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ON CLASSIFICATION OF TYPICAL REPRESENTATIONS FOR GL3(F).

SANTOSH NADIMPALLI

ABSTRACT. Let F' be any non-Archimedean local field with residue field of cardinality gz. In this article,
we obtain a classification of typical representations for the Bernstein components associated to the inertial
classes of the form [GLy, (F) X F'*, 0 ® x] with gr > 2, and for the principal series components with gp > 3.
With this we complete the classification of typical representations for GL3(F), for gp > 2.

1. INTRODUCTION

Let F' be any non-Archimedean local field with residue field kr of cardinality qr. Let A, be the set
of isomorphism classes of irreducible smooth complex representations of GL,,(F'). The theory of Bernstein
decomposition gives a natural partition of the set A,

An = [ Anls).
seB,
Here, the set A, (s) is defined in terms of parabolic induction. The parameter s is the inertial class containing
the cuspidal support of an irreducible smooth representation of GL,,(F) (see Section 2]). In the context of
the local Langlands correspondence for GL,,(F), the parameter s determines the isomorphism class of the
restriction to the inertia subgroup Ir of the Weil-Deligne representation associated by the local Langlands
correspondence.

The reciprocity map of the local class field theory gives an isomorphism between the abelianization of
Ir and o}, the group of units of the ring of integers of F. It is natural to ask for a relation between the
representations of Ir, which can be extended to a Weil-Deligne representation, and the representations of
the maximal compact subgroup GL,,(0r). One natural way would be to understand the cuspidal support of a
smooth irreducible representation from its restriction to GL,,(0r). Indeed, in several arithmetic applications
(see [BM02], [EG14]) it is desired to construct irreducible smooth representations 7 of the maximal compact
subgroup GL,, (o) such that, for any irreducible smooth representation 7 of GL,,(F),

Homgr,, (0p)(7s, ™) # 0 = 7 € A, (s).
Such a representation 75 is called a typical representation for s.

The existence of typical representations, for any s, follows from the theory of types developed by Bushnell
and Kutzko. For all s € B,,, Bushnell and Kutzko explicitly constructed pairs of the form (Js, \s), where J;
is a compact open subgroup of GL,,(F) and A4 is an irreducible smooth representation of Js such that, for
any irreducible smooth representation 7 of GL,,(F'), we have

Homj, (A5, ) #0 < 7 € An(s).

We may assume that J; C GL,(0r). It follows from Frobenius reciprocity that any irreducible sub repre-
sentation of
ind )\, (1)

is a typical representation for s. In general, the representation (Il is not irreducible; therefore, we cannot
expect to have a uniqueness result on typical representations for a general s. Now, it is natural to ask whether
there exist any other typical representations which do not occur as subrepresentations of (). Hence, the
question we are interested in is the classification of all typical representations. In this article, we achieve this
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classification for certain non-cuspidal inertial classes of GL,, (F)—including all non-cuspidal inertial classes of
GL3(F)—which give the classification of the typical representations for all inertial classes of GL3(F'), when
qr > 2.

Henniart (see [BMO02]) classified typical representations for all inertial classes of GLy(F'). Later Paskiinas
(see [Pas08]) classified typical representations occurring in the cuspidal representations of GL,,(F), for n > 3.
It turns out that there exists a unique typical representation occurring in each cuspidal representation.
Typical representations for depth-zero inertial classes of GL,,(F') are classified by the author in the article
[Nadi7]. We refer to the articles of Latham [Latl€], [Latl8], and [Latl?] on typical representations for
cuspidal representations of SLa(F') (the tame case), cuspidal representations of SLy, (F') (the tame case) and
depth-zero cuspidal representations respectively. We also refer to the article [LN18] for some results on the
typical representations for the toral cuspidal representations. The classification of the typical representations
for the non-cuspidal inertial classes remains an open question even for GL,,(F') in the higher depth case. In
this article we prove the following results.

Theorem 1.0.1. Let n > 2 be an integer and qr > 2. Let s be an inertial class of the form [GL,_1(F) x
F* 0 ®n], where o is a cuspidal representation of GL,—1(F) and n is a character of F*. Any typical

representation Ts for s is isomorphic to indiL”(oF) As, where (Js, As) is a Bushnell-Kutzko type for s.

Theorem 1.0.2. Let n > 2 be an integer, and let qp > 3 if n # 3 and let qr > 2 if n = 3. Let s be an
inertial class of the form [T, x|, where T is a mazimal F-split torus contained in GL,,(F) and x is a smooth
character of T'. Any typical representation s for s is a subrepresentation of indiL"(UF) As, where (Js, As) s
a Bushnell-Kutzko type for s.

Any non-cuspidal inertial class of GL3(F) is of the above form. Combined with the result of Pasktinas on
the unicity of typical representation for cuspidal inertial classes, we prove the following theorem.

Theorem 1.0.3. Let g > 2. Let s be any inertial class of GL3(F). Any typical representation 75 for s

occurs as a subrepresentation of indiLS(aF)()\s), where (Js, As) is a Bushnell-Kutzko type for s.

In our analysis we will also obtain a certain multiplicity result on the typical representations 7s.

We briefly explain the method of proof. Let M be a Levi subgroup of an F-parabolic subgroup P of
GL,(F). Let o be a cuspidal representation of M. Let 7 be the unique M N GL,(0F) typical representation
contained in o. The uniqueness of 7 is a result of Pasgkitinas in the article [Pas05]. In order to classify typical
representations, we begin by decomposing the representation

TeSGL, (o) igL"(F) (o).

It follows from the results of the article [Nad17] that

.GL, (F . GL,,
resQL, (or) I p ( )(O') = deLngzing TOL,

where any irreducible GL,, (0 )-subrepresentation of T" is not a typical representation.
We then construct compact open subgroups of GL, (07), denoted by H,,, for m > 1 such that
H,+1 C Hy, forallm > 1.

and
() Hm = PN GLy(or).
m>1
We will also show that 7 extends as a representation of H,,, for m > 1. We will then show that any GL,,(or)
GLn(OF)
-

Hpqn
enough to the compact subgroup J; in a Bushnell-Kutzko type (Js, As). With some more additional work,

similar to the above procedure, we complete the classification of typical representations. This requires the
analysis of the induced representation indgz+1 id. We will also require some subtle aspects in the theory of
Bushnell-Kutzko types. In fact, the monumental theory of Bushnell-Kutzko is the fundamental basis for
this article.

subrepresentation of the representation ind / indSII:‘(OF ) 7 is not typical. The group H; will be close
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2. PRELIMINARIES

For any ring R with unity, we denote by Mat,, x, (R) the set of n x m matrices with entries in R. For any
matrix X, we denote by X the transpose of X. The identity matrix in Mat, x,(R) is denoted by id,, or by
1.

Let F' be any non-Archimedean local field with its ring of integers or. Let pr be the maximal ideal of
or, and wp be an uniformiser of F. Let kr be the residue field of F'. We denote by ¢r the cardinality of
kr. For any character y of F'*, we denote by I(x) the level of x, i.e., the least positive integer m such that
1+ pp™ is contained in the kernel of y. Note that the level I(x) of an unramified character y is still 1. We
denote by vp : F* — Z the normalised valuation of F'.

All representations in this article are defined over complex vector spaces.

Let G be the F-rational points of a connected reductive algebraic group G defined over F. Let R(G)
be the category of smooth representations of G. For any closed subgroup H of G, we denote by indg the
compact induction functor from R(H) to R(G). Let P be the group of F-rational points of any F-parabolic
subgroup of G. Let M be a Levi subgroup of P. We denote by iJGD the normalised parabolic induction functor
from R(M) to R(G).

Let Hy and Hs be two groups and 71 and 75 be any representations of H; and Hs respectively. We denote
by 7 X 75 the tensor product representation of Hy x Hs. If H; = Hs, then the representation 7 ® 75 is the
tensor product representation of Hi.

For any positive integer n, the group GL,,(F) is denoted by G,, and the group GL,, (o) is denoted by K,.
The principal congruence subgroup of K, of level m is denoted by K, (m), for m > 1. Let I be a sequence
of positive integers (ny,na,...,n,) such that ny + ng + --- +n, = n. For any ring R with unity, we denote
by Pr(R) (resp. Pr(R)) the group of invertible block upper (resp. lower) triangular matrices of the type I.
Let Ur(R) (resp. Ur(R)) be the group of block upper (lower) unipotent matrices of the type I. Let M(R)
be the block diagonal matrices of the type I. If I = (1,1,...,1), the groups Pr(R), M;(R) and Ur(R) and
Ur(R) are denoted by B, (R), T,,(R) and U,(R) and U, (R) respectively. When R = F, we drop the symbol
R, i.e., Pr(R) will be denoted by Pr etc. We have P; = M;Ur and P; = M;U;.

As an example, when I = (n — 1, 1), the group P in the block form is given by:
(Gnl Matnlxl(F)>
0 Fx ’
In the block form the groups M; and U; are given by
M = (G%_l F(‘)X> and Ur = (1n0_1 Mat"_llX1(F)> .
We identify the group M(,,_; 1) with the group G,,—1 xG1. Any irreducible smooth representation of M, _; 1)

is identified with o X x, where o is an irreducible smooth representation of G,,_; and x is a character of G;.

We briefly recall the theory of Bernstein decomposition. Let B(G) be the set of pairs (M, o), where M
is a Levi subgroup of an F-parabolic subgroup P of G, and ¢ is an irreducible cuspidal representation of
M. The pairs (M;,01) and (Ma, 03) in B(G) are said to be inertially equivalent if and only if there exist an
element g € G and an unramified character y of My such that

My = gMag™" and 0f ~ 72 @ x.
We denote by Bg the set of equivalence classes, called inertial classes.

Any irreducible smooth representation 7 of G occurs as a sub-representation of a parabolic induction

i%(0), where o is an irreducible cuspidal representation of a Levi subgroup M of P. The pair (M, o) is
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well determined up to G-conjugation. We call the class s = [M, o] the inertial support of w. We denote by
Z(7) the inertial support of 7. For any inertial class s = [M, o], we denote by R4(G) the full sub-category
of R(G) consisting of smooth representations all of whose irreducible sub-quotients have inertial support
s. It is shown by Bernstein in [Ber84] that the category R(G) decomposes as a direct product of R4(G).
The category R4(G) is called a Bernstein component associated to the inertial class s. In particular, every
smooth representation can be written as a direct sum of objects in the categories Rs(G). We denote by
A, (s) the set of isomorphism classes of irreducible representations in Rs(Gp,).

