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One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen
being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may
be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion
methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of
algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced
in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET).

1. Introduction

Electron Microscopy has been established as one of the key
players in Structural Biology with the goal of elucidating the
three-dimensional structure of macromolecular complexes
in order to better understand their function and molecular
mechanisms [1–3]. One of the most important steps in the
image processing pipeline is the 3D reconstruction of a map
compatible with the projections acquired at the microscope
[4]. In practice, projections of the macromolecule are con-
taminated by a huge amount of noise (typical Signal-to-Noise
Ratios in the order of 0.01; i.e., there is 100 times more
noise power than signal power, Hosseinizadeh et al. [5]), and
the 3D reconstruction emerges, in a simplified way, as the
3D “average” of thousands of projections, each one looking
at the molecule from a different point of view [4]. In the
3D space, the signal coming from the macromolecules is
reinforced by the averaging process. However, random noise
tends to be canceled by this averaging. Currently, the 3D
reconstruction step is no longer seen as a limiting step (except

for its execution time) in Single Particle Analysis due to
the large number of particles involved in the reconstruction
(between tens andhundreds of thousands), anddirect Fourier
inversion methods are currently the standard de facto [6–
8]. These latter methods are especially well suited to handle
a large number of projections thanks to their computational
speed and their accuracy when the angular coverage of the
set of projections fully fills the 3D Fourier space, which
is currently normally the case in SPA (a word of caution
should be expressed in those cases in which subsequent
rounds of 3D classification significantly reduce the number
of images per 3D class). However, in the past, there was an
intense work of research in selecting the best reconstruction
algorithm between four different families of reconstruction
algorithms: (1) direct Fourier inversion [6–8], (2) back-
projection algorithms [9–18], (3) iterative algorithms [19–43],
and (4) Radon inversion methods [44–46].

The situation in Electron Tomography (ET) is, in general,
specially involved, due to the combined effect of a smaller
number of projection images, the existence of a missing
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wedge, and the fact that images are very large, posing an
important challenge to the computational resources (espe-
cially in terms of memory; for a comparison between Single
Particle Analysis and Electron Tomography, see Jonic et al.
[47]). The research of 3D reconstruction algorithms trying
to reduce reconstruction artifacts and the execution time
has been rather intense, especially in the last decade [48–
61]. Similarly, pure reconstruction algorithms in ET may be
combined with a priori information incorporating the fact
that the reconstruction is sparse in somedomain or exploiting
the discrete nature of the object being imaged [62–76].

In this review, we focus on the family of iterative recon-
struction algorithms, also known as series expansion meth-
ods. The classical algorithms (ART, Block ART, and SIRT)
have been followed by a number of more modern algorithms
like Conjugate Gradient, Subgradient Descent, Projected
Subgradient, Superiorization, ADMM, and so forth, allowing
all kinds of regularizationswith a special emphasis on sparsity
promoting regularizers. We start by showing how the 3D
reconstruction problem can be posed as a problem of solving
a linear system of equations. Then, we put the more classical
methods in a common algebraic framework. Finally, we
introduce the rationale behind the more modern methods.

2. 3D Reconstruction as an Equation
System Problem

Images collected by the electron microscope can be under-
stood as the parallel projection of the Coulomb potential of
the macromolecule being imaged. The relationship between
the 3D model, 𝑉(r̃) : R3 × 1 → R, and a projection image,𝐼(s̃) : R2 × 1 → R, is given by [77]𝐼�퐴 (s̃) = ∫∞

−∞
𝑉(𝐴−1𝐻̃�푇s̃) 𝑑𝑡, (1)

where r̃ = (𝑥, 𝑦, 𝑧, 1) and s̃ = (𝑥, 𝑦, 1) are the homogeneous
coordinates of a 3D point and a 2D point, respectively; 𝐻̃�푇 is

𝐻̃�푇 = (1 0 00 1 00 0 𝑡0 0 1) , (2)

with 𝑡 being the integration variable, and

𝐴 = (𝑟11 𝑟12 𝑟13 𝑡�푥𝑟21 𝑟22 𝑟23 𝑡�푦𝑟31 𝑟32 𝑟33 00 0 0 1) = (𝑅 t

0�푇 1) (3)

is the matrix that specifies the point of view from where the
projection has been taken (𝑅 is a rotation matrix normally
specified by 3 Euler angles and t is an in-plane displacement).
Every projection has its own matrix 𝐴 reflecting the different
projection directions and individual shifts of each image.

In practice, this ideal image is never observed but it
is corrupted by random noise (whose nature is related to

the structure of the ice surrounding the macromolecule, the
random arrival of electrons, etc.) and the projected image is
not known at any position s̃ but at a discrete set of positions
(s̃�푖, normally the centers of the pixels of the acquired image).
In this way, we may rewrite the above equation as𝐼�퐴,�푖 = 𝐼�퐴 (s̃�푖) = ∫∞

−∞
𝑉(𝐴−1𝐻̃�푇s̃�푖) 𝑑𝑡 + 𝑛�푖. (4)

Note that this image formation model uses additive noise,
since the main source of noise is not the low number
of electron counts at each pixel but the structure of the
amorphous ice embedding the molecule. This noise has a
Gaussian distribution as was shown in [78].

Let us assume now that we express the volume as a
linear combination of functions, 𝑏(r̃), shifted to a set of
known positions r̃�푗 (e.g., usually these positions are regularly
distributed on a grid [30]):𝑉 (r̃) = ∑

�푗

𝑥�푗𝑏 (r̃ − r̃�푗) . (5)

The basis functions may be voxels or any other function
with some interesting property from the tomographic point
of view (for instance, Kaiser-Bessel modified functions, also
known as blobs, [32, 36] are known to reduce the noise in the
3D reconstruction).

The goal of the tomographic problem is to determine the
basis coefficients, 𝑥�푗, such that the experimental projection
is actually the line integral of the volume 𝑉. Substituting (5)
into (4) and disregarding the noise term (it will be recovered
later), we have𝐼�퐴,�푖 = ∫∞

−∞
𝑉(𝐴−1𝐻̃�푇s̃�푖) 𝑑𝑡

= ∫∞
−∞

(∑
�푗

𝑥�푗𝑏 (𝐴−1𝐻̃�푇s̃�푖 − r̃�푗))𝑑𝑡
= ∑

�푗

𝑥�푗 (∫∞
−∞

𝑏 (𝐴−1𝐻̃�푇s̃�푖 − r̃�푗) 𝑑𝑡) = ∑
�푗

𝑥�푗𝑎�퐴,�푖�푗,
(6)

where 𝑎�퐴,�푖�푗 is the line integral of the basis function located
at r̃�푗 at the location s̃�푖 along the direction determined by
the geometrical transformation𝐴, that is, the contribution of
the 𝑗-th basis function of the volume to the 𝑖-th pixel in the
image. Wemay write the image pixels in a single vector using
lexicographical order and we may rewrite the above equation
in a matrix form:

I�퐴 = 𝐴�퐴x. (7)

If we have images of size 𝑃 × 𝑃 pixels and assuming that the
volume is reconstructed in a cube of size 𝐵×𝐵×𝐵, then I�퐴 ∈
R�푃
2

is a vector in a space of dimension 𝑃2, x ∈ R�퐵
3

is a vector
in a space of dimension 𝐵3, and𝐴�퐴 is a matrix of size 𝑃2×𝐵3.
If we look again at the pixel level, we may write𝐼�퐴,�푖 = a�푇

