
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/205615

 

 

 

Please be advised that this information was generated on 2020-09-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/224837973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/205615


ORIGINAL PAPER

Long-term effects of liming on soil physico-chemical properties
and micro-arthropod communities in Scotch pine forest

Henk Siepel1 & Roland Bobbink2 & Bas P. van de Riet2 & Arnold B. van den Burg3
& Eelke Jongejans1

Received: 9 January 2019 /Revised: 12 June 2019 /Accepted: 20 June 2019 /Published online: 15 July 2019
# The Author(s) 2019

Abstract
We tested the long-term effects of liming on soil micro-arthropods in a stand of Scotch pine on former drift sand in the
Netherlands. To counteract the effects of acidification, liming was applied in increasing quantities from 0 (control), 3, 6, 9 and
18 ton ha−1 on experimental plots over the course of 1985 and 1986. Soil samples for chemical analyses and those for extraction
of soil micro-arthropods were taken in October 2017, 32 years after application. Liming did restore the buffer capacity of the soil
and did increase pH and increased plant biomass of the understory. Liming, however, also created P limitation, due to Al
precipitation and an excess of free Ca to bind on. The consequence of the observed P limitation was a significant decrease in
herbivorous and herbofungivorous micro-arthropods, whereas fungivorous and opportunistic herbofungivores were unaffected.
P availability in acidified soils had become limited, due to higher N input that also caused acidification and due to remediation
with added buffer material. Decomposition of organic matter was accelerated and increased N release to the system. The forest
ecosystem had become P limited, where it originally was N limited or N and P co-limited.

Keywords Phosphate availability . Aluminium . Calcium . Soil fauna . Decomposition

Introduction

To counteract the effects of acidification due to atmospheric
deposition of nitrogen and sulphur compounds from traffic,
industrial and agricultural emissions, which cause severe

ecological problems on a global scale (Vitousek et al. 1997;
Galloway et al. 2008; Bobbink et al. 2010; Sutton et al. 2014),
liming of forest soils has often been applied both in Europe
(e.g. Huettl 1989; Boxman et al. 1994; Boxman and Roelofs
2006; Court et al. 2018) and in North America (e.g. Moore
et al. 2012). Various effects of forest soil liming experiments
on soil biota have been investigated ever since: the changed
role of mycorrhizae, where liming in general decreased the
relative proportion of smooth mycorrhizae in favour of hairy
types (Bakker et al. 2000) and acidophilic species are replaced
by more generalist ones (Rineau and Garbaye 2009). Changes
in faunal groups have been evaluated by Deleporte and Tillier
(1999), who report an increase in Lumbricid worm numbers in
response to liming (1.5 ton ha−1) after 22 years, but did not
find any difference in numbers of oribatid mites and
springtails. Chagnon et al. (2001) showed a decrease of num-
bers of epigaeic collembolan species in the short term
(2 years) after liming with 2 and 20 ton ha−1 carbonated
lime and an increase in numbers of some endogaeic species.
Geisen and Kampichler (2004) did not find any clear signal in
collembolan communities after forest liming in their evalua-
tion of the effects after 5 subsequent years of 3, 6 and
9 ton ha−1 applied lime. Hågvar and Amundsen (1981) report
on the short-term effect of liming with 3 ton ha−1 of burnt lime
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(CaO) and show oribatids to decrease in general and a number
of species specifically, while numbers of a uropodid mite spe-
cies increase with liming.