Definition 2.0.1. Let s be an inertial class for G,. An irreducible smooth representation T of K, is called
a typical representation for s, if for any irreducible smooth representation © of G, we have

Homg, (1,7) # 0 = Z(w) = s.

A non typical representation is called an atypical representation.

For any inertial class s of G,,, the existence of a typical representation can be deduced from the theory of
types developed by Bushnell and Kutzko in the book [BK93] and the article [BK99]. Bushnell and Kutzko
constructed explicit pairs (called types) (Js, As), where J; is a compact open subgroup of GL,,(F'), and A; is
an irreducible smooth representation of Js. The pair (Js, As) satisfies the condition that, for any irreducible
smooth representation 7 of GG, we have

Homy (m,As) #0 & I(w) = s.

The group J; can be arranged to be a subgroup of GL,,(0 ) by conjugating with an element of GL,,(F'). Hence
we assume that J; C GL,(0F). It follows from Frobenius reciprocity that any irreducible sub-representation
of

ind 57 () (2)
is a typical representation. The irreducible sub representations of (2) are classified by Schneider and Zink in
[SZ99| Section 6, Tk, » functor].

For s = [G,,, 0], Paskiinas in the article [Pas05, Theorem 8.1] showed that up to isomorphism there exists
a unique typical representation for s. More precisely,

Theorem 2.0.2 (Paskunas). Let n > 1 be an integer and o be an irreducible cuspidal representation of G,,.
Let (Js, As) be a Bushnell-Kutzko type for the inertial class s = |G, 0] with J; C K,,. The representation

ind" (A)

is the unique typical representation for the inertial class |Gy, o). The representation indi”(/\s) occurs with
a multiplicity one in o.

In this article, we classify typical representations for GL3(F') in terms of Bushnell-Kutzko types. We first
obtain a classification of typical representations for the inertial classes [M(,,—1,1y, 0 K 7] and [T5,, x], where
and x are characters of F'* and T,, respectively. We will use some basic results from the article [Nad17] and
we recall some of these results.

Lemma 2.0.3. Let x be a character of Gy, and let T be a typical representation for an inertial class s = [M, o]
of Gy,. The representation T ® X is a typical representation for the inertial class [M,o ® x]|.

Proof. We refer to [Nad17, Lemma 2.7] for a proof. O

Let P be any parabolic subgroup of G,, with a Levi subgroup M and U be the unipotent radical of P.
Let U be the unipotent radical of the opposite parabolic subgroup of P with respect to M. Let J; and Jy
be two compact open subgroups of K, such that J; contains Js. Suppose J; and Js both satisfy the Iwahori
decomposition with respect to P and M. With J1NU = JoNU and J;NU = JoNU. Let X be an irreducible
smooth representation of Jo which admits an Iwahori decomposition i.e. JoNU and Jo N U are contained in
the kernel of \.

Lemma 2.0.4. The representation indi()\) is the extension of the representation indigﬁ()\) such that
JiNU and J,NU are contained in the kernel of the extension.
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Proof. The lemma is well known and frequently used when dealing with the formalism of G-covers. We refer
to [Nad17, Lemma 2.6] for a proof. O

Let t; = [M;,©;] be an inertial class of Gy, for 1 < i < r. Let o; be a smooth representation from
R:, (Gr,). We suppose

0 1
resg,, 0 = T; b7,

for 1 < i < r, such that irreducible K, -subrepresentations of 7;} are atypical. We denote by ¢ the inertial
class

[Ml XM2 Xoee XMT,@1&®2|Z|"-|X@T]
of G,,. The inertial class ¢ is independent of the choice of representatives (M;,©;). Let 79 = K7_ 70 and
or =KXi_;(0i).

Lemma 2.0.5. The representation indg”mKn (19) admits a complement in resg, z%" (or) with all its irre-
ducible sub-representations atypical.

Proof. We refer to [Nad17, Proposition 2.3] for a proof. O

In particular, if ©; = o; is a cuspidal representation, then from Theorem [2.0.2 we have resk,, o; = ort,
where 7 is the unique typical representation for the inertial class [G,,,, 0;]. Hence, any typical representation
for the inertial class t occurs as a sub-representation of indg"ﬂ K, O

Lemma 2.0.6. Let s = [M, o] be any inertial class of G,,. Then there exists a partition I of n and a cuspidal
representation oy of My such that s = [My,oy].

Proof. We refer to [Nadl7, Section 2.2, page no. 5] for a proof. O

The following result is useful in understanding some stabilisers in the later part of this article. The space
Mat,,xm (kr) is equipped with an action of My, »y(kr) = GLy,(kr) X GL,, (kr) given by (g1, 92)U = g2Ugr?,
for U € Mat,,xm(kr). We also have a M, ,)(kr) action on the set of matrices Mat,,xn(kr) by setting

(91,92)V = glVggl, for V. € Mat,,xm(kr). Let ¥ be a non-trivial character of the additive group kr. We
define a pairing B between Maty, x,(kr) and Mat, xm (kr) by defining B(V,U) = ¢ o tr(VU). Let T be the
map from Mat,,xn(kr) and Mat, xm(kr)”" defined by

T(V)(U) = B(V,U).

Lemma 2.0.7. The map T is an My, »)(kFr)-equivariant isomorphism.

Let s be any depth-zero inertial class [My, o;] of Gy,. The group K, N M} acts on the space

Ko (1)NM;
O,I n ,

and we denote this representation of K, N M; by 7;. The pair (K, N M;,77) is a Bushnell-Kutzko type
for the inertial class [My, or] of M. Let Pr(1) be the group K, (1)(Pr N K,,) and observe that Pr(1) N M;
is equal to K,, N M;. The representation 7; extends as a representation of Pr(1) such that P;(1) N U; and
Pr(1) N Uy are contained in the kernel of this extension.

Theorem 2.0.8. Let s = [My, 0] be any depth-zero inertial class of G,,. Any typical representation 75 for
s occurs as a subrepresentation of indg"(l) 71. Moreover, we have

dimc Homp, (75,p" 01) = dimc Homg,, (7s, indp") 71)-

Proof. We refer to [Nad17, Theorem 3.2] for the proof. O
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3. THE INERTIAL CLASS WITH LEVI SUBGROUP OF TYPE (n —1,1)

Let n > 1 be any positive integer. In this section we assume that I = (n — 1,1). Let V and V; be two
F-vector spaces of dimensions n — 1 and 1 respectively. Let P be the parabolic subgroup of GL(V & V7)
fixing the flag V C V & V4. We denote by M its Levi subgroup fixing the decomposition V' & V;. Hence, we
have M = GL(V) x GL(V4). In this section, we are interested in the classification of typical representations
for inertial classes [M, o X x|, where o is a cuspidal representation of GL(V'), and x is a character of GL(V7).
We will use the language of the book [BK93| freely in this section. Let (J(2(,5),A) be a maximal simple
(Bushnell-Kutzko) type contained in the representation 0. We recall certain important features of this type
for our purpose.

3.1. Bushnell-Kutzko semi-simple type. We denote by A the algebra Endg (V). Let [2,1,0,5] be a
simple stratum in A defining the maximal simple type (J(2(,3),\). We denote by B the commutant of
E=F[f]in A. Let B =2AN B. Let P and D be the radicals of 2 and B respectively. Given any hereditary
order 2, we define the filtration U?() by setting

UHQA) = id +9°,
for all i > 1, and UY(2) is the set of units of 2. The type (J(2, 8),A) is called maximal if B is a maximal
hereditary order in B.

The group J (2, 3) contains U%(B). There is a normal subgroup J*(2, 3) of J(2, 8) such that J*(2, 3) N

U°(B) = U(B) and

UO(B) _ JL5)

ul®s)  JUAL,B)
The group U°(B)/UL(B) is a general linear group of a vector space over a finite field. The representa-
tion A is an irreducible representation which is given by a tensor product representation k ® p, where k
is a representation of J(2, §), called a S-extension (see [BK93l Chapter 5, Definition 5.2.1]), and p is a
cuspidal representation of U°(B)/U'(8) (considered as a representation of J(2l,3) through its quotient
J(A, B)/JH (A, B)). We refer to [BK93, Chapter 5] for complete details of these constructions. For the precise
definition and description see [BK93| chapter 5, Definition 5.5.10]. For simplicity, we will denote by J° and
J* the groups J(2, 8) and J!(A, B) respectively.

We fix the following notations. Let e and f be the ramification index and inertial index of F respectively.
We fix an opg-lattice chain £ defining the hereditary og-order B. Let 2 be the hereditary op-order defined
by the lattice chain £, considering £ as an op-lattice chain. We fix a op-basis (w1, ws, ... w—1)/es) for the
lattice chain £ (see [BK93, Chapter 1, 1.1.7]) and then a op-basis for ogw; for 1 < i < ef; hence, we obtain
an F-basis (v1,v2,...,0n—1,0,) for the vector space V & V;, where v,, € V;. In this basis, we write all our
endomorphisms as matrices of Mat,, x,,(F). With this basis we have J° C K,,_;.

We are interested in the classification of typical representations for the inertial class [M;, oix]. By twisting
with a character if necessary we may (and do) assume that x = id (see Lemma [Z0.3]). Let T be any typical
representation for the above inertial class. The representation ind%‘l T is a finitely generated representation
of G,, and hence admits an irreducible quotient 7. Using the definition of a typical representation we see
that 7 occurs as a sub quotient of zgln (ox1 X x2), where x1 and yo are unramified characters of G,,—; and
(G1 respectively.

Hence, in order to classify typical representations for the inertial class s = [Mj, o K id], it is enough to
examine which K,-irreducible sub representations of
resg,, igl" (o Xid)

are typical for the inertial class s. Let 7 be the unique typical representation contained in the representation
0. The representation

ind3" e (7 ®id)
has a complement in

resg,, zgln (c X x)

whose irreducible sub representations are atypical (see Lemma 2.0.5]).
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Now we have to look for typical representations occurring in the representation
indg" . (v Kid).
For this purpose, we will define compact subgroups H,, C K, for m > Ny (for some positive integer Np),

such that

Hypothesis 3.1.

