 

different possible switching combinations of this inverter. Based on this analysis 

proper switching combination is selected for distributing the PV panels according to 

the input voltage variations. The nine-level inverter topology is modified to improve 

the reliability and also the equal load sharing between sources is presented.  

 All the above presented topologies are simulated using MATLAB/SIMULINK 

and tested on a laboratory prototype.  
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Chapter 2 
 

Fault Tolerant Multilevel Inverter 

Topologies 

 

2.1 Introduction 

As discussed above the off-grid PV generation system is a preferable choice 

for electrification option for geographically remote areas and islands which are far 

from the grid [72]. The faults in these systems such as source and switch failure may 

cause overall system shut down and take longer time to recover. These issues bring 

in the need of fault-tolerant converters for PV generation systems to provide 

continuous power to essential loads. It is known that majority of conventional 

multilevel inverters [10] and [11] are with limited switching redundancy lead to 

incompetent in addressing the issues like fault tolerant. To address some of the 

aforementioned issues, many multilevel inverter topologies are presented in literature 

with reduced number of devices for PV generation systems and drive applications 

[74]–[77]. Where these topologies proposed by reducing the switch count compared 

to conventional MLI’s, but the problem of reliability in fault condition is not 

addressed. The survey of fault-tolerant techniques for three-phase two-level and 

multilevel inverters is discussed in [78]. 

  To address the above issues, in this chapter single phase and three phase five 

level inverters are presented for remote and offshore PV applications. These 

topologies are having two equal separate PV strings rated half of the total power 

rating as compared to single centralized PV inverter. Advantage of having two 

separate PV strings are reduced switch rating as the total dc link voltage is divided in 

to half. These inverter configurations are realized by using two-level half bridge 

inverter, three-level diode clamped inverter and T-type full bridge inverter. This fault 

tolerance is also extended to open end winding concept of dual inverter 
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configuration. In case of open circuit fault or source failure condition, the faulty 

switch or source is bypassed by using redundant switching combinations. 

 

Fig. 2.1 The proposed fault tolerant single phase five-level inverter 

2.2 Fault tolerant single phase and three phase five-level inverter 

 The block diagram of the proposed fault tolerant single phase five-level 

inverter circuit is shown in Fig.2.1. The configuration consists of two separate PV 

strings, MPPT converter with charge controller and associated batteries forming two 

DC links for the proposed five-level inverter, which are rated at half of the total 

power rating. The PV array consists of modules which has series and parallel 

connected cells is modelled using equation (1) [79]. The maximum power is tracked 

using perturb and observe algorithm given in [80]. 

1
exp 1sa sa s sa sa s

sa p ph p sat

s o p o sh s p

V I R V I R
I N I N I

N K N K R N N

     
            

     

                       (2.1)                                   

Where 𝐼𝑠𝑎, 𝑉𝑠𝑎 are module output voltage and current, each module has 𝑁𝑝, 𝑁𝑠 

parallel and series connected cells. 𝑅𝑠, 𝑅𝑠ℎ  are series and shunt resistances. 𝐼𝑝ℎ is 

light generated current and 𝐼𝑠𝑎𝑡 is cell reverse saturation current. 𝐾𝑜 = 𝐴𝐾𝑇/𝑞, 

Where A is ideality factor, K is Boltzmann’s constant, T is cell temperature and q is 

electronic charge.  

The proposed five-level inverter configuration is formed by connecting a 

three-level neutral-point-clamped inverter to one side of the load, and the other side 

of the load is connected with a two-level half-bridge inverter depicted in Fig.2.2. The 
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bidirectional switch Sx5 is connected between the neutral point of two sources and 

the single leg of the half-bridge inverter.  

 

Fig. 2.2 The proposed fault tolerant single phase five-level inverter 

For better understanding, the topology is supplied by two equal dc links Vdc1 

and Vdc2, respectively. It is known that a leg of a three-level inverter is capable of 

generating voltage levels of Vdc1, 0, and − Vdc2; similarly, the two-level half bridge 

inverter can generate two voltage levels with magnitudes of Vdc1 and − Vdc2. As a 

result in combining both, the total effective voltage across the load will have a total 

of five voltage levels with magnitudes of +(Vdc1 + Vdc2), Vdc1, 0, − Vdc2, and − 

(Vdc1 + Vdc2). If two dc links are balanced to be of equal magnitude Vdc1 = Vdc2 

= 0.5Vdc, then it will generate five voltage levels +Vdc, +0.5Vdc, 0, − 0.5Vdc, and − 

Vdc like the conventional multilevel inverter. The switching combination for five-

level voltage generation and direction of current during each voltage level is given in 

Table 2.1 and illustrated in Fig. 2.3 (a)–(j). The switch Sx5 provides switching 

redundancy for voltage levels 0.5Vdc , 0, and − 0.5Vdc which can help in the energy 

sharing between two sources due to partial shading on one side of the PV panels 

which is discussed in next chapter. The same configuration is extended to three-

phase operation with fault tolerance shown in Fig.2.4. The three phase fault tolerant 

multilevel inverter schematic is shown in Fig.2.4. The inverter structure is formed by 
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combining three phase two-level inverter, three-level neutral point clamped inverter 

and bidirectional switches. The inverter is fed with two individual DC links which 

consists of PV strings with MPPT charge controller and associated batteries. The 

total rated power is divided into halve among two PV strings. The configuration has 

a common connection point ‘N’ between sources Vdc1 and Vdc2. The bidirectional 

switches are connected between common connection point and two-level inverter as 

depicted in Fig.2.4. Phase A of two-level inverter and A’ of diode clamped inverter 

are connected to three phase transformer winding A-A’ to generate five-level voltage 

as shown in Fig.2.4. Similarly other phases are connected between B-B’ and C-C’. 

The secondary side of transformer is connected in star to supply three phase or single 

phase loads. 

The additional advantage of bidirectional switch Sx5 is to continue the operation of 

the inverter as three level in case of switch or source failure, which is discussed in 

detail at the later part of this section. From the proposed converter, it can be observed 

that the maximum voltage rating of the switching devices Sx1–Sx5 is 0.5Vdc, and 

for Sx6 and Sx7 is Vdc. In Table 2.1, if SxA = 1 switch is on, SxA = 0 switch is off, 

where A = 1, 2. . . 7., x refers to a, b, c phases. 

 

 Table 2.1 

 Switching combination for Five-level operation 

Voltage levels Sx1 Sx2 Sx3 Sx4 Sx5 Sx6 Sx7 

Higher voltage level  (+𝑉𝑑𝑐 ) 1 1 0 0 0 0 1 

Middle voltage level (+0.5𝑉𝑑𝑐) 0 1 1 0 0 0 1 

Zero level(0) 

0 1 1 0 1 0 0 

0 0 1 1 0 0 1 

1 1 0 0 0 1 0 

Middle voltage level (−0.5𝑉𝑑𝑐) 0 1 1 0 0 1 0 

Higher voltage level (−𝑉𝑑𝑐) 0 0 1 1 0 1 0 
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Fig. 2.3 Current direction and working state of each voltage level 
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Fig. 2.4 Proposed 3-phase fault tolerant five-level inverter configuration 

2.2.1 Fault analysis of five-level inverter 

Generally, inverter failures are mainly due to semiconductor switch, source 

and driver circuit failures. The semiconductor switch failure may be open circuit or 

short circuit fault. In proposed configuration any one of the source short or open 

circuit fault, and/or switch open-circuit fault (Sx1, Sx4, Sx6 and Sx7) failure are 

considered. In this topology middle switching devices (Sx2, Sx3) failure is also 

possible by replacing clamping diodes D1, D2 with two extra switches. The possible 

switching combination for failure of source and/or switch is given in Table 2.2. 

In case of failure (source or switch) only one source will be active and the 

total power supplied by the source is half at half of the rated voltage, therefore to 
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avoid the overloading on inverter load management is suggested. During fault the 

topology will be operated as three-level inverter and the output voltage is maintained 

at rated value by using the center tap transformer at the load side as shown in Fig.2.5. 

Whenever fault occurs control signal will be given to relays S8 and S9 such that the 

primary turns of the transformer reduces to half and maintains the volt/turn ratio 

constant which results rated voltage at secondary side of transformer. In some of the 

applications like electronic gadgets and LED’s have the capability to operate at wide 

range of voltage variations i.e., at below half of the rated voltage which avoids the 

use of center tap transformer at the secondary side. 

Table 2.2 

Switching Combination To Generate Three-Level Voltage During Fault 

Case-I 

Vdc2 Source open or short circuit fault  

and/or  

Sx4 or/and Sx7 Switch Open fault 

Voltage levels Sx1 Sx2 Sx3 Sx4 Sx5 Sx6 Sx7 

+0.5Vdc 1 1 0 0 1 0 0 

0 0 1 1 0 1 0 0 

-0.5Vdc 0 1 1 0 0 1 0 

Case-II 

Vdc1 Source open or short circuit fault  

And/or  

Sx1 or/and Sx6 Switch Open fault 

+0.5Vdc 0 1 1 0 0 0 1 

0 0 1 1 0 1 0 0 

-0.5Vdc 0 0 1 1 1 0 0 

Case-III (Sx6 and Sx7 Open circuit fault) 

+0.5Vdc 1 1 0 0 1 0 0 

0 0 1 1 0 1 0 0 

-0.5Vdc 0 0 1 1 1 0 0 
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Fig. 2.5 The proposed fault tolerant single phase five-level inverter with center tap transformer 

2.2.2 Pulse width modulation technique (PWM) and comparison with single 

phase five-level inverters 

The gating pulses are produced to generate five-level voltage using phase 

disposition carrier pulse width modulation as shown in Fig.2.6. When the modulating 

signal (sine wave) (Vm) is compared with upper triangular wave (Vm>Vtri1) and 

lower triangular wave (Vm<Vtri4) higher voltage levels (𝑉𝑑𝑐, −𝑉𝑑𝑐) are generated 

using switching Table 2.1. If modulating signal compare with middle triangles 

(Vm>Vtri2, Vm<Vtri3) middle voltage levels (0.5𝑉𝑑𝑐, −0.5𝑉𝑑𝑐) are generated which 

has redundancy in switching selection using Table 2.2. Zero voltage level is 

generated using minimum switching combination given in Table 2.1. In case of fault 

the modulating wave will become half and compare with two inner carriers (Vtri2 

and Vtri3). The corresponding three level voltages are generated using Table 2.2. 

The number of components for proposed topology is compared with five-level 

neutral point clamped, flying capacitor, H-bridge multilevel inverters, and topology 

presented in [51] as shown in Table 2.3. The topology presented in [51] has fault 

tolerance for six clamping devices (Sc1-Sc6) open fault but it requires total of 22 

semiconductor devices for fault tolerance. But, the proposed topology requires 7 

switches and has fault tolerance for maximum of four device failure (Sx6, Sx7, D1 

and D2). From Table 2.3 it is clear that the proposed topology requires less number 

of switches and clamping diodes than conventional topologies. 



35 

Table 2.3 

Number of Components for Single Phase Five-Level Inverter 

Type of 

Components 

Number of components required 

In Conventional Topologies 
Topology 

Proposed in 

[51] 

In Proposed 

topology 
NPC 

Flying 

capacitor 

H-

bridge 

 Main switches 8 8 8 22 7 

Main diodes 8 8 8 22 10 

Clamping diodes 12 0 0 0 2 

DC bus capacitors/ 

Isolated supplies 
4 4 2 1 2 

Flying capacitors 0 6 0 7 0 

Switch open circuit 

fault capability 
No No Yes Yes Yes 

Source failure 

capability 
No No Yes No Yes 

 

 

Fig. 2.6 Phase disposition carrier pulse width modulation technique 

2.2.3 Single phase five-level inverter Results and Discussion 

A. Simulation Results 

The proposed fault tolerant single phase five-level inverter is simulated using 

MATLAB/Simulink for R-L load at rated output voltage of 120V rms. The 

parameters for single phase five-level inverter are given in Table 2.4.  
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Table 2.4 

Parameters for Simulation and Laboratory Prototype 

Rated battery voltage (Lead acid) 𝑉𝑑𝑐1 = 𝑉𝑑𝑐2 = 96𝑉 

Rated output voltage 120V 

Modulating wave frequency 𝑓𝑚 = 50𝐻𝑧 

Switching frequency 𝑓𝑠 = 1𝑘𝐻𝑧 

Modulation index 𝑚𝑎 = 0.9 

Load Resistance, inductance values 𝑅 = 78𝛺, 𝐿 = 50𝑚𝐻 

 

 

Fig. 2.7 Output voltage (upper trace) and current (bottom trace) waveforms of five-level inverter 

The five-level output voltage waveforms across the load and current through 

the load are shown in Fig. 2.7 for a modulation index of 0.9. Fig. 2.7 clearly shows 

five voltage levels and nearly sinusoidal load current waveform. In Fig. 2.8, after 

0.15 s, the fault is created, and the voltage transition from five level to three-level is 

shown and also demonstrates that the voltage and current magnitudes are reduced. 

The rated output voltage of the inverter is maintained by using a primary center tap 

single-phase transformer, and the corresponding waveforms are observed in Fig. 2.9. 

From this figure, after 0.17 s, the fault is created, and the conversion of the voltage 

waveform from five level to three-level with the same magnitude can be observed. 
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The magnitude of the current waveform is reduced by suggesting proper load 

management to avoid overloading on the inverter, which is observed from Fig.2.9. At 

the time of fault, the primary turns of the transformer become half by using the 

combination of S8 and S9 relays and maintain the volt/turn ratio constant, which 

results to rated voltage at the secondary side of the transformer. 

 

Fig. 2.8 Output voltage and current waveforms of proposed inverter due to Vdc2 source failure 
 

              

Fig. 2.9 Output voltage and current waveforms with transformer due to Vdc2 source failure 

B. Experimental Results 

The proposed fault tolerant single phase five-level inverter is tested using 

laboratory prototype with lead acid batteries for R-L load. The control and PWM 

schemes are implemented using dSPACE 1104 real time controller. A delay of 2μs is 

provided between the complimentary switches using external deadband circuit. 
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In Fig.2.10 upper trace shows five-level output voltage and bottom trace shows 

current through load during normal operation. Fig.2.11 clearly shows the conversion 

of five-level output waveform to three-level with reduced voltage magnitude and 

current during Vdc2 source failure. Fig.2.12 shows the five-level to three-level 

output voltage and current waveforms during source Vdc2 failure. The rated output 

voltage of inverter is maintained by proper combination of relays S8, S9 connected 

primary side of center tap transformer. Fig.2.12 shows the magnitude of output 

voltage is remain unchanged and proper load management is suggested to avoid 

overloading on inverter. 

 

 

Fig. 2.10 Five level output voltage (upper trace) and current (bottom trace) waveforms of proposed 

inverter [Y-axis 100v/div, 2A/div; X-axis 5msec/div] 

 

   

Fig. 2.11 Output voltage (Upper trace) and current (lower trace) waveforms of proposed inverter 

during Vdc2 source failure [Y-axis 100v/div, 2A/div; X-axis 5msec/div] 
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Fig. 2.12 Output voltage (Upper trace) and current (lower trace) waveforms of proposed inverter 

during Vdc2 source failure with transformer [Y-axis 100v/div, 2A/div; X-axis 10msec/div] 

 

2.2.4 Three phase five-level inverter Results and Discussion 

A. Simulation Results 

The Matlab simulation parameters for proposed configuration are given in Table 2.5. 

PV array and maximum power point tracking is modelled using reference given in 

[79], [80]. In Fig.2.13, the upper two traces are pole voltage of two-level inverter and 

three-level diode clamped inverter during normal mode of operation. The middle 

trace shows the induced five-level voltage across primary side winding of three phase 

transformer. The bottom two traces are line voltage and load current waveforms at 

load side. 