Among these varying results on soil fauna, only Chagnon
et al. (2001) and Geisen and Kampichler (2004) provided
extensive soil chemical data to possibly come to an explana-
tion. Kreuzer (1995) reported in detail on the soil chemical
processes following liming: increase of buffer capacity, which
is one of the intended goals of liming, but also an increase of
available N, because of stimulated decomposition. The latter
could be seen as a setback, while increased N load through
deposition is one of the problems to solve. Haynes and Swift
(1988) came to the same conclusion and, moreover, paid also
attention to P availability in acid soils which have a high
phosphate-fixing capacity. The low phosphate availability
may have affected soil fauna composition and activity. The
P concentration in the soil explained a 72% positive relation of
shifts in mass-abundance of soil animals (Mulder 2010).
Vogels et al. (2017) reported a P limitation in detritivorous
insects on heathlands after continuous N deposition, resulting
in acidification and grass encroachment, causing serious nu-
trient imbalances. Attempts to restore the heathland by sod-
cutting even amplified P limitation as with the organic matter
almost all P was removed, while N deposition continued,
resulting in increasing N:P ratios on the longer term. In a
factorial experiment with addition of lime, phosphate or a
combination of both on sod-cut, formerly grass-encroached,
dry heathland, Siepel et al. (2018) showed a vast increase of
herbivore numbers after P addition on a spodic dystrudept (see
Soil Survey Staff 1999), suggesting that these animals indeed
are P limited on heathlands on these mineral-poor sandy soils.
Especially numbers of herbivorous grazers were stimulated
(10 times more in P added plots compared with control plots),
but less in combination with lime (only 4 times more in P and
lime added plots than in control plots). Effects on fungivore
numbers were mixed: browsers (feeding on fungal content)
decreased, while the small number of fungivorous grazers
increased. The effects of liming in this experiment have been
discussed. Added P may be bound to the added lime and
becomes less available (Haynes 1982). As this P addition
experiment showed only the reaction 3 years after appli-
cation, added phosphate may still be stored in plant ma-
terial and may become available after a longer timespan
again. So, we were looking for a situation where P avail-
ability may be influenced by management actions on
mineral-poor sandy soils on a longer time-scale. These
mineral-poor sandy soils in the Netherlands have low
amounts of plant available P (e.g. Boxman et al. 1994
measured 0.035–0.141 mmol P kg−1 in the topsoil of a
humic haplorthod), where P may become limited rather
quickly. In comparison with the data on P of Chagnon
et al. (2001) and Geisen and Kampichler (2004), P avail-
ability in these Dutch soils was 10–30 times lower.

In the current paper, we report for the first time the combi-
nation of a complete soil biochemical analysis with micro-
arthropods identified to the species level, which makes it pos-
sible to group the species in feeding guilds and analyse the
reaction patterns of these feeding guilds to changed soil chem-
ical properties on the long term after various levels of liming.
We have revisited an old but very well-documented experi-
ment with liming of forest soils (Dilz et al. 1988), where car-
bonated lime has been added in quantities of 3, 6, 9 and
18 ton ha−1. Assumed that these amounts of carbonated lime
indeed decreased P availability, despite an increased decom-
position of organic matter (Haynes 1982; Kreuzer 1995), we
expect to find decreasing numbers of herbivorous micro-
arthropods with increasing lime quantities. We expect no
change in numbers of fungivorous micro-arthropods, as fungi
have a much lower N:P ratio compared with plants (15 for
fungi and resp. 23 and 53 for herbaceous and woody plants;
Reiners 1986). Siepel and De Ruiter-Dijkman (1993) distin-
guished also two mixed feeding strategies on plant material
and fungi: herbofungivorous grazers and opportunistic
herbofungivores. As the latter were defined by trehalase ac-
tivity (trehalose is a storage sugar found in temperate regions
predominantly in fungi), this group also feeds on active fungi
and is expected to show no relation to liming either.
Decomposition is not thought to be influenced negatively, as
fungivores that stimulate fungal growth (see Hanlon and
Anderson 1979; Siepel and Maaskamp 1994) will not be in-
fluenced by the supposed decrease in P availability. On the
contrary, we expect a better decomposition with liming in line
with the results of Haynes and Swift (1988), Kreuzer (1995)
and Court et al. (2018). So, in summary, we expect a decreas-
ing role of micro-arthropod herbivores, but not fungivores,
with the increased lime application. As fungivores have a
much larger influence on decomposition than herbivores
(Siepel and Maaskamp 1994), we expect an increase in the
decomposition rate because of the elevated pH.