(1) Hypy1 C Hyy, for m > Ny and ﬂmZNO H,, = P(op),

(2) the group H,, has the Twahori decomposition with respect to Py and its Levi subgroup My,

(3) the representation TXid admits an extension to Hy, such that Hy,NU; and Hy, U are contained
in the kernel of this extension.

For any such sequence {H,,,m > Ny} as above we have:
indj e, (r®id) ~ | ) indj (7 ®Kid).
mZNo
Before we start this construction it is instructive to first examine the Bushnell-Kutzko semi-simple type for

the inertial class [Mr, o X id].

Let us recall some standard material required from [BK99|. First, let us begin with lattice sequences. An
o p-lattice sequence in a F-vector space, say V, is a function A from Z to the set of op-lattices in V' with the
following conditions on A:
A(n+1) C A(n), for all n € Z;
and there exists an e(A) € Z such that
A(n+e(A)) =ppA(n), for all n € Z.

An op-lattice chain is an op-lattice sequence with the strict inclusion between A(n + 1) and A(n), for all
n € Z. One extends the function A to the set of real numbers by setting

A(r) = A(=[=r]),
for all » € R. Here, [z] is the greatest integer less than or equal to z.

Given two op-lattice sequences Ay and Ay in the vector spaces Vi and V5 over F, Bushnell and Kutzko
defined the notion of direct sum of Ay and As. Let e = lem(e(A1),e(Az)). The direct sum of A; and Ag,
denoted by A, is an op-lattice sequence in the vector space V4 @ Vo given by

Aler) = Aq(exr) ® Alear),

for any r € R. Given an op-lattice sequence A in a vector space V one can define a filtration {a,(A) | r € R}
on the algebra Endp (V) given by the equation

ar(A) ={z € Endp (V)| zA(t) CA(i+7r) VieZ}.
Let uo(A) be the group of units in the order ao(A) and, for r > 0 and r € Z, we set u,(A) to be 1+ a,(A).
Let (Js, As) be a Bushnell-Kutzko type for the inertial class
s = [My, o Xid].

The group Js satisfies the Iwahori decomposition with respect to the parabolic subgroup P; and the Levi
subgroup M;. Let [,1,0, 3] be a simple stratum defining the type (J°, \) for the inertial class [G,_1,0].
The order 2 is defined by a lattice chain A; with values in sub-lattices of 0. We denote by As the lattice
chain defined by Ay(i) = p%., for all i € Z. We have

(1) JsNUr = UO(Al @Ag) NUp,

(2) JsnM;=J%x o5,

(3) JSﬁUIZ’U,H_l(AlEBAQ)ﬁU], -

(4) the restriction of \s to Js N M is isomorphic to A K id, and the groups J; N Uy and J; N U; are
contained in the kernel of As.
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We refer to [BK99, Section 8, paragraph 8.3.1] for the construction of the above Bushnell-Kutzko type.

Now we make an explicit calculation of the groups u; 1 (A1 @ Ag) N Ur and ug(A; @ A) NUz. Note that
the period of the direct sum A; @ As is the least common multiple of the period of the two lattice sequences
A1 and As. Hence, the period of the lattice sequence A is e, where e is the period of the lattice chain Aj.

Let ¢ be an integer such that 0 < ¢ < e — 1. Let Ly be the free o module 05;171)/8. The lattice Aq(t) is
given by :
AM(t)= LoD LoD - ® Lo) @ (wrpLo ®wrpLo® -+ ® wrLo),
where the L is repeated e — t times, and wpLg is repeated ¢ times. Hence, the lattice chain A is given by
A(O) e Al(O) @AQ(O) e (Lo PLoP--- B Lo) Dop
and
At) =AM (t) @ A2(t/e) = (LoD Lo @@ Lo) ® (wpLo ®wrLo® - ®wrLo) ®pr,
for0<t<e-—1.

We note that uo(A) N Ur = Ur(or). We denote by fiy the lower nilpotent matrices of the type (n —1,1),
i.e. the Lie algebra of U;. We then have:

w1 (M) NUp = id +(a1(A) N1y).
Let [ +1=el’ +r, where 0 < r < e. Since A is a lattice chain of period e, we deduce that
a1 (M) N = wh(a-(A) Na).
Finally, it remains to calculate the group a,(A) Nn;. We note that a,(A) N1y is the following set
{zx € Mat,xn(F)Nny | zA(G) CA(i+7r)VieZ}.
For 7 > 1, the n*® row (in block form) of an element in a,(A) N#; is of the form A = [My, Ms, ..., M,,0],
where M; is a matrix of type 1 x (n —1)/e, for 1 < i < e and:

(1) M; € w%Math(n,l)/e(OF), fori <r—1,
(2) M; € wpMatyy(n—1)/e(0F), fori >r —1.

If = 0 and e > 1, then we know that M; € wrMat)y(n_1)/e(0r), for 1 < i < e—1, and M. €
Matyy(n—1)/e(0F). If 7 = 0 and e = 1, then we have A € Matix,(0r). This description is enough for
the present purposes.

3.2. Some auxiliary groups. Let m be a positive integer and P;(m) be the inverse image of the group
Pr(op /pr™) under the mod-p ™ reduction map

K, — GL,(or/pF).
There exists a positive integer N such that the principal congruence subgroup of level Nj is contained in the
kernel of the representation 7. The representation 7 Xid of M;(or /pp™N*) now extends to a representation
of Pr(N7) by inflation. We note that P;(N1) N Uy and Pr(N1) NUs are both contained in the kernel of this
extension. Now the sequence of groups H,, = P;(m) and the representation 7 X id, for m > N; satisfy the
conditions in Hypothesis Bl Hence, we get that
. K, . . K, .
indp o (7 Xid) ~ U 1ndPI(m)(T Xid).
mZNl
We conclude that typical representations occur as sub representations of
indp7,,, (r Kid),
for some positive integer m > Nj.
For making Mackey decompositions easier and other reasons, it is convenient to work with a smaller
subgroup P (m) of Pr(m). We begin by rewriting the representation
indp7,,, (r Kid).

We also require to make Nj explicit. We recall that K,_1(m) is the principal congruence subgroup of
level m of G,,_1. The group J° contains the group U/2+1(2l) and the representation A restricted to the
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group UV 2]+1(Ql) is a direct sum of copies of the same character ¢)g. The character g is trivial on the
group U1(A). We also recall the notation that [ +1 = el’ + r, where 0 < r < e — 1. We note that
UH(RA) = id,—1 +whPy. I 7 =0, then K, _1(1) C P4 If 7 > 1, then from the formulas [BK93, 2.5.2] we
get that K,,_1(2) C By, for 0 < 7 < e. This shows that the representation A is trivial on K,_1(Ny), where
N is given by:

Notation 3.2.1. From now we fit Ny = [+ 1)/e]+1ifr=0ande > 1. Ifr =0 and e = 1, then
Ns=1+41. Finally, Ns=[(l+1)/e]+2 if r > 1.

Let 7 be the projection map
P](OF) — M](OF).
For m > N, we denote by PP (m) the group K, (m)r~(J° x 0}). Since K,(m) N P; C 7= 1(J° x 0}), the
group P?Y(m) satisfies the Iwahori decomposition with respect to the subgroup P; and the Levi subgroup
M;. In particular, we have

Py (m) = (P (m) N Up)(Pr(m) 0 Mp)(P}(m) N Ur).
Here, P?(m)NUj is equal to Ur (o), PP(m)NM is equal to JO x 05, and (PP (m)NU;) is equal to K, (m)NUj.

We observe that AXid extends as a representation of P%(m), for all m > Ng; the groups P°(m)NUr and
PY(m) N U; are contained in the kernel of this extension. Now the representation 7 X id of K,_1 x o} is
isomorphic to

{ind5y ' (V) Rid .
Hence, we get that
indS7,,, (7 Kid) =~ indf,fjg‘(m) (AXid),
for all m > N, (we apply Lemma [2.0.4] to the groups J; = Pr(m) and Jo = PP(m) and A = AKid). We get
that
indpyn e, (TRid) = | indfg, (ARid).
m>Ng !
Hence, any typical representation occurs as a sub-representation of
mdﬁlg(m) (ARid),
for some m > Nj.
We first have to understand the representation
. PY(m) .
mdPE,(erl) (id),
for m > N,. It is convenient to define a normal subgroup Rr(m) of PP(m) such that PP(m) is equal to
Ri(m)PY(m + 1), and Rr(m) N PY(m + 1) = Ry(m + 1), for m > N,. For any integer m > N,, we define
Rr(m) to be the group K, (m)7m~ (K,_1(Ng) x (1 +Bz*)). The group R;(m) has the Iwahori decomposition
with respect to the parabolic subgroup P; and its Levi subgroup Mj.

Lemma 3.2.1. The group R;(m) is a normal subgroup of PY(m). The group Ri(m+1) is a normal subgroup
of Ry(m), for all m > Nj.

Proof. By definition of the groups Rr(m), we have R;(m)NU; = P?(m)NU;, and Rr(m)NUr = PY(m)NUj.
To show the normality of R;(m) in P?(m), we have to verify that P?(m) N M; normalize the group R;(m).
But, P?(m) N M normalizes the group Ry(m) N U; = Ur(or) and Ry(m) N U; = Ur(w® or). The group
K, (m)N M is a normal subgroup of M;(or). Hence, PP (m)N My normalizes R;(m) N M. This shows the
first part of the lemma.

Since R;(m)NP; = Rr(m+1)NP;, we have to check that R;(m)NU; normalizes the group R;(m+1). We
note that U; is abelian. Hence, we have to check that the conjugations v~ j(u~)~! and u~u*(u~)~! belong to
the group Ry(m+1), for allu™ € Ry(m)NUr, j € Rf(m+1)NM; = Ry(m)NM;, and ut € Ri(m~+1)NU; =
Ur(orp). Let us begin with the element v~ j(u~)"*. We have u=j(u~")"t = j{j‘u=j(u")"1}. Let

(7 0 [l O
7= o 4 v 1
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be the block diagonal form of j and u=; J; € K,,—1(Ns),j1 € 1 +pp¥s and U~ € wpMatyy (n—1)(0F). The
element j~1u=j(u™)"! is of the form
1,1 0
U - U~ 1)

We note that the matrix j; 'U~J; — U~ belongs to @t "Mat; y (,—1)(0#). This shows that j~lu=j(u™)"! €
Rr(m + 1) N Ur. Hence we get that

u”j(w )7 = {77 T j(wT) T € Ri(m + 1),

We now consider the conjugation u~ut(u=)~!. We write u* in its block matrix form as

1,1 UT
0 1

where U € Mat(,_1)x1(0r). Now the conjugation u~u*(u~)~! in the block matrix from is as follows

lpo1 = UTU™ Ut
-U-Utu- U-ut+1)"
Since UUTU™ € @™ Maty(,—1)(0r), we conclude that u~ut(u~)"! € R;(m + 1). This ends the proof
of this lemma. 0

Note that P(m) = R;(m)P?(m + 1). Using Mackey decomposition, we get that

Pr(m . . 1Rr(m .
TeSR; (m) 1ndP{,§ )H)(ld) o~ 1ndR;§m)+1)(1d).