�퐴,�푖
x = ⟨a�퐴,�푖, x⟩ , (8)
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where a�푇
�퐴,�푖

is the 𝑖-th rowof thematrix𝐴�퐴.This is the equation
of a hyperplane in the R�퐵

3

space, meaning that every single
pixel of the projection image provides a hyperplane constraint
for locating the volume coefficients x. The true x, in the
ideal noiseless case, must be at the intersection of all the
hyperplanes defined by all pixels (the noise observed in the
measurements simply randomly shifts each hyperplane along
the direction perpendicular to the hyperplane normal). In
this way, a single projection provides 𝑃2 equations, but we
have 𝐵3 unknowns so that there is an infinite number of
structures compatible with a single projection. In Electron
Microscopy (EM), we collect thousands of projection images
(let us say𝑀) and wemay stack all the measurements in a big
vector. The corresponding equation system would then be

(
(

I�퐴1
I�퐴2...
I�퐴𝑀

)
)

= (
(

𝐴�퐴1𝐴�퐴2...𝐴�퐴𝑀
)
)

x (9)

which in general can be written as the linear equation system

b = 𝐴x, (10)

where b ∈ R�푀�푃
2

is a vector collecting all the experimental
images and 𝐴 is a matrix of size 𝑀𝑃2 × 𝐵3 collecting all
the projection matrices. Note that this matrix is very sparse
since, for common basis functions like voxels, blobs, and
so forth, just a few coefficients in the volume contribute to
each pixel (only those coefficients along the integration line
passing through that pixel). Just to give some typical numbers
in EM, Let us say we have𝑀 = 50,000 images of size 𝑃 × 𝑃 =256 × 256. We would have 𝑀𝑃2 = 3.3 billion equations and𝐵3 = 𝑃3 = 16.8million unknowns (if voxels are used as basis
function). The equation system is inconsistent because of the
measurement noise and some kind of least squares solution
must be sought [79]. We will do so in the next section.

We have presented the linear equation system only in
connection to the data collection geometry. However, the
Contrast Transfer Function (CTF) of the microscope (i.e.,
how the microscope blurs the ideal images) can easily be
incorporated.The convolution can be represented by amatrix
multiplication using a Toeplitz matrix, such that instead of
the𝐴�퐴matrices that contain purely geometrical information
we may use the matrices 𝐶𝐴�퐴, where 𝐶 is the CTF Toeplitz
matrix (each experimental image may have its own CTF
matrix).

Interestingly, posing the tomographic problem as a linear
equation system can also be done in Fourier space.Thanks to
the Central Slice Theorem, the relationship between the 3D
Fourier transform of the macromolecule model and the 2D
Fourier transform of the projection can be expressed as [77]𝐼�퐴 (S̃) = 𝑒−�푖⟨S̃,�퐻0�푅t⟩𝑉̂ (𝐴�耠�푇𝐻̃�푇

0 S̃) , (11)

where 𝐴�耠 = ( �푅 0
0𝑇 1 ), 𝐻̃0 is the matrix defined at (2) with 𝑡 = 0,

and 𝐻0 is the same matrix except the last row (the one

adding its homogeneous nature). S̃ is the 2D frequency
coordinate and 𝐼�퐴 and 𝑉̂ are the 2D and 3D Fourier
transforms of the projection image and the macromolecular
model, respectively. Equation (11) means that, to evaluate
the Fourier coefficient at the 2D frequency coordinate S̃, we
need to evaluate the Fourier transform of the volume at the
coordinate 𝐴�耠�푇𝐻̃�푇

0 S̃ and then multiply by the corresponding
phase term, 𝑒−�푖⟨S̃,�퐻0�푅t⟩, to account for the shift in the images.
In practice, we do not have the Fourier transform of the
volume at any possible location. We will have to interpolate
its value from the 3D Fourier coefficients in its surroundings.
Let us concentrate at the frequency S̃�푗 and let us call the
corresponding 2D Fourier coefficient 𝐼�푗. Let us refer to the𝑗-th 3D Fourier coefficient by 𝑉̂�푗. Then, we may interpolate
the 2D Fourier coefficient as𝐼�푖 = ∑

�푗

𝑉̂�푗𝑎�퐴,�푖�푗, (12)

where the terms 𝑎�퐴,�푖�푗 comprise the phase shift as well as
the interpolation weights. This equation is formally identical
to (6), meaning that the 3D reconstruction problem in
Fourier space can also be expressed as a linear system of
equations, and we have to be careful to perform the complex
interpolation. Actually, this is the position taken in Scheres
[80] and Chen and Förster [59]. Including the CTF in this
framework is even easier than in the real space case, since it
suffices to multiply the 𝑎�퐴,�푖�푗 terms by the 𝑐�푖 CTF coefficients.

3. (Weighted) Least Squares Solution

Given the inconsistent equation system 𝐴x = b, we may
try to look for the x that minimizes its distance to all the
hyperplanes given by the experimentally measured pixel
values. This is achieved by minimizing the norm of the
residuals vectors 𝐴x − b. In tomographic terms, 𝐴x may be
interpreted as the expected experimental projections given
a macromolecular model x, while b are the experimentally
measured projections. The idea is to find the model x
such that its reprojections are as similar as possible to the
experimentally acquired images. The residual of the compar-
ison between the experimental images and the reprojections
should be just the noise present in the experimental images:

x = argmin
x

‖𝐴x − b‖2 , (13)

where the norm is calculated using the standard inner
product: ‖u‖2 = ⟨u, u⟩ = u�푇u. (14)

This is a linear least squares problem. Note that the solution
is not unique (any vector x0 in the kernel of the matrix𝐴 will
yield the same error norm, because 𝐴(x + x0) = 𝐴x + 0 =𝐴x). In practice, x0 refers to any structure whose Fourier
coefficients are in areas not measured by the experimental
images. Developing the norm in the optimization problem,



4 BioMed Research International

we have

x = argmin
x

(𝐴x − b)�푇 (𝐴x − b)= argmin
x

‖b‖2 + x�푇𝐴�푇𝐴x − 2x�푇𝐴�푇b. (15)

If we now differentiate and equate to 0, we have𝜕 ‖𝐴x − b‖2𝜕x = 2𝐴�푇𝐴x − 2𝐴�푇b = 0 (16)

or equivalently 𝐴�푇𝐴x = 𝐴�푇b. (17)

This latter equation is known as the normal equation of the
least squares problem. It can be shown that any solution of
the normal equations is also a solution of the least squares
problem, and, conversely, any solution of the least squares
problem must also be a solution of the normal equations [81,
Chapter 6]. Except for degenerate cases, 𝐴�푇𝐴 is a positive
definite matrix, implying that the matrix is invertible, and
consequently the normal equations have a unique solution.
For complex numbers, the norm is defined as‖u‖2 = u�퐻u (18)

with 𝐻 being the conjugate transpose, so that the normal
equations in Fourier space would be𝐴�퐻𝐴x = 𝐴�퐻b. (19)

We may now introduce weights in the minimization if
there are some measurements that are more reliable than
others (in real space, this is more difficult, but in Fourier
space, low frequency components are overrepresented with
respect to high frequency ones and they are consequently
downweighted, Chen and Förster [59]). Given a diagonal,
positive definite matrix𝑊 of size𝑀𝑃2 ×𝑀𝑃2, we may define
the𝑊 inner product as⟨u, k⟩�푊 = u�퐻𝑊k. (20)

The normal equations become in this case𝐴�퐻𝑊𝐴x = 𝐴�퐻𝑊b. (21)

The most straightforward approach to solving this equa-
tion system is the use of the Moore-Penrose pseudoinverse:

x = (𝐴�퐻𝑊𝐴)−1 𝐴�퐻𝑊b = 𝐴†b. (22)

Thematrix𝐴�퐻𝑊𝐴 is of size 𝐵3 ×𝐵3 and its direct inversion is
normally out of the reach of any current computer. Numerical
algorithms that avoid the need to invert this matrix are
normally used and they are explained in the next section.