Methods and material

Study site

The study site is a 55 years old forest stand of Scotch pine
on a typic quarzipsamment (Soil Survey Staff 1999),
afforested former drift sand, near the city of Harderwijk,
the Netherlands (52.315° N, 5.664° E). The forest stand is
on a flat plane at 18 m a.s.l. In 1985, a series of experi-
ments were set up, varying from application of several
types of manure (of calves and ducks), a factorial exper-
iment with additions of P, Ca, Mg and K, and a range of
added carbonated lime in quantities of 3, 6, 9 and
18 ton ha−1 and an untreated control (see Fig. A1). All
experimental plots are triplicated and 22 × 25 = 550 m2 in
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size. At the start of the experiment, pH[CaCl] was around
4.1–4.2 in the mineral soil (mixed top 25 cm) (Dilz et al.
1988). Carbonated lime for agricultural use, powdered,
having around 2% Mg, was added in quantities of 3 ton
(autumn 1985), 6, 9 ton (in equal amounts in autumn
1985 and 1986) and 18 ton (in equal amounts in autumn
1985, 1986 and spring 1987), to prevent vegetation dam-
age. Thinning of the canopy was done in 2001 as regular
forest management measure; no other management activ-
ities have been conducted ever since. Understory vegeta-
tion differed highly among plots as a result of liming: in
the control plots wavy-hair grass (Deschampsia flexuosa),
and alder buckthorn (Rhamnus frangula) are frequent and
even some heather (Calluna vulgaris) can be found, while
with increasing amounts of lime, species like enchanter’s-
nightshade (Circaea lutetiana), wood avens (Geum
urbanum), bittersweet (Solanum dulcamare) and bramble
(Rubus fruticosus agg.) show up or become more fre-
quent. Plant biomass of especially bramble is increased
ever since the start of the liming.

Soil chemical analysis

On 16 October 2017, samples were taken for soil chemi-
cal analyses. Each sample (4 subsamples bulked and
mixed, core 5 cm) was taken from the top 25 cm of the
mineral soil. We determined organic matter content by
weight loss-on-ignition. Soil pH, NO3

−, NH4
+ and ex-

changeable ion concentration were determined by mixing
fresh soil (17.5 g) with 50 mL 0.2 M NaCl solution. The
pH of the solution was measured immediately using a
combined pH electrode (radiometer and a TIM840 pH
meter). Plant available P was determined by bicarbonate
extraction (3 g of dry soil shaken with 100 mL of 0.5 M
NaHCO3) (Olsen et al. 1954), and cation exchange capac-
ity and base saturation by mixing an amount of dry soil
equivalent of 5 g fresh soil in 200 mL 0.2 M SrCl (Liu
et al. 2001). Soil extracts were collected under vacuum
conditions with Teflon pore water samplers (rhizon,
Eijkelkamp Agrisearch Equipment, The Netherlands).
Total soil elemental concentrations were determined.
Two hundred milligrams of soil, homogenised and dried,
was digested for 17 min with 4 mL 65% HNO3 and 1 mL
30% H2O2 (Milestone Ethos D – Microwave Labstone)
(Jin et al. 1999). Samples for Autoanalyzer Analyses were
collected and stored at − 18 °C until further analysis; ICP-
samples were collected and stored at 4 °C. The total con-
centration of Ca, Mg, Al, Fe, Mn, P, S, Si and Zn were
measured with an Inductively coupled plasma spectropho-
tometer (ICP-OES, ICAP 6300 ARCOS MV, Spectro).
NO3

−, NH4
+ and PO4

3− concentrations were determined
colorimetrically with a Seal auto-analyser III with using
salicylate, hydrazin sulphate and ammoniummolybdate/

ascorbic acid reagent, respectively. Cl− was determined
colorimetrically with a Bran+Luebbe auto-analyser III
using mercuritiocynide. Na+ and K+ were determined with
a Technicon Flame Photometer IV Control (Technicon
Cooperation).