Table 2.5 

Parameters for Simulation  

Rated Lead acid battery voltage 𝑉𝑑𝑐1 = 𝑉𝑑𝑐2 = 96𝑉 

Modulating signal frequency 𝑓𝑚 = 50𝐻𝑧 

Switching frequency 𝑓𝑠 = 2𝑘𝐻𝑧 

Modulation index 𝑚𝑎 = 0.9 

Load Resistance, inductance values 𝑅 = 150𝛺, 𝐿 = 40𝑚𝐻 
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Fig.2.13 Pole voltage of two-level (VAN ) and diode clamped inverter (VA’N), induced five-level 

voltage (VAA’), line voltage and load current waveforms 

 

Fig. 2.14 Pole voltage of two-level (VAN )  and diode clamped inverter (VA’N), induced five-level 

voltage (VAA’), line voltage and load current waveforms during energy sharing mode of operation. 
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Fig. 2.14 shows the waveforms during fault tolerant mode of operation. The upper 

two traces are pole voltage of two-level inverter and three-level diode clamped 

inverter. The middle trace shows the induced three-level voltage across primary side 

winding of three phase transformer. The bottom two traces are line voltage and load 

current waveforms at load side. 

B. Experimental Results 

The prototype is tested with lead acid batteries of terminal voltage rating is 48V.The 

gating pulse for the proposed laboratory prototype is generated using Xilinx 

SPARTAN-6 (XC6SLX9) FPGA board programed in VHDL. A delay of 2.5μs is 

provided between the complimentary devices using dead band circuit. Fig.2.15 (a) 

shows five-level voltage and pole voltages during normal operation. The phase 

voltage across load and current through load are shown in Fig. 2.15 (b). During fault 

the three-level voltage across primary winding of transformer and pole voltages of 

two-level inverter and three-level diode clamped inverter are depicted in Fig.2.16 (a) 

and (b). 

 

Fig. 2.15 (a) Induced five-level voltage (VAA’) and pole voltages during normal operation (VA’N, VAN ) 

(b) Line voltage and load current waveform. [Y-axis 100V/div, 200V/div 1A/div; X-axis 

5ms,10ms/div] 
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Fig. 2.16 (a) Induced three-level voltage (VAA’)  and pole voltages during fault operation (VA’N, VAN ). 

(b) Line voltage and load current waveform. [Y-axis 100V,50V 1A/div; X-axis 10msec, 5ms/div] 

 

2.3 Improved single phase five-level inverter Topology 

An improved single phase fault tolerant five level inverter configuration is 

formed by single phase full bridge inverter (S1, S2, S3, S4) and two bidirectional 

switches (S5, S6) shown in Fig.2.17. The full bridge inverter capable of generating 

+(Vb1+Vb2), 0 and –(Vb1+Vb2). Bidirectional switch S5 or S6 will generate 

+0.5Vb1 and -0.5Vb2 using full bridge configuration. The given topology assumes 

Vb1=Vb2=0.5Vdc. The combination of full bridge inverter and switch S5 or S6 will 

capable to generate five level output voltage (+Vdc, +0.5Vdc, 0, -0.5Vdc, - Vdc) is 

shown in Table 2.6. The bidirectional switch S5, S6 helps in continue the inversion 

during faults and also paves way for power sharing between sources. The maximum 

voltage rating of the switches S1-S4 is Vdc and for S5-S6 is 0.5 Vdc. In Table 2.6, 1 

indicates switch is ON, 0 indicates switch is OFF. 
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Fig.2.17 Proposed fault tolerant single phase five level inverter 

Table 2.6 

Switching combination for Five-level operation 

Voltage levels S1 S2 S3 S4 S5 S6 

Higher voltage level (+Vdc) 1 0 0 1 0 0 

Middle voltage level (+0.5Vdc) 0 0 0 1 1 0 

Zero voltage level (0) 

1 0 1 0 0 0 

0 1 0 1 0 0 

Middle voltage level (-0.5Vdc) 0 0 1 0 1 0 

Higher voltage level (-Vdc) 0 1 1 0 0 0 

 

2.3.1 Fault analysis of Improved single phase five-level inverter 

The  malfunctioning  of  inverters  is  mainly  due  to  open and/or  short  circuit  

fault  of  sources,  switch  and  associated driver  circuit.  The  proposed  

configuration  has  capability  to continue  its  operation  for  open  circuit  switch 

faults and open or short circuit fault of sources. During normal operation the inverter 

will generate five level output voltage based on the switching combinations given in 

Table 2.6. In case of failure, the five-level inverter will continue the operation as 

three-level inverter with half of total power  rating  and reduced  voltage  magnitude  
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using  switching combination  mentioned  in  Table  2.7.  To  compensate  the 

reduction in voltage magnitude for the critical loads requiring rated voltage, a 

primary center tap transformer is connected at the load side. At the time of fault the 

inverter is connected to the half of the primary winding there  by  the  turns  ratio  is  

doubled  at  the secondary side and voltage magnitude is maintained constant. 

Table 2.7 

Switching Combination for Different Failure Cases to Generate Three Level Voltage 

Vb2 source open and/or short or S2, S4 switch open fault 

Voltage 

levels 
S1 S2 S3 S4 S5 S6 

+0.5Vdc 1 0 0 0 0 1 

0 1 0 1 0 0 0 

-0.5Vdc 0 0 1 0 1 0 

Vb1 source open and/or short or S1, S3 switch open fault 

Voltage 

levels 
S1 S2 S3 S4 S5 S6 

+0.5Vdc 0 0 0 1 1 0 

0 0 1 0 1 0 0 

-0.5Vdc 0 1 0 0 0 1 

S3 and S4 switch open fault 

Voltage 

levels 
S1 S2 S3 S4 S5 S6 

+0.5Vdc 1 0 0 0 0 1 

0 0 0 0 0 1 1 

-0.5Vdc 0 1 0 0 0 1 

S1 and S2 switch open fault 

Voltage 

levels 
S1 S2 S3 S4 S5 S6 

+0.5Vdc 0 0 0 1 1 0 

0 0 0 0 0 1 1 

-0.5Vdc 0 0 1 0 1 0 

 

2.3.2 Results and Discussion 

A. Simulation Results 

The proposed fault tolerant single phase five-level inverter is simulated using 

MATLAB/SIMULINK for normal and fault operation. The simulation parameters 

are given in Table 2.8. The  different  carrier  pulse  width  modulation  (PWM) 
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techniques  like  phase  disposition  (PD)  PWM,  phase opposition  disposition  

(POD)  PWM  and  alternate  phase opposition  disposition  PWM  are  presented  for  

multilevel inverters to generate multilevel output voltage [81]. The gating pulses  for  

proposed  fault  tolerant  single  phase  five-level inverter  is  generated  using  phase  

disposition  carrier  pulse width modulation discussed in previous section 2.2.6. 

 

Table 2.8 

Simulation Parameters 

Rated battery  terminal voltage (Lead acid) Vb1 = Vb2 = 96V 

Modulating wave frequency fm = 50Hz 

Switching frequency fs = 1050Hz 

Modulation index ma = 0.9 

Load Resistance, inductance values R = 20Ω, L = 40mH 

 

 
Fig. 2.18 Output voltage (upper trace) and current (bottom trace) waveforms of five-level 

inverter. 

The Fig.2.18 clearly shows the five level output voltage across load and current 

through load for R-L load. From Fig.2.19 it can be observed that the distortion of 

load voltage and current waveforms during switch S3 open circuit fault. The Fig.2.20 

shows waveforms during fault clearance by using redundant switching states as 

explained in the previous section. The inversion of five level output voltage to three-

level at 1.277 sec with reduced magnitude. 
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Fig. 2.19 Output voltage (upper trace) and current (bottom trace) waveforms of five-level inverter 

during switch S3 open circuit fault. 

 
Fig. 2.20 Output voltage and current waveforms of proposed inverter after clearing switch S3 open 

circuit fault. 

Fig.2.21 shows magnitude of three-level voltage is maintained constant as five-level 

by connecting a center tap transformer at the load side. The current waveform 

magnitude shows that over loading on inverter is avoided by disconnecting some of 

the unimportant loads. 

 

Fig. 2.21 Output voltage and current waveforms with transformer due to Vb2 source failure 
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B. Experimental Results 

 The laboratory prototype is tested with lead acid batteries with R-L load. The 

control technique is implemented using dSpace 1104. A delay of 2μsec is provided 

between complementary switches. Fig. 2.22 clearly shows the five-level output 

voltage and current waveform through load. Fig.2.23 shows the output voltage and 

current through load during switch S3 open circuit fault. From Fig.2.23 it can be 

observed that conversion of five-level voltage to three-level and magnitude of voltage 

and current waveform is reduced to half. Fig.2.24 shows the output voltage and 

current waveform with a center-tap transformer at the load side during fault. From 

Fig. 2.24 it can be observed that the magnitude of output voltage is maintained 

constant as in normal condition. 

 

Fig. 2.22 Output voltage (upper trace) and current (bottom trace) waveforms of five-level inverter [Y-

axis 100V/div, 2A/div; X-axis 5msec/div] 

 

Fig. 2.23 Output voltage (upper trace) and current (bottom trace) waveform of five-level inverter during 

S3 open circuit fault [Y-axis 100V/div, 2A/div; X-axis 20msec/div]. 
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Fig. 2.24 Output voltage (upper trace) and current (bottom trace) waveform of five-level inverter with 

center tap transformer during switch S3 open circuit fault [Y-axis 100V/div, 1A/div; X-axis 

10msec/div] 

2.4 Fault tolerant Dual Inverter Configuration 

 

Fig.2.25 The proposed fault tolerant PV generation system. 

The proposed islanded mode PV generation system consists of a two three phase 

two level inverters.  These two inverters  are  supplied  by  two  isolated  PV  strings  

with associated  battery  and  MPPT  technique.  The  primary windings  of  a  three  

phase  transformer  (center  tapped)  are connected between the poles of dual 

inverters.  Center tapings on primary are connected through relays as shown in Fig. 

2.25.  Both the two level inverters are controlled in such a way that the primary sees a 

three level voltage profile under normal operating condition.  The  required  control  is 

achieved  using  decoupled  SVPWM  method  which  is explained  in  detail  in  later 

part of this section.  The  secondary  winding  of the three phase transformer is 
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connected in star so that either three  phase  or  single  phase  load  can  be  supplied  

by  the proposed system.  

 

Fig. 2.26 Proposed system under fault condition 

2.4.1 Fault analysis of Dual inverter configuration 

In  the  proposed  generation  system  mainly  there  are  two possibilities  of  fault  

which  will  cause  the  overall  system failure.  One of the PV string may fail to 

provide the required dc  link  voltage  due  to  partial  shading  of  panels  or  due  to 

some  fault  in  corresponding  MPPT  block.  The second possibility of fault is 

inverter failure because of fault in any of the switch, which can be easily detected 

from the driver circuit of the inverter. The semiconductor switch failures are because 

of short circuit or open circuit fault. In this configuration switch open circuit fault and 

source failure are considered. In case of fault in one of the PV string and/or the 

corresponding inverter, continuous system  operation  can  still  be  ensured  by  a  

simple  fault tolerant  technique  using  relays.  Whenever the fault occurs in any one 

part of the system the relays Ml and M2 are actuated by a control signal.  Closure of 

these relays shorts the center tapings of primary windings, which in turn connects half 

of the primary windings in star across the healthy side inverter.  The circuit under 

fault condition is shown in Fig. 2.26.  So the volt per turn of the  three  phase  

transformer  is  still  maintained  constant  as only  half  of  the  primary  winding  is  

supplied  by  the  healthy side inverter. This arrangement effectively doubles the turn's 
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ratio of the three phase transformer and maintains the output voltage of the system 

unaltered even under fault condition. 

Gate pulses for the faulty side inverter are removed to make it inoperative during fault 

time, which in turn avoids the magnetic locking of core. As remaining half of the 

primary winding is still on the same core, the voltage induced in it due to the healthy 

side inverter may circulate a reverse current through anti-parallel diodes. This will 

tries to energize the battery of faulty side inverter which is undesirable. To avoid this 

problem the battery associated to the faulty inverter should be disconnected, which in 

turn blocks the reverse current under fault condition. As the healthy side inverter is 

rated for half of the system rating it should not be overloaded during fault condition. 

To avoid overloading some of the loads are scheduled to be off during fault time. 

2.4.2 Control Scheme Description 

Gating pulses for the proposed fault tolerant PV generation system are generated 

using decoupled space vector PWM method for equal DC link voltages [82]. The total 

space vector reference Vr is decided depending upon the output voltage requirement. 

The total space vector reference Vr is divided into two smaller reference vectors Vr1 

and Vr2 as shown in Fig.2.27. These Vr1 and Vr2 are the individual reference voltage 

space vectors for inverter 1 and inverter 2 respectively. Smaller reference vectors Vr1 

and Vr2 are computed in the control scheme using values of battery output voltages 

Vdc1 and Vdc2 as given by equations (2.2) and (2.3) .By using decoupled space vector 

PWM method Vr2 is generated 180
0
 out of phase with Vr1 which in turn makes the 

pole voltages of the two inverters to have 180
0
 phase difference. As a result a three 

level voltage profile is seen by the primary of three phase transformer under normal 

operating conditions [83]. 

 

Fig. 2.27 Individual space vector references 
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Vdc-min is the minimum battery voltage below which battery will not give any 

backup. If any one of battery voltage reduces below Vdc-min due to failure of any one 

of the PV string, corresponding inverter is made inoperative by removing gate pulses 

to that inverter. At the same time a control signal is made high to actuate relays M1 

and M2. As a result each half of the primary windings gets connected in star across 

the healthy side inverter and transformer turns ratio becomes double. So the 

generating system continues to work at same output voltage with reduced power 

rating. The control scheme is so designed that under fault condition Vr1 or Vr2 made 

equal to Vr/2 and not calculated according to equation (2.2) and (2.3). The same 

control can be expected even in case of the inverter switch failure. Sf1 and Sf2 are the 

switch failure signals obtained from the driver circuit of the inverters. The switch 

failure signals Sf1 and Sf2 are given to the control scheme for generating a control 

signal to close relays M1 and M2. The complete control scheme is represented as a 

block diagram as shown in Fig. 2.28. 

 

Fig. 2.28 Proposed Control Scheme 
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2.4.3 Results and Discussion 

A. Simulation Results 

The  proposed  system  is  simulated  in MATLAB/SIMULINK.  The PV array and 

maximum power point tracking is modelled using reference given in [79], [80].   

Under good  solar  irradiation  the  PV  string  through  MPPT  block supplies  both  

inverter  and  the  battery.  Battery  backup  will supply the inverter whenever  

irradiation is low. A  3.2 KW  PV  generation  system  is  simulated  with  two 

inverters  supplying  half  of  the  total  rated  power.  Each inverter  is  supplied  by  

separate  DC  link  and  MOSFET's ratings  are  chosen  accordingly.  A  three  phase  

transformer having center tapings at the primary with turn 's ratio of 1:6 is used for the 

proposed system.  

 
Fig. 2.29 Voltage and current waveforms of dual inverter configuration during normal condition (a) 

Inverter-1 pole voltage (b) Inverter-2 pole voltage (c) Pole to pole voltage of the inverter-1 [X-axis: 

time(sec), Y-axis: voltage(V)] (d) The current drawn by the primary of open ended transformer from 

dual inverters[X-axis: time(sec), Y-axis: current(A)] 

 

Simulation  results  presented  in  this  section  verifies  the performance  of  the  

proposed  PV  generation  system  under normal and fault condition.  Output voltage 
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waveform on the secondary  of  the  three  phase  transformer  clearly  shows  that 

magnitude  of  output  voltage  is  unaltered  under  fault condition  but  there  is  a  

transition  from  three  level  to  two level.  Output current waveform  ensures that 

none of the dual inverter is over loaded. Inverter  output  waveforms  under  normal  

condition  are shown  in  Fig. 2.29. The  two  level  inverter  pole  voltages  which are 

180
0
 out of phase are shown in Fig. 2.29(a) and Fig. 2.29(b).The inverter  pole  to  

pole  voltage  having  a  three  level  voltage profile is shown in Fig. 2.29(c).  The  

presence of common mode voltages  in  the  inverter  output  voltage  cannot  

establish  any current  in  the  primary  windings  of  the  transformer  as the  dc links  

of  each  inverter  are  isolated  [30].  The  same  can  be observed  from Fig.  2.29(d) 

which shows the line current of each inverter. 

 

Fig. 2.30 Three level voltage induced in the open-ended  primary winding of the transformer [X-axis: 

time(sec), Y-axis: voltage(V)] 

Fig. 2.30 shows  that  three  level  voltage  seen  by  the  primary winding  of  the  

three  phase  transformer  under  normal condition.  From this figure, relatively high 

dv/dt switching is observed as compared to other pulse width modulation techniques.  

