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HIGHLIGHTS

• The effects of different dispersal patterns on1

priority effects (PE) are examined.2

• Local and non-local dispersal models are used to3

predict PE and species coexistence.4

• PE are more prevalent in the non-local dispersal5

than in the local dispersal models.6

• Very long-range dispersal can lead to exclusion7

of species.8

• Moderate dispersal permits multi-species coexis-9

tence versus short-range dispersal.10
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ABSTRACT: Predicting which species will be present (or absent) across a geographical region remains one of the key17

problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-18

absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and19

dispersal process. While various ecological factors have been considered, less attention has been given to the problem20

of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the21

presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species).22

By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns23

on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-24

range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but25

disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal26

strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension27

2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from28

subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting29

effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions,30

intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely31

local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in32

the local dispersal models. Taken together, our findings highlight the profound delicacy in the mediation of priority effects33

by dispersal processes: “big steps” can have more influence than many “small steps”.34

KEYWORDS: local and non-local dispersal; biotic and abiotic factors; priority effects; coexistence35
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1. INTRODUCTION

Are ecological communities with non-local dispersal (i.e. dispersal process that occurs over non-adjacent or36

larger spatial locations) more likely to exhibit priority effects1, 2 (i.e. where relative initial abundances determine37

the long-term presence-absence of each species) than localised dispersal, and when does the occurrence of38

priority effects depend on dispersal distance and its magnitude? Answering these questions requires better39

understanding of species dispersal mechanisms3–6 in conjunction with consideration of the roles of biotic40

interactions7–10 and abiotic environments11–14. Some studies8, 15 have demonstrated contrasting effects of local41

dispersal on the occurrence of priority effects: when dispersal exceeds a threshold value, priority effects vanish42

and lead to exclusion of species; as dispersal decreases below this threshold value, priority effects occur, which43

can promote the dominance of interacting species depending on initial abundances; consequently, this situation44

can mediate coexistence of multiple species in the presence of moderate dispersal levels. Other studies have45

also demonstrated that priority effects and local dispersal can be important drivers of community assembly over46

small spatial scales16, 17 but the persistence of this phenomenon is unclear under non-local dispersal process.47

In this paper, we investigate the interaction of priority effects with non-local dispersal in determining the48

range limits of species. While the importance of priority effects in shaping community compositions is likely49

to be influenced by biotic interactions18–22, abiotic environments23–25 and dispersal process4, much remains50

unknown about how priority effects and non-local dispersal interact to shape presence-absence of multiple51

species. Specifically, it remains unclear whether the effects of non-local dispersal can lead to the persistence or52

exclusion of priority effects across heterogeneous environments with biotic interactions among multiple species.53

To fill part of this knowledge gap, we employ various models of dispersal to explore the possible occurrence54

of priority effects in community assembly. This investigation is inspired by the dispersal biology of species:55

for example, some plant seeds are often dispersed over short distances and near to their parents’ locations26, 27.56

Consistent with this observation, theoretical models are developed with the assumptions that species can move57

locally between adjacent sites while interacting with other species. These assumptions serve as a basis of several58

modelling frameworks with local dispersal process such as partial-differential equations (PDE) models8, 16, 2859

and stochastic (random walk) models15, 29–31. However, there are some plant seeds that are transported longer60

distances by dispersal vectors such as animals, wind and water26, 27, 32–34. Some animal species also show a61

non-local dispersal pattern35, 36: for instance, Drobzhansky and Wright37 discovered that the spatial dispersal62

distribution of fruit flies illustrates a long-distance dispersal movement.63

The observation of non-local dispersal pattern between animal species is also evident in other studies38, 39;64

for instance, Etienne et al.38 show how the incorporation of non-local dispersal processes using a dispersal65
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kernel (i.e. the distribution function that describes the probability of dispersal to different locations) into a66

modelling framework can affect the predicted population dynamics of species. They find that the establishment67

and persistence of species are determined by the modes of dispersal, where non-local dispersal can further68

enhance the chance of species survival38. Conversely, some experimental studies discover that species richness69

is rapidly lost when ecological processes such as dispersal occur over relatively large spatial scales40, whereas70

coexistence of species are possible when ecological processes are localized40, 41. Given these contrasting71

observations on non-local dispersal, its effects on community assembly is not well understood in the presence72

of priority effects, which are mediated by intense biotic interactions.73

To address this problem, we extend previous deterministic theoretical studies involving two interacting74

species42, 43 to model biotic interactions and dispersal among multiple species across heterogeneous envi-75

ronments. We first model dispersal between adjacent locations by incorporating a diffusion equation into76

our systems. This inclusion leads to a system of PDE consisting of interspecific competition, environmental77

suitability (carrying capacity) and local dispersal terms. We then examine the impacts of non-local dispersal78

on community dynamics, in the presence of biotic and abiotic forces that can limit the presence-absence of79

species. For such situations, some non-local dispersal models have been formulated44–46, but the interaction80

of priority effects with non-local dispersal in shaping species range limits has not been investigated explicitly.81

For instance, Hetzer et al.46 study a two-species model with long-distance dispersal; they discover that non-82

local dispersal process can affect community dynamics with faster disperser leading to extinction. Motivated by83

these studies, we incorporate a dispersal kernel into our multi-species models; this inclusion leads to a system84

of integro-differential equations (IDE). By comparing results of non-local dispersal (IDE) with local dispersal85