4. Iterative Solutions of a Linear
Equation System

Note that all equation systems posed so far (see (6), (12), (17),
(19), and (21)) are of the generic form:

Ax = b. (23)

In this section, A and b are the generic system matrix and
data terms, independently of their actual expressions in terms
of the microscopic projection images, CTFs, Fourier or real
space versions, and so forth, since these details have already
been carefully presented in the sections above.

A very simple, but general, approach to produce an
iterative algorithm solving the equation system in (23) is to
decompose matrixA as the difference of two other matrices,
M andN, as in

A = M −N. (24)

Then, (M −N) x = b

Mx(�푘+1) = Nx(�푘) + b

x(�푘+1) = M
−1
Nx(�푘) +M

−1
b= x(�푘) +M

−1 (b −Ax(�푘)) .
(25)

This iterative scheme has the interesting property that if the
residuals are b − Ax(�푘) = 0 (i.e., we have successfully found
a solution of the equation system), then there is no update of
the current solution.

(i) Jacobi.A is decomposed in its diagonal matrixD and two
lowerL and upperU triangular matrices:

A = D − (L +U) 󳨐⇒
x(�푘+1) = x(�푘) +D

−1 (b −Ax(�푘)) . (26)

(ii) Gauss-Seidel. A is decomposed in a similar way to
the Jacobi decomposition above, but the L matrix is used
differently:

A = (L +D) −U 󳨐⇒
x(�푘+1) = x(�푘) + (L +D)−1 (b −Ax(�푘)) . (27)

(iii) Richardson. A is decomposed using the identity matrix
as reference:

A = 𝐼 − (𝐼 −A) 󳨐⇒
x(�푘+1) = x(�푘) + (b −Ax(�푘)) . (28)

The reasons why these numerical schemes succeed in
solving the equation systemAx = b can be nicely illustrated
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in Richardson’s scheme. We may rewrite the iterative algo-
rithm as

x(�푘+1) = b + (𝐼 −A) x(�푘). (29)

We start with x(0) = 0. Then, the estimates of x would be

x(1) = b

x(2) = b + (𝐼 −A)b
x(3) = b + (𝐼 −A)b + (𝐼 −A)2 b...

x(�푘) = (�푘−1∑
�푚=0

(𝐼 −A)�푚) b.
(30)

If A is an invertible matrix, then ∑∞�푚=0(𝐼 − A)�푚 converges
to A−1 as long as for all eigenvalues of the matrix A, 𝜆�푖, it
is fulfilled that 0 < |1 − 𝜆�푖| < 1, which for real eigenvalues
translates into 0 < 𝜆�푖 < 2 [82, Section 3.5.1]. Actually,
this family of iterative algorithms is normally modified to
introduce a relaxation factor 𝜇�푘 (which may be different for
each iteration):

x(�푘+1) = x(�푘) + 𝜇�푘M−1 (b −Ax(�푘)) . (31)

This relaxation factor helps to increase the radius of conver-
gence of the algorithm by modifying the eigenvalues of the
matrix involved in the convergence analysis (we have seen the
analysis for Richardson’s iteration but different matrices are
needed for the rest of the schemes).There areworks analyzing
the convergence of the reconstruction algorithm in terms of
the properties of the sequence of numbers 𝜇�푘 [83].

SIRT is one of the most popular reconstruction algo-
rithmsused inElectronTomography.Aswe showbelow, SIRT
is the result of the Jacobi algorithm applied to the normal
equationswith a particular weighting scheme. Let us consider
the normal equations of theWeighted Least Squares problem
in real space: 𝐴�푇𝑊𝐴x = 𝐴�푇𝑊b. (32)

The Jacobi update with relaxation parameter is

x(�푘+1) = x(�푘) + 𝜇�푘D−1 (b −Ax(�푘)) . (33)

Let us decompose matrix 𝐴 in its different rows (remember
that the 𝑖-th row indicates how each basis function in the
volume contributes to the 𝑖-th pixel),

𝐴 = (
(

a�푇1
a�푇2...
a�푇�푀�푃2

)
)

, (34)

and columns (the 𝑗-th column indicates how the 𝑗-th basis
function affects all the pixels in the measurements),𝐴 = (𝛼1 𝛼2 ⋅ ⋅ ⋅ 𝛼�퐵3) . (35)

Then,

A = 𝐴�푇𝑊𝐴 = �푀�푃2∑
�푖=1

𝑤�푖a�푖a�푇�푖
b = 𝐴�푇𝑊b = �푀�푃2∑

�푖=1

𝑤�푖𝑏�푖a�푖
Ax(�푘) = �푀�푃2∑

�푖=1

𝑤�푖a�푖a�푇�푖 x(�푘) = �푀�푃2∑
�푖=1

𝑤�푖( �퐵3∑
�푚=1

𝑎�푖�푚𝑥(�푘)�푚 ) a�푖.
(36)

Let us now concentrate on a given basis function 𝑗:
d�푗�푗 = �푀�푃2∑

�푖=1

𝑤�푖𝑎2�푖�푗 = 󵄩󵄩󵄩󵄩󵄩𝛼�푗󵄩󵄩󵄩󵄩󵄩2�푊
b�푗 = �푀�푃2∑

�푖=1

𝑤�푖𝑏�푖𝑎�푖�푗 = ⟨𝛼�푗, b⟩�푊
(Ax(�푘))

�푗
= �푀�푃2∑

�푖=1

𝑤�푖( �퐵3∑
�푚=1

𝑎�푖�푚𝑥(�푘)�푚 )𝑎�푖�푗 = ⟨𝛼�푗,Ax(�푘)⟩
�푊𝑥(�푘+1)�푗 = 𝑥(�푘)�푗 + 𝜇�푘d−1

�푗�푗 (b�푗 − (Ax(�푘))
�푗
)

= 𝑥(�푘)�푗 + 𝜇�푘 ⟨𝛼�푗, b −Ax(�푘)⟩
�푊󵄩󵄩󵄩󵄩󵄩𝛼�푗󵄩󵄩󵄩󵄩󵄩2�푊 .

(37)

Interestingly, if the current image residual (b −Ax(�푘)) is 𝑊-
orthogonal to 𝛼�푗, that is, changing the coefficient of the 𝑗-th
basis function does not affect the residual, then, as expected,
the coefficient of the 𝑗-th basis function is not changed.