The healthy side inverter will work independently under fault condition because of 

decoupled SVPWM with minimum control complexity. When a fault occurs three 

level voltage transists to two level voltage as only healthy inverter is working under 

fault as shown in Fig. 2.31 (a). Fig.2.31 (b) shows healthy inverter current waveform 

during fault condition, because of suggested load management no overload as 

happend. Fig. 2.31 (c) indicates no operation of the faulty side inverter under fault 

condition. The secondary side current wave form is shown in Fig.2.32 (a). which 

ensures the safe operation of proposed system under fault condition. 
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Fig. 2.31 Voltage and current waveforms during Fault condition (a) Dual inverter output voltage (b) 

Line current of inverter-2(Healthy inverter) (c) Line current of inverter-1[X-axis: time(sec), Y-axis: 

Voltage(V), current(A)] 

 

Fig. 2.32 Transformer secondary side current and voltage waveform under normal and fault condition 

(a) secondary side current wave form [X-axis: time(sec), Y-axis: current(A)] (b) secondary side voltage 

waveform [X-axis: time(sec), Y-axis: voltage(V)] 

The transformer secondary side voltage waveform is shown in Fig. 2.32 (b) (very low 

value of leakage inductance is selected to show the effects of PWM switching and 

fault tolerant capability of the proposed circuit).   Fig. 2.33 (a) shows the normalized 

harmonic spectrum of the dual inverter output voltage waveform under normal 
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operation. As the inverters in the proposed system are switched at 2 kHz, first order 

center band harmonics are expected at 40 time’s fundamental frequency. 

 

 

Fig. 2.33 The normalized harmonic spectrum of the voltage waveform (a) under normal operation (b) 

Under fault condition. [X-axis: Harmonic order, Y-axis: normalised harmonic magnitude] 

 

But the dual inverters are controlled using decoupled SVPWM; thereby the first 

center band harmonics will cancel and appear at 80 times of fundamental frequency 

(50Hz) and this can be observed from Fig. 2.33 (a). Fig. 2.33 (b) indicates the 

normalized harmonic spectrum of output voltage under fault condition. Here the first 

center band harmonics can be observed at 40 times of fundamental frequency. This is 

because the output voltage is two-level as only healthy side inverter will be supplying 

the generation system. 

B. Experimental Results 

The gating pulse for the proposed laboratory prototype is generated with a switching 

frequency of 2 kHz using XILINX SPARTAN-6 (XC6SLX9) FPGA board 

programed in VHDL. A delay of 2.5μs is provided between the complimentary 

devices using dead band circuit. The two DC source voltages are considered as 48V. 

The pole voltages of inverter 1 and 2 are depicted in Fig.2.34, which are180
0
 out of 

phase. The three-level induced voltage at the primary side of transformer and current 

waveform of two inverters are shown in Fig. 2.35.  



56 

 

Fig. 2.34 pole voltages of inverter 1 and 2 [Y-axis 50V/div; X-axis 5msec/div] 

 

Fig. 2.35 Three-level induced voltage at primary side of transformer and inverter 1 and 2 currents [Y-

axis 100V/div, 2A/div; X-axis 5msec/div] 

The voltage across load and three phase currents through load are depicted in Fig. 

2.36. The inverter 2 primary side induced voltage and current through transformer 

during inverter 1 failure is shown in Fig. 2.37. The two-level output voltage can be 

observed from Fig.2.37 only healthy inverter will operate during fault. The voltage 

across load and three phase currents are shown in Fig. 2.38. From this figure, it can be 

observed the magnitude of load voltage is same as normal condition. 

 

Fig. 2.36 Load voltage and three phase currents [Y-axis 100V/div, 2A/div; X-axis 5msec/div] 
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Fig. 2.37 Inverter 2 Primary side induced voltage and current through transformer [Y-axis 50V/div, 

1A/div; X-axis 5msec/div] 

 

Fig. 2.38 Load voltage and three phase currents [Y-axis 50V/div, 2A/div; X-axis 5msec/div] 

 

2.5 Conclusion 

 In this chapter different fault tolerant single phase and three phase multi-level 

inverter topologies are proposed for off grid PV applications. The proposed topologies 

are simulated using MATLAB/SIMULINK and then verified the results with 

laboratory prototype. Phase disposition carrier based pulse width modulation and 

decoupled SVPWM are adapted for generating multi-level output voltage across load. 

In case of any one of the switch open circuit fault and/or source failure happen, then 

the faulty switch or source is bypassed with the help of redundant switching 

combinations. The rated voltage is maintained during fault condition with the help of 

transformer. In these configurations, there is no capacitor voltage balancing issues and 

also requires less number of active switches compared to conventional NPC and 

flying capacitor inverters. 
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 These fault tolerant multilevel inverters are fed with two separate PV sources 

with associated batteries has energy balancing problem due to partial shading or 

hotspots on any one of the PV string. In the following chapter a simple technique is 

presented for balancing the energy between two sources. 
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Chapter 3 
 

Energy Balancing of Single Phase and 

Three Phase Five-level Inverter  

  
3.1 Introduction 

The block diagram of the multilevel inverter fed with two separate PV strings is 

shown in Fig. 3.1. It is known that, there will be energy sharing issue between the 

two sources because of partial shading and/or hotspots of PV panels. Due to this, the 

associated batteries will have difference in charging and discharging cycles which 

may lead to unequal SOC (state of charge) in the batteries. This difference in SOC’s 

may lead to underutilize the system in critical conditions. Also, this difference in 

SOC of batteries creates small voltage variation at the battery terminals. This causes 

lower order sub-harmonic injection into AC side, which may cause for saturation of 

transformer and other inductive loads. 

 

 

Fig.3.1 PV generation system under partial shaded condition  
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To address the above issues, in this chapter single phase and three phase five 

level inverter is presented for remote and offshore PV applications. The topologies 

are having two equal separate PV strings rated half of the total power rating as 

compared to single centralized PV inverter. Here the energy balancing between 

sources is achieved by using the available redundant switching combinations of 

middle voltage levels. The mathematical analysis for energy supplied during each 

voltage level and boundary conditions are presented. 

 

 

Fig. 3.2 Block diagram of single phase five-level inverter 

 

3.2 . Energy balancing of single phase and three phase five-level Inverter due to 

partial shading 

The proposed fault tolerant single phase and three phase five-level inverter is 

shown in Fig.3.2 and Fig.3.3. The inverter configuration is fed with two separate PV 

strings which are rated half of the total power rating, along with associated maximum 

power point tracking (MPPT) converter and batteries. The PV module is modelled 

using series and parallel connected PV cells using the model given in [79] based on 
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equation (2.1). The maximum power is tracked using perturb and observe algorithm 

proposed in [80]. 

 

Fig. 3.3 Schematic of fault tolerant three phase multilevel inverter configuration. 

The causes of partial shading are shadow of clouds, trees, electrical poles and 

shadow of one panel on other panel. The partial shading on any of the PV string 

causes reduction in power and leads to uneven charging/discharging of associated 

batteries that results in unequal SOC. Generally, in any island PV generation system, 

the load will take the energy  more time from batteries compared to solar panels [84]. 

If the batteries continue to operate with uneven state of charges, the battery with low 

SOC dry out faster and causes overall system shutdown which in turn leads to 

underutilization of other battery. This issue can be reduced at all operating conditions 

by using the redundant switching combinations of middle voltage levels. The SOC of 

batteries is calculated based on voltage level [85]. 
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Fig.3.4 Current direction and working state of each voltage level 
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An effective energy balancing technique to balance the charging/discharging of 

batteries in case of uneven SOC’s is derived using the redundant switching states of 

middle voltage levels of the proposed converter.  During higher voltage level (+𝑉𝑑𝑐 

and –𝑉𝑑𝑐) both the sources are connected in series to generate the required voltage 

level, which can be noticed from Fig.3.4 (a) and Fig.3.4 (i). Whereas for middle 

voltage levels (+0.5𝑉𝑑𝑐 and -0.5𝑉𝑑𝑐) by using switching redundancy given in Table 

3.1, the load can be connected in parallel with the higher SOC. The possible 

percentage of energy share by both source during each voltage level is derived 

below.The switching combination for energy balancing between sources in case of 

partial shading is given in Table 3.1. 

Table 3.1 

Switching sequence during energy balancing 

Levels of Voltage Sx1 Sx2 Sx3 Sx4 Sx5 Sx6 Sx7 

Higher Voltage (+Vdc) 1 1 0 0 0 1 0 

0 (Zero level) 0 1 1 0 0 0 1 

Higher Voltage   (-Vdc) 0 0 1 1 1 0 0 

Case I (source -V1) 

Middle Voltage(+0.5Vdc) 1 1 0 0 0 0 1 

0 (Zero level) 1 1 0 0 1 0 0 

Middle Voltage  (-0.5Vdc) 0 1 1 0 1 0 0 

Case II (source-V2) 

Middle Voltage (+0.5Vdc) 0 1 1 0 0 1 0 

0 (Zero level) 0 0 1 1 0 1 0 

Middle Voltage (-0.5Vdc) 0 0 1 1 0 0 1 

 

3.2.1 Calculation of Energy transferred to load by individual source 

The five-level output voltage with only positive half cycle is shown in Fig. 3.5(a).  

The areas correponding to individual voltage level  for single phase is shown in Fig. 

3.5(b). Because of halfwave symmetry the calculations are considered only for 

halfcycle of fundamental waveform. The voltage waveform from 0 to 𝜃 and (𝜋 − 𝜃) 

to π corresponding to middle voltage level and zero voltage level. The voltage 

waveform  𝜃 to (𝜋 − 𝜃) is combination of higher (𝑉1𝑎 = 𝑉𝑑𝑐) and middle (𝑉2𝑎 =
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𝑉𝑑𝑐/2) voltage levels. In Fig. 3.5(b) from 𝜃 to (𝜋 − 𝜃) the amount of area 

corresponding to each pulse of the higher level (𝑉𝑑𝑐) pulsating voltage waveform has 

same area below 𝑉2𝑎 (𝑉𝑑𝑐/2)voltage level also. Hence Fig. 3.5(b) represents area A1 

corresponding to 𝑉𝑑𝑐 voltage level and area A2 corresponding to 𝑉𝑑𝑐/2 voltage level. 

 

Fig.3.5 (a) Positive half cycle of fivelevel output voltage waveform. (b) Positive half cycle of 

fundamental voltage waveform with different areas 

 

From Fig. 3.5(b) the instantaneous voltage from 0 to π  given as  sin( )mV V t  

𝑉(𝑥) is the fundamental voltage above 𝑉𝑑𝑐/2 voltage level that is from 𝜃 to (𝜋 − 𝜃)  

given as (3.1) 

( ) sin( )
2

dc
m

V
V x V t

  
   

  
  

The fundamental voltage for higher voltage level and middle voltage level can be 

expressed as 𝑉1𝑎 and 𝑉2𝑎 

The fundamental voltage corresponding to higher voltage level (𝑉1𝑎) can be 

expressed in (3.2)                               

1 2 ( ) 2 sin( )
2

dc
a m

V
V V x V t

  
    

  
                                                                      (3.2) 

The fundamental voltage for  middle voltage level (𝑉2𝑎) is shown in equation (3.3) 
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 2 1a aV V V   

2 sin( ) 2 sin( )
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V V t V t 

   
     

   
                                                             (3.3) 

Let us assume instantaneous current (ia) as 

sin( )a mi I t                                                  (3.4) 

From equation (3.4)    is power factor angle. 

The angle  𝜃 can be calculated using equation (3.5) 

1 1
sin
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   where  sin
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dc
a dc

V
m V 

 
 

 
             (3.5)  

𝑚𝑎 =modulation index, Vdc is total dc voltage 

The energy transfered (Ea) to load can be expressed as 

0

a j aE V i dt



                    (3.6) 

From (3.6) the voltage ‘𝑉𝑗’ can be expressed as 

 1 2

0

a a a aE V V i dt



   

   1 2a a a a aE V i dt V i dt              

1 2a aa V VE E E                                                      (3.7) 

From (3.7) 𝐸𝑉1𝑎
, 𝐸𝑉2𝑎

 are the energies corresponding to  𝑉𝑑𝑐, 𝑉𝑑𝑐/2 voltage level is 

obtained from (3.2), (3.3) and (3.4) is given below 

1
2 sin( ) sin( )

2a

dc
V m m

V
E V t I t d t

 



   


  
     

  
                         (3.8) 

After solving equation (3.8)    

            
1

cos 2 sin 2 2 cos cos
aV m m dc mE V I V I                             (3.9) 
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(3.10) 

After solving equation (3.11)    

           
2

cos 2 sin 2 2 cos cos
2aV m m dc mE V I V I


     
  

       
  

     (3.11)                                                                         

The maximum possible percentage of energy transfered to load during each voltage 

level can be derived using (3.9) and (3.11) is obtained below and shown in Fig.3.6 

for different modulation index varies from 0.1 to 1 and for given switching pattern.  
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E E

 
  

  

  (3.13)  

 

 

Fig.3.6 The possible percentage of energy shared to load by higher and middle voltage levels for 

different modulation index. 

From equations (3.12), (3.13) and Fig. 3.6, it is noticed that the energy balancing 

between two sources depends on modulation index. The same advantage is 

effectively used to balance the SOC’s of two batteries irrespective of input source 
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variations and output load conditions. The energy balancing between sources is 

explained for modulation index 𝑚𝑎 = 0.9 using a case study given below. The 

possible percentage of energy supplied to load by higher voltage level (𝑉𝑑𝑐) is 

66.15% of total energy, for middle voltage level (𝑉𝑑𝑐/2) is 33.85% of total energy, 

and zero energy for zero voltage level in a fundamental cycle (calculated using 

equation (3.12) and (3.13)). In normal condition the switching combinations are 

selected using Table 3.1 such that, both the sources will supply equal amount of 

energy to the load. In case of unbalance in SOC of batteries, appropriate switching 

combinations are selected given in Table 3.1 to minimize the difference in SOC. 

Generally, in higher voltage level (𝑉𝑑𝑐)  both the sources are connected in series to 

supply the load, which results equal energy share during this voltage level (i.e. 

33.07%). Therefore, the redundancy in lower voltage level (𝑉𝑑𝑐/2) is appropriately 

selected such that, the load will be connected to higher SOC source at this voltage 

level to reduce the difference in SOC. As discussed above the energy transferred 

during the middle voltage level is 33.85%. Therefore the maximum possible energy 

share of 33.85% in middle voltage level can be transferred to higher SOC source. 

Effectively, this result in energy share of 33.07% to lower SOC source and 66.93% 

to higher SOC source. The maximum possible energy shared by higher SOC source 

depends on area of middle voltage level. 

Similarly for three phase operation the areas of individual voltage levels are shown in 

Fig. 3.7(c). The equations of the other two phases are given as follows   

1 2b bb V VE E E                 (3.14) 

1 2c cc V VE E E                 (3.15) 

Where as for b and c phases the angles are  
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Fig. 3.7 a) Five-level output voltage in positive half cycle (b) Fundamental voltage in positive half 
cycle (c) Three phase fundamental voltage in positive half cycle. (d) Induced five-level voltage at 

primary side of transformer. 
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The total energy transferred to load a b cE E E E                    (3.20) 

The percentage energy transferred to load during higher voltage level (𝐸𝑉1) 

1 1 1

1% 100a b cV V V
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E E E
E

E

  
  
 

                  (3.21) 

The energy percentage transferred to load during middle voltage level (𝐸𝑉2)  
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E E E
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                  (3.22) 

For fundamental cycle the percentage of energy share by each source during normal 

operation given as 
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            (3.24) 

For fundamental cycle the percentage of energy share by individual source during 

partial shading given as (Here Vdc1 is at higher SOC than Vdc2 and vice versa) 
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          (3.25) 
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             (3.26) 

3.2.2 DC offset minimisation 

During partial shading of panels the associated batteries will charge and 

discharge differently due to this there is small voltage variation between battery 

terminals. Because of this voltage difference there is small dc offset is introduced in 

to the ac side output voltage. This issue can be addressed by using bidirectional 
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switches between neutral point and two-level inverter. These bidirectional switches 

will provide multiple switching combinations for middle voltage level generation.  

For better understanding typical five level pole voltage waveform as shown in fig.3 

(d). From this it can be noticed that, higher voltage magnitudes will be equal (i.e. 