(PDE) models, we explore the consequences of different dispersal patterns on priority effects under varying86

dispersal intensity. Additionally, we investigate the effects of different dispersal distance on species coexistence87

in multi-species communities. We also aim to provide theoretical explanations for the effects of dispersal on88

multi-species community assembly.89

The article is organised as follows. After describing the two models, we illustrate local and non-local90

dispersal effects under various dispersal distances and magnitude using our simulation results. We highlight91

the similarities and differences between the predictions of the two models, with respect to the occurrence of92

priority effects and the possibility of species coexistence. By using numerical continuation, we discuss some93

mathematical insights on the contrasting effects of dispersal on presence-absence of species. Finally, we discuss94

several ecological implications of our results.95
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2. THE MODELS

2.1. Local Dispersal Model: Partial Differential Equations96

To model a local dispersal process across heterogeneous environments where biotic interactions among multiple97

species are present, we consider a partial differential equation (PDE) model for the densities Ni (x, t) of m98

species in a one-dimensional domain aL 6 x 6 aR
15:99

∂Ni
∂t

=
riNi
Ki(x)


Ki(x)−

m∑

j=1

αijNj


+Di

∂2Ni
∂x2

(i = 1, 2, ...,m) (1)
100

where ri is the intrinsic growth rate, Ki is the carrying capacity in the absence of competitors, Di is the101

diffusion coefficient of species i, and αij is the coefficient for competition of species j on species i. All102

intraspecific competition coefficients αii = 1, and the remaining competition coefficients αij represent the ratio103

of intraspecific to interspecific competition. In the case of single-species (e.g. m = 1), equation (1) reduces104

to a standard logistic growth model. In general, equation (1) is a spatially extended Lotka-Volterra competition105

model8, 10, 43, which becomes a PDE with the addition of the diffusion term.106

In the absence of dispersal (Di = 0), the dynamical behaviour of equation (1) at a specific location x is107

independent of the behaviour at all other locations. Competition is assumed to be local (meaning that species108

only compete with other species at the same location) and we also assume that interspecific competition is109

symmetric e.g. αij = αji = α (for i 6= j). Following these assumptions, the simplest equation of type (1) is in110

the case of two-species (e.g. m = 2): competitive interactions within each location x lead to several outcomes,111

depending on the competition coefficient α (with α 6= 1 a necessity) and the ratio of the carrying capacities112

K1

K2
: local coexistence (when α < K1

K2
< 1

α ) and priority effects (when 1
α < K1

K2
< α). The analysis can also113

be extended for the cases of asymmetric competition (αij 6= αji) and multiple competing species; the reader is114

referred to47–51 for further details and extensions of these dynamical systems results. Because of the uncertainty115

in choosing the competition coefficient α, we have examined the dynamics of equation (1) for a realistic range116

of values of α.117

The suitability of a particular environment or location is modelled by incorporating a spatial dependence118

x into the carrying capacity term; each species’ carrying capacity Ki(x) can vary with spatial location x. x119

could be a location within a geographical region, or used as a proxy for representing abiotic environmental120

factors such as temperature, moisture or elevation that affect the presence-absence of species. The effects of121

biotic interactions on range limits can depend on how each species responds to the environmental gradient. To122

illustrate these effects in a multi-species community, we use nonlinear environmental gradients (i.e. carrying123
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capacity varies nonlinearly with x) in a three-species model (m = 3). We could use a linear function for124

carrying capacity as discussed by10, 52, but there can be two limitations of this kind of function: (i) carrying125

capacity changes unboundedly as x varies; (ii) theoretically, species’ fundamental niches extend for an infinite126

distance. These limitations can be removed by using a quadratic function:127

128

Ki (x) = max

{
Ki,max

(
1− (x− xi)2

w2
i

)
, 0.001

}
(2)

129

where xi is the location at which the carrying capacity for species i is at its maximum Ki,max and wi is the130

width of the fundamental niche. To ensure equation (1) is well defined, we set Ki(x) to a small but non-zero131

value (0.001) outside the fundamental niche. For visualisation of carrying capacity described by equation (2),132

refer to Fig. 2A. We have also examined the outcomes of our models using different parametrisation of carrying133

capacity (e.g. linear function, Gaussian function, different set of parameter values); the main lesson that we134

learned from this investigation is that the dynamical behaviours of the models are qualitatively similar to the135

ones observed in this paper. We refer the interested readers to15, 43, 53–55 for further details and discussion on this136

matter.137

The diffusion term models dispersal among locations, with the parameter Di representing the strength138

of local dispersal for species i. We also assume that interacting species have the same local dispersal rate139

(Di = D).140

2.2. Non-Local Dispersal Model: Integro-Differential Equations141

For a non-local dispersal process, we consider a system of integro-differential equations (IDE) for the densities142

Ni (x, t) of m species in a one-dimensional domain aL 6 x 6 aR:143

144

∂Ni
∂t

=
riNi
Ki(x)


Ki(x)−

m∑

j=1

αijNj


+ ρi

[∫
k(x− y)Ni(y)dy −Ni(x)

]
(i = 1, 2, ...,m) (3)