It follows from the Iwahori decomposition with respect to P; and M that the inclusion of R;(m) N U; in
R;(m) induces an isomorphism between R;(m)/Ry(m + 1) and the abelian group

R](m) n [7[
Riim+1)N Ur’

Ri(m)
Ri(m+1)
ny is trivial on Ry(m + 1). The group P?(m) acts on these characters, and let {n,, | nx € {1,2,...,p}} be
a set of representatives for the orbits under this action. Let Z(nx) be the PP (m)-stabiliser of the character

Nk, for 1 < k < p. Now Clifford theory gives us the isomorphism

. PY(m) . P m)
indph ) (0 @mdzf(nnk) Un,.), (3)

Mny,

Hence, the representation ind (id) decomposes as a direct sum of characters ny, for 1 < k < p, where

where Uy, is any irreducible representation of Z (7). ) such that resg, (m) U ., CONtAINs 7y, .

We have to bound the group Z(nx). We note that P?(m) is equal to (P?(m) N M[)R;(m). Hence, we
have Z(ny) = (Z(nx) N Mr)R;(m). To bound the group Z(ny) we can only need to control Z(nx) N Mr. Let

u” € Ry(m)NU; and
1,1 O
U- 1

be the block form of 4™, where U~ is a matrix in w@ Mat, (,—1)(0r). The map u~ + w," U~ induces an
M (or)-equivariant isomorphism between Mat,y (,—1)(kr) and the quotient

R](m)ﬂU[
R[(m—l—l)ﬂUI'

We also have an M;(or)-equivariant isomorphism between Mat ,, 1)1 (kr) and Mat; (,,—1)(kr) (see Lemma
2.0.7). We note that PP(m) N M= J% x of.

Let n be a non-trivial character of R;(m) which is trivial on R;(m + 1). For the present purposes, it
is enough to bound the subgroup Z(n) N (U°(B) x 0}), for n # id. Since we have a Mj(or)-equivariant
isomorphism between the group of characters on the quotient R;(m)/R;(m + 1) with Mat,_1x1(kr), we
can as well study the group Z(A) N (U°(B) x 03), where Z(A) is the M (op)-stabiliser of a non-zero matrix
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A € Mat(,_1)x1(kr). The action of the group M;(or) factorizes through K, (1) x (14 pr). Hence, the
group (idp—1 +D¢) x (1 +pp) is contained in the kernel of the action of U%(B) x 0} obtained by restriction.
Recall that ® is the radical of 8.

This reduces our situation to the following setting. The group GL,_1(kr) X k; acts on Mat,_1x1(kr)
by setting

(g1,92)A = g1 Agy ",

where g1 € GL,,—1(kF), g2 € ki, and A € Mat,,_1x1(kp). The basis (v1,v2,...,v,_1) we fixed for the vector
space V at the beginning of this section, gives a basis of the kp-vector space

(og/wrpog)mV/ef = (OE/péE)(nfl)/ef.
Such a basis gives the inclusion
GL(n—1)/ef(0m /pE®) = U (B)/U(B) = GLp1(kr).
Recall that A = k ® p, where p is a cuspidal representation of GL(,_1)/ef(kg) = U°(B)/U*(B). Hence, we
are interested in the mod pg reduction of the first projection of
ZGLnryyes(on /peeyxis (A);

for some non-zero matrix A in Mat(,,_1yx1(kr). We set ng = (n —1)/ef.

Let wg be an uniformiser of oz. Let N be the operator on the kg-vector space W := (0g/p$)™° given by

N(w) = wp.w for all w € W.

Since 0 /PG = kr®kpmE®kEmE-®- - -®kp@g© !, we obtain a decomposition of W = W, & Wo®--- W,
such that IV restricted to W; is an isomorphism onto W, for ¢ < e, and N acts trivially on W,. The mod
pe-reduction of W is the projection onto the first factor Wj.

Any kg[N]-linear map T is determined by its restriction to the space W1. Given amap T' € Homy,,, (W7, W)
we obtain an extension 7' € Endy, (W) by setting

T(w) = NCHT(N~0=Dyy),
for all w € W; and 1 < i <e. The map T — T gives us an isomorphism of vector spaces
Homg,, (W1, W) =~ Endy, (v (W, W). (4)
We may write W = Wy & NW. This shows that the mod pp reduction map, denoted by 7, is given by
sending T to p1 o Tjy,, where p; is the projection onto the first factor of the direct sum Wy @ Wo @ --- &

We. Now Endj, (V1) is a subspace of Homy,, (W7, W) and mod pg reduction of Endy, (W;) (the image of
Endy,, (W1) under the map 7' +— T') is identity on Endg,, (W1). Hence Auty,,(n)(W) is the semi-direct product

e~

Auty,, (W1) ker(mg).

Let Q be a parabolic subgroup fixing the flag 7' = EBE'»:lWi, for 1 <i < e, and L be its Levi subgroup fixing

the decomposition W; @ Wo @ - - - & W,. Now Auty, (W;) diagonally embeds in L and ker(7g) is a subgroup
of the radical of Q. The group GL,_1(kp) x kj acts on Mat,_1x1(kp) by the map (g1,92)A4 — glAggl,
where g1 € GL,—1(kp), g2 € kjr, and A € Mat,_1x1(kr). We now have the action of GLy,(0g/PB%) X ki
on Mat,,_1x1(kr) by restriction from the action of GL,_1(kr) X kj. We are interested in

(75 X 1A ZaL, (0n /py) xkz (A
for some A € Maty,_1x1(kr)\{0}.

We first look at Zg, ;~ (A). Let (A;;) be an element of @ in its block form. Let (A1, Ag, ..., A.)" be the
block form of A, where A; is a block of size 1 X ngf. If k is the largest positive integer such that Ay # 0
and Ap = 0, then we get that

AprAra™t = Ay,
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for all ((Aij),a) € Zoxk (A). Hence {Akr | ((4sj),a) € Zox (A)} is contained in a proper parabolic
subgroup of Auty. (Wi). If nof > 1, we get that

(me XA Zgy, (o me)xkx (A)}
is a subgroup of H x kj, where H is a subgroup of Auty,(WW;) whose image under the inclusion map
Autg,, (W) < Auty, (W7) is contained in a proper kp-parabolic subgroup of Autg, (W7), since Ay # 0.

We recall the following proposition due to Pagkiinas (see [Pas05, Definition 6.2, lemma 6.5, Proposition
6.8]).

Proposition 3.2.2 (Pagkiinas). Let W be a kg-vector space with (finite) dimension greater than one. Let p
be a cuspidal representation of Auty, (W). Let H be a subgroup of Auty, (W) such that the image of H under
the inclusion map Auty, (W) — Auty, (W) is contained in a proper parabolic subgroup of Auty,(W). For
every H-irreducible sub-representation & of resy (p) there exists an irreducible representation p' of Auty,, (W)
such that p' % p and Hompy (&, p’) # 0.

Going back to Z(n) N (U°(B) x o), for ng > 1, we get that for every irreducible sub representation ¢ of
TES 7 ()N (U (B) x o) ((k® p) Kid),
there exists an irreducible representation p’ of U%(B)/U*(8) such that

Hom ;) o) xox) (65 (5 ® p') Bid) # 0.

For the case ng = 1 and qr > 2, we have to look at
(e X 1) Z,, e e (A)} (5)

for some nonzero matrix A € Mat,_1x1(kr). We notice that the group (@) is of the form {(a,a)|a € kj} if
kg = kr. Let kg be a proper extension of k. If (a, b) is an element of the centraliser (B]) then aAxb~—! = Ay
(A is defined in the previous paragraph). This shows that a lies in a proper parabolic subgroup of GL(kr).
This shows that the group (@) is of the form {(a,b) |a € F*,b € kjx} where F is a proper sub-field of k.

In the case where ng = 1 and kg = kp, we consider a non-trivial character ¢ of U°(B)/U* (B) = k). We
observe that

€87 o . 4y (Ao X o) ~ resz (4)(AXid).
: F “ F

Moreover, [M;,o ®id] and [My, 0’ X ¢~1] are two distinct inertial classes for any cuspidal representation o’
containing (J°, A ® ¢). Here,we will use the same notation ¢ for the inflation of ¢ to the group 05

In the case where ng = 1 and kg is a proper extension of kp, we consider a non-trivial character ¢ of kJ,
which is trivial on F*. We note that

TeSZ 50 () (Ao Rid) ~ TSZ 0,0 (a)(AXid)

and moreover [M;,o X id] and [M, o’ Kid] are two distinct inertial classes for any cuspidal representation
o’ containing (J°, A ® ¢). With this we finish our preliminaries.

3.3. Uniqueness of typical representations. In this part, we will prove the uniqueness of typical rep-
resentations for [My,o X id]. By Frobenius reciprocity, we get that A X id occurs with multiplicity one in

indf () (A& id), for all m > N,. We denote by US,(A Kid) the complement of A ®id in ind}) ") (A& id).
I I

We use the notation U, (A Xid) for the representation

indgg(NS){Ug(A Xid)}.

Theorem 3.3.1. Let #kp > 2. The K,-irreducible sub representations of Uy, (AKX id) are atypical, for all
m > Ng.
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Proof. We prove the theorem by induction on the positive integer m > N,;. We suppose the theorem is true
for some positive integer m > N;. We will show the same for m + 1.

We first note that

ind %,

O(m . .
K OB = 5 000 60) & (331

PY(m+1)

From the decomposition Bl we get that

mdﬁg( y(ARid) @de" {(\Rid) @ Uy, }.

