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Summary

The recently discovered comammox process encom-
passes both nitrification steps, the aerobic oxidation
of ammonia and nitrite, in a single organism. All
known comammox bacteria are affiliated with
Nitrospira sublineage II and can be grouped into two
distinct clades, referred to as A and B, based on
ammonia monooxygenase phylogeny. In this study,
we report high-quality draft genomes of two novel
comammox Nitrospira from the terrestrial subsurface,
representing one clade A and one clade B com-
ammox organism. The two metagenome-assembled
genomes were compared with other representatives
of Nitrospira sublineage II, including both canonical
and comammox Nitrospira. Phylogenomic analyses
confirmed the affiliation of the two novel Nitrospira
with comammox clades A and B respectively. Based
on phylogenetic distance and pairwise average nucle-
otide identity values, both comammox Nitrospira were
classified as novel species. Genomic comparison rev-
ealed high conservation of key metabolic features in
sublineage II Nitrospira, including respiratory com-
plexes I–V and the machineries for nitrite oxidation
and carbon fixation via the reductive tricarboxylic
acid cycle. In addition, the presence of the enzymatic
repertoire for formate and hydrogen oxidation in the
Rifle clades A and B comammox genomes, respec-
tively, suggest a broader distribution of these meta-
bolic features than previously anticipated.

Introduction

Nitrogen (N) is a key nutritional element for life on Earth
and is essential for the biosynthesis of nucleic acids and
proteins. In many environments, including unperturbed
terrestrial ecosystems, N represents a growth-limiting fac-
tor. Thus, artificial N fertilizers are intensively used in
agriculture to enhance crop production, resulting in a
doubling of the N flux into terrestrial environments and a
severe perturbation of the global N cycle (Galloway et al.,
2008). The biogeochemical N cycle comprises a series of
aerobic and anaerobic processes mainly performed by
microorganisms. Among these, nitrifying microorganisms
play an essential role by performing the stepwise aerobic
oxidation of ammonia to nitrate. Nitrification is mediated
by functionally distinct groups of chemolithoautotrophic
microorganisms: the ammonia-oxidizing bacteria (AOB)
or archaea (AOA), which operate in a tight interplay with
nitrite-oxidizing bacteria (NOB). However, nitrification can
also be catalysed in a single organism by the recently
discovered complete ammonia-oxidizing (comammox)
Nitrospira (Daims et al., 2015; van Kessel et al., 2015).
The genus Nitrospira, which prior to the discovery of
comammox had been regarded to comprise specialized
nitrite oxidizers only, represents the most diverse NOB
clade, harbouring at least six phylogenetic sublineages
observed in a wide range of natural aquatic and terrestrial
habitats, and engineered environments like drinking and
wastewater treatment plants (Daims et al., 2001;
Lebedeva et al., 2011; Daebeler et al., 2014; Daims
et al., 2016; Gülay et al., 2016). All complete nitrifiers
known to date are affiliated with Nitrospira sublineage II
(Daims et al., 2015; van Kessel et al., 2015; Pinto et al.,
2016; Palomo et al., 2018). Furthermore, comammox
Nitrospira form two divergent clades, referred to as com-
ammox clades A and B, based on phylogenetic analysis
of the ammonia monooxygenase (AMO), the enzyme
catalysing ammonia oxidation (Daims et al., 2015).

So far, most comammox Nitrospira genomes were
obtained from engineered systems (Daims et al., 2015;
van Kessel et al., 2015; Pinto et al., 2016; Wang et al.,
2017; Palomo et al., 2018), some of which are character-
ized by low concentrations of ammonium. Especially in
these, comammox Nitrospira appeared to dominate the
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nitrifying community (Bartelme et al., 2017; Pjevac et al.,
2017; Koch et al., 2018), which is in line with the hypoth-
esis that the comammox process is beneficial under
substrate-limited conditions selecting for high growth
yields (Costa et al., 2006). Recent kinetic characterization
of a complete nitrifier confirmed that comammox
Nitrospira are indeed adapted to highly oligotrophic con-
ditions and due to a higher affinity for ammonia might
out-compete canonical ammonia-oxidizing microorgan-
isms (Kits et al., 2017).
By now, comammox Nitrospira were also detected in sev-