145

where ρi is the the dispersal rate of non-local dispersal process and k(x− y) is the probability density function146

of species moving from location y to x (i.e. dispersal kernel). Since interacting species are assumed to have the147

same local dispersal rate (Di = D), this assumption corresponds to all species have the same non-local dispersal148

rate (ρi = ρ) in IDE models. Equation (3) is a spatially extended Lotka-Volterra competition model8, 10, 43,149

which becomes an IDE with the addition of a dispersal kernel.150

The dispersal kernel models movement of species to non-adjacent spatial locations, with the parameter ρi151

representing the strength of non-local dispersal for species i. We employ a finitely supported dispersal kernel152
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Fig. 1 The dispersal kernel described by equation (4) with dispersal distance b = 0.25 and normalisation constant cb =

9.009134488.

similar to44, 45 as an example, in order to illustrate the effects of non-local dispersal in a multi-species community153

dynamics:154

155

k(x) =




cb e

b2

x2−b2 , |x| < b

0 , otherwise
(4)

156

where b characterises dispersal distance and cb is a normalisation constant such that
∫
k(x)dx = 1. For157

illustration of the dispersal kernel described by equation (4), refer to Fig. 1. Other types of function for the158

non-local dispersal could also be chosen56, but we chose the dispersal kernel given by (4) primarily because159

of the convenient interpretation of the distance parameter, b, in the exponent. Since the kernel is symmetric,160

all odd moments (such as mean) equal 0, and the kernel shape is encoded by even moments (such as mean-161

squared displacement). To fairly compare non-local dispersal models (3) and local dispersal models (1), we162

impose the condition that their mean-squared displacements (per unit time) are equal. Note that the mean-163

squared displacement for the diffusion model is 2Di, while the mean-squared displacement for the dispersal164

kernel, ρiσ2, is calculated numerically (i.e. by using second moment with σ2 =
∫
x2k(x)dx). The relationship165

between the dispersal rate ρi of the IDE model with the diffusion coefficient Di of the PDE model57–60 is given166
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Table 1 Parameter values.

Symbol Description Parameter Values

ri The intrinsic growth rate of species i 1
K1,max As indicated in equation (2) 3500
K2,max As indicated in equation (2) 5000
K3,max As indicated in equation (2) 5000
x1 As indicated in equation (2) 0.8
x2 As indicated in equation (2) 0.2
x3 As indicated in equation (2) 0.5
w1 As indicated in equation (2) 0.6
w2 As indicated in equation (2) 0.7
w3 As indicated in equation (2) 0.25
Di Diffusion coefficient 0-0.0025
b Dispersal distance 0-2
ρi Dispersal rate of IDE (calculated using equation (5))
αij Competition coefficient (values given in figure captions)

by:167

168

ρi =
2Di

σ2
(5)169

and we measure strength of dispersal via Di in both models.170

Numerical simulations are conducted for the local and non-local dispersal models and the results of the two171

models are compared in the next sections. Unless otherwise stated, parameter values used in the simulation172

are given in Table (1). In all cases, we employed numerical simulation using MATLAB ode15s solver for173

sufficient time until steady state is reached. We also verified that steady state is stable (i.e. all the real parts of174

the eigenvalues are negative). To do this, the Jacobian matrix and the eigenvalues are calculated numerically175

using MATLAB fsolve and eig functions. We also used numerical continuation package XPPAUT to check176

our simulation results; the stable and unstable steady states are tracked as a model parameter changes.177

3. RESULTS

In the absence of dispersal (ρi = Di = 0), the presence-absence of species depend on the strength of biotic178

interactions in a delicate manner51. When interspecific competition is relatively weak, multiple species can179

coexist at the same location; for instance, Fig. 2B shows modelling results with no dispersal, with coexistence180

of species possible near the central region. Competition from species 2 (green) and species 3 (red) eliminates181

species 1 (blue) from some locations x and shifts the range limit of species 1 from x = 0.2 (blue square,182

Fig. 2A) to the right (blue circle, Fig. 2B); similarly, the range limits of species 2 (green circle) and species 3183
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Fig. 2 A, The nonlinear carrying capacities (dotted lines) following equation (2) for species 1 (blue), species 2 (green) and
species 3 (red) with squares representing the range limits of species in the absence of biotic interactions. B, Modelling results
with no-dispersal (Di = ρi = 0) with circles representing the range limits of species in the presence of biotic interactions.
Competition coefficient: αij = 0.8. Other parameter values as in Table (1).

(red circles) are affected due to biotic interactions.184

When α > 1 (i.e. interspecific competition is stronger than intraspecific), priority effects occur with the185

range limits of species depend on initial abundances and also the strength of dispersal (i.e. when ρi, Di > 0).186

In the following sections, we demonstrate the effects of different modes of dispersal on the presence-absence187

of species, and we highlight the similarities and differences between the simulation results from non-local and188

local dispersal models, with respect to the occurrence of priority effects and species coexistence. By means of189

numerical continuation, we find that there are threshold values for ecologically-relevant parameters (e.g. D, α190

and b), which lead to the (dis-)appearance of priority effects in the models.191

3.1. The Effects of Different Modes of Dispersal on Priority Effects (Short-Range Dispersal)192

When dispersal is incorporated into the models (ρi, Di > 0), the presence-absence of species is influenced193

by movement of individuals from other locations. For example, Fig. 3 shows the range limits of species194

predicted by the local dispersal model (1) with zero (first row), weak (second row), medium (third row), strong195