Ny,
Note that the above sum is taken over the orbits for the action of Pr(m) on the set of characters of
Rr(m)/Rr(m + 1). Since there is a unique orbit, among the characters {n; | 1 < k < p}, consisting
the identity character, we get that

ind%s Bimsn)ABid) 2ind§§,‘(m)(>\&id) o P ndj, DAARI) U, ) (6)
Ny, #id
Let ' be an irreducible sub-representation of
indzp, {(ARid)®© Uy, ). (7)

We have two cases ng = 1 and ng > 1. If ng = 1 we have seen that we can find a non-trivial character ¢
of ki = U%(B)/U"(B) such that

ind&r

2 {ARI) @ Uy, } ~indzg,  {(AoR o) @ Uy, }

or

mdf;;%k){ (ARid)® Uy, }~ indggnnk){(w Rid) ® Uy, }.
Hence in this case, the irreducible subrepresentations of
indz, IR U, 3 (8)

occur as subrepresentations of resg, ZIGJI" (¢ ®x'), where ¢’ is a cuspidal representation of G,,_1 containing
the type (J°, A ® ¢)). The inertial classes [G,,_1,0] and [G,,_1,0'] are distinct. Hence, any irreducible

subrepresentation of (§]) is atypical.

Now consider the case ng > 1. In this case, there exists an irreducible representation & of (7 xid){Z(n)N
(U°(B) x 05)} such that I is a sub-representation of

md ){((§® x) Xid) ® Uy, }. 9)

Now Proposition B.2.2] gives us an irreducible representation p’ % p of U(B) obtained by inflation of an
irreducible representation of U°(B)/U*(B) such that ¢ is contained in p’. Now the representation () is a
sub-representation of

indIZ(("nnk){((Pl ® k) Xid) ® nnk}

The above representation is contained in

ind&p

P},(mﬂ)((p’ ® k) Xid) ~ ind%

K sy (T Rid), (10)

where 7/ is isomorphic to indﬁ,’""1 (p' ® k). The representation p’ ® « is still irreducible (see [BK93, Chapter
5, Proposition 5.3.2(3)]).

We will show that irreducible subrepresentations of ([0 are atypical for the inertial class [M;, o K id].
Any irreducible sub-representation of (I0)) occurs as a sub-representation of

. 1Kn .
indp",,) (v Xid),
where 7 is a K, _1-irreducible subrepresentation of 7/. Now + is contained in an irreducible smooth repre-

sentation say og of G,,_1. By Frobenius reciprocity this is possible only if the representation p’ ® & of J°
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is contained in oy. We have two possible situations either p’ is cuspidal or otherwise. If p’ is cuspidal, then
the representation o is a cuspidal representation such that og % o. Hence the representation

ind g7, 1) (y R id)

occurs in

resg, ZIGJI" (o0 Xid)
with [Gp_1 X F*,09®id] # [Gn—1 x F*, 0 K1id]. This shows that irreducible subrepresentations of (0] are
atypical representations.

Consider the case where p’ is not cuspidal. If (J°, p’ ® k) is contained in an smooth irreducible repre-
sentation og, then oo either contains a non-maximal simple-type (J?, p1 ® k1) or contains a split type (see
[BK93, Chapter 8, Theorem 8.3.5]). We also refer to the article [BH13, Lemma 2, Proposition 1] for quick
reference. From this we conclude that og is not a cuspidal representation. Hence, the representation (0] is
contained in

resy, i97 (o),
where P’ is a parabolic subgroup G,, properly contained in Py, and ¢’ is a cuspidal representation of a Levi

subgroup of P’. Since Z(i% (0")) # [M;,0 Kid], we get that the irreducible subrepresentations of (I0) are
atypical. O

Recall the definition of the integer N from (B2Z1). Now, any typical representation for s occurs as a
subrepresentation of indgg(m)()\ Xid), for some m > N,. For m > N, we have
I

1ndf§§(m)(/\ Xid) = indf,fIgL(Ns)()\ Xid) @ Uy, (A K id).

From the above theorem we get that the typical representations for s occur as subrepresentations of
. K, .
1ndP?(NS)()\ Xid).

The above representation may still contain atypical representations. We will indeed show that this is the
case and complete the classification.

The first observation is that the group Js in a semisimple Bushnell-Kutzko type (Js, A X id), for s =
[M;,0 Xid], contains the group P?(N;). Hence we will try to decompose the representation

indl‘]jp . (id)- (11)

We also note that P?(Ng) NPy = JsNPy. Let I+ 1 =el’ + 7, where 0 <7 <e. If r <1, then J; = P?(N;)
and hence, we have nothing further to analyse and Theorem [B.3.1] completes the classification of typical
representations. From now we assume that e > 2 and r > 1. Note that the depth-zero case is already
handled in [Nadl7] (see Theorem 2.0.8). We will first verify that the group Ur(op) acts trivially on the
representation (IIJ).

Let u™ and u~ be two matrices from Js NU; = Us(or) and JgN U; respectively. Let u* and v~ in block

form be written as:
<1”01 U;) and (15_1 (1))
respectively. The block form of the conjugation u~u*(u=)~! is given by
(1n1 -UtU- U+ )
-U-Utu- Uut+1)"
We have
(UO 8) € a1 (A) Ny = wh(ar(A) Niip).

If r > 1, then the valuation of each entry of a matrix in a,(A) Nn; is at least one. This shows that the
valuation of each entry in U~UTU™ is at least I’ + 2. From which the conjugation u~u*(u~)~! lies in the
group P°(Ny). If r = 0 and I’ = 0, then we are in the case where o is a level-zero cuspidal representation
and in this case Js = PY(Ny). If r = 0 and I’ > 0, then valuation of each entry in U~UTU~ has valuation
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2U' > 1" + 1 and hence u~u™(u~)~! € P?(N;). Hence, the group Us(or) acts trivially on the representation
(@D.
From the Iwahori decomposition of the group Js, we get that J is equal to (Js N PI)PIO(NS). Hence we

have:

res; np, 1ndP0(N )(1d) leDOrE]I\D,I ) Pr (id).

Note that J, N P; is a semi-direct product of the groups (Js N M;) and (Js N UI). Let ng, for 1 < k <t, be
all the characters of the group J, N U; which are trivial on the group PY(Ns) N U;. The group Js N P; acts
on these characters. Let {nx,} be a set of representatives for the orbits under this action. We denote by
Z (Wkp) the J, N P stabiliser of the character Nk, Let U% be the isotypic component of the character ny,
in the representation

1nd1{,0r21€1 )Py (id).

The space Unkp has a natural action of Z(n,). Now Clifford theory gives the decomposition

J.NP, Js mP
dPU(NI)ﬁP @ md Z(nk I) "kp)

MNkp

We note that the character id occurs with a multiplicity one in the list of characters 7.

If K is the kernel of the representation (L), then K, N Z(nx,) acts trivially on Uy, . Hence we can
extend the representation Uy, =~ to the group Z (M ) K5 such that K acts trivially on the extension. Now

consider the representation
U,

— ind’s
m = ind My -

Z(nkp)Ks
Note that K, N P; is contained in the group Z (77;%) N P; and moreover, Ur(op) is contained in K. Hence
we have J, = (Js N PI)Z(nk )K . From Mackey decomposition, we have

res ;. np, 1ndZ(mc yie. Une, md‘]s(ﬂP’)K (. mPI)(U"kp) md‘]s(:;P’)( nkp)'
We hence have
ind;} (v (i) = D indgs(nkp)Ks Up, - (12)
Mkp
Now using the decomposition (I2)) we get the decomposition
ind Sy P,y (ARid) @mdz(n Uy, ® (ARid)}.

Nkp

Note that the character id occurs with multiplicity one among the characters n,. Moreover, we have
Z(id)Ks = (Js N Pr)Ks = Js and we get that

ind5 v (ABid) ~ indf ARid) & P iz, i {Un,, ® (ARid)}. (13)
Nk, #1d
Lemma 3.3.2. Let #kp > 2 and ny, be a non-trivial character. The irreducible sub representations of

indz, i AUn, ® (ABid)}

are atypical.

Proof. We observe that Z(nx,) = (Z(ni,) N M;)(Js N U;). This shows that we have to bound the group
Z(nkp) N My, for ng, # id. Recall that n, for 1 < k <, are the characters of the quotient group

(Jsﬁ[j])
(PIO(NS) N UI)

Now let 4~ be a matrix from the group Js N Us. In the block form the matrix u~ is of the form

1,1 O
u- 1

(14)
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where U™ = [My, Ma, ..., M,], M; is a matrix of size (1 X (n —1)/e). Let 6 = Ny — 1. The map ®
[My, Ma, ..., M) — [@4 M1, @y Mo, ..., whM,]
identifies the quotient (I4) with a subspace t; of Matix,—1(kr). This identification commutes with the
action of M;NJs, since ® is none other than conjugation by an element from the Z(M;) (The centre of My).
Let t; be the following space of column matrices:
to = {(0,0,...,0,M,, ..., M)" |M; € Mat(,,_1y/ex1(kr) V7 < j < e}.

The group M;(or) ~ K, 1 x K acts on the space Mat(,,_1)x1(kr) via the conjugation action of My on Us.
The space {5 is stable under the action of U° () x 0;(7 C Mj. The pairing XY, where X € t3 and Y € ty,
gives a perfect pairing between t; and tp. This pairing is equivariant for the action of U°(2() x op C M.
This gives an identification of the space of characters of t; with the space t; in a U%(2) x o equivariant
way.

The group Mr(or) acts on Mat(,_1)x1(kr) through its quotient M;(kr). Now, the action of the group
(U°(B) x 03) C Js N My on ts factors through its quotient by its subgroup (1, +D¢) x (14 pr). Let A be
a non-zero matrix in ts.

Recall that ng = (n — 1)/ef. Now recall that we denote by mr by mod pg reduction map. We have seen
that (the paragraph above the proposition B.2.2))

(me X3 Zav,, o 5 <k (A

is a subgroup of H x kj, where H is a subgroup of GL,,(kg) whose image under the inclusion map
GL,, (kg) — GL,—1(kF) is contained in a proper kp-parabolic subgroup of GL,,_1(kr). From the result of
Paskinas, stated as Proposition B.2.2] we get that for every irreducible representation & of

resz(n,) {Uk, ® ((k ® p) Kid)}

we can find an irreducible representation p’ % p such that £ occurs in the representation
resz(ng, ) {Uk, ® (£ ® p)Rid)}.