eral natural environments, including lake sediment and for-
est and agricultural soils (Orellana et al., 2017; Parks et al.,
2017; Pjevac et al., 2017; Xia et al., 2018). Notably, in fertil-
ized soils (Orellana et al., 2017) and acidic subtropical forest
soils (Shi et al., 2018), the increased abundances of com-
ammox Nitrospira in response to human-induced N load-
ings indicate that they can drive nitrification also under less
oligotrophic conditions. The observed diversity together with
the identification of comammox Nitrospira as the most
abundant nitrifiers in acidic forest soil (Hu and He, 2017) as
well as in estuary and coastal environments (Xia et al.,
2018) indicates their vital contribution to nitrification also in
natural systems. However, comammox Nitrospira genomes
from natural environments were rarely recovered and
analysed so far, and thus the metabolic capabilities of com-
plete nitrifiers in these ecosystems are poorly understood.
In this study, we recovered two high-quality draft

genome sequences of novel comammox Nitrospira from
the Rifle sampling site, an aquifer adjacent to the Colo-
rado River. Microbial community composition and inter-
species interactions in this subsurface environment have
been extensively studied (Castelle et al., 2013; Brown

et al., 2015; Hug et al., 2015; Anantharaman et al.,
2016). A recent metagenomic characterization of this
aquifer revealed that the nitrifying community comprises
mainly Nitrospira-like bacteria and canonical ammonia
oxidizers appeared to be absent (Anantharaman et al.,
2016). Here, a comparative genomic approach was used
to analyse the two novel comammox genomes from the
Rifle terrestrial subsurface in comparison to other sub-
lineage II Nitrospira species, including canonical nitrite
oxidizing and comammox organisms. To the best of our
knowledge, this is the first genomic characterization of
clades A and B comammox Nitrospira derived from the
terrestrial subsurface, which is a valuable step towards
understanding their environmental significance and distri-
bution, and will help to identify metabolic drivers of niche
differentiation between the comammox clades.

Result and discussion

General genomic information

This study reports two novel comammox Nitrospira
metagenome-assembled genomes (abbreviated as RCA
and RCB, designating the comammox clade A and B
genomes respectively) retrieved from the terrestrial sub-
surface of the Rifle sampling site, an aquifer adjacent to
the Colorado River (CO). The high-quality draft genomes
are estimated to be 94% (RCA) and 91% (RCB) com-
plete and comprise 88 and 296 contigs respectively
(Table 1). The pairwise comparison of the Rifle com-
ammox genomes with 32 other Nitrospira genomes
showed that the maximum average nucleotide identity
(ANI) values for these genomes were below the defined
species cut off of 95% (Richter and Rossello-Mora,
2009). This classifies them as novel species, which was
also confirmed by the phylogenetic distances to their
closest relatives in phylogenomic analyses (see below).
The observed GC content, genome sizes and the number
of predicted protein-coding sequences (CDS) are in the
range of previously published Nitrospira sublineage II
genomes (Supporting Information Table S1). The pan-
genome of 24 sublineage II Nitrospira species was
analysed by using reciprocal BLAST hit (RBH) analysis
to identify shared and unique proteins (Supporting Infor-
mation Tables S2 and S3). Only 12% of RCA and 11% of
RCB CDS are conserved in all analysed sublineage II
Nitrospira genomes and more than half of all CDS
(~54%) in both Rifle genomes are predicted proteins of
unknown function.

Phylogenetic affiliation of the novel comammox
Nitrospira

To infer the phylogenetic affiliation of the Rifle comammox
Nitrospira, we reconstructed a maximum likelihood

Table 1. General characteristics of Rifle comammox Nitrospira
genomes.