Vdc which is equal to Vdc1+Vdc2), whereas the lower voltage magnitudes will be 

Vdc1 in positive half cycle and –Vdc2 in the negative half cycle. So if Vdc1 and 

Vdc2 are not equal, the average voltage at the output will not be zero. Which 

indicates that, if the batteries are not maintained at the same voltage will introduce an 

DC voltage offset value at the inverter output voltage.  

The above issue can be addressed by sensing the battery terminal voltages, if there 

is difference in terminal voltages then redundant switching combinations for middle 

voltage level generation will be effectively used until the both SOC’s are in 

allowable limit. For example Vdc1 is greater than Vdc2 then middle voltage levels 

generated using case I switching combinations shown in Table 3.1, in other event 

case II switching combination will be used.   

3.3 Control Scheme 

The control of the charge balance between batteries and the selection of 

switching combination are explained in the flowchart given in Fig. 3.8. Vdc1 and 

Vdc2 are two battery SOC’s from the charge controller. From the flowchart, it can be 

noticed that, if it is within specified limits, then five-level voltages are generated 

using Table 2.1. If the difference in SOC is more or less than the limit, then an 

appropriate switching combination is selected using Table 3.1 using case I and II. 

The inverter pulses are generated using phase disposition PWM which is discussed in 

chapter 2. 
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Fig.3.8 Control scheme flow chart for selecting switching combination 

3.4 Results and Discussion 

 

A. Simulation results of single phase five level inverter 

The simulation parameters of single phase five-level inverter for energy 

balancing are given in Table 3.2. To evaluate the energy balancing capability of the 

proposed topology, both the batteries has charged to unequal SOC levels (i.e. first 

batteries associated to Vdc1 is kept at 60% and the other battery is at 80%). As 

discussed in the previous section, proposed energy balancing control scheme is used 

to minimize the difference in SOC’s of both batteries, which can be seen from 

Fig.3.9 and 3.10. From these figures, it can be observed that the battery which is 

associated with voltage source Vdc2 is discharging faster compared to the other 

battery. During this operation, the average power dissipation by each source 
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measured as 33.6% and 66.4% respectively. These percentages are supporting with 

the previous section derivations. 

Table 3.2 

Parameters for simulation and laboratory prototype 

Rated battery voltage (Lead acid) 𝑉𝑑𝑐1 = 𝑉𝑑𝑐2 = 96𝑉 

Rated output voltage 120V 

Modulating wave frequency 𝑓𝑚 = 50𝐻𝑧 

Switching frequency 𝑓𝑠 = 1𝑘𝐻𝑧 

Modulation index 𝑚𝑎 = 0.9 

Load Resistance, inductance values 𝑅 = 78𝛺, 𝐿 = 50𝑚𝐻 

 

Fig. 3.9 Discharge characteristic of batteries for different SOC’s [Y-axis % SOC of batteries; X-axis 

500sec/div] 

 

Fig. 3.10 Difference in SOC of batteries 1 and 2 [Y-axis Difference in SOC of batteries; X-axis 

500sec/div] 
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B. Simulation results of three phase five-level inverter 

The proposed three phase five-level inverter for islanded PV generation system is 

simulated using MATLAB/Simulink. The PV array and maximum power point 

tracking is modelled using reference given in [79], [80]. The parameters for 

simulation are given in Table 3.3.  

Table 3.3 

Parameters for Simulation 

Rated Lead acid battery voltage 𝑉𝑑𝑐1 = 𝑉𝑑𝑐2 = 96𝑉 

Modulating signal frequency 𝑓𝑚 = 50𝐻𝑧 

Switching frequency 𝑓𝑠 = 2𝑘𝐻𝑧 

Modulation index 𝑚𝑎 = 0.9 

Load Resistance, inductance 

values 
𝑅 = 150𝛺, 𝐿 = 40𝑚𝐻 

 

Fig. 3.11 Pole voltage of two-level and clamped inverter, induced five-level voltage, line voltage 

and load current waveforms During Energy balancing mode diode. 
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Fig.3.11 shows the waveforms during energy balancing mode of operation. The 

upper two traces are pole voltage of two-level inverter and three-level diode clamped 

inverter. The middle trace shows the induced five-level voltage across primary side 

winding of three phase transformer. The bottom two traces are line voltage and load 

current waveforms at load side.  

 

Fig. 3.12 (a) Discharge characteristic of batteries during energy balancing (b) Difference in SOC of 

batteries 

The energy sharing between two batteries is shown in Fig. 3.12 (a). The percentage 

state of charge (SOC) of batteries 1 and 2 are 70% and 85%. If there is difference in 

SOC of batteries then the battery which is having more SOC is discharged more by 

slightly changing switching sequence there by the DC offset can be minimized and 

also battery SOC are balanced . Compared to single phase system the battery 

balancing is three times faster in three phase system. The difference in SOC of 

batteries is shown in Fig. 3.12 (b).  

 

 

Fig.3.13 Harmonic spectrum of output voltage with dc-offset 
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During partial shading of PV panels the associated batteries will charge and 

discharge unevenly. Due to this, there is SOC difference between batteries which 

introduces a small dc-offset into ac side output voltage. Fig.3.13 gives the THD 

spectrum of the output voltage, because of the dc-offset harmonics present at the zero 

frequency. This dc offset is minimized by switching the middle voltage levels with 

single source which is having more SOC, as shown in Fig.3.14. 

 

 

Fig. 3.14 Harmonic spectrum of output voltage without dc-offset 

3.5 Conclusion 

  In this chapter the energy balancing of single phase and three phase five-level 

inverter for off-grid PV generation system is presented. By using the redundancy 

switching of the middle voltage levels, energy balancing is achieved between 

batteries and also the dc voltage offset is minimized. The battery which is having 

more SOC will supply more energy to load until both the SOC of batteries are equal. 

The mathematical analysis for energy supplied by individual voltage levels and 

sources is presented. The simulation results show the effectiveness of proposed 

technique. 

  In this chapter the energy balancing of multilevel inverter fed with two 

separate PV sources is discussed but, for higher number of sources is not discussed. 

The following chapter discusses the energy balancing by distributing the PV panels 

among the sources optimally. 
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Chapter 4 
 

An Optimal Source distribution 

Strategy for Multilevel Inverters with 

Improved Reliability: Photovoltaic 

Application 
 

4.1 Introduction 

 Diode clamped, cascade H-bridge multilevel inverter fed with multiple PV strings 

and MPPT control of individual PV strings improves the efficiency of the system [86-

88]. In these inverters the stability control of PV generation system is discussed for 

different irradiation, temperature changes and mismatch of PV strings. Many 

multilevel inverters topologies are discussed for renewable energy applications with 

reduced number of semiconductor devices [89-94]. These multilevel inverters use 

equal ratings of voltage sources to supply energy to load. However, the equivalent 

loading of each sources over a complete fundamental cycle are quite different which 

leads to underutilization of voltage sources. On the other hand, in the equal rating 

battery integrated off-grid PV system, due to uneven loading of sources, the state of 

charge (SOC) of batteries will be different. This mismatch of power supplied to load 

by the sources leads to poor utilization of source. In literature [95], a battery charge 

balance control schemes for cascade multilevel inverter discussed using duty cycle 

based rotation of pulses. However, the total harmonic distortion by using these 

methods is high. This issue is addressed in [59] for cascaded seven-level H-bridge 

inverter by rotation of pulse width modulation based gating pulses to each H-bridge 

module, so that the power can be balanced in three fundamental cycles. Though the 

power is balancing in three fundamental cycles there is a chance of small dc offset 

injection into ac side because of battery terminal voltage difference. In [96] a nine-

level cascade multilevel inverter with two bidirectional switches is presented but 

energy sharing issues of sources are not discussed. In [97], a novel DC power control 
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for cascade H-bridge multilevel inverter is presented. Although it has addressed the 

mismatch in dc side power generation, but the issues like load sharing effect on 

individual sources is not discussed.   

 The above issues are addressed in this chapter by distributing PV modules for 

individual voltage sources based on the loading as well as average operating 

modulation index. The proposed source distribution scheme is discussed in a 

multilevel inverter fed with four separate PV sources with maximum power point 

charge controller and corresponding batteries. The mathematical analysis is carried 

out for energy supplied by sources in each voltage level as well as energy contribution 

of each sources over a complete fundamental cycle. Based on mathematical analysis 

PV panels are distributed among four sources as well as corresponding battery ratings 

are decided.  

4.2 Calculation of energy transferred during each voltage level 

In a multilevel inverter, the energy supplied from source to load only during 

active voltage state (non-zero voltage magnitude) which has multiple voltage levels. 

The aggregate energy associate with each voltage level is quite different for a 

specific modulation index (ma). However the energy associated with a particular 

voltage level is same for different multilevel inverter topologies with same number of 

voltage levels. A case study to calculate the energy transferred to load during each 

voltage-level of nine-level inverter with four individual sources is presented. 

4.2.1 Calculation of energy associated with each voltage level 

The positive half cycle of a standard nine-level pulsating output voltage 

waveform is shown in Fig.4.1 (a). Because of half wave symmetry of the output 

voltage waveform, the calculations are carried out for positive half cycle. Fig. 4.1(b) 

shows the area corresponding to each voltage level, where θ1 to θ6 are the angles 

corresponding to duration of different voltage-levels. 

From Fig.4.1 the instantaneous fundamental voltage waveform from o to π given as 

sin( )fun mV V t  

Vdc, 3Vdc/4, Vdc/2, Vdc/4 are the voltage levels indicated as Vk, Vn, Vo, Vp. 
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Fig. 4.1 (a) Positive half cycle of pulsating nine-level voltage waveform (b) Area corresponding to 

different voltage-levels 

 

The fundamental voltage Vk indicates Vdc voltage level in the region θ3 to θ4 given 

as 

3
4 sin( )

4

dc
k m

V
V V t

  
   

  
      (4.1) 

The fundamental voltage  Vn indicates 3Vdc/4 voltage level in the region θ2 to θ5 

expressed as 

The 3Vdc/4 voltage level in the region θ3 to θ4 given as 

 a fun kV V V   

The 3Vdc/4 voltage level in the region θ2 to θ3 given as 

3
2

dc
b fun

V
V V

  
   

  
 

The 3Vdc/4 voltage level in the region θ4 to θ5 is same as θ2 to θ3 

 2n a bV V V                   (4.2)                                                                                                                                                                         

The fundamental voltage Vo indicates Vdc/2 voltage level in the region θ1 to θ6 given 

as 

The Vdc/2 voltage level in the region θ2 to θ3 expressed as 
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 c fun bV V V   

The Vdc/2 voltage level in the region θ1 to θ2 given as 

2
4

dc
d fun

V
V V

  
   

  
 

The Vdc/2 voltage level in the region θ2 to θ3 is same as θ4 to θ5 similarly for θ1 to θ2 

same as θ5 to θ6  

 2 2o c dV V V          (4.3)                                                                                                                                                                          

The fundamental voltage Vp indicates Vdc/4 voltage level in the region 0 to θ2 and θ6 

to π given as 

The Vdc/4 voltage level in the region θ1 to θ2 given as 

 e fun dV V V   

The Vdc/4 voltage level in the region 0 to θ1 expressed as 

f funV V  

The Vdc/4 voltage level in the region 0 to θ1 is same as θ6 to π similarly θ1 to θ2 is 

same as θ5 to θ6 

 2 2p f eV V V                   (4.4)                                                                                                                                                                          

The load current is given as sin( )mi I t   , where   is power factor angle 

The angle θ1-θ6 depends on modulation index 𝑚𝑎 and the angle can be calculated as 
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𝐸𝑉𝑘
,𝐸𝑉𝑛

,𝐸𝑉𝑜
, 𝐸𝑉𝑝

 are the energies corresponding to Vdc, 3Vdc/4, Vdc/2, Vdc/4 

voltage levels can be derived using equation (4.1)-(4.4). 

The energy transferred during Vk voltage level given as 
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After solving equation (4.5) the energy transferred to Vk voltage level given as 
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The energy transferred during Vn voltage level given as 
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The solution of equation (4.7) the energy transferred to Vn voltage level given as 
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The energy transferred during Vo voltage level given as 
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  The energy transferred during Vp voltage level given as 
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The total energy transferred to load during positive half cycle given as 

k n o pV V V VE E E E E                  (4.13) 

Similarly it is same for negative half cycle also 
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The percentage of energy transfer during each voltage level can be calculated as 

follows 

% % 100
i i

k n o p

Vi
V V

V V V V

E
E E

E E E E


 
   

    

           (4.14) 

Where i= k, n, o, p 

The energy associated with each voltage level for various modulation index 

values is shown in Fig.4.2. From this figure, it can be observed that the percentage of 

energy transferred to load during each voltage level is different. 

 
Fig. 4.2 Percentage of energy shared during each voltage level with different modulation index. 

The percentage of energy shared during each voltage-level is depicted in Fig.4.2 is 

same for any multilevel inverter. The energy supplied to load by each source is 

different according to inverter topology structure and switching combination. To 

validate this proposed scheme a case study is presented using nine-level inverter 

topology with four separate sources [97]. 

4.2.2 Multilevel inverter configuration with equal source distribution 

The multi-level inverter configuration given in [97] fed with four individual PV 

strings with MPPT charge controller and associated batteries which are rated equally 

as shown in Fig.4.3 The total number of PV modules are divided as N1, N2, N3, N4 

(N1=N2=N3=N4=n/4, where n is total number of PV panels). The nine-level voltage 

generation is possible with equal voltage (V1=V2=V3=V4=Vdc/4) rating of sources 

using multiple switching combinations due to redundancy of the topology. Table 4.1 
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and 4.2 gives the two possible switching combinations for different voltage levels 

and corresponding voltage source combination. 

 

Fig. 4.3 Block diagram of multi-string single phase multilevel inverter system with four PV sources. 

From Table 4.1, it can be observed that the sources V3 and V4 are supplying 

energy to load for all the voltage levels except Vdc/4 and –Vdc/4 respectively. 

Whereas V1 is supplying energy to load for Vdc, -Vdc and -3Vdc/4 voltage levels. 

The source V2 is supplying energy to load for Vdc, -Vdc and 3Vdc/4 voltage levels. 

Due to this, the loading is different on each voltage source which causes the 

corresponding batteries charge and discharge unequally which is shown in Fig.4.4. 

From this figure, it can also be observed that two set of batteries are charging equally 

compared to other two batteries. If the systems continuous to operate with unequal 

state of charge (SOC), the batteries with low SOC will dry out faster and causes total 

system shutdown and leads to underutilization of healthy sources. This issue is 

avoided by arranging the PV panels based on equivalent energy supplied to load by 

each source with various modulation indexes is discussed in later part of this section. 
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Table 4.1 

Switching combination for nine-level operation 

 (V1=V2=V3=V4=VDC/4) 

Voltage levels Switching sequence Corresponding Sources 

Vdc S1,S8,S5,S4 V1,V2,V3,V4 

3Vdc/4 S9,S4,S5,S8 V2,V3,V4 

Vdc/2 S2,S4,S5,S8 V3,V4 

Vdc/4 S2,S4,S10,S8 V4 

0 S2,S4,S6,S8 0 

-Vdc/4 S10,S2,S4,S7 V3 

-Vdc/2 S2,S4,S7,S6 V3,V4 

-3Vdc/4 S3,S6,S7,S9 V1,V3,V4 

-Vdc S2,S3,S6,S7 V1,V2,V3,V4 

 

Table 4.2 

Switching combination for nine-level operation 

 (V1=V2=V3=V4=VDC/4) 

Voltage levels Switching sequence Corresponding Sources 

Vdc S1,S8,S5,S4 V1,V2,V3,V4 

3Vdc/4 S9,S8,S5,S4 V2,V3,V4 

Vdc/2 S5,S2,S4,S8 V3,V4 

Vdc/4 S10,S4,S2,S8 V4 

0 S2,S4,S5,S7 0 

-Vdc/4 S3,S5,S7,S9 V1 

-Vdc/2 S3,S5,S7,S2 V1,V2 

-3Vdc/4 S3,S10,S7,S2 V1,V2,V3 

-Vdc S3,S6,S7,S2 V1,V2,V3,V4 
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Fig. 4.4 Charging characteristics of each battery supplying with equal power rating PV sources. 