Sampling of micro-arthropods

On 17October 2017, in each of the limed plots and the control
plots four soil cores (Ø 5 cm) of 5 cm depth: 100 cm3 content
plus litter were sampled. The cores were taken in the middle of
the plots, 1 m apart of each other. The cores were extracted on
a Tullgren funnel for 7 days. During that period, the temper-
ature was increased from 35 to 45 °C. Ethanol 70% was used
as conservation fluid and micro-arthropods obtained were put
into lactic acid 40% for clarification and identification (Siepel
and van de Bund 1988). Nomenclature and identification for
the main groups is according to Weigmann (2006) for
Oribatida, Karg (1993) for Gamasina, Karg (1989) for
Uropodina and Bretfeld (1999), Potapow (2001), Dunger
and Schlitt (2011) and Jordana (2012) for Collembola.
Species were grouped to feeding guilds after Siepel and De
Ruiter-Dijkman (1993) in herbivorous grazers, herbivorous
browsers, fungivorous grazers, fungivorous browsers (grazers
feed on the cell walls as well and have respectively cellulase
and chitinase activities, browsers on the contents only), oppor-
tunistic herbofungivores (including plant cell walls and fungal
cell contents, i.e., cellulase and trehalase activity),
herbofungivorous grazer (plant and fungal cell walls) and
predators (general or specialised on nematodes or arthropods).

Statistical analysis

Soil properties (like percentage soil organic matter, moisture
content, and concentration of various elements) were
regressed (using lm in R) against the tons of added lime (i.e.
treatment levels 0, 3, 6, 9 and 18) and separately against the
log of treatment levels (after adding 1). For each soil property
or feeding guild-specific micro-arthropod abundance variable,
we compared models with logged or untransformed liming
levels and selected the better fitting model based on the sum
of squared residuals on the untransformed scales. The regres-
sion models of micro-arthropod abundances included plot as a
random variable because multiple samples were taken per plot
(i.e. mixed-effect models, lmer in R). We also constructed
models with liming as a factor to see which treatments differed
from the control treatment. The canonical correspondence
analysis (using cca of the vegan package in R) was performed
with soil chemical properties andmicro-arthropod abundances
per feeding guild. Additional multivariate analyses can be
found in the online appendix.
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Results

Soil chemistry and morphology

Soil and especially litter layer morphology changed in the
sequence of increased liming after 32 years. With an increas-
ing amount of lime used, the litter F-horizon thickness de-
creased until virtually absent at 18 ton ha−1 (Figs. 1 and A2).
Soil organic matter content in the top 25 cm mineral soil was
around 3% in all treatments, while pH(NaCl) increased with
liming from 3.5 (control) to 4.9 (18 ton ha−1) (Fig. 2). Base
saturation increased with the amount of liming from < 10%
(control) to around 90% (18 ton ha−1), which is predominantly
exchangeable Ca2+ and to a lesser extent Mg2+ (Fig. 3). Free
Al3+ decreased with increasing liming and the Al3+/Ca2+ ratio
evenmore so (Fig. 4). Nitrogen, both as NO3

− as well as NH4
+

forms, increased with liming, but plant available P (POlsen)
decreased (Fig. 5). Detailed soil chemistry data can be found
in Siepel et al. (2019).

Soil micro-arthropods

In total, 129 micro-arthropod species have been identified (in
23,487 individuals). Mites formed the majority (87.5%),
followed by springtails (11.7%); of the smaller groups of
Protura, Diplura, Symphya and Pseudoscorpionida, one spe-
cies per group was found (0.8% of total micro-arthropods).
The abundance of micro-arthropods was highest in the control

plots (255,250 ± 37,811 ind m−2) and lowest in the plots with
18-ton lime (161,334 ± 5779 ind m−2). Species richness, di-
versity and evenness did not differ significantly along the
liming gradient (Figs. A3–A5). The PCA (Fig. A6) showed
the soil chemical variables of the sampled plots. The first
principal axis explained 63.0% of the total variance and covers
primarily the effects of added lime (increased pH, Ca2+, Mg2+