Nitrospira sp. RCA Nitrospira sp. RCB

Completenessa 94% 91%
Redundancya 2.7% 2.7%
Genome size (Mb) 3.29 3.55
GC content 56.8% 57.1%
Number of contigs 88 296
N50 of contigs 92 268 18 857
Number of CDSsb 3456 3711
Coding density 86% 83.9%
rRNAs 1 0
tRNAs 41 42
CDSc in core genome 407 (12%) 400 (11%)
Species-specific CDSc 853 (25%) 966 (26%)

a. Based on lineage-specific marker sets determined with CheckM
(Parks et al., 2015).
b. Inferred with Prodigal (Hyatt, 2010).
c. CDS with RBH hits with an amino acid identity ≥45% and a mini-
mum alignment length ≥70% were defined as homologues proteins.
CDS with no RBH hit were considered species specific.
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(ML) phylogenomic tree based on a concatenated align-
ment of 91 single copy core genes (Fig. 1). This clearly
affiliated the two species with comammox clades A and B
respectively. Furthermore, according to this analysis, com-
plete nitrifiers form two monophyletic groups within
Nitrospira sublineage II. This separation of comammox
into clades A and B is consistent with the amoA-based
phylogeny (Fig. 2) but in stark contrast to 16S rRNA gene-
based analyses where this monophyletic structure of the
comammox clades is not observed (Pinto et al., 2016).
Here, the clade A comammox Nitrospira inopinata clusters
with the strict nitrite-oxidizing Nitrospira moscoviensis,
making it impossible to reliably distinguish canonical and
comammox species based on their 16S rRNA gene. How-
ever, in the phylogenomic tree, the two distinct comammox
clades are closely affiliated with canonical Nitrospira
(Fig. 1), which can hamper the identification of novel com-
ammox organisms when they cluster close to but not
within the known comammox clades. An additional group
containing canonical Nitrospira clustering in between the
comammox clades further suggests a complex evolution-
ary history of the ammonia oxidation pathway within
Nitrospira, as already discussed in the former studies
(Palomo et al., 2018).
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Fig. 1. Phylogenomic analysis of the genus Nitrospira. The maximum likelihood tree was constructed using a concatenated alignment of 91 single
copy core genes. Nitrospira sublineages and comammox clades are indicated by coloured boxes. Asterisks behind species names indicate
closed genomes, daggers high-quality assemblies with ≤22 contigs. Bootstrap support values = 100% are indicated by black circles. The arrow
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Respiratory chain and carbon metabolism

Genes for respiratory complexes I–V are highly conserved
in all Nitrospira (Lücker et al., 2010; Koch et al., 2015;
Palomo et al., 2018), including in the RCA and RCB
genomes. Furthermore, the core genome contained all
genes for glycolysis/gluconeogenesis, the non-oxidative
pentose phosphate pathway and the tricarboxylic acid
cycle (Supporting Information Tables S2 and S3). The
identification of key enzymes for the reductive tricarboxylic
acid cycle (rTCA), including ATP-citrate lyase,
2-oxoglutarate:ferredoxin oxidoreductase and pyruvate:fer-
redoxin oxidoreductase in the RCA and RCB genomes
suggests that, like all Nitrospira, these comammox species
employ the rTCA for CO2 fixation. All analysed genomes
furthermore contained pyruvate carboxylase subunits A
and B, required for the carboxylation of pyruvate to form
oxaloacetate in order to replenish TCA cycle intermediates
withdrawn for biosynthesis reactions. Nitrospira further-
more has the genomic potential to utilize simple organic
substrates such as pyruvate (Lücker et al., 2010; Koch
et al., 2015), but their role to support mixotrophic growth is
not fully understood yet. The uptake of pyruvate was
shown for some uncultured Nitrospira in activated sludge
(Daims et al., 2001), while no assimilation by sublineage I
Nitrospira was observed in a later study (Gruber-Dorninger
et al., 2015). Moreover, N. moscoviensis did not use

pyruvate as an electron donor under anoxic conditions
(Koch et al., 2015).