4.3 Multilevel inverter configuration with optimized PV panel distribution 

From the earlier discussion, the energy supplied to the load by the individual 

sources are unequal. To address this issue, the panels are distributed among four 

sources according to percentage energy sharing of each source. The percentage 

energy shared to load is calculated for fundamental cycle using equations (4.15)-

(4.18). The source combinations for generating nine-level voltage are given in Table 

4.1 and 4.2. Table 4.1 considered as worst switching combination for distribution of 

PV panels. 
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  (4.18)   

Fig.4.5 shows the percentage of energy shared to load by each source at different 

modulation index using equations (4.15)-(4.18). From Fig.4.5, it is observed that up 

to modulation index 0.5 sources V3, V4 are alone supplying energy to the load (V1, 

V2 also can supply energy alone up to 0.5 modulation index by using redundancy 
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switching of the topology). As the modulation index increases the energy supplied to 

load by individual sources are changing. The modulation index cannot be chosen less 

than 0.75 because for the rated output voltage, the dc bus voltage has to be increased 

which reduces the proper utilization of resources. To get the regulated output voltage 

an appropriate range of modulation index is chosen. 

 
Fig. 4.5 Percentage of energy transferred to load by each source with different modulation index. 

For the switching combination presented in Table 4.2, the energy shared by different 

sources for various modulation index values is depicted in Fig.4.6. From this figure, 

it can be noticed that at modulation index 0.62, all voltage sources share equal load 

energy. In this case, the percentage of energy shared to load by different sources is 

almost constant after 0.85 modulation index. Switching combination presented in 

Table 4.2 is preferable when the input side voltage fluctuations are more. 

 

Fig. 4.6 Percentage of energy transferred to load by each source with different modulation index. 

For distributing the PV modules among four sources the average operating 

modulation index of given topology chosen as 0.86. From Fig.4.5, the sources V1, 
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V2 are sharing 15% (N1=N2=15% of total number of panels) of total PV power 

individually. Similarly, each sources V3, V4 share 35% (N3=N4=35% total number 

of panels) of total PV power. The battery rating is chosen according to each 

individual source, the charging characteristics of each battery are shown next section. 

Whereas, from Fig.4.6 for modulation index 0.86 the sources V1, V4 each one is 

sharing 20% and V2, V3 sources share 30% of total PV power. 

4.4 Results and discussion 

A. Simulation Results 

The single phase multilevel inverter is simulated using MATLAB/Simulink. The PV 

modules are optimally distributed using Fig. 4.5 and Fig. 4.6 for different switching 

combinations given in Table 4.1 and 4.2. The simulation parameters are given in 

Table 4.3.  The PV string is formed by using series and parallel connection of 

modules. The photovoltaic module is modelled using [79], which consists of series 

and parallel cells. Perturb and observe algorithm is adopted to track maximum power 

[80]. The gating pulses for nine-level inverter are generated using phase disposition 

carrier pulse width modulation as shown in Fig.4.7. The Table 4.4 gives the 

switching logic for generating nine-level output voltage across the load. 

Table 4.3 

Simulation Parameters 

 

Specifications for 

Table I 

Switching 

Combination 

Specifications for 

Table II 

Switching 

Combination 

Irradiation 850W/m
2
 850W/m

2
 

PV String 1 and 2 maximum  

power 
300W, 300W 400W, 600W 

PV String 3 and 4 maximum 

power 
700W , 700W 600W, 400W 

Each Lead acid battery 

terminal voltage (for 

simulation) 

40V 40V 

Load Active power 1400W 1400W 

Fundamental frequency 60Hz 60Hz 

Modulation Index 0.86 0.86 

Switching Frequency 2.3kHz 2.3kHz 
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Fig. 4.7 Carrier Pulse width modulation for Nine-level voltage generation 

 

Table 4.4 

Comparison of Modulating and Carrier Signal to Generate Nine-Level Voltage 

Comparison Voltage level 

Vm > Vtri1 Vdc 

Vtri2 < Vm < Vtri1 4Vdc/3 

Vtri3 < Vm < Vtri2 Vdc/2 

Vtri4 < Vm < Vtri3 Vdc/4 

Vtri5 < Vm < Vtri4 0 

Vtri6 < Vm < Vtri5 -Vdc/4 

Vtri7 < Vm < Vtri6 -Vdc/2 

Vtri8 < Vm < Vtri7 -4Vdc/3 

Vm < Vtri8 -Vdc 

 

The current waveform of each source is shown in Fig.4.8 for the switching 

combination given in Table 4.1. The upper two traces shows the currents of 

corresponding sources V1, V2 and lower two traces are currents associated with V3, 

V4 sources. The mean value currents of sources V1, V2 are 5A each and for V3, V4 

are 12A each. The sources V1, V2 each is sharing 15% energy to load whereas V3, 

V4 sources are supplying 35% each as shown in Fig.4.8. 
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Fig. 4.8 Individual source currents for switching Table 4.1 [Y-axis 20A/div, X-axis 0.01sec/div] 

 

Fig.4.9 depicts the current waveform of four sources for the switching combination 

given in Table 4.2. From Fig.4.9, it is clearly observed that the currents of V1, V4 

(upper trace, lower trace) are same and currents of V2, V3 are equal (middle traces).  

The mean value of V1, V4 currents are 6.8A and V2, V3 are 9.8A. From Fig.4.9 it is 

clear that sources V1, V4 each is sharing 20% energy to load whereas V2, V3 

sources are supplying 40% each. 

 

Fig. 4.9 Individual source currents for switching Table 4.2 [Y-axis 20A/div, X-axis 0.01sec/div] 
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The charging characteristics of each battery are shown in Fig.4.10 after distribution 

of panels. From Fig.4.10 it can be observed all the batteries are charging at same rate. 

 

Fig. 4.10 Charging characteristics of each battery after rearrangement of solar panels  

 

Fig. 4.11 Nine-level output voltage and load current waveform with symmetrical voltage sources [Y-

axis: Voltage] 

 

The nine-level output voltage and load current waveforms are shown in Fig.4.11. 

Then nine-level voltage is generated using switching sequence given in Table 4.1 for 

symmetrical voltage sources. 

B. Experimental Results 

The laboratory prototype is developed and tested using DC sources. The voltage 

rating of each source is 40V. For evaluation of experimental prototype Spartan6 

FPGA controller used for generating pulses to inverter switches. A dead band circuit 

is used to provide delay of 2.5μs for complementary switches. The switching 
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frequency and modulation index used are same as simulation results. The input 

currents of each source are shown in Fig.4.12 for switching combination given in 

Table 4.1. In this figure, upper two traces represent the V1, V2 source currents and 

lower traces represent the V3 and V4 source currents. The mean value of V1, V2 

source currents are less than the V3, V4 source currents. From Fig.4.12, it can be 

observed that the energy supplied to load by individual sources is different because 

of inverter structure and switching sequence. The source currents for switching 

combination mentioned in Table 4.2 are shown in Fig.4.13. From this figure, the 

energy supplied to load by sources V1, V4 are equal where as V2, V3 are same. The 

nine level output voltage across load and current waveform through load are depicted 

in Fig. 4.14. 

 

 

Fig. 4.12 Current waveforms of each source for switching Table 4.1 (Upper trace: V1, V2 source 

currents, lower trace: V3,V4 source currents)  [Y-Axis 2A/div; X-axis 5msec/div] 

 

Fig. 4.13 Current waveforms of each source for switching Table 4.2 (Upper trace: V1, V2 source 

currents, lower trace: V3,V4 source currents)  [Y-Axis 2A/div; X-axis 5msec/div] 
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Fig. 4.14 Nine-level output voltage and load current waveform with symmetrical voltage sources [Y-

axis 50v/div, 2A/div; X-axis 5msec/div] 

4.5 Improved Fault tolerant nine-level inverter configuration 

In the above discussed multilevel inverter configuration, if any leg of the full 

bridge fails then it is difficult to operate. To improve the fault tolerant capability two 

extra switches S9, S10 are introduced as shown in Fig. 4.15. To divide the PV panels 

equally among four sources a switching combination is presented and validated using 

simulation and experimental results. 

 

Fig 4.15 Proposed nine-level inverter topology 
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The block diagram of nine-level single phase inverter is shown in Fig.4.15. The 

topology is formed by using two full bridge inverter structures (S1-S4 and S5-S8), 

two bidirectional switches (S11, S12) and switches S9 and S10 are connected 

between sources shown in Fig.4.15. The available switching combination to generate 

nine-level output voltage is given in Table 4.5. The voltage rating of semiconductor 

switches are S1-S8 is Vdc/2 and S9, S10 are Vdc and S11, S12 is Vdc/4. Here the 

switches S9, S10, S11 and S12 provide redundant switching combinations for fault 

tolerant operation and energy sharing between sources. 

 

Table 4.5 

Switching Sequence for Nine-Level Operation 

Voltage levels Possible number of switching combinations 

Vdc S3,S8,S9 (or) S3,S8,S5,S2 

3Vdc/4 S3,S8,S12,S2 (or) S5,S11,S3,S8 

Vdc/2 
S3,S7,S9 (or) S9,S4,S8 (or) S3,S8,S6,S2 (or) S5,S2,S4,S8 

(or) S5,S1,S3,S8 (or) S3,S7,S5,S2 (or) S3,S8,S12,S11 

Vdc/4 
S3,S7,S5,S11 (or) S3,S8,S6,S11 (or) S12,S2,S4,S8 (or) 

S12,S1,S3,S8 

0 S3,S10,S8 (or) S4,S9,S7 (or) S2,S4,S5,S7 

-Vdc/4 
S11,S5,S7,S4 (or) S11,S6,S8,S4 (or) S7,S4,S2,S12 (or) 

S7,S3,S1,S12 

-Vdc/2 
S7,S3,S10 (or) S10,S8,S4 (or) S7,S4,S2,S6 (or) S7,S3,S1,S6 

(or) S1,S5,S7,S4 (or) S1,S6,S8,S4 (or) S11,S12,S7,S4 

-3Vdc/4 S7,S4,S11,S6 (or) S1,S12,S7,S4 

-Vdc S10,S7,S4 (or) S1,S6,S7,S4 

 

4.5.1 Distribution of PV panels equally among four sources 

To distribute the PV panels equally among four sources the switching 

combination and corresponding source selection is given in Table 4.6. This table also 

gives the logic for generating nine level output voltage across the load.  
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Table 4.6 

Switching Combination for Nine-Level Operation 

(V1=V2=V3=V4=Vdc/4) 

Voltage levels Switching sequence 

Corresponding 

Sources 

Vdc S3,S8,S5,S2 or S3,S8,S9 V1,V2,V3,V4 

3Vdc/4 S3,S8,S12,S2 V1,V2,V4 

Vdc/2 S5,S1,S3,S8 or S9,S4,S8 V3,V4 

Vdc/4 S12,S1,S3,S8 V4 

0 S1,S3,S6,S8 0 

-Vdc/4 S7,S3,S1,S12 V3 

-Vdc/2 S7,S3,S1,S6 or S7,S3,S10 V3,V4 

-3Vdc/4 S7,S4,S1,S12 V1,V2,V3 

-Vdc S7,S4,S1,S6 or S10,S7,S4 V1,V2,V3,V4 

The panels are distributed among four sources according to percentage energy 

sharing of each source. The percentage energy shared to load is calculated for 

fundamental cycle using equations (4.19)-(4.22). The divisions 1/4
th

 ,1/3
rd

 , ½ are 

because for higher level 4 sources are equally sharing the energy for Vdc voltage 

level. 
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Fig.4.16 shows the percentage of energy shared to load by each source at different 

modulation index using equations (4.19)-(4.22). From Fig.4.16 up to modulation 

index 0.5 sources V3, V4 are alone supplying energy to the load (V1, V2 also can 

supply energy alone up to 0.5 modulation index by using redundancy switching of 

the topology). As the modulation index increases the energy supplied to load by 

individual sources are changing. The modulation index cannot be chosen less than 

0.75 because for the rated output voltage, the dc bus voltage has to be increased 

which reduce the proper utilization of resources. From Fig.4.16, it can be observed 

that from 0.82 to 1 modulation index the energy shared to load by each source is 

equal. To get the regulated output voltage an appropriate range of modulation index 

is chosen.  

 

Fig. 4.16 Percentage of energy transferred to load by each source with different modulation index. 

 

4.5.2 Fault analysis of proposed topology 

The topology with symmetrical sources has analyzed for different open circuit 

switch failures. The different fault detection techniques for IGBT failure are given in 

[23]. In this chapter the fault detection techniques are not considered only possible 

output voltage levels for different open circuit switch faults are considered. Table 4.7 

shows the possible number of voltage levels for different switch open circuit failures. 

During fault, the output voltage is generated by bypassing the faulty switch using 

redundant switching states given in Table 4.5. From Table 4.7, it can be observed the 

proposed topology capable of maintaining same nine-level output voltage as normal 

operation. But, for some of the fault (open circuit fault of S3 or S4 or S7 or S8) the 
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five-level output voltage generated with half of the rated voltage. This can be 

applicable for some of the loads which can be operated at wide range of voltages like 

led lights, electronic gadgets, etc. 

Table 4.7 

Proposed Nine-Level Topology for Different Switch Failures 

Possible voltage levels Different Switch failures 

Nine-Level voltage 
S1 and S2 or S5 and S6 or S9 and S10 or  

S11 or S12 

Five-level voltage S3 or S4 or S7 or S8 or S9, S10, S11, S12 

4.5.3 Control scheme 

The gating pulses for nine-level inverter are generated using phase disposition 

carrier pulse width modulation as shown in Fig.4.17. The modulating signal (Vm) is 

compared with eight carrier (triangular wave) signals (Tri1 to Tri8) and 

corresponding pulses are given to the switches to achieve nine-level output voltage 

using switching combination given in Table 4.6. In the event of switch open circuit 

fault the five-level voltage is generated by comparing the carrier signal Tri3 to Tri6 

with modulating signal. 

 

Fig.4.17 Carrier Pulse width modulation 

4.5.4 Results and Discussion  

A. Simulation Results 

The single phase multilevel inverter is simulated using MATLAB/Simulink. The PV 

modules are equally distributed among four sources using switching combinations 

given in Table 4.6. The simulation parameters are given in Table 4.8.  The PV string 
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is formed by using series and parallel connection of modules. The photovoltaic 

module is modelled using [79], which consists of series and parallel cells. Perturb 

and observe algorithm is adopted to track maximum power [80]. The current 

waveform of each source is shown in Fig.4.18 for the switching combination given in 

Table 4.6. The upper two traces shows the currents of corresponding sources V1, V2 

and lower two traces are currents associated with V3, V4 sources. The mean values 

of all currents are equal to 10A. The Fig.4.18, it is clear that all sources V1, V2, V3, 

and V4 each is sharing 25% energy to load. 

Table 4.8 

Simulation Parameters 

Irradiation 850W/m
2
 

PV String 1 and 2 maximum  

power 
500W, 500W 

PV String 3 and 4 maximum 

power 
500W , 500W 

Each Lead acid battery 

terminal voltage (for 

simulation) 

40V 

Load Active power 1400W 

Fundamental frequency 60Hz 

Modulation Index 0.95 

Switching Frequency 2.3kHz 

 

Fig. 4.18 Individual source currents [Y-axis: Current in Ampere, X-axis: Time in sec] 
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The nine-level output voltage across load and load current waveform are shown in 

Fig.4.19 for modulation index of 0.95. All batteries are charging and discharging at 

same rate which can be observed from Fig. 4.20. 

 

Fig. 4.19 Nine-level output voltage and load current waveforms [Y-axis 100v/div, 20A/div; X-axis 

0.01sec/div] 

 

Fig. 4.20 Charging characteristics of batteries 

The topology has fault tolerant capability for different switch open circuit faults 

which is discussed in previous section. Fig.4.22 (a) gives five-level output voltage 

with same voltage magnitude as normal operation during the switches S9, S10, S11 

and S12 open circuit fault. Fig. 4.22 (b) shows the voltage across full bridges. 
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Fig. 4.21 Discharge characteristics of batteries 

 

 

Fig.4.22 Simulation results (a) Five level output voltage and current through load during S9-S12 

switch open-circuit fault (b) Two full bridge mid-point voltages during switch failure. 