(fourth row) and stronger (fifth row) dispersal levels, with two different initial conditions: initial abundances196

favour species 3 (left column); and initial abundances favour species 1 and 2 (right column). To understand197

the dynamical behaviour of equation (1) for a range of values of the interspecific competition coefficient α198

across locations x, we constructed summary plots of the local dispersal model, which are shown in Fig. 5 (left199

column). These plots depict which combination of species is present at each location x and are generated using200

three different initial abundances, each favouring one of the three species. Consistent with previous ecological201
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Fig. 3 Results of the PDE model under various dispersal strength: D = 0 (A,B); D = 0.0005 (C,D); D = 0.001 (E,F);
D = 0.0015 (G,H); D = 0.002 (I,J). Left column, species densities at α = 1.28 when initial abundances favour species
3: N1 (x) = 0.1K1 (x) , N2 (x) = 0.1K2 (x) , N3 (x) = 0.9K3 (x). Right column, species densities at α = 1.28 when
initial abundances favour species 1 and 2: N1 (x) = 0.9K1 (x) , N2 (x) = 0.9K2 (x) , N3 (x) = 0.1K3 (x). Carrying
capacities are as in Fig. 2. These plots are computed by numerical simulation with MATLAB ode15s solver.
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Fig. 4 Results of the IDE model with b = 0.25 under various dispersal strength: D = 0, ρ = 0 (A,B); D = 0.0005, ρ =

0.1011 (C,D); D = 0.001, ρ = 0.2024 (E,F); D = 0.0015, ρ = 0.3036 (G,H); D = 0.002, ρ = 0.4048 (I,J). Left
column, species densities at α = 1.28 when initial abundances favour species 3: N1 (x) = 0.1K1 (x) , N2 (x) =

0.1K2 (x) , N3 (x) = 0.9K3 (x). Right column, species densities at α = 1.28 when initial abundances favour species
1 and 2: N1 (x) = 0.9K1 (x) , N2 (x) = 0.9K2 (x) , N3 (x) = 0.1K3 (x). Carrying capacities are as in Fig. 2. These
plots are computed by numerical simulation with MATLAB ode15s solver.
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Fig. 5 Results of the PDE (1) and IDE (3) models: D = 0 (A,B); D = 0.0005 (C,D); D = 0.001 (E,F); D = 0.0015

(G,H); D = 0.002 (I,J). Left (respectively, Right) column, summary plots of the PDE model (respectively, IDE). Black lines
correspond to the value of α = 1.28 shown in Fig. 3 and Fig. 4; white lines correspond to the value of α = 1. Colours
correspond to combinations of species presences and the meaning of these colours are described in a graphical legend.
Carrying capacities are as in Fig. 2.
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studies61–63, we define a species to be present if its density is greater than 0.5% of the maximum density of202

that species. This can be thought of as a detection threshold (i.e. meaning that we would not observe a species203

that is present at a sufficiently low density). The colours of the regions in Fig. 5 are as follows: (i) diagonal204

shaded correspond to single species presence with: blue, (K1, 0, 0); green, (0,K2, 0); and red, (0, 0,K3);205

(ii) horizontal shaded correspond to two-species coexistence with: pink, (0, N2, N3); brown, (N1, 0, N3); and206

yellow, (N1, N2, 0); (iii) vertical shaded corresponds to three-species coexistence with: cyan, (N1, N2, N3);207

(iv) unshaded correspond to priority effect regions, where in Fig. 5 (A,B) dark green, (0,K2, 0) or (0, 0,K3);208

teal, (K1, 0, 0) or (0, 0,K3); light grey, (K1, 0, 0) or (0,K2, 0) or (0, 0,K3); Fig. 5 (C,D,E,F,G,H,I,J) purple,209

(0, N2, N3) or (0,K2, 0); orange, (N1, N2, 0) or (0, N2, N3); grey blue, (N1, N2, 0) or (N1, N2, N3); black,210

(N1, N2, 0) or (N1, 0, N3); white, (N1, N2, 0) or (K1, 0, 0). We have also investigated the outcomes of the211

models using various ecological criteria (e.g. 0.5% of the maximum carrying capacity of that species, Ki,max;212

0.5% of the maximum density of any species; and 0.5% of the maximum total density of species); the results213

presented in this section are robust to reasonable choices of presence-absence criterion. To illustrate the effects214

of non-local dispersal on the presence-absence of species, we constructed Fig. 4 using IDE model (3) with215

short-range dispersal (e.g. b = 0.25), which has similar layout and comparable to the local dispersal results216

(Fig. 3). For comparison, the summary plots of IDE model are shown in Fig. 5 (right column).217

Overall, the results of the IDE are in agreement with those of the PDE models, particularly for weak and218

medium dispersal levels: when α > 1, we observe priority effects that depend on initial abundances in both219

models. Increasing the intensity of dispersal from weak to medium dispersal levels enhances the occurrence of220

priority effects (compare unshaded regions in Fig. 5C, E and Fig. 5D, F). This situation promotes coexistence221

of two (Fig. 3D, F and Fig. 4D, F) or three species (Fig. 3C, E and Fig. 4C, E) near the centre of the region.222