Nitrogen metabolism

Complete nitrifiers grow chemolithoautotrophically by
aerobic oxidation of ammonia to nitrate (van Kessel
et al. 2015, Daims et al. 2015). Both Rifle comammox
genomes contained the full gene set for AMO and
hydroxylamine dehydrogenase (HAO) necessary for
ammonia oxidation to nitrite and all subunits of the nitrite
oxidoreductase (NXR) for nitrite oxidation. The AMO
structural genes amoCAB of RCA were clustered
together with the putative AMO subunits amoEDD2,
haoAB and cycAB encoding HAO and the associated
quinone-interaction module, and a copper transporter
(copCD). In RCB amoCAB were localized on a small
contig along with few hypothetical proteins and a trans-
posase family protein (Fig. 3). Similar to RCB, trans-
posase genes were identified directly upstream of
amoCAB also in the genome of N. inopinata, and the
entire operon had a divergent tetranucleotide signature
(Daims et al., 2015). These features might indicate that
comammox Nitrospira acquired the ammonia-oxidizing
capability through lateral gene transfer (Daims et al.,
2015; Palomo et al., 2018). Like betaproteobacterial
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AOB, all comammox Nitrospira contain genes for the
cytochrome c maturation system I, which is absent in
most canonical Nitrospira. Intriguingly, also few strict
nitrite-oxidizing sublineage II Nitrospira possess this
gene cluster (Supporting Information Fig. S1), indicating
either a loss of the ammonia-oxidizing potential in these
species or an alternative function of the cytochrome
c proteins synthesized by this system.

Recently, it has been suggested for
betaproteobacterial AOB, which possess an ammonia-
oxidizing machinery similar to comammox Nitrospira
(Daims et al., 2015; van Kessel et al., 2015), that
ammonia oxidation includes not only hydroxylamine but
also nitric oxide (NO) as obligate intermediates
(Caranto and Lancaster, 2017). In this model, NO is the
product of hydroxylamine oxidation by HAO, which sub-
sequently is converted to nitrite either abiotically or
enzymatically, potentially by a bidirectional copper-
dependent dissimilatory nitrite reductase (NirK)
(Caranto and Lancaster, 2017). All analysed Nitrospira
genomes except RCA possess NirK (Fig. 4, Supporting
Information Table S4), but its role in Nitrospira remains
to be determined. However, it should be noted that the
lack of NirK in RCA potentially is due to genome incom-
pleteness. Like all other comammox Nitrospira (Palomo
et al., 2018), both RCA and RCB lack the genetic
potential for assimilatory nitrite reduction (Fig. 4,
Supporting Information Table S4). Still, RCB encodes a
MFS-type nitrite/nitrate transporter (NarK), which is
found in some clades A and B comammox and in all
canonical Nitrospira genome (Fig. 4, Supporting Infor-
mation Table S4).

For ammonium uptake, clade A comammox (Daims
et al., 2015; van Kessel et al., 2015; Palomo et al., 2018)
and most betaproteobacterial AOB (Lupo et al., 2007)
employ low-affinity Rh-type transporters. In contrast,
clade B comammox, like canonical Nitrospira and
ammonia-oxidizing archaea (AOA; Offre et al., 2014),
possess high-affinity AmtB-type transporters (Palomo
et al., 2018). No ammonium transporter could be identi-
fied in RCA, which, however, is most likely due to incom-
plete recovery of the genome. The RCB genome
encoded three copies of AmtB-type transporters (Fig. 4)
that had amino acid similarities ranging from 50% to
65%. Notably, one of these ammonium transporters
shows the highest similarity to the Amt1 transporter of
AOA based on BLAST analysis. In AOA, distinct copies
of AmtB-type transporters were differentially expressed
when subjected to ammonium limitation, suggesting func-
tional differentiation (Qin et al., 2018). In addition to exter-
nal ammonium sources, ammonium can also originate
from the intracellular hydrolysis of urea, and both Rifle
genomes encoded ureases and the corresponding ABC
transport systems. The presence and activity of urease in

both canonical and comammox Nitrospira indicate that
hydrolysis of urea is a common metabolic feature within
this genus (Koch et al., 2015; van Kessel et al., 2015;
Ushiki et al., 2018). Intriguingly, while canonical
Nitrospira employ a cyanase to utilize cyanate as an
additional metabolic source of ammonium (Palatinszky
et al., 2015; Ushiki et al., 2018) this function is absent in
complete nitrifiers (Palomo et al., 2018).