In EM, we are used to formulate SIRT as

x(�푘+1) = x(�푘) + 𝜇�푘�푀�푃2∑
�푖=1

𝑤�푖 𝑏�푖 − ⟨a�푖, x(�푘)⟩󵄩󵄩󵄩󵄩a�푖󵄩󵄩󵄩󵄩2 a�푖. (38)

In the following, let us show that both formulations (see
(37) and (38)) are not equivalent. Actually SIRT is not a single
algorithm but a full family of reconstruction algorithms [84];
each one provides a different insight into the reconstruction
process. If we look at a particular basis function 𝑗 in (38), we
have

𝑥(�푘+1)�푗 = 𝑥(�푘)�푗 + 𝜇�푘�푀�푃2∑
�푖=1

𝑤�푖 𝑏�푖 − ⟨a�푖, x(�푘)⟩󵄩󵄩󵄩󵄩a�푖󵄩󵄩󵄩󵄩2 𝑎�푖�푗
= 𝑥(�푘)�푗 + 𝜇�푘�푀�푃2∑

�푖=1

𝑤�푖󵄩󵄩󵄩󵄩a�푖󵄩󵄩󵄩󵄩2 (𝑏�푖 − ⟨a�푖, x(�푘)⟩) 𝑎�푖�푗. (39)
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Let us now work on (37):𝑥(�푘+1)�푗 = 𝑥(�푘)�푗 + 𝜇�푘d−1
�푗�푗 (b�푗 − (Ax(�푘))

�푗
) = 𝑥(�푘)�푗 + 𝜇�푘

⋅ 1󵄩󵄩󵄩󵄩󵄩𝛼�푗󵄩󵄩󵄩󵄩󵄩2�푊 (�푀�푃2∑
�푖=1

𝑤�푖𝑏�푖𝑎�푖�푗 − �푀�푃2∑
�푖=1

𝑤�푖( �퐵3∑
�푚=1

𝑎�푖�푚𝑥(�푘)�푚 )𝑎�푖�푗)
= 𝑥(�푘)�푗 + 𝜇�푘 1󵄩󵄩󵄩󵄩󵄩𝛼�푗󵄩󵄩󵄩󵄩󵄩2�푊�푀�푃2∑

�푖=1

𝑤�푖 (𝑏�푖 − ⟨a�푖, x(�푘)⟩) 𝑎�푖�푗.
(40)

The algorithms in (39) and (40) are clearly different and,
however, both are called SIRT and both belong to the SIRT
family of algorithms. Any algorithm of the form𝑥(�푘+1)�푗 = 𝑥(�푘)�푗 + 𝜇�푘 1𝛾�푗 �푀�푃2∑

�푖=1

𝑤�푖𝜌�푖 (𝑏�푖 − ⟨a�푖, x(�푘)⟩) 𝑎�푖�푗 (41)

for suitable 𝛾�푗 and 𝜌�푖 numbers is also considered a SIRT
algorithm [84]. A particular class for which convergence has
been proven [84] is for𝛾�푗 = �푀�푃2∑

�푖=1

𝑤�푖 󵄨󵄨󵄨󵄨󵄨𝑎�푖�푗󵄨󵄨󵄨󵄨󵄨�훼
𝜌�푖 = �퐵3∑

�푗=1

󵄨󵄨󵄨󵄨󵄨𝑎�푖�푗󵄨󵄨󵄨󵄨󵄨2−�훼 0 < 𝛼 ≤ 2, 0 < 𝜇�푘 < 2.
(42)

The Jacobi iteration resulting in (40) corresponds to 𝛼 = 2;
the typical EM SIRT (see (39)) corresponds to 𝛼 = 0 and
is the one implemented in Xmipp [85, 86] and TomoJ [87].
However, ASTRA toolbox [88], also used in EM, has a SIRT
algorithm with 𝛼 = 1.

The case where 𝛼 = 0 (see (38)) makes an interesting
connection to the theory of feasibility problems [89–91].
Consider the hyperplane defined by all volumes compatible
with the 𝑖-th experimental measurement:𝐻�푖 = {x ∈ R

�퐵3 | ⟨a�푖, x⟩ = 𝑏�푖} . (43)

Solving the tomographic problem amounts to finding a
volume x such that it is compatible with all measurements
(note that, in this formulation, we are disregarding the effect
of noise which makes such an intersection be empty):

x ∈ 𝐻1 ∩ 𝐻2 ∩ ⋅ ⋅ ⋅ ∩ 𝐻�푀�푃2 . (44)

Given a volume x(�푘), we may orthogonally project it onto
the hyperplane given by the 𝑖-th measurement by

Proj�퐻𝑖 {x(�푘)} = x(�푘) + 𝑏�푖 − ⟨a�푖, x(�푘)⟩󵄩󵄩󵄩󵄩a�푖󵄩󵄩󵄩󵄩2 a�푖. (45)

In this way, we may rewrite the SIRT iteration with 𝛼 = 0
as

x(�푘+1) = x(�푘) + 𝜇�푘�푀�푃2∑
�푖=1

𝑤�푖 (Proj�퐻𝑖 {x(�푘)} − x(�푘)) . (46)

That is, at every iteration, we update the volume with a
weighted sum of the orthogonal projections of the current
solution onto the set of hyperplanes defined by the exper-
imental measurements. The relaxation factor 𝜇�푘 (normally
chosen between 0 and 1, although there are convergence
theorems for values between 0 and 2) could be understood
as how much we go from our current position x(�푘) to the
desired position Proj�퐻𝑖{x(�푘)}. In a noiseless case, we are rather
certain about the update and may set 𝜇�푘 = 1. In a noisy
environment, wemay bemore conservative and use a smaller
relaxation factor reflecting our distrust in the experimental
measurements.

Actually, we may update our estimate of the current
solution after a single hyperplane projection; that is, we donot
have to wait to “see” all measurements at the same time but
we may update the volume just after seeing each pixel value:

x(�푘+1) = x(�푘) + 𝜇�푘𝑤�푖(�푘) (Proj�퐻𝑖(𝑘) {x(�푘)} − x(�푘)) . (47)

The index 𝑖(𝑘) will go over all the experimental measure-
ments. This scheme is known as ART (algebraic reconstruc-
tion technique) and the difference between SIRT and ART is
the same as the difference between a Jacobi update (SIRT) in
the solution of a linear equation system and a Gauss-Seidel
update (ART). In theART case, we update the volume as soon
as we have new information available, while in the SIRT case,
we update the volume with a consensus of all the information
available. This property of ART can be exploited to use
ART in a streaming mode as data is acquired and stop data
acquisition as soon as the reconstruction achieves a specific
criterion (this could minimize beam damage, for instance)
[92]. ART converges much faster than SIRT, although it tends
to produce little bit noisier reconstructions. This problem
can be alleviated through the choice of a relaxation factor
that decreases over time. A trade-off between updating after
seeing every pixel (ART) and updating after seeing all pixels
(SIRT) is given by Block-ART or Simultaneous ART (SART).
The volume is updated after seeing a small set of pixels 𝑆�푘
(normally all those in the same experimental image):

x(�푘+1) = x(�푘) + 𝜇�푘∑
�푖∈�푆𝑘

𝑤�푖 (Proj�퐻𝑖 {x(�푘)} − x(�푘)) . (48)

Kunz andFrangakis [73] studied how the order inwhich these
blocks were chosen affected the reconstruction’s quality.