and NO3
− and decreased Al3+ and P). The second principal

axis explained another 19.8% and covers soil organic matter
and NH4

+). In the CCA performed at the level of feeding
guilds (Fig. 6), the first axis represented 49.5% of the total
variance, the second axis 24.6%. Soil chemistry explained
55.9% of the variance, with P and Al being strongly associated
with the first axis, N to a lesser extent with the second axis,
and Ca, pH and Mg with both axes. Numbers of herbivorous
micro-arthropods are presented in Fig. 7a. Decrease of num-
bers with increasing quantities of lime was highly significant
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(t = − 4.5). Dominant species here are the oribatid mites
Atropacarus striculus (C.L. Koch, 1836), Steganacarus
magnus (Nicolet, 1855) and Platynothrus peltifer (C.L.
Koch, 1839), the collembolan Lepidocyrtus lignorum
(Fabricius, 1793) and the symphylan Symphylellopsis
subnuda (Hansen, 1903). Fungivores, however, did not de-
crease with increasing lime quantities (Fig. 7b): t = 0.7 (no
relation with lime quantities). All dominant species here were
oribatid mites: the fungivorous grazers Eniochthonius
minutissimus (Berlese, 1904), Oppiella nova (Oudemans,
1902) and Punctoribates punctum (C.L. Koch, 1839) and
the fungivorous browsers Suctobelbella acutidens
(Forsslund, 1941) and S. subcornigera (Forsslund, 1941). In
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Fig. 7c and d, results of the mixed feeding guilds are present-
ed, where the herbofungivorous grazers show a significant
negative relationship with liming (Fig. 7c, t = − 4.2, dominant
species: the oribatids Nothrus silvestris (Nicolet, 1855) and
Rhyssotritia duplicata (Grandjean, 1953)), whereas the oppor-
tunistic herbofungivores show no relationship with liming
(Fig. 7d, t = − 1.4, dominant species: the oribatids Adoristes
ovatus (C.L. Koch, 1839) and Tectocepheus velatus (Michael,
1880)). Data on the abundance of all micro-arthropod species
in this project can be found in Siepel et al. (2019).

Discussion

Soil chemistry and morphology

Liming seems to meet its initial goal of increasing the pH and
increasing the base saturation. With increasing pH Al precip-
itates, and thus the concentration of free Al3+ is decreasing.
Along with an increase of free Ca2+, the Al3+/Ca2+ ratio drops
significantly and one may assume that the negative effects of

acidification have been largely alleviated. However, there is
also a downside of this ecological restoration technique: the
amount of free Ca2+ is inconceivably high for a Scotch pine
stand on former drift sand (Boxman and Roelofs 2006 give
values of around 100 μMkg−1, whereas our highest values are
above 8000 μM kg−1, Fig. 3), which may lead to a competi-
tion in uptake with Mg2+ for plants and possible chlorosis (at
18 ton ha−1 Ca/Mg ratio > 14 in plot 21, compared with 1.9 in
control plot 19). Another side effect is the increase of NO3

−

and NH4
+. As the recent acidification is caused by increased N

deposition, an increase of freely available N is quite undesir-
able, as this enhances the eutrophication by N compounds.
This increase has been reported before (Haynes and Swift
1988; Kreuzer 1995; Court et al. 2018) and is the result of
increased decomposition of plant material: the inhibiting ef-
fect of acid remnants of incomplete decomposition is buffered
by the dissolution of lime. The ratio NH4

+/NO3
− is decreasing,

which can be seen as positive, as more plants are able to take
up NO3

− than NH4
+ (Van den Berg et al. 2005, De Graaf et al.

2009), whichmay increase understory plant diversity. Another
negative effect of liming is apparently the decrease of plant
available PO4

3−. Soil phosphate chemistry is quite complicat-
ed and many results seem contradictory if pH, P concentration
itself and free Ca2+ concentrations are not taken into account.
The process, as we consider here, has been started by the
acidification process, setting free Al3+, (see control plots for
concentration without buffering). Raising pH from this point
may result in precipitation of Al3+ with PO4

3−, the new for-
mation of amorphous Al-P bindings (Al(OH)2H2PO4; stable
at 2.5 < pH < 8.5), and the high concentration of free Ca2+

may lead to the formation of new hydroxyapatite
(Ca5(PO4)3OH.2H2O) (Haynes 1982). Also Aarnio et al.
(2003) found a binding effect of liming as they state that the
amount of soluble P was less in limed than in non-limed ap-
atite-treated soils; these soils had comparable levels of PO4