One of the unique genomic regions of RCB encoded
the two subunits of a cobalt-containing nitrile hydratase
and an accessory protein partly conserved also in
Nitrospira sp. UD063 (Supporting Information Table S3).
This class of enzymes catalyses the hydration of nitriles,
of which cyanide (HCN) is the simplest, to amides that
can be subsequently hydrolyzed by amidases to pro-
duce monocarboxylate and ammonium (Kobayashi and
Shimizu, 1998). Besides, the RCB genome contained a
putative formamidase, an aliphatic amidase that con-
verts formamide to ammonium and formate (Tauber
et al., 2000; Skouloubris et al., 2001). These results indi-
cate that Rifle clade B comammox Nitrospira use a
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nitrile hydratase/formamidase system to detoxify cya-
nide or other nitriles and produce ammonium, which
might be used as an energy source and for assimila-
tion (Fig. 5).

Alternative energy metabolisms

The variable genome of the analysed sublineage II
Nitrospira species includes genes for hydrogen and for-
mate oxidation as alternative energy sources. Physiologi-
cal analyses of N. moscoviensis revealed that hydrogen
and formate sustained growth in the absence of nitrite
(Koch et al., 2014; Koch et al., 2015). Interestingly, in
contrast to N. moscoviensis that has a group 2a [NiFe]
hydrogenase, clade A comammox employ a group 3b
bidirectional [NiFe] hydrogenase (sulfhydrogenase),
whereas clade B apparently lacks this enzyme (Palomo
et al., 2018). Here, the complete operon encoding the
group 3b hydrogenase was identified in RCB but was
absent from the RCA genome. However, the metabolic
role of this hydrogenase in complete nitrifiers remains

to be determined. Potential functions of group 3b
hydrogenases include NAD(P)-dependent H2 oxidation
(Yoon et al., 1996), H2 evolution (Berney et al., 2014)
and reduction of elemental sulphur (S0) to H2S
(Ma et al., 2000).

Similarly, the capability to oxidize formate seems to be
more broadly distributed within Nitrospira than previously
assumed. Some members of the genus Nitrospira can
oxidize formate as an alternative energy source, using
either oxygen or nitrate as a terminal electron acceptor
(Koch et al., 2015). Fascinatingly, some uncultured
Nitrospira from activated sludge only assimilate formate-
derived carbon in the presence of nitrite (Gruber-
Dorninger et al., 2015), and N. moscoviensis was shown
to perform simultaneous formate and nitrite oxidation
(Koch et al., 2015). So far, canonical and comammox
clade B Nitrospira were described to possess a NAD-
dependent formate dehydrogenase and a formate trans-
porter (Lücker et al., 2010; Koch et al., 2015; Palomo
et al., 2018; Ushiki et al., 2018), which were absent in
RCB. Contrastingly, RCA possessed all genes necessary
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for formate uptake and oxidation (Fig. 5, Supporting Infor-
mation Table S2), making this the first clade A com-
ammox organism with the genomic potential for formate
oxidation. In natural environments, a mixotrophic lifestyle
could be beneficial in oxic-anoxic transition zones, where
hydrogen and formate are supplied by fermentative
microorganisms.

In addition, both Rifle comammox genomes encode for
high-affinity SulP/SLC26-type transporters that may func-
tion as inorganic anion uptake transporters or anion:anion
exchangers that could transport a broad range of sub-
strates, including sulphate, bicarbonate, chloride, oxalate,
iodide and formate (Alper and Sharma, 2013). This, in
combination with the identification of genes for formate
and hydrogen oxidation in RCA and RCB, respectively,
indicates an enhanced genomic and metabolic plasticity
of both comammox clades.