The main difference between these two models is observed under strong dispersal: there are more occurrences223

of priority effects in the IDE than in the PDE models (compare unshaded regions in Fig. 5G and Fig. 5H). For224

instance, the IDE models show that either two-species coexistence or three-species coexistence is possible near225

the centre of the domain (Fig. 4G, H), whereas three-species coexistence is no longer possible in the PDE model226

(Fig. 3G, H) under strong dispersal scenario. These results show that priority effects persist when dispersal is227

strong in the non-local dispersal models, and they are eliminated at higher values of dispersal in the IDE than in228

the PDE models.229
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Fig. 6 The density of a focal species (species 3) at x = 0.5 and α = 1.28 for PDE model (thick lines) and IDE model
with b = 0.25 (thin line) as the dispersal strength D changes. The threshold values D∗

pde (black point) and D∗
ide (green

point) correspond to diffusion coefficients for PDE and IDE, respectively (for IDE, the corresponding diffusion coefficients
D and ρ are related by equation (5)); these thresholds also correspond to saddle-node bifurcation points. There are three
branches of N3: (i) unstable three-species steady-states (red curves); (ii) stable three-species steady-state, with species 3
present (upper blue curves); (iii) stable two-species steady-state, with species 3 absent (lower blue curves). Other parameter
values as in Table (1). These plots are computed by numerical continuation using XPPAUT.

3.2. Theoretical Explanations on the (Dis-)Appearance of Priority Effects in the Non-Local and Local230

Dispersal Models231

To clarify the persistence or exclusion of the priority effect in some regions for rapid dispersal levels in both232

models (Fig. 5G, I and Fig. 5H, J), we employed numerical continuation to track the steady states of the models233

as dispersal strength D changes. Fig. 6 shows the steady-state density of species 3 at x = 0.5 for PDE (thick234

lines) and IDE (thin lines) models when α = 1.28 as dispersal intensity D are varied. There are three branches235

of steady states: the upper (three-species coexistence) and lower branches (two-species coexistence with species236

3 absent) of steady states are stable (blue curves); these are separated by an unstable steady state (red curve).237
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There is a threshold dispersal strength D∗
pde (respectively, D∗

ide) for PDE (respectively, IDE), corresponding238

to a saddle-node bifurcation, beyond which the three-species coexistence state vanishes and priority effects239

disappear; for values of dispersal D < D∗
pde (respectively, D < D∗

ide), the density N3 tends toward upper or240

lower steady-state, depending on initial species abundances; for values of dispersal D > D∗
pde (respectively,241

D > D∗
ide), priority effects disappear and there is only one stable steady state, in which species 3 is absent. The242

main difference between the two bifurcation curves in Fig. 6 is that the saddle-node bifurcation point for the243

IDE (i.e. D∗
ide) is shifted to stronger dispersal levels at this location, as compared to the PDE model (i.e. D∗

pde).244

The steady states of the systems are also tracked as the strength of competition α changes under different245

dispersal scenarios (Fig. 7) in order to gain better understanding of the dynamics of PDE and IDE simulation246

results (Fig. 3 and Fig. 4). For moderate dispersal levels, as α increases from 0.5 to 1.5 near the central247

location, our summary plots (unshaded regions of Fig. 5E and Fig. 5F) show that there is a threshold value248

for competitive strength, beyond which priority effects appear. Continuation results in Fig. 7A are consistent249

with the aforementioned simulation results. Fig. 7A depicts the steady-state density of species 3 at x = 0.5 for250

the PDE (thick lines) and the IDE (thin lines) models as α changes under medium dispersal. There are threshold251

competitive strengths α−
pde and α−

ide for the PDE and IDE models (respectively), corresponding to transcritical252

bifurcations, beyond which priority effects occur: for competitive strength α > α−
pde (respectively, α > α−

ide),253

the density N3 tends toward upper or lower steady-state (blue curves), depending on initial species abundances;254

for values of competitive strength α < α−
pde (respectively, α < α−

ide), the priority effects vanish and there is only255

one stable steady state, in which species 3 is present in three-species coexistence. We note that the threshold256

value of competitive strength is higher in the IDE (i.e. α−
ide) than in the PDE (i.e. α−

pde) models under moderate257

dispersal levels.258

We also observe qualitatively different dynamics between the PDE and IDE models in our summary plots for259

strong dispersal (unshaded regions of Fig. 5G and Fig. 5H). In particular, there are critical values for competitive260

strength in which priority effects appear and then vanish in some regions of the PDE summary plot as α increases261

(Fig. 5G). Our continuation results (Fig. 7B: thick curves) reveal that there are threshold values of α (black262

points) in the PDE models: the lower and upper thresholds α−
pde, α

+
pde correspond to transcritical and saddle-263

node bifurcations (respectively), and priority effects occur for the range of competitive strength where α−
pde <264