Additionally, we do not need to be restricted to orthogo-
nal projections, and oblique projections can be undertaken.
Given a symmetric, positive definite matrix 𝐺, the oblique
projection onto the hyperplane𝐻�푖 is defined as [93]

Proj�퐺�퐻𝑖 {x(�푘)} = x(�푘) + 𝑏�푖 − ⟨a�푖, x(�푘)⟩󵄩󵄩󵄩󵄩a�푖󵄩󵄩󵄩󵄩2�퐺−1 𝐺−1a�푖. (49)

The study of these alternatives has given rise to a whole family
of iterative algorithms (Cimmino, Component Averaging
(CAV), Block-iterative CAV (BiCAV), Block-Simplified
SART, iterative algorithms with Bregman projections,
Block-iterative Underrelaxed Entropy Projections, Averaging
Strings, etc.) [93–98]. A different variant of ART is a



BioMed Research International 7

multiplicative ART (MART), where the iterative step is
multiplicative instead of additive. Although some of these
algorithms have been tested in ElectronMicroscopy [40, 99],
none of these more advanced variants have made their
way into a massive adoption. For extensive reviews of the
algebraic reconstruction techniques, the reader is referred to
Gordon and Herman [100], Gordon [101], and Herman [102].

All SIRT algorithms can be written in a compact matrix
form:

x(�푘+1) = x(�푘) + 𝜇�푘𝐶𝐴�푇𝑅 (b − 𝐴x(�푘)) , (50)

with 𝐴 being the system matrix (𝐴 projects the current
estimate of the solution onto the image projection space,
while 𝐴�푇 back-projects the residual into the volume space)
and 𝑅 and 𝐶 being suitable diagonal matrices (𝐶 acting on
the basis function space 𝑐�푗�푗 = 1/𝛾�푗; and 𝑅 acting on the
experimental measurements space 𝑟�푖�푖 = 𝑤�푖/𝜌�푖).

Stated in this matrix form, we may easily find another
SIRT algorithm that is very popular in image processing:
the Landweber iteration. A possible solution to theWeighted
Least Squares problem,

x = argmin
x

𝐸 (x) = 12 ‖𝐴x − b‖2�푊= argmin
x

12 (𝐴x − b)�푇𝑊(𝐴x − b)= argmin
x

12 ‖b‖2�푊 + 12x�푇𝐴�푇𝑊𝐴x − x�푇𝐴�푇𝑊b, (51)

is to use gradient descent iterations:

x(�푘+1) = x(�푘) − 𝜇�푘∇𝐸 (x(�푘))= x(�푘) − 𝜇�푘 (𝐴�푇𝑊𝐴x − 𝐴�푇𝑊b)= x(�푘) + 𝜇�푘𝐴�푇𝑊(b − 𝐴x) . (52)

This latter iteration is called Landweber iteration and it can
be easily recognized that it fits into the generic SIRT form of
(50).

Another interesting variant of this family of traditional
algorithms is the possibility to use unmatched projectors,
for example, a relatively complicated forward operator, 𝐴,
including the projection geometry andmultiple defoci effects
and a simple backward operator, 𝐵, considering only the
projection geometry [103]:

x(�푘+1) = x(�푘) + 𝜇�푘𝐶𝐵�푇𝑅 (b − 𝐴x) . (53)

The convergence of this kind of algorithms depends on
the eigenvalues of the matrix 𝐼 − 𝐶𝐵�푇𝑅𝐴 and the specific
details can be found in [103]. In EM, this strategy has been
implemented in Xmipp (the forward projection considers
geometry and CTF, but the backward projection only consid-
ers geometry). Although it was shown to successfully recover
the underlying 3D structure, thismethodhas not been further
pursued because of the general problem of most iterative

algorithms: their computational speed compared to direct
Fourier inversion algorithms.

In recent years, one of the most popular algorithms for
solving a linear equation system is Conjugate Gradient [59,
104–106].The success of this algorithm is demonstrated in its
ability to converge to the local solution in 𝐵3 steps (as many
steps as the dimension of the solution being sought). Note
that this number is finite and much smaller than the number
of steps of ART or SIRT, whose convergence theorems are on
the limit as the number of iterations goes to infinity. Given
the equation system

Ax = b, (54)

the trick is to use a set of directions {p�푘} which is orthogonal
with respect to the inner product induced by A (𝑘 ̸= 𝑘�耠 ⇒⟨p�푘, p�푘󸀠⟩A = 0; these directions are said to be conjugate with
respect toA). Then the solution sought can be written in the
form

x(�푘) = �푘∑
�푘󸀠=0

⟨p�푘󸀠 ,b⟩󵄩󵄩󵄩󵄩p�푘󸀠󵄩󵄩󵄩󵄩2A p�푘󸀠 . (55)

The set of conjugate directions is also iteratively constructed
as

p�푘+1 = (b −Ax(�푘)) − �푘∑
�푘󸀠=0

⟨p�푘󸀠 ,b −Ax(�푘)⟩󵄩󵄩󵄩󵄩p�푘󸀠󵄩󵄩󵄩󵄩2A p�푘󸀠 . (56)

Actually, these summations can be nicely reorganized so that
in real implementation we only need to keep a vector for the
current solution, a vector with the residuals, and a vector with
the current conjugate direction [104].

In the context of EM, the Conjugate Gradient was used by
Chen and Förster [59] in Fourier space. However, there are
a number of variants to the basic Conjugate Gradient algo-
rithm (Conjugate Residuals, Biconjugate Gradient, Stabilized
Biconjugate Gradient, Lanczos method, Generalized Mini-
mal Residuals (GMINRES), Bi-Lanczos, Conjugate Gradient
Squared, Quasi Minimal Residuals, etc.; most of them belong
to a family of algorithms called Krylov subspace algorithms
[107, 108]), none of which have been tested in EM.

In practice, none of these iterative algorithms are run
to convergence. Instead, the algorithms are typically run
for a fixed number of iterations (typically 𝑀 or 2𝑀 in the
case of Block ART, 20 for CG, and 100–150 in the case of
SIRT). How deep these algorithms have gone in the objective
function landscape depends on the conditioning number of
the equation system: 𝜅 (A) = 𝜎max𝜎min

, (57)

where 𝜎max and 𝜎min are the maximum and minimum
singular values of matrixA. If this ratio is close to 1, iterative
algorithmswill quickly converge to theminimumof the error
function. If the ratio ismuch larger than 1, then the problem is
said to be ill-posed (small perturbations in the b vector may
translate into large variations in the solution vector x) and
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the convergence speed of iterative algorithms is slow. In case
of solving normal equations, we have𝜅 (A) = 𝜅 (𝐴�푇𝐴) = 𝜅2 (𝐴) . (58)

That is, the ill-posed character of matrix 𝐴 is worsened. For
this reason, in the theory of linear equation solving, it is
customary to use a preconditioning matrix 𝑃 so that we do
not solve the problem

Ax = b (59)

but 𝑃−1Ax = 𝑃−1b. (60)

The preconditioning𝑃matrix is chosen in such away that𝜅 (𝑃−1A) < 𝜅 (A) . (61)

Although several preconditioners have been tested in differ-
ent kinds of tomographic setups (computerized tomography
[109], optical diffusion tomography [110], positron emission
tomography [111], electrical capacitance tomography [112],
acoustic waveform tomography [113], etc.), in EM, there has
not been any attempt to use any preconditioning, although
this is an issue the community is aware of [114].