3−

in an acid soil (mineral coarse podzolic sand, pH = 3.6, mea-
sured in water, [PO4

3−] = 0.16 μmol kg−1). At higher pH
levels, no effect on phosphate availability is seen
(Chagnon et al. 2001; pH = 4.2, measured in water;
Geisen and Kampichler 2004, pH = 4.2–6.2, measured in
0.01 M CaCl2; Court et al. 2018; pH = 4.5, measured in
water). The pH measured in 0.01 M CaCl2 is about 0.6
lower than measured in water (Blume et al. 2010). As
McDowell et al. (2002) state: Al solubility plays a major
role in determining P solubility and consequently P re-
lease to the soil solution. Moreover, the decrease of free
Al3+ relieves its toxic effect on PO4

3− uptake by plant
roots (De Graaf et al. 1997). Also, the enhanced
mineralisation of the organic layer may have released more
P (Haynes 1982). However, as we see the strong development
of understory vegetation (especially bramble) with increasing
lime addition, the plant may have acquired and stored more P
from the soil at higher levels of liming.
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variation, the second axis 24.6%. The soil chemical properties explained
55.9% of the variance. Afterwards, eight abundant species were added to
the plot: the herbivorous grazer Platynothrus peltifer (Plapel), the
fungivorous grazers Oppiella nova (Oppnov), the fungivorous browser
Parisotoma notabilis (Parnot), the herbofungivorous grazers Nothrus
silvestris (Notsil) and Microtritia minima (Micmin), the opportunistic
herbivorous grazer Tectocepheus velatus (Tecvel) and the general preda-
tors Rhodacarus coronatus (Rhocor) and Pergamasus vagabundus
(Pervag)
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Increased decomposition, seen from increased NO3
− and

NH4
+ concentrations in soil with increasing amounts of lime

supplied, can also be seen morphologically: the litter layer is
almost completely vanished in the 18 ton ha−1 (Fig. A2) and
gradually decreases with increasing amounts of lime (Fig. 1).
Where in the control site a tiny spodic horizon develops in the
top soil (just below the litter layer, see Fig. A2), in the
18 ton ha−1 organic matter is completely mixed with the top
soil, creating a small A1 horizon. Especially macrofauna is
active in the limed sites, feeding on the combination of fungi
and organic matter (e.g. larvae of Mycetophilidae, Bibionidae
and Tipulidae). Abundances of these larvae can temporarily
be very high. In comparable situations 74 specimens of
Dilophus febrilis (Linnaeus, 1758) were found per 10 g organ-
ic matter (Siepel 1990). Earthworms are not present in these
young afforested drift sand soils.

Consequences for soil micro-arthropods

Differences in sampling depth between the standard protocol
for micro-arthropods (Siepel and Van de Bund 1988) and that
for chemical analyses (Dilz et al. 1988), respectively top 5 and
25 cm, are inconsequential. However, the majority of soil

micro-arthropods is found in the top 5 cm (around 95% in
Ducarme et al. 2004) and probably even more in our soil type.
Sampling the top 25 cm for soil chemistry may have diluted
the data somewhat compared with when we would have mea-
sured just the top 5 cm. The presented patterns in soil chem-
istry can therefore be considered conservative. The decline of
the F-layer could be seen as the cause of the lower number of
micro-arthropods one could argue. However, all feeding
guilds then should decrease in about the same way. We see a
clear pattern of decrease in the herbivores but not in the
fungivores; the latter is more or less constant throughout the
range of liming. Moreover, two mixed feeding guilds in which
both plant and the fungal matter is digested show comparable
patterns. Opportunistic herbofungivores that digest plant cell
walls and fungal cell contents (these have both a cellulase and
trehalase activities; Siepel and De Ruiter-Dijkman 1993) act
like fungivores and do not show a significant decrease with
liming. These mites gather P from active living fungal mate-
rial by definition. On the other hand, the herbofungivorous
grazers that digest both plant cell walls and fungal cell walls
appear to feed on dead fungal material next to plant organic
matter (Siepel and De Ruiter-Dijkman 1993). Where living
fungal hyphae contain a N:P ratio of 15 (Reiners 1986), dead