α < α+
pde. In the IDE models, for the range of competition coefficient α that we investigated, there is a threshold265

competitive strength α−
ide (corresponding to a transcritical bifurcation) beyond which priority effects occur. In266

this situation, priority effects persist for a bigger range of competitive strength α (i.e. when α > α−
ide); this is267

consistent with the IDE simulation results (Fig. 5H).268

As dispersal intensity increases to stronger dispersal, we notice that priority effects region shrinks in the269
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Fig. 7 The density of species 3 (N3) for PDE model (thick lines) and IDE model with b = 0.25 (thin line) at x = 0.5

as the strength of biotic interactions α change under various dispersal scenarios: (A) D = 0.001, (B) D = 0.0015, (C)
D = 0.002, (D) D = 0.0025. The points α−

pde and α−
ide correspond to transcritical bifurcations and α+

pde and α+
ide

correspond to saddle-node bifurcation points in the PDE and the IDE, respectively. Three branches of N3: (i) unstable
three-species steady-states (red curves); (ii) stable three-species steady-state, with species 3 present (upper blue curves); (iii)
stable (respectively, unstable) two-species steady-state, with species 3 absent, which emerges to the right (respectively, left)
of transcritical bifurcations α−

pde and α−
ide (lower blue (respectively, red) curves). The black lines correspond to the value of

competition coefficient α = 1.28 shown by the simulation results in Fig. 3 (PDE) and Fig. 4 (IDE). Other parameter values
as in Table (1). These plots are computed by numerical continuation using XPPAUT.

summary plots of both models (unshaded regions of Fig. 5I, J). Closer investigation of PDE (respectively,270

IDE) continuation results in Fig. 7C, D demonstrates that the two bifurcation points, namely transcritical271

bifurcation α−
pde (respectively, α−

ide) and saddle-node bifurcation α+
pde (respectively, α+

ide), come closer and272

closer to one another and, finally, coalesce (compare black (bifurcation) points in Fig. 7C with Fig. 7D). To273

investigate the interaction of transcritical and saddle-node bifurcations and to clarify the disappearance of274

priority effects as dispersal strength D and competition coefficient α change, we constructed two-parameter275
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Fig. 8 Parameter space diagram, which summarises different dynamics at location x = 0.5 for the PDE (left) and IDE
(right) models, as dispersal strengthD and competitive strength α are varied. Colours correspond to combinations of species
presences: (i) three-species coexistence (cyan); (ii) two-species coexistence with species 3 absence (yellow); (iii) priority
effect regions (blue-grey). LP curves correspond to saddle-nodes bifurcations and BP curves correspond to transcritical
bifurcations. Points of intersection between BP and LP curves correspond to degenerate transcritical bifurcation point (red
point). These co-dimension two bifurcation plots are computed by varying two parameters using numerical continuation
package XPPAUT.

bifurcation diagrams, as shown in Fig. 8. These plots illustrate the dynamics at the central region (x = 0.5) as276

the strength of competition α and magnitude of dispersal D are varied in both models. There is a co-dimension277

2 point (red point) for PDE (Fig. 8A), corresponding to a degenerate transcritical bifurcation: at this point, the278

transcritical bifurcation (BP) changes from subcritical to supercritical with corresponding creation of a saddle-279

node bifurcation curve (LP). This co-dimension 2 bifurcation acts as an organising centre and separates the280

parameter space into three different regions: inside the wedge there are priority effects (blue-grey colour) with281

two stable steady states (i.e. three-species coexistence with species 3 presence or two-species coexistence with282

species 3 absence), and outside the wedge there is one stable steady state (i.e. three-species coexistence with283

species 3 presence (cyan colour) and two-species coexistence with species 3 absence (yellow colour)). Similar284

observations are possible in the IDE (Fig. 8B) as competitive strength α and dispersal intensity D changes (i.e.285

degenerate transcritical bifurcation occurs when dispersal strength D increases further than the values shown in286

Fig. 8B).287

Overall, we find that bistable region (blue-grey colour) is larger in the IDE as compared to PDE models,288

which leads to more occurrences of priority effects under rapid dispersal levels. The three-species coexistence289

region (cyan colour) is also larger in IDE, where for different parameter values investigated, we observe stable290

coexistence of focal species (e.g. species 3) with its neighbouring competitors (e.g. species 1 and 2). We291
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also notice that the width of the (yellow colour) region supporting two-species coexistence (e.g. with species 3292

absence) outcome is wider in the PDE than IDE models.293

3.3. Contrasting Observations of Non-Local Dispersal on Species Presence-Absence294

(Intermediate-Range and Long-Range Dispersal)295

In the previous section, we observe that the coexistence of species is enhanced when dispersal occurs over non-296

adjacent spatial locations, whereas exclusion of some species occurs when dispersal is localised. This finding297

is illustrative, but it may not be general. The opposite observation is also possible: it has been observed in298

experimental studies64 that species coexistence is rapidly lost when dispersal occurs over larger scales, whereas299

species coexistence is possible when dispersal occurs over intermediate or short distances; in the latter case,300

coexistence of species peaks at intermediate-range dispersal. Motivated by this experimental observation, we301

investigate the consequences of intermediate-range and long-range dispersal on species coexistence using our302

non-local dispersal model (3). To do this, we conducted numerical experiments by considering various dispersal303

distance b and also different initial species abundances. For example, Fig. 9 shows the presence-absence of304

species at α = 1.28 for stronger dispersal levels (D = 0.002) predicted by the PDE (first row), and the IDE305

models with b = 0.25 (second row), b = 0.5 (third row), b = 0.9 (fourth row) and b = 2 (fifth row). These306

plots are generated using two different initial conditions: initial abundances favour species 3 (left column);307

and initial abundances favour species 1 and 2 (right column). We also constructed stack graphs for the IDE308

models, which are shown in Fig. 10, for a range of values of dispersal distance b. These plots summarise the309

proportion of different species present across sites x (e.g. single-species present (blue squares), two-species310

present (green squares) and three-species present (red squares)) as dispersal distance b changes. To generate311

these stack graphs, we used two different initial conditions: initial abundances favour species 3 (left column);312

and initial abundances favour species 1 and 2 (right column). As with the summary plots, we define a species313

to be present if its density is greater than 0.5% of the maximum density of that species.314