5. Constrained 3D Reconstruction

The feasibility problem of (44) can be complemented with
some additional constraints representing a priori knowledge
about the reconstruction. We may do so by imposing the
fact that the volume also belongs to some convex set (a set
is convex if, for any two volumes in this set, x1 and x2, the
linear combination (1 − 𝜆)x1 + 𝜆x2, with 0 ≤ 𝜆 ≤ 1,
also belongs to that set; the set of all nonnegative volumes is
convex as well as the set of all volumes defined within amask,
the set of all volumes with a given symmetry, the set of all
volumes bandlimited to a given frequency, etc. [64]). Given a
collection of convex sets representing our a priori knowledge
about the reconstructed particle, 𝐶1, 𝐶2, . . . , 𝐶�퐾, we may try
to find a feasible volume at the intersection

x ∈ 𝐻1 ∩ 𝐻2 ∩ ⋅ ⋅ ⋅ ∩ 𝐻�푀�푃2 ∩ 𝐶1 ∩ 𝐶2 ∩ ⋅ ⋅ ⋅ ∩ 𝐶�퐾. (62)

This problem has been extensively explored in the EM
community under the name Projection Onto Convex Sets
(POCS) and the interested reader is referred to Carazo
and Carrascosa [115, 116], Carazo [117], Garćıa et al. [31],
Sorzano et al. [64], and Deng et al. [118]. The idea is to
alternate between projections onto the subspaces defined by
the experimental measurements (𝐻�푖) and projections onto
the convex sets (the projector onto the set of nonnegative
volumes simply sets all negative values to 0; the projector onto
the set of volumes defined within a mask applies that mask to
the current solution; the projector onto the set of symmetric
volumes symmetrizes the current solution; the projector onto
the set of bandlimited volumes applies a low-pass filter to the
current solution; etc.). In the signal processing community,

POCS algorithms have been generalized by algorithms using
the so-called Proximity operators. Despite being out of the
scope of this review, because these algorithms have not been
introduced inEM, the interested readermay follow the review
of Combettes and Pesquet [119] and the references therein.

Landweber iterations can also be set in a constrained
setup. Let us assume that we have the a priori knowledge that
x is in a convex set 𝐶. Then, the solution of the constrained
problem

x = argmin
x∈�퐶

12 ‖𝐴x − b‖2�푊 (63)

can be found with the iterative algorithm [119]:

x(�푘+1) = Proj�퐶 {x(�푘) + 𝜇�푘𝐴�푇𝑊(b − 𝐴x)} . (64)

As seen in the two examples above, one of the most
interesting ideas of this constrained optimization is the
possibility to alternate between the standard tomographic
update (x(�푘)+𝜇�푘𝐴�푇𝑊(b−𝐴x)) and the projection onto convex
sets (POCS, Proj�퐶).

These ideas of constrained optimization can be further
extended to nondifferentiable, convex functions (the 𝑙1 norm
of the residual is a function of this kind). Let us assume that
we are minimizing a nondifferentiable, convex function 𝜙(x):

x = argmin𝜙 (x) . (65)

At a differentiable point of 𝜙, a gradient descent iteration
is perfectly suitable to find the minimum of the objective
function:

x(�푘+1) = x(�푘) − 𝜇�푘∇𝜙 (x(�푘)) . (66)

The problem at a nondifferentiable point (which occurs
normally at the frontiers of the intersection of convex sets) is
that the gradient is not well defined. We may define instead
the subgradient. A vector g�푘 ∈ R�퐵

3

is a subgradient of 𝜙 at
x(�푘) if for any x we have𝜙 (x) − 𝜙 (x(�푘)) ≥ ⟨g�푘, x − x(�푘)⟩ . (67)

Intuitively, the gradient defines at differentiable points a
unique hyperplane that is tangent to 𝜙 and, since 𝜙 is convex,
this tangent plane is always below 𝜙. At nondifferentiable
points, there are an infinite number of hyperplanes touching
at (x(�푘), 𝜙(x(�푘))) and below 𝜙. The normal vectors to these
hyperplanes constitute the set of subgradients. The subgradi-
ent method iteration is then, at these nondifferentiable points
[120, 121],

x(�푘+1) = x(�푘) − 𝜇�푘g�푘. (68)

We may easily add convex constraints to this method
obtaining constrained subgradient minimization (known as
Projected Subgradient minimization) [122, 123]:

x(�푘+1) = Proj�퐶 {x(�푘) − 𝜇�푘g�푘} . (69)
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Superiorization has been proposed as an alternative to
Projected Subgradients [43, 124–126]. The idea of Superior-
ization is to steer the reconstruction iterations towards the
constraints. One of the main differences between Projected
Subgradient and Superiorization is that if there are several
convex constraints, Projected Subgradient requires the pro-
jection onto the intersection of all of them, the feasible set,
while Superiorization requires the sequential projection onto
each of the constraints. Note that the intersection may be
empty. For instance, the set of all volumes defined within a
finitely supported mask and bandlimited is empty. Also, the
projector onto the intersection set may be more complicated
than the projector onto each one of the individual constraints.
This limits the applicability of Projected Subgradient, while
this is not a problem for Superiorization. Although these
algorithms are available in the tomography community and
are well characterized in other domains, none of them have
made their way into EM.

A different approach to constrained optimization which
has been actively explored in EM is by defining new equations
that must be simultaneously solved along with the equation
system coming from the measurements [64]. For instance, a
mask can be easily expressed in terms of basis functions. Let
us assume that there is no density coming from the molecule
at a given location r0. Then, we may particularize the series
expansion at r0 (see (5)) and add the linear equation𝑉 (r̃0) = ∑

�푗

𝑥�푗𝑏 (r̃0 − r̃�푗) = 0. (70)

In this way, we handled a priori information coming from
masks, symmetry, total molecular mass, and nonnegativity.
Adding this a priori information was certainly relevant when
the number of projectionswas small. However, as the number
of projections increased, the improvement by the a priori
information was less noticeable, showing that most of the
information was already present in the experimental dataset.
Now, with increasing pursuit of high-resolution results, there
is again room for exploring these extra sources of information
available, although for the moment this line of research has
not been resumed.

Iteratively steering algorithms tend to promote recon-
structions with certain characteristics. For instance, [65,
71, 72, 127, 128] focused on the problem of reconstructing
discrete valued objects (the reconstructed volume could only
have a few, normally two (background and foreground),
values) or objects with very few active voxels. They use
projectors similar to those used in convex sets; for instance,
bgART [71] defined

Proj {𝑥(�푘)�푗 } = {{{𝑚�푘 𝑥(�푘)�푗 < 𝑚�푘 + 𝐾𝑠�푘𝑥(�푘)�푗 𝑥(�푘)�푗 ≥ 𝑚�푘 + 𝐾𝑠�푘, (71)

where 𝑚�푘 is the estimated mean of the background gray val-
ues at iteration 𝑘, 𝑠�푘 is their estimated standard deviation, and𝐾 is a user-selected multiple (normally a number between 3
and 6). The main difference between these iterative steering
algorithms and those projecting onto convex sets is that the

former project onto a nonconvex set; additionally, the set onto
which the reconstruction is projected changes from iteration
to iteration. The convergence of this kind of algorithms
was studied in [129]. Reference [75] presented an algorithm
for Electron Tomography in which the steering is driven
by a nonlinear diffusion denoising algorithm. After each
reconstruction step, the reconstructed volume is denoised
by applying a step of a nonlinear diffusion algorithm (the
projector). For these steering algorithms to converge, the
reconstruction algorithm must be “perturbation resilient”
[124] and the perturbation must be “small enough” as not to
destroy the work of the reconstruction algorithm.