 

B. Experimental Results 

The laboratory prototype is developed and tested using DC sources. The voltage 

rating of each source is 40V. For evaluation of experimental prototype SPARTAN6 

FPGA controller used for generating pulses to inverter switches. A dead band circuit 

is used to provide delay of 2.5μs for complementary switches. The switching 

frequency and modulation index used are same as simulation results. The input 

currents of each source is shown in Fig.4.23 for switching combination given in 

Table 4.6, upper two traces shows V1, V2 source currents and lower traces are V3 

and V4 source currents. The nine-level output voltage and current through load are 

shown in Fig. 4.24. The five-level output voltage during S9-S10 switch open circuit 

failure is shown in Fig.4.25 (a). The voltage across full bridge is shown in Fig. 

4.25(b). 
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Fig. 4.23 Individual source currents [Y-axis 20A/div, X-axis 0.01sec/div] 

 

Fig. 4.24 Nine-level output voltage and load current waveforms [Y-axis 100v/div, 2A/div; X-axis 

0.01sec/div] 

 

Fig.4.25 Experimental results (a) Five level output voltage and current through load during S9-S10 

switch open-circuit fault (b) Two full bridge mid-point voltages during switch failure. [Y-axis 

50V/div, X-axis 5msec/div] 
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4.6 Conclusion 

In this chapter, an optimized source distribution scheme for a nine-level inverter 

fed with four PV sources is presented. The PV modules are divided based on 

equivalent load demand and average operating modulation index. Similarly, battery 

ratings are decided based on the modified rating of the sources which ensures better 

source utilization. The detailed mathematical analysis has been carried out for 

effective loading of individual sources for nine-level inverter. To improve the fault 

tolerance capability of the conventional cascaded T-type 9-level inverter is modified 

by adding two extra switches. The switching redundancy of the modified inverter 

during open circuit switch failure conditions is helps to supply the power with or 

without changing the voltage levels. The results show the ability of proposed 

topology working under normal and fault conditions. Simulation of the proposed 

scheme has been carried out in MATLAB Simulink. Experimental validation has 

been done with the help of laboratory prototype. 
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Chapter 5 
 

Overview and Future Scope of the 

thesis 
 

 

5.1 Overview of the thesis 

This thesis mainly focused on fault tolerant multilevel inverter configurations 

with energy balancing capability for off-grid PV applications. The aim of these fault 

tolerant multilevel inverters is to provide continuous power supply to essential loads 

under fault operation. In literature different fault identification techniques are 

presented for inverters but to continue the operation after isolation of fault not much 

discussed. Also few papers addressed the load energy sharing problem between 

sources of multilevel inverters for photovoltaic application. 

In chapter 2, single phase and three phase fault tolerant multilevel inverter 

topologies are presented and examined for various switch open circuit fault and/or 

source failures. These topologies are formed by combining three-level neutral point 

clamped inverter, two-level half bridge inverter, bidirectional switches and full 

bridge t-type inverter. The fault tolerance is achieved by using the redundant 

switching states of middle voltage levels of multilevel inverter. 

The energy balancing between sources is achieved for the five-level inverter fed 

with two separate PV sources due to partial shading and/or hotspots in chapter 3. 

Because of partial shading the associated batteries with these panels will charge and 

discharge unevenly and creates voltage difference between terminal voltages of 

sources because of SOC difference. The energy balance between batteries is achieved 

for all operating conditions by selecting appropriate switching combination. For 

example the battery with low SOC is discharged at slower rate than the battery with 

more SOC until both SOC’s are equal. This also helps in minimization of DC offset 
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into the ac side output voltage. The mathematical analysis is presented for possible 

percentage of energy shared to load by both the sources. 

In chapter 4, single phase multilevel inverter with improved reliability in terms of 

switch open circuit failures and energy balancing between sources. The topology 

requires four isolated DC-sources; these isolated DC voltage sources are realized 

with multiple PV strings with associated batteries. The investigations for load energy 

sharing between sources for different switching combinations are presented for a 

nine-level inverter. An optimal distribution of PV panels for different switching 

combination based on mathematical analysis is presented. The operation of proposed 

multilevel single phase inverter is analyzed for different switch open-circuit failures. 

All the above topologies are simulated using Matlab Simulink and experimentally 

verified. The pwm pulses are generated using FPGA based XILINX Spartan-6 

XC6SLX9 board, dSPACE controller. The experimental prototype pictures are 

shown in Fig. 5.1 to Fig. 5.2. The 5KW off-grid generation system with lead acid 

batteries and charge controllers are shown in Fig.5.3 and Fig.5.4. The  VHDL  

program  for  PWM  signal  generation  is  given  in APPENDIX-I. 

 

Fig.5.1 Laboratory prototype fault tolerant five-level inverter 
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Fig.5.2 Laboratory prototype fault tolerant Nine-level inverter 1) Dead band circuit 2) FPGA 

controller 3)IGBT Modules with Gate driver 4)R-L Load 5) Rectifier circuit 

 

 

Fig.5.3 5KW off-grid PV generation system 
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Fig.5.4 Lead acid batteries with charge controllers 

5.2 Suggestions for future scope 

The fault tolerant multilevel inverter topologies for off grid PV generation 

system are presented. These topologies are analyzed for different switch open circuit 

faults this can be further extended for analyzing various short circuit faults, 

improving of output voltage magnitude under fault condition and also for grid 

integration.  

In chapter 3 and 4 the energy balancing issues of five-level and nine-level 

inverter are discussed. Mathematical analysis is given for energy transferred to load 

by each source for five level and nine-level inverter configurations fed with 

symmetrical voltage sources in a fundamental cycle. This can be further analyzed for 

‘n’ number of voltage levels and asymmetrical voltage sources. These concepts can 

be extended for electric vehicle and induction motor drives applications. 
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Appendix-I   

VHDL Program for Implementing Five-level Carrier 

SPWM 

-------------------------------------------------------------------- 

library ieee; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL;  --try to use this library as much as 

possible. 

entity fivelevel is 

port (clk :in  std_logic; 

     pwm1 : out std_logic; 

      pwm2 : out std_logic; 

      pwm3 : out std_logic; 

      pwm4 : out std_logic; 

      pwm5 : out std_logic; 

      pwm6 : out std_logic; 

      pwm7 : out std_logic; 

      pwm8 : out std_logic; 

      pwm9 : out std_logic; 

      pwm10 : out std_logic; 

      pwm11 : out std_logic; 

      pwm12 : out std_logic; 

      pwm13 : out std_logic; 

      pwm14 : out std_logic; 

      pwm15 : out std_logic; 

      pwm16 : out std_logic; 

      pwm17 : out std_logic; 

      pwm18 : out std_logic; 
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      pwm19 : out std_logic; 

      pwm20 : out std_logic; 

      pwm21 : out std_logic 

            ); 

end fivelevel; 

architecture Behavioral of fivelevel is 

signal a : integer range 0 to 3600:=0; 

signal b : integer range 0 to 3600:=3200; 

signal c : integer range 0 to 3600:=2800; 

signal d : integer range 0 to 3600:=2400; 

signal e : integer range 0 to 3600:=2000; 

signal f : integer range 0 to 3600:=1600; 

signal g : integer range 0 to 3600:=1200; 

signal h : integer range 0 to 3600:=800; 

signal i : integer range 0 to 3600:=400; 

signal sine1 : integer range -2047 to 2047:=0; 

signal sine4 : integer range -2047 to 2047:=0; 

signal sine7 : integer range -2047 to 2047:=0; 

signal s1 : integer range -2047 to 2047:=0; 

signal s2 : integer range -2047 to 2047:=0; 

signal s3 : integer range -2047 to 2047:=0; 

signal s4 : integer range -2047 to 2047:=0; 

signal s5 : integer range -2047 to 2047:=0; 

signal s6 : integer range -2047 to 2047:=0; 

signal tring1 : integer :=0; 

signal tring2 : integer :=0; 

signal btrig : integer :=0; 

signal btrig1 : integer :=0; 

signal btrig2 : integer :=0; 

signal btrig3 : integer :=0; 

signal btrig4 : integer :=0; 

signal btrig5 : integer :=0; 
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signal btrig6 : integer :=0; 

signal btrig7 : integer :=0; 

signal btrig8 : integer :=0; 

signal btrig9 : integer :=0; 

signal z :integer :=0; 

signal y :integer :=150; 

signal x :integer :=120; 

signal w :integer :=0; 

signal v :integer :=0; 

signal clk_out : std_logic:='0'; 

signal a1 : std_logic:='0'; 

signal a2 : std_logic:='0'; 

signal a3 : std_logic:='0'; 

signal a4 : std_logic:='0'; 

signal a5 : std_logic:='0'; 

signal a6 : std_logic:='0'; 

signal a7 : std_logic:='0'; 

signal a8 : std_logic:='0'; 

signal a9 : std_logic:='0'; 

signal a10 : std_logic:='0'; 

signal a11 : std_logic:='0'; 

signal a12 : std_logic:='0'; 

signal a13 : std_logic:='0'; 

signal a14 : std_logic:='0'; 

signal a15 : std_logic:='0'; 

signal a16 : std_logic:='0'; 

signal a17 : std_logic:='0'; 

signal a18 : std_logic:='0'; 

signal a19 : std_logic:='0'; 

signal a20 : std_logic:='0'; 

signal a21 : std_logic:='0'; 

signal a22 : std_logic:='0'; 
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signal a23 : std_logic:='0'; 

signal a24 : std_logic:='0'; 

signal count : integer range 0 to 5555 :=0; 

signal clk_out1 : std_logic:='0'; 

signal count1 : integer range 0 to 5555 :=0; 

signal j : integer range 0 to 180:=0; 

signal k : integer range 0 to 180:=90; 

type memory_type1 is array (0 to 180) of integer range -2047 to 2047; 

          type memory_type is array (0 to 3600) of integer range -2047 to 2047; 
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  signal b : integer range 0 to 3600:=1200;  

  signal b1 : integer range 0 to 3600:=3000;  

  signal c : integer range 0 to 3600:=2400;  

  signal c1 : integer range 0 to 3600:=600;  

  signal sine11 : integer range -2047 to 2047:=0;  

  signal sine12 : integer range -2047 to 2047:=0;  

  signal sine21 : integer range -2047 to 2047:=0;  

  signal sine22 : integer range -2047 to 2047:=0;  

  signal sine31 : integer range -2047 to 2047:=0;  

  signal sine32 : integer range -2047 to 2047:=0;  

  signal atrig : integer :=0;  

  signal btrig : integer :=0;  

  signal z :integer :=0;  

  signal Vst :integer :=1023;  

  signal clk_out : std_logic:='0';  

  signal count : integer range 0 to 5555 :=0;  

  signal clk_out1 : std_logic:='0';  

  signal count1 : integer range 0 to 5555 :=0;  

  type memory_type is array (0 to 3600) of integer range -2047 to 2047;  

  signal sine : memory type :=   

(0,1,3,5,7,8,10,12,14,16,17,19,21,23,25,26,28,30,32,33,35,37,39,41,42,44,46,

48,50,51,53,55,57,58,60,62,64,66,67,69,71,73,74,76,78,80,82,83,85,87,89,91,
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92,94,96,98,99,101,103,105,107,108,110,112,114,115,117,119,121,123,124,1

26,128,130,131,133,135,137,138,140,142,144,146,147,149,151,153,154,156,

158,160,161,163,165,167,169,170,172,115,174,176,177,179,181,183,184,186

,188,190,191,193,195,197,198,200,202,204,205,207,209,211,212,214,216,21

8,219,221,223,225,226,228,230,232,233,235,237,239,240,242,244,245,247,2

49,251,252,254,256,258,259,261,263,265,266,268,270,271,273,275,277,278,

280,282,283,285,287,289,290,292,294,295,297,299,301,302,304,306,307,309

,311,313,314,316,318,319,321,323,324,326,328,330,331,333,335,336,338,34

0,341,343,345,346,348,350,351,353,355,356,358,360,361,363,365,366,368,3

70,371,373,375,376,378,380,381,383,385,386,388,390,391,393,395,396,398,

400,401,403,405,406,408,409,411,413,414,416,418,419,421,423,424,426,427

,429,431,432,434,435,437,439,440,442,444,445,447,448,450,452,453,455,45

6,458,460,461,463,464,466,468,469,471,472,474,475,477,479,480,482,483,4

85,487,488,490,491,493,494,496,498,499,501,502,504,505,507,508,510,512,

513,515,516,518,519,521,522,524,525,527,528,530,531,533,535,536,538, 

539,541,542,544,545,547,548,550,551,553,554,556,557,559,560,562,563,565

,566,568,569,571,572,574,575,577,578,579,581,582,584,585,587,588,590,59

1,593,594,596,597,598,600,601,603,604,606,607,609,610,611,613,614,616,6

17,619,620,621,623,624,626,627,629,630,631,633,634,636,637,638,640,641,

643,644,645,647,648,649,651,652,654,655,656,658,659,660,662,663,665,666

,667,669,670,671,673,674,675,677,678,679,681,682,683,685,686,687,689,69

0,691,693,694,695,697,698,699,700,702,703,704,706,707,708,710,711,712,7

13,715,716,717,719,720,721,722,724,725,726,727,729,730,731,732,734,735,

736,737,739,740,741,742,744,745,746,747,748,750,751,752,753,754,756,757

,758,759,760,762,763,764,765,766,768,769,770,771,772,773,775,776,777,77

8,779,780,782,783,784,785,786,787,789,790,791,792,793,794,795,796,798,7

99,800,801,802,803,804,805,806,808,809,810,811,812,813,814,815,816,817,

818,819,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836

,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,85

4,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,8

72,873,874,874,875,876,877,878,879,880,881,882,883,884,885,885,886,887,

888,889,890,891,892,892,893,894,895,896,897,898,899,899,900,901,902,903
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,904,904,905,906,907,908,909,909,910,911,912,913,914,914,915,916,917,91

8,918,919,920,921,921,922,923,924,925,925,926,927,928,928,929,930,931,9

31,932,933,934,934,935,936,936,937,938,939,939,940,941,941,942,943,943,

944,945,946,946,947,948,948,949,950,950,951,952,952,953,954,954,955,955

,956,957,957,958,959,959,960,961,961,962,962,963,964,964,965,965,966,96

7,967,968,968,969,969,970,971,971,972,972,973,973,974,974,975,976,976,9

77,977,978,978,979,979,980,980,981,981,982,982,983,983,984,984,985,985,

986,986,987,987,988,988,989,989,990,990,990,991,991,992,992,993,993,994

,994,994,995,995,996,996,996,997,997,998,998,998,999,999,1000,1000,1000

,1001,1001,1001,1002,1002,1003,1003,1003,1004,1004,1004,1005,1005,100

5,1116,1006,1006,1006,1007,1007,1007,1008,1008,1008,1009,1009,1009,10

09,1010,1010,1010,1011,1011,1011,1011,1012,1012,1012,1013,1013,1013,1

013,1014,1014,1014,1014,1015,1015,1015,1015,1015,1016,1016,1016,1016,

1017,1017,1017,1017,1017,1018,1018,1018,1018,1018,1018,1019,1019,1019

,1019,1019,1019,1020,1020,1020,1020,1020,1020,1020,1021,1021,1021,102

1,1021,1021,1021,1021,1022,1022,1022,1022,1022,1022,1022,1022,1022,10

22,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1

023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1024,1023,

1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023

,1023,1023,1023,1023,1023,1023,1023,1023,1023,1023,1022,1022,1022,102

2,1022,1022,1022,1022,1022,1022,1021,1021,1021,1021,1021,1021,1021,10

21,1020,1020,1020,1020,1020,1020,1020,1019,1019,1019,1019,1019,1019,1

018,1018,1018,1018,1018,1018,1017,1017,1017,1017,1017,1016,1016,1016,

1016,1015,1015,1015,1015,1015,1014,1014,1014,1014,1013,1013,1013,1013

,1012,1012,1012,1011,1011,1011,1011,1010,1010,1010,1009,1009,1009,100

9,1008,1008,1008,1007,1007,1007,1006,1006,1006,1005,1005,1005,1004,10

04,1004,1003,1003,1003,1002,1002,1001,1001,1001,1000,1000,1000,999,99

9,998,998,998,997,997,996,996,996,995,995,994,994,994,993,993,992,992,9

91,991,990,990,990,989,989,988,988,987,987,986,986,985,985,984,984,983,

983,982,982,981,981,980,980,979,979,978,978,977,977,976,976,975,974,974

,973,973,972,972,971,971,970,969,969,968,968,967,967,966,965,965,964,96

4,963,962,962,961,961,960,959,959,958,957,957,956,955,955,954,954,953,9
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52,952,951,950,950,949,948,948,947,946,946,945,944,943,943,942,941,941,