When b is relatively small, the predictions of the IDE (Fig. 9C, D) are in agreement with those of the PDE315

(Fig. 9A, B); in the case of stronger dispersal, priority effects are absent and only two-species coexistence is316

possible near the central region. When b increases to intermediate levels, we find that priority effects emerge317

with coexistence of three (Fig. 9E, G) or two species (Fig. 9F, H) near the centre of the region depending on318

initial abundances. The occurrence of priority effects is still evident when b is relatively large (Fig. 9I, J), but we319

observe more outcomes where species exclusions are possible; in this situation, mostly one species dominating320

at any given location x, depending on initial abundances. This observation can clearly be seen from our stack321

graphs (Fig. 10A): when non-local dispersal process occurs over very large spatial scales (e.g. b = 2), multi-322
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Species Presence-Absence for Stronger Dispersal Levels (D = 0.002)

Fig. 9 Results for stronger dispersal levels (D = 0.002) predicted by the PDE models (A,B); and the IDE models with b =
0.25 (C,D); b = 0.5 (E,F); b = 0.9 (G,H); b = 2 (I,J). Left column, species densities at α = 1.28 when initial abundances
favour species 3: N1 (x) = 0.1K1 (x) , N2 (x) = 0.1K2 (x) , N3 (x) = 0.9K3 (x). Right column, species densities at α =

1.28 when initial abundances favour species 1 and 2: N1 (x) = 0.9K1 (x) , N2 (x) = 0.9K2 (x) , N3 (x) = 0.1K3 (x).
Carrying capacities are as in Fig. 2. These plots are computed by numerical simulation with MATLAB ode15s solver.
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Fig. 10 Proportion of different species present across sites x for different values of b: single-species present (blue squares);
two-species present (green squares); three-species present (red squares). Stack graphs for the IDE models with stronger
dispersal levels (D = 0.002) at α = 1.28 as dispersal distance b changes. Left column, IDE results when initial abundances
favour species 3: N1 (x) = 0.1K1 (x) , N2 (x) = 0.1K2 (x) , N3 (x) = 0.9K3 (x). Right column, IDE results when initial
abundances favour species 1 and 2: N1 (x) = 0.9K1 (x) , N2 (x) = 0.9K2 (x) , N3 (x) = 0.1K3 (x). Carrying capacities
are as in Fig. 2. These plots are computed by numerical simulation with MATLAB ode15s solver.

species coexistence is impossible. In this situation, the proportion of sites with only one-species (blue squares)323

present increases rapidly, while the sites with two-species (green squares) and three-species (red squares) present324

reduce to low proportions. We also observe that non-local dispersal that occurs over intermediate distances (e.g.325

b = 0.5) can promote multi-species coexistence in comparison to non-local dispersal over short distances (e.g.326

b = 0.25) or purely local dispersal. For short-range dispersal, priority effects vanish in our stack graphs, and327

only two-species coexistence is possible for different initial abundances (Fig. 10A, B).328

To investigate the (dis-)appearance of priority effects as the values of b change, we performed numerical329

continuation to track the steady states of the IDE models. Fig. 11 depicts the steady-state density of species 3330

at x = 0.5 for stronger dispersal levels (D = 0.002) when α = 1.28 as parameter b in the IDE is varied. For331

instance, there are three branches of steady states: the upper (three-species coexistence, with species 3 present)332

and lower branches (two-species coexistence, with species 3 absent) of steady states are stable (blue curves);333

these are separated by an unstable three-species steady state (red curve). There is a threshold dispersal distance334

bT , corresponding to a saddle-node bifurcation, below which the upper branch of steady states vanishes and335

priority effects vanish. For values of dispersal distance b < bT , the priority effects disappear and there is only336

one stable steady state, in which species 3 is absent. For values of dispersal distance b > bT , priority effects337

occur and the density N3 tends toward upper or lower steady-state, depending on initial species abundances.338
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Fig. 11 The density of a focal species (species 3) at x = 0.5 and α = 1.28 for IDE models with stronger dispersal
levels (D = 0.002) as the dispersal distance b changes. The threshold value bT (black square) corresponds to saddle-node
bifurcation point. There are three branches of N3: (i) unstable three-species steady-states (red curves); (ii) stable three-
species steady-state, with species 3 present (upper blue curves); (iii) stable two-species steady-state, with species 3 absent
(lower blue curves). Other parameter values as in Table (1). These plots are computed by numerical continuation using
XPPAUT.