Hence irreducible subrepresentations of

indg("nkp)Ks{Unkp ® (ARid)}

occur as subrepresentations of
. 1 Kn .
1ndZ(%p)Ks{Unkp ® (k® p') ®id)}.
Now the above representation occurs as a sub-representation of

indf,f}’f(Ns){(n ® p') Rid} = indp7 (7' Kid)},

where 7/ is given by
ind(I]((,"*1 (k®p).
Any irreducible sub representation v of 7/ occurs in an irreducible smooth representation o¢ of GL,,—1(F).
Assume that p’ is cuspidal. The representation x ® p’ is contained in the representation resjo~y and hence
is contained in 0. This implies that og is cuspidal but not inertially equivalent to o. If p’ is not cuspidal,

then the representation oy is not cuspidal. Hence, in every case, og is not inertially equivalent to o. This
shows that irreducible sub representations of

ind7 . (v R id)

are atypical. We conclude the lemma. O

Theorem 3.3.3. Let n > 2 and qr > 2. Let T be any typical representation for the inertial class s =
[My,0 R x]. The representation T' is isomorphic to the representation

indi" (As),
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where (Js, As) is any Bushnell-Kutzko semi-simple type for the inertial class s. If P is a parabolic subgroup
containing My as a Levi subgroup, then I' occurs with a multiplicity one in the representation

resg, 15" (0 X x).

Proof. Let G be the group of F-rational points of a connected reductive group defined over F'. For any
inertial class t = [L,0] of G, and for g € Ng(L) we define t? to be the inertial class [L,©9]. The map
sending ¢ to t9 is well defined. We denote by Ng(t) the group {g € Ng(L) | tY = t}. The group Ng(t)
clearly contains the group L and the quotient W; = N¢(t)/L is finite. The cardinality of W; does not depend
on the choice of L. We return to the case where G = G,, and t = s. The intertwining of the representation
indi" (As) is bounded by the cardinality of W,. We have |Ws| = 1 since n > 2. Hence, the representation
indJKf (Xs) is irreducible. We refer to [BK98|[Lemma 11.5] for these results. Hence the uniqueness of the
typical representation. The multiplicity follows from the results B3 and O

4. PRINCIPAL SERIES COMPONENTS

Let I be the partition (1,1,...,1) of n. Recall that we denote by B, the group Py, U, the group Uy,
and T,, the group M| respectively. In this section, we will classify typical representations for the inertial
classes s = [T}, x|, where x is a character of T;,. Let 7 be a typical representation for the inertial class s.
The compact induction ind%; T is a finitely generated representation. Let m be an irreducible quotient of

ind%Lz 7. By Frobenius reciprocity, the K, -representation 7 occurs in the G,, representation 7.

Let B be any Borel subgroup of G,,, T' be a maximal split torus of G, contained in B, and x’ be a character
of T. If (T,x') and (T, x) are inertially equivalent, then the representation 7 occurs as a sub-quotient of
ig” (x"), where x” is obtained from x’ by twisting with an unramified character of T'. For classifying typical
representations it is enough to say which K, -irreducible sub representations of iCB:" (x') are typical for the

inertial class [T}, x].

Let o be a permutation of the set {1,2,...,n}. Let x = K", x; be any character of T}, = [, F*. We
denote by x“ the character X', X, ;) of T),. We observe that the pairs (T}, x?) and (T}, x) are inertially
equivalent. This implies that for a classifying typical representations we can classify typical representation
occurring in zg: X7, for any 0. We will use a convenient permutation o which satisfies the condition in the
following lemma.

Lemma 4.0.1. Given any sequence of characters x; = x; of 0, there exists a permutation {y; |1 <i < n}
of {x; |1 <i<n} such that

Wyayy, ) = max{l(yay; '), Uysy )}
forall1<i<j<k<n.

Proof. For any ultrametric space (X,d) and given any n points x1,z3,23,...,2, in X we may choose a
permutation y1,y2, ..., yn of the sequence {x;]1 < i < n} such that

d(yi, yr) > max{d(y:,y;), d(yj, yr)}
for all ¢ < j < k. Now apply this fact to the space X consisting of characters of 0 and the distance function

d(x1,Xxz2) is defined as the level l(xlxgl) if x1 # x2 and 0 otherwise. We point out that this ordering is not
unique in general. We refer to [How73, Lemma 1]for a proof of these results. O

Remark 4.0.2. We note that the condition l(y;y; ') > max{l(yiyj_l), Wy;yp 1)} is equivalent to an equality
since we always have

Wysy ") < max{l(iy; ), Hywi )}
Given an inertial class [T, x] we choose the representative (T}, x°) where o is a permutation such that
{(Xo () Xo(ry) = MaX{T(Xo (1) X)) LXo () Xy (1))}
From now on we assume that the pair (7,,,X! ,x;) satisfies the condition

Hxixg, ) = max{l(xix; 1), 10Gxs D} (15)
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foralli <j<k.

In the following subsection we construct subgroups H,,, for m > 1 such that

(1) Hy = Js, where J; is the compact open subgroup of a Bushnell-Kutzko type (Js, x) of s,

(2) Hpq1 C Hpp, for allm > 1 and (), Hm = By N Ky,

(3) The representation x of T), N K,, extends to a representation of H,, such that H,, NU, and H,, NU,
are contained in the kernel of this extension.

Such a construction gives the following equality:

indﬁ:mBn X = U indgzl X-
m>1

Later, we show that any K,-irreducible sub representation of indﬁ:;+1 X/ indgq’; X is atypical.

4.1. Construction of compact open subgroups H,,. Let A = (a;;) be a lower nilpotent matrix of size
n x n such that a;; is non-negative, for < > j, and

ar; = max{a;i, ax; }, (16)

for 1 <i<j<k<mn. Wedenote by J(A) the set of n x n matrices (m,,) such that my, € op, for p < g,

and my,, € ’IJ‘}”, for p > ¢q. As a consequence of the condition ay; = max{a;;,ar;} we get two important
inequalities
a1 2 Qg = -0 2 Qi1 (17)
and
aj1j < Qjgoj <00 < ang. (18)
The first is a consequence of a;x—1 = max{ark—1,a:}, for k < 4, and the second is a consequence of

apt+1; = max{ap41k, ax; }, for j < k.

Lemma 4.1.1. The set J(A) is an order in Mat, x,(0F)

Proof. The set J(A) is an additive group. We now check that the set J(.A) is closed under multiplication.
Let (m;) and (m};) be two matrices from J(A). If i > j, then the i x j term in the product matrix (mj;)(m;;)
can be split into three terms:

!/

L / /
tl = milmlj + mi2m2j + -4 mijmﬂ-,

— .. / e .. /
ty 1= Mijp1mi gy + + mgimy;
and

t3 1= Miip1My g + 0+ My, ;.

Observe that Vp(mikmjcj) > a;1, for k < j. This shows that vp(t1) > min{a,1, as2,. .., a;;} and
min{a“, e ,aij} Z Qg -

The valuation Vp(ml-km;cj) > aii, + ag;, for all j <k <4, and a;, + ay; is greater or equal to a;;. We get that

vp(t2) > a;5. Finally the valuation vp (mgpmy;) > akj, for k > 4. The valuation vp(t3) > min{a;+1;,...,an;}
and min{a;4+1;,...,an;} > a;;. Hence the additive group J(A) is closed under multiplication. Since J(.A)
is an o lattice in Mat,, «,, (F') we get that J(A) is an order in Mat, x, (o). O

We denote by J(A) the set of invertible elements of J(A). The following are examples of J(A).

(1) If A = 0 then the group J(A) is K.
(2) If A= (a;;) with a;; =1, for i > j, then J(A) is the Iwahori subgroup with respect to the standard
Borel subgroup B,,.
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The examples (1) and (2) satisfy Iwahori decomposition with respect to the standard Borel subgroup B,.
The next lemma concerns the Iwahori decomposition of J(A) in general.

Let A = (a;j) be a lower nilpotent matrix such that ay; = max{aj,a;;}, for 1 <i < j <k <n. We
define an ordered partition I of n by induction on the set of positive integers m < n. Let I; := (1) and if we

know I,,, = (n1,n2,...,n,), for some m <n — 1, then I, is the following partition
coosngy, 1) if apg1m #£ 0
Im+1 _ (’l’Ll,’I’LQ, , T )1 Gm+1 7& (19)
(n1,n2,...,n, + 1) otherwise.

We denote by I(A) the partition I,,.

Lemma 4.1.2. The group J(A) satisfies Iwahori decomposition with respect to the parabolic subgroup Pr(a)
and the Levi subgroup My ay. We have J(A) N Myay = Mypay(or), J(A) NUray = Ura(or).

Proof. We use induction on the positive integer n. If n = 1 then J(A) is 05 and the lemma is vacuously true.
We assume that the lemma is true for all positive integers less than n. Let I(.A) be the ordered partition
(n1,n2,...n,). If r = 1 then the lemma is true by default. We suppose r» > 1. We will show below that every
element j € J(A) can be written as a product uij; with uy € J(A)NU(n, n—n,) and j1 € J(A) NPy non,)-
Now ji can be written as jou{ where uf € Uiy, n—n,)(0F) and j2 € My, —n,)NJ(A). Now jo can be written
as jsuj where j3 € J(A)N M) and ui € Uyay(or). The group J(A)N My, n—p,) is equal to K, x J(A")

where the nilpotent matrix A" = (aj;) is given by a}; = @itn,j+n,. By induction hypothesis J(A’) satisfies

Iwahori decomposition with respect ltjo the standard parabolic subgroup Pr(4/) and its Levi subgroup My
and I(A") = (n2,n3,...,n,.). Let j3 = (j9,73) where 5§ € K,, and ji € J(A'). Now ji = uj jsuj where
uz € Upan NJ(A), uj € Upary N J(A') and js € Myan N J(A'). Hence j = uyug (5, ja)ug uy (with a
slight abuse of notation the elements u; and uj are considered as elements of UI( Ay and Uy (a) respectively
and (7§, 74) is an element of J(A) N M4y = Kn, % (J(A) N Mya)).