Environmental adaptation and defence

The RCA genome contained a complete V1Vo ATPase
complex in addition to the F-type ATPase (respiratory
complex V) present in all Nitrospira (Fig. 5, Supporting
Information Table S2). V-type ATPases can couple both
ATP synthesis and hydrolysis to the translocation of H+ or
Na+ ions across the membrane. In Thermus thermophilus,
the V-type ATPase operates predominantly as H+-driven
ATP synthase (Nakano et al., 2008), while in Gram-
positive bacteria, this complex functions as a Na+ pump
(Boekema et al., 1999). It has been shown that under
slightly alkaline conditions, expression and activity of the
F1Fo ATPase are reduced, while the V1Vo ATPase is
induced to generate a Na+/H+ motive force (Ikegami et al.,
1999), which may be necessary for pH homeostasis
(Krulwich et al., 2011). The exact function of V-type
ATPase in RCA, however, remains uncertain; it may be
involved either in energy conservation or ATP-dependent
sodium extrusion. Additionally, a putative Mnh-type sec-
ondary Na+/H+ antiporter is encoded within the RCA
genome (Fig. 5). Multisubunit Na+/H+ antiporters are also
found in some marine nitrite oxidizers (Lücker et al., 2013;
Ngugi et al., 2016) and are potentially involved in salt toler-
ance. Interestingly, BLAST surveys indicated that these
monovalent Na+/H+ antiporters and the V1Vo ATPase were
present in several genomes obtained from the Rifle site in
the previous studies (Anantharaman et al., 2016), which
hints at their importance in this environment.

For response to environmental stress, the RCA and
RCB genomes contained genes for reactive oxygen
stress defence and heavy metal resistance, including
superoxide dismutase (SOD), catalase, peroxiredoxins
and arsenic detoxification mechanisms. Like some sub-
lineage II Nitrospira (Supporting Information Table S2
and S3), both Rifle comammox genomes contained

genes encoding Cu-Zn family SODs, which are periplas-
mic metalloenzymes potentially protecting periplasmic
proteins against reactive oxygen during the stationary
phase (John and Steinman, 1996). Similar to Nitrospira
lenta, RCB additionally encoded a cytoplasmic Fe-Mn
family SOD, which was predicted to be a Fe-tetramer
SOD by SODa (Kwasigroch et al., 2008). Furthermore,
both Rifle comammox Nitrospira along with several sub-
lineage II Nitrospira, encoded an arsenate reductase in
their genomes and could further detoxify arsenite [As(III)]
through methylation (Supporting Information Table S2
and S3). Microbially mediated methylation of As has
been proposed as one of the main detoxification mecha-
nisms in terrestrial and aquatic environments
(Bhattacharjee and Rosen, 2007). Interestingly, the Rifle
site is a former milling facility that is rich in uranium and
other redox-sensitive metals such as vanadium, selenium
and arsenic, and resistance mechanisms against these
heavy metals might thus confer a selective advantage.

Conclusions

Our understanding of the evolution and metabolic flexibil-
ity of comammox Nitrospira is mainly based on genomes
obtained from engineered systems, because only few
draft genome sequences from natural environments have
been obtained so far (Orellana et al., 2017; Parks et al.,
2017). In this study, we analysed two novel comammox
Nitrospira genomes acquired from the terrestrial subsur-
face. They were obtained from sites with extremely low
ammonium concentrations (Hug et al., 2015), fitting to the
high substrate affinity of the complete nitrifier
N. inopinata (Kits et al., 2017). Comparative analysis of
the two novel comammox genomes with other sublineage
II Nitrospira species, including canonical nitrite oxidizers
and complete nitrifiers, revealed strong conservation of
metabolic key features, but also revealed a large geno-
mic flexibility and adaptability of these enigmatic organ-
isms. Metabolic features were identified in the novel
comammox genomes that were assumed to be specific
for certain functional clades within Nitrospira sublineage
II and the observed broader distribution of formate and
hydrogen oxidation machineries indicates an expanded
ecophysiological role of these substrates within the
energy metabolism of comammox Nitrospira. Previous
studies performed at this aquifer system failed to identify
known ammonia-oxidizing microorganisms but found
members of the genus Nitrospira as the main nitrifiers
(Anantharaman et al., 2016). Our identification of com-
ammox Nitrospira at this site indicates that complete nitri-
fiers can apparently be the main drivers of ammonia
oxidation in the terrestrial subsurface. This warrants
future studies to investigate in more depth the
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distribution, abundance and activity of comammox
Nitrospira in a range of natural ecosystems to further elu-
cidate their role in the biogeochemical nitrogen cycle.