940,939,939,938,937,936,936,935,934,934,933,932,931,931,930,929,928,928

,927,926,925,925,924,923,922,921,921,920,919,918,918,917,916,915,914, 

914,913,912,911,910,909,909,908,907,906,905,904,904,903,902,901,900,899

,899,898,897,896,895,894,893,892,892,891,890,889,888,887,886,885,885,88

4,883,882,881,880,879,878,877,876,875,874,874,873,872,871,870,869,868,8

67,866,865,864,863,862,861,860,859,858,857,856,855,854,853,852,851,850,

849,848,847,846,845,844,843,842,841,840,839,838,837,836,835,834,833,832

,831,830,829,828,827,826,825,824,823,822,821,819,818,817,816,815,814,81

3,812,811,810,809,808,806,805,804,803,802,801,800,799,798,796,795,794,7

93,792,791,790,789,787,786,785,784,783,782,780,779,778,777,776,775,773,

772,771,770,769,768,766,765,764,763,762,760,759,758,757,756,754,753,752

,751,750,748,747,746,745,744,742,741,740,739,737,736,735,734,732,731,73

0,729,727,726,725,724,722,721,720,719,717,716,715,713,712,711,710,708,7

07,706,704,703,702,700,699,698,697,695,694,693,691,690,689,687,686,685,

683,682,681,679,678,677,675,674,673,671,670,669,667,666,665,663,662,660

,659,658,656,655,654,652,651,649,648,647,645,644,643,641,640,638,637,63

6,634,633,631,630,629,627,626,624,623,621,620,619,617,616,614,613,611,6

10,609,607,606,604,603,601,600,598,597,596,594,593,591,590,588,587,585,

584,582,581,579,578,577,575,574,572,571,569,568,566,565,563,562,560,559

,557,556,554,553,551,550,548,547,545,544,542,541,539,538,536,535,533,53

1,530,528,527,525,524,522,521,519,518,516,515,513,511,510,508,507,505,5

04,502,501,499,498,496,494,493,491,490,488,487,485,483,482,480,479,477,

475,474,472,471,469,468,466,464,463,461,460,458,456,455,453,452,450,448

,447,445,444,442,440,439,437,435,434,432,431,429,427,426,424,423,421,41

9,418,416,414,413,411,409,408,406,405,403,401,400,398,396,395,393,391,3

90,388,386,385,383,381,380,378,376,375,373,371,370,368,366,365,363,361,

360,358,356,355,353,351,350,348,346,345,343,341,340,338,336,335,333,331

,330,328,326,324,323,321,319,318,316,314,313,311,309,307,306,304,302,30

1,299,297,295,294,292,290,289,287,285,283,282,280,278,277,275,273,271,2

70,268,266,265,263,261,259,258,256,254,252,251,249,247,245,244,242,240,

239,237,235,233,232,230,228,226,225,223,221,219,218,216,214,212,211,209
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,207,205,204,202,200,198,197,195,193,191,190,188,186,184,183,181,179,17

7,176,174,172,170,169,167,165,163,161,160,158,156,154,153,151,149,147,1

46,144,142,140,138,137,135,133,131,130,128,126,124,123,121,119,117,115,

114,112,110,108,107,105,103,101,99,98,96,94,92,91,89,87,85,83,82,80,78,76

,74,73,71,69,67,66,64,62,60,58,57,55,53,51,50,48,46,44,42,41,39,37,35,33,32

,30,28,26,25,23,21,19,17,16,14,12,10,8,7,5,3,1,0,-1,-3,-5,-7,-8,-10,-12,-14,-

16,-17,-19,-21,-23,-25,-26,-28,-30,-32,-33,-35,-37,-39,-41,-42,-44,-46,-48,-

50,-51,-53,-55,-57,-58,-60,-62,-64,-66,-67,-69,-71,-73,-74,-76,-78,-80,-82,-

83,-85,-87,-89,-91,-92,-94,-96,-98,-99,-101,-103,-105,-107,-108,-110,-112,-

114,-115,-117,-119,-121,-123,-124,-126,-128,-130,-131,-133,-135,-137,-138,-

140,-142,-144,-146,-147,-149,-151,-153,-154,-156,-158,-160,-161,-163,-165,-

167,-169,-170,-172,-174,-176,-177,-179,-181,-183,-184,-186,-188,-190,-191,-

193,-195,-197,-198,-200,-202,-204,-205,-207,-209,-211,-212,-214,-216,-218,-

219,-221,-223,-225,-226,-228,-230,-232,-233,-235,-237,-239,-240,-242,-244,-

245,-247,-249,-251,-252,-254,-256,-258,-259,-261,-263,-265,-266,-268,-270,-

271,-273,-275,-277,-278,-280,-282,-283,-285,-287,-289,-290,-292,-294,-295,-

297,-299,-301,-302,-304,-306,-307,-309,-311,-313,-314,-316,-318,-319,-321,-

323,-324,-326,-328,-330,-331,-333,-335,-336,-338,-340,-341,-343,-345,-346,-

348,-350,-351,-353,-355,-356,-358,-360,-361,-363,-365,-366,-368,-370,-371,-

373,-375,-376,-378,-380,-381,-383,-385,-386,-388,-390,-391,-393,-395,-396,-

398,-400,-401,-403,-405,-406,-408,-409,-411,-413,-414,-416,-418,-419,-421,-

423,-424,-426,-427,-429,-431,-432,-434,-435,-437,-439,-440,-442,-444,-445,-

447,-448,-450,-452,-453,-455,-456,-458,-460,-461,-463,-464,-466,-468,-469,- 

471,-472,-474,-475,-477,-479,-480,-482,-483,-485,-487,-488,-490,-491,-493,-

494,-496,-498,-499,-501,-502,-504,-505,-507,-508,-510,-511,-513,-515,-516,-

518,-519,-521,-522,-524,-525,-527,-528,-530,-531,-533,-535,-536,-538,-539,-

541,-542,-544,-545,-547,-548,-550,-551,-553,-554,-556,-557,-559,-560,-562,-

563,-565,-566,-568,-569,-571,-572,-574,-575,-577,-578,-579,-581,-582,-584,-

585,-587,-588,-590,-591,-593,-594,-596,-597,-598,-600,-601,-603,-604,-606,-

607,-609,-610,-611,-613,-614,-616,-617,-619,-620,-621,-623,-624,-626,-627,-

629,-630,-631,-633,-634,-636,-637,-638,-640,-641,-643,-644,-645,-647,-648,-

649,-651,-652,-654,-655,-656,-658,-659,-660,-662,-663,-665,-666,-667,-669,-
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670,-671,-673,-674,-675,-677,-678,-679,-681,-682,-683,-685,-686,-687,-689,-

690,-691,-693,-694,-695,-697,-698,-699,-700,-702,-703,-704,-706,-707,-708,-

710,-711,-712,-713,-715,-716,-717,-719,-720,-721,-722,-724,-725,-726,-727,-

729,-730,-731,-732,-734,-735,-736,-737,-739,-740,-741,-742,-744,-745,-746,-

747,-748,-750,-751,-752,-753,-754,-756,-757,-758,-759,-760,-762,-763,-764,-

765,-766,-768,-769,-770,-771,-772,-773,-775,-776,-777,-778,-779,-780,-782,-

783,-784,-785,-786,-787,-789,-790,-791,-792,-793,-794,-795,-796,-798,-799,-

800,-801,-802,-803,-804,-805,-806,-808,-809,-810,-811,-812,-813,-814,-815,- 

816,-817,-818,-819,-821,-822,-823,-824,-825,-826,-827,-828,-829,-830,-831,-

832,-833,-834,-835,-836,-837,-838,-839,-840,-841,-842,-843,-844,-845,-846,-

847,-848,-849,-850,-851,-852,-853,-854,-855,-856,-857,-858,-859,-860,-861,-

862,-863,-864,-865,-866,-867,-868,-869,-870,-871,-872,-873,-874,-874,-875,-

876,-877,-878,-879,-880,-881,-882,-883,-884,-885,-885,-886,-887,-888,-889,-

890,-891,-892,-892,-893,-894,-895,-896,-897,-898,-899,-899,-900,-901,-902,-

903,-904,-904,-905,-906,-907,-908,-909,-909,-910,-911,-912,-913,-914,-914,-

915,-916,-917,-918,-918,-919,-920,-921,-921,-922,-923,-924,-925,-925,-926,-

927,-928,-928,-929,-930,-931,-931,-932,-933,-934,-934,-935,-936,-936,-937,-

938,-939,-939,-940,-941,-941,-942,-943,-943,-944,-945,-946,-946,-947,-948,-

948,-949,-950,-950,-951,-952,-952,-953,-954,-954,-955,-955,-956,-957,-957,-

958,-959,-959,-960,-961,-961,-962,-962,-963,-964,-964,-965,-965,-966,-967,-

967,-968,-968,-969,-969,-970,-971,-971,-972,-972,-973,-973,-974,-974,-975,-

976,-976,-977,-977,-978,-978,-979,-979,-980,-980,-981,-981,-982,-982,-983,-

983,-984,-984,-985,-985,-986,-986,-987,-987,-988,-988,-989,-989,-990,-990,-

990,-991,-991,-992,-992,-993,-993,-994,-994,-994,-995,-995,-996,-996,-996,-

997,-997,-998,-998,-998,-999,-999,-1000,-1000,-1000,-1001,-1001,-1001,- 

1002,-1002,-1003,-1003,-1003,-1004,-1004,-1004,-1005,-1005,-1005,-1006,-

1006,-1006,-1007,-1007,-1007,-1008,-1008,-1008,-1009,-1009,-1009,-1009,-

1010,-1010,-1010,-1011,-1011,-1011,-1011,-1012,-1012,-1012,-1013,-1013,-

1013,-1013,-1014,-1014,-1014,-1014,-1015,-1015,-1015,-1015,-1015,-1016,-

1016,-1016,-1016,-1017,-1017,-1017,-1017,1017,-1018,-1018,-1018,-1018,-

1018,-1018,-1019,-1019,-1019,-1019,-1019,-1019,-1020,-1020,-1020,-1020,-

1020,-1020,-1020,-1021,-1021,-1021,-1021,-1021,-1021,-1021,-1021,-1022,-
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1022,-1022,-1022,-1022,-1022,-1022,-1022,-1022,-1022,-1023,-1023,-1023,-

1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-

1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1024,-1023,-

1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-

1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-1023,-

1022,-1022,-1022,-1022,-1022,-1022,-1022,-1022,-1022,-1022,-1021,-1021,- 

1021,-1021,-1021,-1021,-1021,-1021,-1020,-1020,-1020,-1020,-1020,-1020,-

1020,-1019,-1019,-1019,-1019,-1019,-1019,-1018,-1018,-1018,-1018,-1018,-

1018,-1017,-1017,-1017,-1017,-1017,-1016,-1016,-1016,-1016,-1015,-1015,-

1015,-1015,-1015,-1014,-1014,-1014,-1014,-1013,-1013,-1013,-1013,-1012,-

1012,-1012,-1011,-1011,-1011,-1011,-1010,-1010,-1010,-1009,-1009,-1009,-

1009,-1008,-1008,-1008,-1007,-1007,-1007,-1006,-1006,-1006,-1005,-1005,-

1005,-1004,-1004,-1004,-1003,-1003,-1003,-1002,-1002,-1001,-1001,-1001,-

1000,-1000,-1000,-999,-999,-998,-998,-998,-997,-997,-996,-996,-996,-995,-

995,-994,-994,-994,-993,-993,-992,-992,-991,-991,-990,-990,-990,-989,-989,-

988,-988,-987,-987,-986,-986,-985,-985,-984,-984,-983,-983,-982,-982,-981,-

981,-980,-980,-979,-979,-978,-978,-977,-977,-976,-976,-975,-974,-974,-973,- 

973,-972,-972,-971,-971,-970,-969,-969,-968,-968,-967,-967,-966,-965,-965,-

964,-964,-963,-962,-962,-961,-961,-960,-959,-959,-958,-957,-957,-956,-955,-

955,-954,-954,-953,-952,-952,-951,-950,-950,-949,-948,-948,-947,-946,-946,-

945,-944,-943,-943,-942,-941,-941,-940,-939,-939,-938,-937,-936,-936,-935,-

934,-934,-933,-932,-931,-931,-930,-929,-928,-928,-927,-926,-925,-925,-924,-

923,-922,-921,-921,-920,-919,-918,-918,-917,-916,-915,-914,-914,-913,-912,-

911,-910,-909,-909,-908,-907,-906,-905,-904,-904,-903,-902,-901,-900,-899,-

899,-898,-897,-896,-895,-894,-893,-892,-892,-891,-890,-889,-888,-887,- 

886,-885,-885,-884,-883,-882,-881,-880,-879,-878,-877,-876,-875,-874,-874,-

873,-872,-871,-870,-869,-868,-867,-866,-865,-864,-863,-862,-861,-860,-859,-

858,-857,-856,-855,-854,-853,-852,-851,-850,-849,-848,-847,-846,-845,-844,-

843,-842,-841,-840,-839,-838,-837,-836,-835,-834,-833,-832,-831,-830,-829,-

828,-827,-826,-825,-824,-823,-822,-821,-819,-818,-817,-816,-815,-814,-813,-

812,-811,-810,-809,-808,-806,-805,-804,-803,-802,-801,-800,-799,-798,-796,-

795,-794,-793,-792,-791,-790,-789,-787,-786,-785,-784,-783,-782,-780,-779,-
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778,-777,-776,-775,-773,-772,-771,-770,-769,-768,-766,-765,-764,-763,-762,-

760,-759,-758,-757,-756,-754,-753,-752,-751,-750,-748,-747,-746,-745,-744,-

742,-741,-740,-739,-737,-736,-735,-734,-732,-731,-730,-729,-727,-726,-725,-

724,-722,-721,-720,-719,-717,-716,-715,-713,-712,-711,-710,-708,-707,-706,-

704,-703,-702,-700,-699,-698,-697,-695,-694,-693,-691,-690,-689,-687,-686,-

685,-683,-682,-681,-679,-678,-677,-675,-674,-673,-671,-670,-669,-667,-666,-

665,-663,-662,-660,-659,-658,-656,-655,-654,-652,-651,-649,-648,-647,-645,-

644,-643,-1641,-640,-638,-637,-636,-634,-633,-631,-630,-629,-627,-626,-

624,-623,-621,-620,-619,-617,-616,-614,-613,-611,-610,-609,-607,-606,-604,-

603,-601,-600,-598,-597,-596,-594,-593,-591,-590,-588,-587,-585,-584,-582,- 

581,-579,-578,-577,-575,-574,-572,-571,-569,-568,-566,-565,-563,-562,-560,-

559,-557,-556,-554,-553,-551,-550,-548,-547,-545,-544,-542,-541,-539,-538,-

536,-535,-533,-531,-530,-528,-527,-525,-524,-522,-521,-519,-518,-516,-515,-

513,-512,-510,-508,-507,-505,-504,-502,-501,-499,-498,-496,-494,-493,-491,-

490,-488,-487,-485,-483,-482,-480,-479,-477,-475,-474,-472,-471,-469,-468,-

466,-464,-463,-461,-460,-458,-456,-455,-453,-452,-450,-448,-447,-445,-444,-

442,-440,-439,-437,-435,-434,-432,-431,-429,-427,-426,-424,-423,-421,-419,-

418,-416,-414,-413,-411,-409,-408,-406,-405,-403,-401,-400,-398,-396,-395,-

393,-391,-390,-388,-386,-385,-383,-381,-380,-378,-376,-375,-373,-371,-370,-

368,-366,-365,-363,-361,-360,-358,-356,-355,-353,-351,-350,-348,-346,-345,-

343,-341,-340,-338,-336,-335,-333,-331,-330,-328,-326,-324,-323,-321,-319,-

318,-316,-314,-313,-311,-309,-307,-306,-304,-302,-301,-299,-297,-295,-294,-

292,-290,-289,-287,-285,-283,-282,-280,-278,-277,-275,-273,-271,-270,-268,-

266,-265,-263,-261,-259,-258,-256,-254,-252,-251,-249,-247,-245,-244,-242,-

240,-239,-237,-235,-233,-232,-230,-228,-226,-225,-223,-221,-219,-218,-216,-

214,-212,-211,-209,-207,-205,-204,-202,-200,-198,-197,-195,-193,-191,-190,-

188,-186,-184,-183,-181,-179,-177,-176,-174,-172,-170,-169,-167,-165,-163,- 

161,-160,-158,-156,-154,-153,-151,-149,-147,-146,-144,-142,-140,-138,-137,-

135,-133,-131,-130,-128,-126,-124,-123,-121,-119,-117,-115,-114,-112,-110,-

108,-107,-105,-103,-101,-99,-98,-96,-94,-92,-91,-89,-87,-85,-83,-82,-80,-78,-

76,-74,-73,-71,-69,-67,-66,-64,-62,-60,-58,-57,-55,-53,-51,-50,-48,-46,-44,-
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42,-41,-39,-37,-35,-33,-32,-30,-28,-26,-25,-23,-21,-19,-17,-16,-14,-12,-10,-8,-