4. DISCUSSION AND ECOLOGICAL IMPLICATIONS

In this work, we have used PDE and IDE models to study the influences of different dispersal patterns on339

the occurrence of priority effects, which are mediated by intense biotic interactions across heterogeneous340

environments. We discover that the occurrence of priority effects vary with dispersal strategies and strength;341

they are eliminated at stronger values of dispersal in the IDE than in the PDE models. Our summary plots show342

that the regions supporting dispersal-mediated coexistence and/or priority effects are wider in the IDE models343

under rapid dispersal scenarios. These findings demonstrate that the interaction of priority effects and dispersal,344

which can mediate multi-species coexistence, are more pronounced in the IDE models. It has been shown that345

non-local dispersal process can enhance the chance of species survival across heterogeneous environments38.346
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Biologically, non-local dispersal increases the possibility of migrating species to escape the effects of intense347

biotic interactions from other species by dispersing further away; this situation enhances the establishment and348

persistence of species38, 65. We also notice that dispersal-induced extinction phenomenon is more evident in the349

PDE models, which leads to extinction of some species near the centre for more values of D. Local dispersal350

generates a clumped spatial distribution, which increases the effects of competition among species and enhances351

the possibility of extinction of some species65.352

Our findings also highlight the important roles of the spatial scale of ecological processes in maintaining353

community compositions (Fig. 9, Fig. 10 and Fig. 11). Some experimental studies40, 41 have illustrated that354

allowing ecological processes such as dispersal to occur locally can promote coexistence in a community355

assembly41; however, when ecological processes occur over very large spatial scale, species coexistence is356

rapidly lost and extinction is possible40. Our findings are in line with the aforementioned observations:357

we observe that while very long-range dispersal can lead to an exclusion effect (of all but one species),358

short-range and intermediate-range dispersal can promote coexistence of two and three species, respectively.359

Ecologically, long-distance dispersal increases the risk of landing in unsuitable habitats outside species360

fundamental niches66, 67. In our models, this effect can be seen in the exclusion of neighbouring competitors361

(e.g. species 1 and 2) near the central region; consequently, this situation reduces the possibility of multiple362

species to coexist, and in turn benefit focal species (e.g. species 3), in which they can exclude other competitors.363

We also discover qualitatively similar observations of priority effects between the consequence of increasing364

dispersal distance b and the effect of decreasing dispersal strength D. As D is decreased in the PDE models365

(Fig. 6), this situation corresponds to limited dispersal events, and thus the dynamics resemble those observed366

in no-dispersal case. In the presence of intense biotic interactions, competitive exclusion (of all but one species)367

occurs due to priority effects. Ecologically, when species have lower migration rates, this situation can result in368

a crowding effect and increased competition, which in turn leads to species exclusion. As dispersal distance b369

increases (Fig. 11), this situation corresponds to infrequent long range dispersal events. In this case, dispersal of370

species over larger distances is possible but rare, which may result in species presence-absence to resemble those371

observed in no-dispersal scenario (i.e. in the presence of intense biotic interactions, priority effects emerge with372

only one species can exist at any given locations). Consequently, we observe that there are more occurrences of373

priority effects in the IDE models as dispersal distance b increases.374

The continuation results further reveal the bifurcation structure of the PDE and IDE models and they are375

consistent with simulation results. We find that (Fig. 6) there is a threshold dispersal strength D: this threshold376

value depends on the modes of dispersal and we show that this value is higher in the IDE model than in the377

PDE model by considering the dynamics near the central region. Consequently, priority effects persist for378
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stronger dispersal in IDE model, as opposed to PDE model. Additionally, we observe the conditions under379

which co-dimension 2 bifurcation (Fig. 8) occurs as a result of the interaction between transcritical and saddle-380

node bifurcations. In general, the interaction of transcritical and saddle-node bifurcations is also studied in381

other biological systems, such as in Kooi et al.68, Van Voorn and Kooi69, Saputra et al.70 and Landi et al.71.382

These findings also demonstrate the possibility of dramatic changes on species presence-absence in response383

to small variations in the ecologically-relevant parameters, which can induce an uncertainty in the range-limit384

predictions.385

From a species conservation perspective, a qualitative implication of our results is that connecting local386

habitats via movement corridors can have negative impacts for community compositions at several spatial scales.387

This observation is in line with research on metacommunities, which illustrates negative effects of dispersal on388

coexistence of species at larger spatial scale72. In practice, conservationists believe that increasing connectivity389

between habitat patches enhances the possibility of species survival73–75. Our results show that an increase in390

connectivity, however, can increase the risk of species extinction due to the rapid spread of superior species391

(e.g. competitors or invasive species) into local habitats; when dispersal occurs over larger spatial scales, this392

situation can also jeopardise species coexistence due to the risk of landing in unsuitable habitats. Based on these393

observations, we suggest that the risk of dispersal-induced extinction should be should be taken into account in394

the design of such corridors as a conservation tool. This may require detailed knowledge of dispersal rates and395

biotic interactions, as well as information on dispersal patterns of species.396

In conclusion, this study serves as a first step in demonstrating how incorporation of different dispersal397

patterns can improve our predictions of priority effects that strongly determine the presence-absence of species.398

Knowledge of local and non-local dispersal mechanisms can be incorporated in developing robust predictive399

models for estimating potential presence-absence of species. We recommend the use of local dispersal (PDE)400

models to predict the combined effects of dispersal, environment and biotic interactions on range limits when401

species’ dispersal ability are localised. However, we suggest that the range-limit predictions will be revealed402

better by non-local dispersal (IDE) models when considering certain species that can disperse larger distances403

via non-local dispersal.404
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