0 3 6 9 18

0

50

100

150

200

a: Herbivores

0 3 6 9 18

0

100

200

300

400

b: Fungivores

0 3 6 9 18

0

50

100

150

200

Lime (ton ha−1)

c: Herbofungivorous grazers

0 3 6 9 18

0

25

50

75

100

Lime (ton ha−1)

d: Opportunistic herbofungivores

N
um

be
r o

f m
ic

ro
−a

rth
ro

po
d 

in
di

vi
du

al
s

Fig. 7 Number of micro-
arthropods in each of the samples.
a Herbivores (both browsers and
grazers). b Fungivorous (both
browsers and grazers). c
Herbofungivorous grazers. d
Opportunistic herbofungivores.
Solid lines indicate a significantly
negative effect of liming in the
fitted mixed-effect model (sam-
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tics of the four analysis are −
4.461, − 0.728, − 4.188 and −
1.402, respectively). Dashed lines
indicate non-significant effects of
liming. Please note the differently
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included as a factor in the analyse,
all treatments differed signifi-
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hyphae, or fungal cell walls alone have hardly any P left. P
amounts of fungal cell walls are between 0.3 (Aspergillus sp.;
Ruiz-Herrera 1967) and 0.7% (Penicillium notatum;
Applegarth 1967). So feeding on dead fungal material in com-
bination with plant organic matter yield as much phosphate as
just herbivory and herbofungivorous grazers decline signifi-
cantly with liming comparable with herbivores. It appears
from the chemical data that the probable causal factor of the
decline of the numbers of herbivorous (and herbofungivorous)
micro-arthropods is in the decreasing availability of phos-
phate. Hågvar and Amundsen (1981) found a decrease of
Nothrus silvestris, Nanhermannia sp. and Sellnickochthonius
zelawaiensis all herbofungivorous grazers, and also a decrease
of the opportunistic herbofungivore Tectocepheus velatus in a
study on liming of heathland 3 years after application,
although these numbers were low. Siepel et al. (2018) found
a slight increase of opportunistic herbofungivores after the
same short term after liming of a sod-cut heathland.
Chagnon et al. (2001) found a decrease of both epigaeic and
endogaeic Collembola 2 years after liming, but they did not
differentiate in herbivores or fungivores, just as Geisen and
Kampichler (2004), who did not find any pattern in species
composition 5–9 years after repeated liming. Collembola in
our study follows the general pattern of the micro-arthropod
total, but less strong compared with the mites.

In conclusion, long-term effects of liming confirm earlier
results of increased pH and buffer capacity as aimed for, and
also increased decomposition with higher amounts of avail-
able N. Availability of phosphate appears to decrease with
liming in nutrient-poor sandy soils, which is enhanced by
previous aluminium release through acidification. When this
limitation cascades in the food web, one might expect effects
on predatory species having less prey to feed on (Michalko
et al. 2018). So, liming does not restore the original type of
forest as it was before N deposition and acidification, but it
pushes the system in a completely new direction, with a
change in plant species composition in the understory and
limitation of phosphate which might have consequences for
animal life when applied on a larger scale. Alternatives for
liming, such as finely ground igneous rocks (rock powder),
might overcome a potential shock-effect, but probably has the
same long-term effect on phosphate availability, as this is
caused by the earlier release (acid deposition) and precipita-
tion of aluminium (after buffering), and the excess of buffer
material for P to bind on. To lift the P limitation with P addi-
tion, either as part of some rock powders, either as extra min-
eral addition, may give rise to unwanted situations as well, as
long as the ongoing N deposition is much too high. In the near
future, we must elucidate the complex interaction of rock
powder addition (potentially in combination with mineral-
bound P addition), on soil biochemical and biological process-
es. Especially the role of a diversity of ecto- and ericoid my-
corrhizas must be explained as a supplier of organic bound P

in interaction with arbuscular mycorrhizas, when mineral-
bound P is added as well. Also, a detailed P fractionation is
necessary to explain the total contents and availability of P in
different soil compartments.
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