We now prove that j € J(A) can be written as a product w;j; with u; € J(A) N U(nl,n—nl) and j; €
J(A) N Piy nenyy- Let j = (jpg). Let C} be the i"-column of the first diagonal block (of size ny x n1)
on the diagonal. If every entry of C} has positive valuation then, we claim that the all the entries of the
it" column C; have positive valuation. Suppose the k' entry ji; of C; is an unit for some k > n;. This
shows that ag; the kith—entry of A is zero. Now the inequality (IT7) gives ag; > akn, and this implies that
akn, = 0. Now note that agn, > apn,4+1n, from the inequality ([I8). This shows that a,,11,, i zero which
gives a contradiction from the definition of I(A). We now deduce that jj; is not invertible. This shows the
claim. Since j is invertible we conclude that at least one entry of C} is an unit. Let Ejj(c) = I, + e;5(c)
where e;;(c) is the matrix with its ij entry ¢ and all other entries 0. The left multiplication of E;;(c) results
in the row operation R; + cR;. Since at least one entry of C} is an unit we assume that its ¢'-entry is
an unit. We can perform row operations R, + cR, for all p > n; to make the pth-entry trivial. We also
note that the elementary matrix corresponding to this row operation also belongs to the group J(A) (note
that ¢ < ny < p). This completes the task of making j as the product u1j;. The uniqueness of the Iwahori

decomposition is standard. O

Let s = [Ty, x] be an inertial equivalence class. Let m be a positive integer and A, (m) be the lower
nilpotent matrix (af}) € Mat,,xn(Z), where
af =1(xix; ") +m—1,
for n >4 > j > 1. As shown earlier, the representative (T, x = K, x;) for s, can be chosen such that
Aif = max{aij, ajk},

for all i < j < k. We denote by J, (m) the group J(A, (m)). Note that J,(m') C J(m), for all m’ > m. In
our situation we have I(A(m)) is (1,1,...,1), since none of aj}, ; are zero. Hence, using lemma the
group Jy (m) satisfies the Iwahori decomposition with respect to B,, and T,,.

Lemma 4.1.3. The character x = X}, x; of T, N K, extends to a character of Jy (1) such that J, (1) N Uy,
and J, (1) N U, are contained in the kernel of the extension.



20 SANTOSH NADIMPALLI

Proof. Let m = (m;;) be an element of J,(1). We define x(m) = []\_; xi(mi;). The verification that x
is a character of the group J, (1) is very computational in nature and we sketch the proof here and for
complete details see [Roc98, Section 3, Lemma 3.1, Lemma 3.2 ] or [How73, Pg 278-279]. The idea is to get
an open normal subgroup U of J, (1) such that J,(1)/U is isomorphic to T'(or)/T) where T is an open
subgroup of T'(op) which is contained in the kernel of y. The subgroup U is generated by J, (1) N U,, and
Jy(1)NU, = Uy (oF). One shows that U satisfies Iwahori decomposition with respect to the Borel subgroup

B, and UNT, is given by Ha€<1> av(l —i—%;ﬁxav)) where @ is the set of roots of GL,, with respect to T, and
oV stands for the dual root. We observe that U N T, is contained in the kernel of x. O

We are now ready to define the sequence of groups H,,. We set H,, = J,(m), for m > 1. We now get the
equality
-G . K,
resg, ip"(x) = U ind37, ) (x)-
m>1

For the purposes of proofs by induction, we need to construct some more compact open subgroups of K,,.

We denote by A, (1,m) the lower nilpotent matrix (a;;) where a;; = l(xi)(;l) for j < i< n, ap; =
l(anj_l) +m—1, for 1 < j <n—1. Given a lower nilpotent matrix A = (a;;) such that ax; = max{ag;,a;;}
we associated a compact subgroup J(A). The matrix A, (1, m) need not satisfy this condition but, we can
still associate the group J(A,(1,m)) to the matrix A, (1, m). We will prove this in the next Lemma.

Qij

Lemma 4.1.4. Let J (A (1,m)) be the set consisting of matrices (m;;) € Maty,xn(0p) such that m;; € Pp
for alli,j. The set J(Ay(1,m)) is an order in Matyxn(0F).

Proof. The set J(Ay(1,m)) is a lattice in Mat,x,(F) and we have to verify that J(A,(1,m)) is closed
under multiplication. Let (m;;) and (m;) be two elements of the set J(Ay(1,m)). We suppose i > j. The
ij*"-term of the product (m;)(mj;) is the sum of the terms:

/ / /
b1 = mumy; + MiaMy; + -+ + Migmy;,
/ /
Lo 1= Myijr1Mjy g + -+ Migmy;
and

/ /
t3 == Miip 1My + -4 Mein My -

Note that
vp(ty) > min{vp(mgmy;) | for all 1 <k < j},

and Vp(mikm%j) = a;,. If i < n, then a;, = l(Xixgl) and a;; < ag, for all k¥ < j < 4. This shows that
vp(t1) > a;5. If ¢ = n, then we have

aik = ank = lxnxy, ) +m—12106x; ") +m—1=ay,
for all k < j < n. We conclude that in every possibility ve(t1) > ai;.
Consider the term t5. We have
vr(t2) > {vp(mimy;) | for all j <k < i}

and VF(mikm;Cj) = a;i + ay;, for j < k < 4. If i < n, then we have a;;, = Z(Xixgl) and ap; = l(Xka_l).
From our assumption on the arrangement of characters x;, for 1 <7 < n, we get that

Ixax; ') = max{l(xixg, ), Lo -
At the same time ¢ < n implies that a;; = l(XZ-X;l). This shows that Vp(ml-kmjcj) is equal to a;; + ax; and
air + ar;j > a;j. Consider the case ¢ = n and in this case, anr = l(an,Zl) +m—1. Now ai; = l(Xkafl) and
anj = l(xnxgl) +m — 1. From the equality l(XZ-X;l) = max{l(xix} ), Z(kajfl)} we deduce that
Hxixe ) +10akxg ) > 1ax; )

Now, adding m — 1 on both sides we get a;; > a;x + arj. We conclude that vp(t2) > a;;.
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We observe that Vp(mlkm;j), for i < k < n is equal to ap; = l(x;cxjfl) and we have l(X;ngfl) > aj.
Note that a;

= (anj Hem—-1> a;; from which we conclude that vg(t3) > a;;. This shows that
I/F(tl —+ tQ + tg) Z CL

and we prove our lemma. O

Let J,(1,m) be the group of units of J (A, (1,m)). We will need the structure of the representation

Jy(1,m
1nd]"E1 mzrl)(ld)'

We follow a similar strategy to that from previous section. Let (a;;) be the matrix A, (1,m). Let K, (1,m)
be the set of matrices (m;;) such that m;; € pp, for i < j <mn, m;, € op, fori <n, my; € 1 +pp, for i <n,
m;; € pp®, for ¢ > j. In the block form the group K, (1,m) is given by:

Ax(l) ﬁKn_l(l) Mat(n,l)xl(OF)
n 1 +pbr ’

—1 —1
where n is the lattice (p;gXlX" ) ,p;&x”’lx" )).

Lemma 4.1.5. The set K, (1,m) is a normal subgroup of Jy,(1,m).

Proof. We first check that K, (1,m) is closed under matrix multiplication. Let (m;;) and (m};) be two
matrices from the set K, (1,m). Let i < j < n the ij*" term is the sum of

! ! I
b1 = mimy; + maamog; + -+ + My,
— .. U .. ! DR . . !
Lo = Miip1MGp 15 + Miit2My o + -+ MMy,
and

!/ /
I3 = Myj1Myq; + 0+ MinMy 5

Observe that up(m;j) > 0, for 1 < k <4 and hence, vp(t;) > 0. Now vp(m) > 0, for i < k < j and we
get that vp(t2) > 0. Note that vp(my;) > 0, for j < k <n and hence, the valuation vr(t3) > 0. This shows
that ijt"-term of the matrix product has positive valuation. The verifications on congruence conditions for
the in'M-term are exactly the same as in Lemma [LI.4l The existence of inverse for an element in K, (1,m)
follows from Gaussian elimination.

Now we establish the normality of K, (1,m). The group K, (1,m) satisfies the Iwahori decomposition
with respect to the subgroups F;,_1 1) and Mn—1,1)- We also note that K, (1,m) N Ug,—1,1) is equal to
J (1, m) N Ug—1,1y and K, (1,m) N Uy, is equal to J,(1,m) N U(n 1,1)- To check the normality of
K, (1,m) we have to check that J,(1,m) N M1 1) normahzes K, (1,m). This is equivalent to checking
that K\ (1,m)N M1y is a normal subgroup of J, (1,m) N M(,_11).

We note that Jy(1,m) N Mg,—11) = Jy (1) x o where x’ @" "' xi- Let p1 be the projection of
Jy(1,m) N M,—1,1) onto Jy/(1) and 7 be the reduction mod p map. Note that K, (1,m)N Mg,y is the
kernel of 71 o p;. O

~ From the above lemma, the group K, (1,m) is a normal subgroup of .J, (1,m). We also note that J, (1,m)N
U(n—1,1) is contained in K, (1,m). From this we conclude that .J, (1, ) K, (1,m)J(1,m +1). From the
Mackey decomposition we get that

Jy(1,m . 1,m
resk, (1,m) ind XE ) )(1d) ~ 1nd E ng a, m+1)(1d).
From the definition of K, (1, m) we get that K, (1,m)N J,(1,m+1) = K, (1,m + 1) and
. Ky (1,m .
TeS (1,m) 1nd El ml_l)(ld) ~ 1ndKXE1)mL1)(1d). (20)

Lemma 4.1.6. The group K, (1,m + 1) is a normal subgroup of K, (1,m).
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Proof. The group K, (1, m) has the Iwahori decomposition with respect to P, 1,1y and M, _1 1y, K, (1,m)N
Utn—1,1) is equal to K (1, m—i—l)ﬁU(n 1,1y and K, (1,m) N M,_1 1 is equal to K, (1, m—i—l)ﬂM(n 1,1)-
We have to check that v~ j(u™)"! and u=ut(u™)~ r belong to K, (1,m + 1), for u= € K, (1,m) NU¢,—1,1),
Jje K (1,m)N My_q1y and vt € Ky (1,m) N Ug_1,1).