6. Sparse 3D Reconstructions

Sparse representations has been one of the most active
research fields in the area of image and signal processing
in the last 10–15 years [130–132]. The idea is that natural
images and objects have a representation in some appropriate
space in which very few nonnull coefficients are needed.This
space may be fixed (e.g., wavelet transform or discrete cosine
transform and DCT) or computed ad hoc for a particular
problem (dictionary based algorithms). Knowing that our
object has a sparse representation helps the algorithm to
concentrate the energy in a few coefficients, preventing the
energy dispersion normally caused by noise. In this problem
setup, vector norms different from the Euclidean are normally
employed. In general, the 𝑙�푝 norm is used:

‖x‖�푝 = (∑
�푗

󵄨󵄨󵄨󵄨󵄨𝑥�푗󵄨󵄨󵄨󵄨󵄨�푝)1/�푝 . (72)

Euclidean norm is obtained for 𝑝 = 2, Manhattan norm is
obtained for 𝑝 = 1, and for 𝑝 = 0 the norm of a vector is
simply the count of the number of nonzero coefficients in the
vector (technically, 𝑙0 is not a norm because it does not fulfill
the condition ‖𝜆x‖0 = |𝜆|‖x‖0). The goal of sparsity is to find
a representation of x such that

x = argmin ‖x‖0
s.t. 𝐷x = x, (73)

where 𝐷 is the dictionary of elements available to represent
x (the wavelet, DCT, or ad hoc dictionary) and x is the
representation of x in that dictionary. The aim is to have as
few coefficients different from 0 as possible.

As stated above, sparse representations are mostly inter-
esting in 𝑙0-norms. However, having this norm in the
objective function requires combinatorial optimization tech-
niques, known to be NP-hard in computational complexity.
Interestingly, 𝑙�푝 norms with 0 < 𝑝 < 2 tend to promote sparse
representations (x has relatively few nonzero coefficients)
and efficient algorithms have been developed in the recent
years for these minimizations.
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The first class of algorithms we will review involve an 𝑙0-
norm and are those solving any of these two related problems:

x = argmin ‖x‖0
s.t. ‖b −A𝐷x‖22 ≤ 𝜖 (74)

or x = argmin ‖b −A𝐷x‖22
s.t. ‖x‖0 ≤ 𝑁. (75)

Note that our “tomographic dictionary” (A𝐷 = 𝐴�푇𝐴𝐷)
includes the standard dictionary representation, 𝐷, as well
as information about the projection structure of the tomo-
graphic setup A = 𝐴�푇𝐴. In the following, let us refer to
this “tomographic dictionary” by D and to its 𝑗-th column
by d�푗 (in the dictionary jargon, this would be the 𝑗-th
atom and we will assume that there are 𝐽 ≪ 𝐵3 atoms in
the dictionary). Many different algorithms exist to solve this
problem [130]; none of them have been tested in EM. Among
them, Matching Pursuit [133] and Orthogonal Matching
Pursuit [134] are two of themost popular algorithms (actually
the latter was tested in a tomography setting by researchers
working on EM, although it was not applied to EM data
[135]). For its simplicity, let us show the iterations inMatching
Pursuit to illustrate the flavor of these algorithms and how
they differ from the iterative algorithms presented so far.

Letx(�푘) represent our current reconstruction. In the first
iteration, it will bex(0) = 0. We now choose the atom that is
maximally aligned with the residual of our equation system,
r(�푘) (note that r(0) = b), calculate its coefficient, and update
the residual. This process is iterated until the desired number
of atoms is reached.The following algorithm is executed from𝑘 = 0 to 𝑘 = 𝑁 − 1.
(i) Step 1. Seek the atom maximally aligned with this residual𝑗 = argmax

�푗󸀠

󵄨󵄨󵄨󵄨󵄨⟨r(�푘),d�푗󸀠⟩󵄨󵄨󵄨󵄨󵄨 . (76)

(ii) Step 2. Update the current solution with the projection of
the residual onto this atom

x
(�푘+1)

�푗󸀠
= {{{{{{{{{

x
(�푘)

�푗󸀠
𝑗�耠 ̸= 𝑗⟨r(�푘),d�푗⟩󵄩󵄩󵄩󵄩󵄩d�푗

󵄩󵄩󵄩󵄩󵄩2 𝑗�耠 = 𝑗. (77)

(iii) Step 3. Update the residual

r(�푘+1) = r(�푘) −x
(�푘+1)
�푗 d�푗. (78)

This algorithm is greedy and finds a suboptimal solution
of the reconstruction problem (see (75)) [133]. However, it
is very easy to implement. A significant improvement is
provided by Orthogonal Matching Pursuit in which Step2 is modified to update all coefficients (not just one) by
orthogonally projecting b onto the subspace spanned by all
the atoms employed so far.

The second class of algorithms substitute the 𝑙0-norm by
an 𝑙1-norm:

x = argmin ‖x‖1
s.t. ‖b −A𝐷x‖22 ≤ 𝜖 (79)

or x = argmin ‖b −A𝐷x‖22
s.t. ‖x‖1 ≤ 𝛿. (80)

This allows more efficient optimization algorithms to be
employed. Classical algorithms are Least Absolute Shrinkage
and Selection Operator (Lasso also known as Basis Pursuit),
Iterative Reweighted Least Squares (IRLS), Iterative Shrink-
age algorithms, Least Angle Regression (LARS), and any of
their variants [130]. For their simplicity, Iterative Shrinkage
algorithms have found their way into Electron Microscopy
[136, 137] (for a theoretical background, you may also see
[138, 139]). However, the EM versions are aimed at solving
a regularized problem,

x = argmin ‖b −A𝐷x‖22 + 𝜆 ‖x‖1 , (81)

rather than the constrained problems above. In their most
simplified formulation, these algorithms alternate between
a standard reconstruction update (let us, for instance, take
a SIRT step) and a soft-thresholding step in some suitable,
sparse space (e.g., the wavelet space). The rationale is rela-
tively simple and resembles the line of thought of the iterative
steering algorithms. After applying a standard reconstruction
step, the solution is steered towards a sparse solution by
setting to 0 all small coefficients in some space known to
promote sparsity (as the wavelet space). A basic iterative step
would be

x(�푘+1/2) = x(�푘) + 𝜇�푘𝐶𝐴�푇𝑅 (b − 𝐴x(�푘))
x(�푘+1) = �퐽∑

�푗=1

𝑆�휆 (⟨x(�푘+1/2),d�푗⟩)d�푗, (82)

where 𝑆�휆(𝑥) is the soft-thresholding function:
𝑆�휆 (𝑥) = {{{{{{{{{{{{{

𝑥 + 𝜆2 𝑥 < −𝜆20 |𝑥| ≤ 𝜆2𝑥 − 𝜆2 𝑥 > 𝜆2 .
(83)

In the above iteration, we have assumed an orthonormal
dictionary or transformation, but equivalent formulas can be
found for nonorthonormal dictionaries.