Experimental procedures

Genome sequencing and assembly

Sampling and sequencing of metagenomes from two sedi-
ment cores taken at the Rifle research site, adjacent to the
Colorado River are described elsewhere (Hug et al.,
2015). Raw reads were trimmed with Sickle (Joshi and
Fass, 2011) using default parameters, and assembled with
IDBA-UD v1.1.1 (Peng et al., 2012) using a minimal kmer
size of 40, a maximum of 140 and steps of 20. Open read-
ing frames were predicted for scaffolds longer than 1 Kbp
with Prodigal (Hyatt, 2010) and functional predictions
determined through similarity searches against the Uni-
Ref90 (Suzek et al., 2007), KEGG (Ogata et al., 1999)
and UniProt (Bateman et al., 2017) databases. Reads
were mapped to scaffolds with bowtie2 (Langmead and
Salzberg, 2012) to determine their relative abundance.
Automated binning was conducted with Metabat (Kang
et al., 2015) and Concoct (Alneberg et al., 2014) using dif-
ferential coverage information and the best genomic bins
were selected with DAStool (Sieber et al., 2018). Bins
were imported into ggKbase (https://ggkbase.berkeley.
edu) for further manual refinement based on their GC, cov-
erage, taxonomy of scaffolds, as well as completion
assessed according to the number of bacterial single copy
genes present in each bin. Scaffolding errors in two bins
that were found to contain amoA genes were fixed using a
published script as described elsewhere (Brown et al.,
2015). To determine completeness and contamination
(referred to as redundancy in this study) of the assembled
genomes CheckM 1.0.7 was used (Parks et al., 2015).

Annotation

Genome annotation was performed using Prokka (ver-
sion 1.12-beta; Seemann, 2014). For annotation, a modi-
fied version of Prokka was used which employs BLASTP
to search all predicted CDSs against the NCBI RefSeq
non-redundant protein database (O’Leary et al., 2016).
Automatic annotations of genes of interest were con-
firmed by BLAST against the TrEMBL, Swiss-Prot and
NCBI nr databases. The presence of signal peptides was
checked using SignalP (Petersen et al., 2011) and
Phobius (Kall et al., 2004).

Phylogenomic analysis

For genome-based phylogenetic analyses, we used the
up-to-date bacterial core gene set and pipeline for

phylogenomic tree reconstruction (UBCG; Na et al.,
2018) to identify and extract 92 universal bacterial core
genes in 32 Nitrospira and two Leptospirillum genomes.
As all included genomes were lacking a gene for the
phenylalanine-tRNA ligase, beta subunit (pheT), all
downstream analyses were performed using the
91 remaining core genes identified by Na and colleagues.
These genes then were aligned and concatenated within
UBCG using default parameters. Using the concatenated
nucleotide alignment, a tree was calculated using RAxML
version 8.2.10 (Stamatakis, 2014) on the CIPRES sci-
ence gateway (Miller et al., 2010) with the GTR substitu-
tion and GAMMA rate heterogeneity models and
100 bootstrap iterations. The two Leptospirillum species
were used as outgroup to root the tree. Alignments of the
AMO subunit A nucleotide sequences (amoA) were
obtained using ClustalW as implemented in MEGA7
(Kumar et al., 2016) and the phylogenetic tree was
inferred by RAxML on CIPRES with the GTR-GAMMA
model and 1000 bootstrap replications.

Genome comparisons

Average nucleotide identities between the 32 Nitrospira
genomes were calculated using the OrthoANIu algorithm
(Yoon et al., 2017). Orthologues and strain-specific proteins
were identified by reciprocal best BLAST (Altschul et al.,
1990) using a custom in-house script. BLAST hits with an
E-value of 1e-6, amino acid identities ≥45% and a minimum
alignment length ≥ 70% were considered as orthologues.
The AMO gene clusters in Nitrospira genomes were visual-
ized using the genoPlotR package (Guy et al., 2010).

Data availability

The genome sequences of the two comammox Nitrospira
genomes recovered in this study have been deposited in
GenBank under accession numbers SPAW00000000
and SPAX00000000 (BioProject PRJNA513947), the raw
sequencing data are available under BioProject number
SRX1990948.
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