7,-5,-3,-1,0); 

begin 

process (clk) 

begin  

if (rising_edge(clk)) then 

if (count= 139)then  

clk_out <= not (clk_out); 

count <= 0; 

else 

count <= count+1; 

end if; 

if (count1= 555/8)then  

clk_out1 <= not (clk_out1); 

count1 <= 0; 

else 

count1 <= count1+1; 

end if; 

end if; 

end process; 

process(clk) 

begin 

 if(rising_edge(clk_out)) then 

sine1 <= sine(a); 

sine4 <= sine(d); 

sine7 <= sine(g); 

a <= a+ 1; 

d <= d+ 1; 

g <= g+ 1; 

if(a = 3599) then 

a <= 0; 

end if; 
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if(d = 3599) then 

d <= 0; 

end if; 

if(g = 3599) then 

g <= 0; 

end if; 

end if; 

end process; 

process(clk) 

begin 

if(rising_edge(clk_out)) then 

if(sine1 > sine4 and sine1 > sine7) then 

  max1 <= sine1; 

    if (sine4 > sine7)then 

       min1 <= sine7; 

      else 

      min1 <= sine4; 

 end if; 

    elsif(sine4 > sine1 and sine4 > sine7) then 

       max1<= sine4; 

        if (sine1 > sine7)then 

        min1 <= sine7; 

        else 

        min1 <= sine1; 

    end if; 

    elsif(sine7 > sine1 and sine7 >sine4) then 

        max1 <= sine7; 

        if (sine1 > sine4)then 

        min1 <= sine4; 

        else 

        min1 <= sine1; 

    end if; 
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end if; 

end process; 

process(clk) 

begin 

if(rising edge(clk_out1)) then 

z <= z+1; 

y <= y+1; 

x <= x+1; 

w <= w+1; 

v <= v+1; 

j <= j + 1; 

k <= k + 1; 

--l <= l + 1; 

--m <= m + 1; 

--n <= n + 1; 

--o <= o + 1; 

if(j = 179) then 

j <= 0; 

end if; 

if(k = 179) then 

k <= 0; 

end if; 

if (x <= 90) then 

btrig2 <= x*6; 

elsif ((x >=90) and (x<=(180))) then 

btrig2 <= (180-x)*6; 

elsif (x>=180) then 

x<= 0; 

end if; 

btrig3 <= -btrig2; 

btrig1 <=(btrig2+540); 

btrig4 <=(btrig3-540); 
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end if; 

end process; 

process(clk) 

begin 

 if(rising_edge(clk_out1)) then 

  if (sine1 > btrig1) then 

  a1 <= '1'; 

  else 

  a1 <='0'; 

  end if; 

    if (sine1 <= btrig1) then 

  a2 <= '1'; 

  else 

  a2 <='0'; 

  end if; 

    if (sine1 > btrig2) then 

  a3 <= '1'; 

  else 

  a3 <='0'; 

  end if; 

   

  if (sine1 <= btrig2) then 

   a4 <= '1'; 

   else 

   a4 <= '0'; 

   end if;    

   if (sine1 > btrig3) then 

   a5 <= '1'; 

   else 

   a5 <= '0'; 

   end if;   

   if (sine1 <= btrig3) then 
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   a6 <= '1'; 

   else 

   a6 <= '0'; 

   end if; 

   if (sine1 > btrig4) then 

   a7 <= '1'; 

   else 

   a7 <= '0'; 

   end if; 

   if (sine1 <= btrig4) then 

   a8 <= '1'; 

   else 

   a8 <= '0'; 

   end if; 

  if (sine4 > btrig1) then 

   a9 <= '1'; 

   else 

   a9 <='0'; 

   end if; 

 if (sine4 <= btrig1) then 

  a10 <= '1'; 

 else 

  a10 <='0'; 

 end if; 

if (sine4 > btrig2) then 

  a11 <= '1'; 

 else 

  a11 <='0'; 

 end if; 

  if (sine4 <= btrig2) then 

    a12 <= '1'; 

  else 
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    a12 <= '0'; 

  end if;    

  if (sine4 > btrig3) then 

   a13 <= '1'; 

  else 

   a13 <= '0'; 

  end if;   

  if (sine4 <= btrig3) then 

   a14 <= '1'; 

  else 

   a14 <= '0'; 

  end if; 

  if (sine4 > btrig4) then 

   a15 <= '1'; 

  else 

   a15 <= '0'; 

  end if; 

  if (sine4 <= btrig4) then 

   a16 <= '1'; 

  else 

   a16 <= '0'; 

   end if; 

if (sine7 > btrig1) then 

   a17 <= '1'; 

  else 

   a17 <='0'; 

  end if; 

if (sine7 <= btrig1) then 

  a18 <= '1'; 

else 

  a18 <='0'; 

end if; 
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if (sine7 > btrig2) then 

  a19 <= '1'; 

 else 

  a19 <='0'; 

end if; 

 if (sine7 <= btrig2) then 

    a20 <= '1'; 

 else 

    a20 <= '0'; 

 end if;    

 if (sine7 > btrig3) then 

   a21 <= '1'; 

 else 

   a21 <= '0'; 

 end if;   

 if (sine7 <= btrig3) then 

   a22 <= '1'; 

 else 

   a22 <= '0'; 

 end if; 

 if (sine7 > btrig4) then 

   a23 <= '1'; 

 else 

   a23 <= '0'; 

 end if; 

 if (sine7 <= btrig4) then 

   a24 <= '1'; 

 else 

   a24 <= '0'; 

   end if; 

   pwm1 <= a1 or (a2 and a3) or (a4 and a5); 

   pwm2 <= a1 or (a2 and a3) or (a4 and a5); 
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   pwm3 <= (a6 and a7) or a8;  

   pwm4 <= (a6 and a7) or a8; 

   pwm5 <= (a2 and a3) or (a6 and a7); 

   pwm6 <= (a4 and a5) or a8; 

   pwm7 <= a1; 

   pwm8 <= a9 or (a10 and a11) or (a12 and a13); 

   pwm9 <= a9 or (a10 and a11) or (a12 and a13); 

   pwm10 <= (a14 and a15) or a16; 

   pwm11 <= (a14 and a15) or a16; 

   pwm12 <= (a10 and a11) or (a14 and a15); 

   pwm13 <= (a12 and a13) or a16; 

   pwm14 <= a9; 

   pwm15 <= a17 or (a18 and a19) or (a20 and a21); 

   pwm16 <= a17 or (a18 and a19) or (a20 and a21); 

   pwm17 <= (a22 and a23) or a24; 

   pwm18 <= (a22 and a23) or a24; 

   pwm19 <= (a18 and a19) or (a22 and a23); 

   pwm20 <= (a20 and a21) or a24; 

   pwm21 <= a17; 

       end if; 

   end process; 

end Behavioral; 
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VHDL PROGRAM FOR DECOUPLED SVPWM 

-------------------------------------------------------------------- 

library ieee; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL;  --try to use this library as much as possible. 

entity dual1 is 

port (clk :in  std_logic; 

      pwm1 : out std_logic; 

      pwm2 : out std_logic; 

      pwm3 : out std_logic; 

      pwm4 : out std_logic; 

      pwm5 : out std_logic; 

      pwm6 : out std_logic; 

      pwm7 : out std_logic; 

      pwm8 : out std_logic; 

      pwm9 : out std_logic; 

      pwm10 : out std_logic; 

      pwm11 : out std_logic; 

      pwm12: out std_logic 

); 

end dual1; 

architecture Behavioral of dual1 is 

signal a : integer range 0 to 3600:=0; 

signal d : integer range 0 to 3600:=2400; 

signal g : integer range 0 to 3600:=1200; 

signal sine1 : integer range -2047 to 2047:=0; 

signal sine4 : integer range -2047 to 2047:=0; 
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signal sine7 : integer range -2047 to 2047:=0; 

signal sv1 : integer range -2047 to 2047:=0; 

signal sv4 : integer range -2047 to 2047:=0; 

signal sv7 : integer range -2047 to 2047:=0; 

signal s1 : integer range -2047 to 2047:=0; 

signal s2 : integer range -2047 to 2047:=0; 

signal s3 : integer range -2047 to 2047:=0; 

signal max1 : integer :=0; 

signal min1 : integer :=0; 

signal max2 : integer :=0; 

signal min2 : integer :=0; 

signal max3 : integer :=0; 

signal min3 : integer :=0; 

signal tring1 : integer :=0; 

signal tring2 : integer :=0; 

signal btrig : integer :=0; 

signal btrig1 : integer :=0; 

signal btrig2 : integer :=0; 

signal btrig3 : integer :=0; 

signal btrig4 : integer :=0; 

signal btrig5 : integer :=0; 

signal btrig6 : integer :=0; 

signal btrig7 : integer :=0; 

signal btrig8 : integer :=0; 

signal btrig9 : integer :=0; 

signal z :integer :=0; 

signal y :integer :=0; 

signal x :integer :=0; 



130 

signal w :integer :=0; 

signal v :integer :=0; 

signal clk_out : std_logic:='0'; 

signal a1 : std_logic:='0'; 

signal a2 : std_logic:='0'; 

signal a3 : std_logic:='0'; 

signal a4 : std_logic:='0'; 

signal a5 : std_logic:='0'; 

signal a6 : std_logic:='0'; 

signal a7 : std_logic:='0'; 

signal a8 : std_logic:='0'; 

signal a9 : std_logic:='0'; 

signal a10 : std_logic:='0'; 

signal a11 : std_logic:='0'; 

signal a12 : std_logic:='0'; 

signal a13 : std_logic:='0'; 

signal a14 : std_logic:='0'; 

signal a15 : std_logic:='0'; 

signal count : integer range 0 to 5555 :=0; 

signal clk_out1 : std_logic:='0'; 

signal count1 : integer range 0 to 5555 :=0; 

signal j : integer range 0 to 180:=0; 

signal k : integer range 0 to 180:=90; 

type memory_type1 is array (0 to 180) of integer range -2047 to 2047; 

type memory_type is array (0 to 3600) of integer range -2047 to 2047; 

 signal sine : memory type :=   

( same as previous program); 

begin 
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process (clk) 

begin  

if (rising_edge(clk)) then 

if (count= 555/4)then  

clk_out <= not (clk_out); 

count <= 0; 

else 

count <= count+1; 

end if; 

if (count1= 555/16)then  

clk_out1 <= not (clk_out1); 

count1 <= 0; 

else 

count1 <= count1+1; 

end if; 

end if; 

end process; 

process(clk) 

begin 

if(rising_edge(clk_out)) then 

sine1 <= sine(a); 

sine4 <= sine(d); 

sine7 <= sine(g); 

a <= a+ 1; 

d <= d+ 1; 

g <= g+ 1; 

if(a = 3599) then 

a <= 0; 

end if; 

if(d = 3599) then 

d <= 0; 

end if; 
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if(g = 3599) then 

g <= 0; 

end if; 

end if; 

end process; 

process(clk) 

begin 

if(rising_edge(clk_out)) then 

if(sine1 > sine4 and sine1 > sine7) then 

  max1 <= sine1; 

    if (sine4 > sine7)then 

       min1 <= sine7; 

      else 

      min1 <= sine4; 

 end if; 

    elsif(sine4 > sine1 and sine4 > sine7) then 

       max1<= sine4; 

        if (sine1 > sine7)then 

        min1 <= sine7; 

        else 

        min1 <= sine1; 

    end if; 

    elsif(sine7 > sine1 and sine7 >sine4) then 

        max1 <= sine7; 

        if (sine1 > sine4)then 

        min1 <= sine4; 

        else 

        min1 <= sine1; 

    end if; 

end if; 

sv1 <= sine1+(-(max1+min1)/2); 

sv4 <= sine4+(-(max1+min1)/2); 
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sv7 <= sine7+(-(max1+min1)/2); 

end if; 

end process; 

process(clk) 

begin 

if(rising_edge(clk_out)) then 

s1 <= -sv1; 

s2 <= -sv4; 

s3 <= -sv7; 

end if; 

end process; 

process(clk) 

begin 

if(rising_edge(clk_out1)) then 

z <= z+1; 

y <= y+1; 

x <= x+1; 

w <= w+1; 

v <= v+1; 

tring1 <= trig1(j); 

tring2 <= -trig1(k); 

j <= j + 1; 

k <= k + 1; 

if(j = 179) then 

j <= 0; 

end if; 

if(k = 179) then 

k <= 0; 

end if; 

if (z <= 45) then 

btrig <= z*28; 

elsif ((z > 45) and (z<=90)) then 
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btrig <= (90-z)*28; 

elsif ((z > 90) and (z<=135)) then 

btrig <= -(z-90)*28; 

elsif ((z > 135) and (z<=180)) then 

btrig <= -(180-z)*28; 

elsif (z>=180) then 

z<=0; 

end if; 

--sixty degree triangle--- 

if (y <= 45) then 

btrig1 <= y*66; 

elsif ((y > 45) and (y<=90)) then 

btrig1 <= (90-y)*66; 

elsif ((y > 90) and (y<=135)) then 

btrig1 <= -(y-90)*66; 

elsif ((y > 135) and (y<=180)) then 

btrig1 <= -(180-y)*66; 

elsif (y>=180) then 

y<=0; 

end if; 

--120 degree triangle-- 

if (x <= 45) then 

btrig2 <= x*40; 

elsif ((x > 45) and (x<=90)) then 

btrig2 <= (90-x)*40; 

elsif ((x > 90) and (x<=135)) then 

btrig2 <= -(x-90)*40; 

elsif ((x > 135) and (x<=180)) then 

btrig2 <= -(180-x)*40; 

elsif (x>=180) then 

x<=0; 

end if; 
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if (w <= 51) then 

btrig9 <= w*10; 

elsif ((w < 51) and (w<=-51)) then 

btrig9 <= (-51+w)*10; 

elsif (w>=-51) then 

w<=51; 

end if; 

btrig4 <= (btrig9 + 357); 

btrig5 <= (btrig9 + 714); 

btrig7 <= -(btrig9 + 351); 

btrig8 <= -(btrig9 + 714); 

if (x <= 90) then 

btrig6 <= (45-x)*22; 

elsif ((x > 90) and (x<=(180))) then 

btrig6 <= -(135-x)*22; 

elsif (x>180) then 

x<= 0; 

end if; 

btrig3 <= -btrig6; 

end if; 

end process; 

process(clk) 

begin 

  if(rising_edge(clk_out)) then 

  if (sv1 > btrig) then 

  pwm1 <= '1'; 

  else 

  pwm1 <='0'; 

  end if; 

    if (sv4 > btrig) then 

  pwm2 <= '1'; 

  else 
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  pwm2 <='0'; 

  end if; 

    if (sv7 > btrig) then 

  pwm3 <= '1'; 

  else 

  pwm3 <='0'; 

  end if; 

    if (s1 > btrig1) then 

   pwm5 <= '1'; 

   else 

   pwm5 <= '0'; 

   end if;    

   if (s2 > btrig1) then 

   pwm6 <= '1'; 

   else 

   pwm6 <= '0'; 

   end if;   

   if (s3 > btrig1) then 

   pwm7 <= '1'; 

   else 

   pwm7 <= '0'; 

   end if; 

 pwm4 <='0'; 

 pwm8 <='0'; 

 pwm9 <='0'; 

 pwm10 <='0'; 

 pwm11 <='0'; 

 pwm12 <='0'; 

         end if; 

   end process; 

end Behavioral; 
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