The use of Lagrangian augmented objective functions of
the form

x = argmin
x

𝐹 (b − 𝐴x) + 𝜆𝐺 (x) (84)

is a widespread technique in data analysis. The first term,𝐹, is called the data fidelity term, while the second term,
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structure. For instance, a typical regularized Weighted Least
Squares problem would be given by Tikhonov quadratic
regularization (also known as ridge regression) involving
some “preprocessing” matrix 𝐿,

x = argmin
x

‖b − 𝐴x‖2�푊 + 𝜆 ‖𝐿x‖22 , (85)

whose normal equations would be(𝐴�푇𝑊𝐴 + 𝜆𝐿�푇𝐿) x = 𝐴�푇𝑊b. (86)

Assuming Gaussian errors for the measurements and a
Gaussian prior for the volume coefficients, we would have𝐿 = Σ−1/2x . (𝐴�푇𝑊𝐴 + 𝜆Σ−1x ) x = 𝐴�푇𝑊b. (87)

If we think that x and b are in Fourier space, these would
be the normal equations associated with the same Bayesian
problem that Relion is solving [7]. 𝑊 contains the CTF
information, 𝐴 the data collection geometry (including the
probability of each projection having a given projection
direction and shift), and Σx our prior about the energy of the
coefficients in Fourier space. A difference between Relion and
these normal equations is that Relion reestimates the prior
after each iteration.

We might have gone one step further to the generalized
Tikhonov regularization,

x = argmin
x

‖b − 𝐴x‖2�푊 + 𝜆 󵄩󵄩󵄩󵄩𝐿 (x − x0)󵄩󵄩󵄩󵄩2�푄 , (88)

whose normal equations are(𝐴�푇𝑊𝐴 + 𝜆𝐿�푇𝑄𝐿) x = 𝐴�푇𝑊b + 𝑄𝐿x0. (89)

If we assume independence between the preprocessed
coefficients, most maximum a posteriori (MAP) algorithms
could be written using𝐺 (𝐿x) = ∑

�푗

𝜙 ((𝐿x)�푗) , (90)

where𝜙(𝑥) is the a priori, negative log likelihood of observing
a value of 𝑥 (𝜙(𝑥) = − log𝑝x(𝑥)). Assume that a Gaussian
distribution of the x coefficients results in 𝐿 = Σ−1/2x and𝜙(𝑥) = 𝑥2 + 𝐶 (𝐶 is a constant that does not affect the MAP
optimization). Assume that a centered Laplace distribution
of standard deviation 𝜎 (𝑝x(𝑥) = (1/√2𝜎)𝑒−2|�푥|/√2�휎) results
in 𝐿 = (√2/𝜎)𝐼 and 𝜙(𝑥) = |𝑥| + 𝐶 with 𝐺 being an 𝑙1-norm
(instead of an 𝑙2-norm as in the case of the Gaussian prior). In
an EM setup, Moriya et al. [74] assumed aMedian Root Prior
which favors locally monotonic reconstructions.

If we take 𝐿 to be a volume derivative operator and take𝐺 to be the 𝑙1-norm of this derivative (that is, a Laplace prior
on the derivative coefficients),𝐺 (x) = ‖𝐿x‖1 , (91)

then we have a total variation regularization (also named as
TVL1). The problem with the 𝑙1-norm is that it cannot be
differentiated and sometimes it is substituted by𝐺 (x)

= ∫
R3

√(𝜕𝑉 (r)𝜕𝑥 )2 + (𝜕𝑉 (r)𝜕𝑦 )2 + (𝜕𝑉 (r)𝜕𝑧 )2𝑑r, (92)

where 𝑉(r) is the volume reconstructed using the x coeffi-
cients (see (5)). This was explored for EM by Zhu et al. [62],
Aganj et al. [63], Li et al. [66], Goris et al. [57], and Zhuge et
al. [76].

The approach of Albarqouni et al. [140] also falls into this
regularization category. The function 𝐺 is, in their case, a
function borrowed from robust statistics, theHuber function:

𝜙�휏 (𝑥) = {{{0.5𝑥2 |𝑥| ≤ 𝜏𝜏 |𝑥| − 0.5𝜏2 |𝑥| > 𝜏. (93)

This function is half-way between a quadratic and a linear
penalization (𝜏 controls the switch between these two behav-
iors). For low values of the derivatives, the function behaves
as a quadratic term and for high values it behaves as a linear
term. The idea is not to let large derivatives dominate the
optimization process.

We can see that the above regularized problems include
either some a priori knowledge on the volume (x) or a prop-
erty of that volume (𝐿x, normally its derivative). However,
we could include both through a new algorithm (alternating-
direction method of multipliers, ADMM) recently intro-
duced for EM [141]:

x = argmin ‖b − 𝐴x‖22 + 𝜆1𝐺1 (x) + 𝜆2𝐺2 (u)
s.t. u = 𝐿x. (94)

The actual problembeing solved is an augmented Lagrangian:

x = argmin
x,u,𝛼

L�휇 (x, u,𝛼)= ‖b − 𝐴x‖22 + 𝜆1𝐺1 (x) + 𝜆2𝐺2 (u) + 𝛼�푇 (𝐿x − u)+ 𝜇2 ‖𝐿x − u‖2 , (95)

where 𝛼 is the set of Lagrangian multipliers. The ADMM
proceeds iteratively as

x(�푘+1) = argmin
x

L�휇 (x, u(�푘),𝛼(�푘))
u(�푘+1) = argmin

u
L�휇 (x(�푘+1), u,𝛼(�푘))

𝛼
(�푘+1) = 𝛼(�푘) + 𝜇 (𝐿x(�푘+1) − u(�푘+1)) . (96)

Related to these sparse reconstruction problems is the one
of compressed sensing. The idea is to perform a 2D or 3D
reconstruction problem starting, not from a full image, but
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from a “few” incoherent points from the projection images
[142–144]. The trick is that the a priori knowledge that the
solution is sparse allows reconstructing the full image or
volume from fewer points than Nyquist theorem requires
(there is a lower limit on the number of measurements
required).This theory has not been explored in biological EM
applications, but it has been studied in material science EM
[145–150], especially when Scanning TEM (STEM) is used
[151]. For biological samples, Energy Filtered TEM (EFTEM)
is a clear candidate to benefit from a compressed sensing
acquisition [149].

7. Conclusions

The field of iterative reconstruction algorithms has been
very much studied, particularly in its application to Electron
Microscopy data, as we have shown in this review. The 3D
reconstruction problem is no longer seen as a bottleneck in
Single Particle Analysis (this is a technique in which many
single particles, assumed to come fromanhomogeneous pop-
ulation but at different angular orientations, are combined
into a single 3D map; Jonic et al. [47]), and the few attempts
to complement the data with a priori knowledge are not in
widespread use, probably due to their higher computational
cost. However, as we approach resolutions of 2-3 Å, it may be
worthy to retake this line of research as a way to increase the
reconstruction resolution. In Electron Tomography, the situ-
ation is different due to the reconstruction artifacts induced
by the maximum tilt angle limitation, the presence of gold
beads, and the low number of projections. Additionally, the
particular data collection geometry (normally, single tilt axis)
favors the adoption of a pure 2D reconstruction approach
that reduces the reconstruction problem in one dimension,
implying a great reduction in the computational cost. In this
field, iterative algorithms capable of incorporating a priori
information are still a very active field of research. Traditional
iterative algorithms as ART or SIRT still dominate the “mar-
ket.” However, very powerful reconstruction algorithms with
more modern approaches incorporating convex, nonconvex,
and sparsity constraints are continuously appearing and
most likely, in the near future, one of these algorithms will
eventually become the standard de facto.
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