We first consider the case u=j(u™)"!. We can rewrite u=j(u™)"! as j{j tu"j(u")"'}. Since j €
Ky(1,m) N Mg,—1,1y = Ky (1,m + 1) N M,_1,1), it is enough to show that j~'u~j(u")"' belongs to the
group K, (1,m+1). Let j and v~ be written in their block matrix form as follows.

_ (A 0N (e 0
—\0 J1 “\U~ 1

u”j(u~)~! in its block form is given by

1o 0
gt U1

Let U™ = [u1,ug, ..., Uy—1] and Ji = (j;;). The k" entry of the matrix U~ J; is the sum of

The conjugation 5!

t1 = uijik + u2jor + -+ Uk—1Jk—1ks

to = UgpJkk,
and
t3 = Upt1Jk+1k + - F Un—1Jn—1k-

If I(xkx, ') > 1, then valuation vp(ugjs), for t < k, is at least [(xtx;,t) +m —1+1 > I(xkx, ') +m. Hence,
we have

ve(ty) > 1xex, ') +m — 1.
The valuation vp(ugagg), for k < ¢, is at least {(xix; ') +10xexy ) +m — 1> 1(xxxy ') +m — 1. This shows
that ¢ + to + t3 = to = upjrr = ugx mod ppl(XkaTl)*m. We note that jl u—u € p}ffl for any u € p%.

hence the matrix
1,1 0
UL -U" 1

Let us consider the conjugation u~u™(u~)~*. We write u* in the block form as
1y UT
0 1
The conjugated matrix u~ut(u~)~! is given by
lpy —UTU™ U+
-U-uUtu- U-Uut+1)"
Let 1,1 —UTU™ = (u;;). The valuation vp(u;;) > l(xnxjfl), for i > j, and l(xn)(;l) is greater or equal to
l(Xixj_l). From this we conclude that u~u*(u™)"t € K, (1,m + 1). O

is contained in K, (1,m+1)N U(n,lyl)

4.2. Calculation of some stabilisers. The inclusion map of K, (1,m)N U, in K,(1,m) induces an iso-
morphism of the quotient K, (1,m)/K,(1,m + 1) with the abelian group
KX(L m) n U(n—l,l)

_ . 21
KX(l,m—I—l)ﬁU(n,Ll) ( )

KXEI ,m)
1,m+1
group J, (1, m) acts on these characters and let Z(n;) be the J, (1, m)-stabiliser of the character n;. From

Clifford theory we get that

Hence the representation ind )(id) splits into direct sum of characters say {n; | for 1 < k < p}. The

1nd 1 m+1 @ 1nd nnk (Un.,)s (22)

Ny,
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where 7, is a representative for an orbit under the action of J,(1,m) and Ux,, is an irreducible represen-
tation of the group Z(n,, ). Since

Je(X,m) = (Jy(1,m) N M, —1,1)) Ky (1,m)
we get that Z(nx) = (Z(nk) N Mn—1,1)) Ky (1,m).
The final step in our preliminaries is to understand the mod pp reduction of the group
Z(ne) N Mn_1,1

for some non-trivial character 7. The group Jy(1,m) N M,_11) (which is Jy/ (1) x o}, for ¥’ = K"y,
acts on the quotient -
Kx(l, m) n U('n,fl,l)

KX(lvm + 1) N U(n—l,l)
by conjugation. Let j and u~ be two elements from J, (1,m) N M, 1) and K, (1,m)N U respectively. We
write the elements j and v~ written in their block diagonal form as

Jl 0 1n—1 0
(5 2) m (i)

~ induces an isomorphism between the group (23)) and Mat; x (,,—1)(kF).

(23)

respectively. The map u™ — w;ﬂ(mfl)U

The map v~ — w;(mfl)U_ gives an J, (1) x o *-equivariant map between M, (,,—1)(kr) and the group
[23). We also have a M(,_1 1)(kr)-equivariant map between the group of characters of M (,,—1)(kr) and
the group M, _1)x1(kr) (see Lemma 2Z0.7). Hence we obtain a .J, (1) x 0r* equivariant map between the
group of characters of the quotient (23] and the group M, _1)x1(kr), where J, (1) acts through its (mod pr)
quotient B,,_1)(kr)x k}: and the action is (b, ) A = bAz~"'. Hence to understand the group Z (n) "M, _1 1)

for non-trivial ny, we first look at ZBn,l(kp)xkbf (A) for some non-zero matrix A in M, _1)x1(kr) .

Let p be the projection of B,,_1(kr) x kj onto the diagonal torus
Tn—l(kF) X k;; = Tn(kp),
let p; be the i*" projection of T, (kr) onto kj. The centraliser 2 (k) xS (A) of a non-zero matrix
A = [u,uz,...,u,—1]T satisfies the following property: there exists a j < n such that p;(p(t)) = pn(p(t)),
forallt € Zy (k) xS (A) (see [Nadl7, Lemma 3.8]). This shows that for any non-trivial character n,,,

—1

Z(nn, ) N'T,, satisfies the property that

pi(t) = pn(t) mod pr.
The character x = X!, x; of J, (1) occurs with multiplicity one in the representation
T (1)
ind7* ) (x)-
We denote by U2 (x) the complement of y in indjigz)(x). We denote by Up,(x) the representation

ind ) {Un (0}

4.3. Elimination of atypical representations.

Theorem 4.3.1. Let qr > 3. The irreducible sub representations of Up,(x) are atypical. If n = 3 and
kr > 2, then the irreducible sub representations of Uy, (x) are atypical.

Proof. We prove the theorem by using induction on the positive integers n and m. For n = 1 the represen-
tation Uy, (x) is trivial and the theorem is vacuously true. Let n be a positive integer greater than one. We
assume that the theorem is proved for all positive integers less than n. We will use the induction hypothesis
to show the theorem for n.

We note that J, (1, m) and J, (m) satisfy the Iwahori decomposition with respect to the parabolic subgroup
Pn—1,1) and its Levi subgroup M,_11); we have J,(1,m) N Up—11) = Jy(m) N Ug—1,1) and Jy(1,m) N
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Utn—1,1) = Jx(m)NU(,—1,1). Hence, the representation ind ]"&7;2;41(\/[("1 11)1) (x) extends to a representation of
Jy(1,m) and this extension is given by

Jy(1,m
deXEm) )(X).

If we denote by x’ the character T),_; = K" "'y, of Hi:ll F*, then we have

']X(lvm)mM(nfl,l)

. (1)
ind; ot (00 = ind 3 ) () B v

We also have

/(1
ind "/%( ) B xn > Up, (X) B xn @ X

Combining the above isomorphisms we get that

ind?x"(m)( )~ dex L m){UO (X)X xn} @indJKX"(Lm) (x)- (24)

We will use the induction hypothesis to show that K,-irreducible sub representations of

ind7, L AU () B xa} (25)

are atypical representations. By induction hypothesis any K, _i-irreducible sub-representation of U,,(x’)
occurs as sub-representation of some

G'Vl

ip, (o)
where [T},—1, X'] and [M, o] are two distinct inertial classes. We now get that irreducible sub representations
of ([25) occur as sub representations of

isr (0 B xn)
where I’ is obtained from I by adding 1 at the end of the ordered partition I of n — 1. If I # (1,1,...,1)

then the Levi sub-groups M and T,, are not conjugate and hence the inertial classes [M}:, o X y,] and
[Th, x] are distinct inertial classes and this proves our claim in this case.

Now, we assume that M; = T,,_1 and 0 = @” ", 0; be the tensor factorisation of the character o of
T 1. Slnce the inertial classes [T,,—1, x’] and [Tn_l,o] are distinct we get a character y; occurring with
non-zero multiplicity in the multi-set {x1,X2,...,Xn—1} but with a different multiplicity in the multi-set
{o1,02,...,0n-1}. Adding the character y,, to both multi-sets above keeps the multiplicities of the character
Xt dlstmct and this shows that [T}, x] and [T}, 0 X x,,] are different inertial classes.

This shows that any typical representation must occur as a sub-representation of

ind?x"(l)m) (x)-

The character x occurs with multiplicity one in the representation ind ngl)m)( ). We denote by Uﬂm(x) the

Ix(1)

Te(Lm) (x). We denote by Uy m,(x) the representation

ind’", {U7,, (0}

complement of the character x in ind

We first note that
Un(x) = ind 7 0 {UR () B xa} @ Upn(X). (26)

We already showed that the K,-irreducible sub representations of the first summand on the right-hand side
of the equation (20 are atypical. We now show that K,-irreducible sub representations of U, (x) are
atypical and this proves the main theorem.

We first note that
. Je(D) Ty (1) J(1m) .
1nde(1,m+1)(X) md ( m){ dJ (1,m+1)(1d) ® X}
Using the decomposition ([22]) we get that
Ty (1)
Jo( 1 m+1) @de(nnk){Unnk ® X}

Ny,

md
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Recall that 7, is a representative for the orbit under the action of the group J, (1, m) on the set of characters
{nk| 1 <k < p} of the group K, (1,m)/K,(1,m+ 1), and Z(n,, ) is the J, (1, m)-stabiliser of the character
M, - Lhere is exactly one orbit consisting of the identity character and hence

. de(1) e (D) . dy (1)
lndJX(l,m-i-l)(X) =~ dex(l,m)(X) E@ mdz(nnk){Unnk ® X} (27)
Mny, #id

Consider the representation

. J (1
de?wgn)k){U%k ® x}

for some representative 7, # id. Now, recall that Z(n,,) N T, is a subgroup of T,,(or) = [[;~, 0™, and
there exists a positive integer j < n such that p;(t) = p,(t) mod pp, for all ¢t € Z(ny,, ). Let k be a character
of F'* such that x is ramified and 1 + Bp is contained in the kernel of k. Let x* be the character

Xl&)@&)@ﬁ&---ﬁxnm_l.

We observe that resz(,, )(X) = resz(y, )(x") and hence

. Jy (1 . Jo(1 n
1ndZ?f7n)k>{Unnk ®x} = mdz’zf,n)k){Unnk ® X"} (28)

From the above paragraph we get that
(1
Ui (0 = UL, 00 @@ indy) (U, ® -

My #id
and from the above identity we conclude that
Utim+1() = Urn(x) €@ indgg, {Un, ®x}. (29)
T, 7id

From the equation ([28) we get that
. K, ~ S K, K
de(nnk){U""k ® x} =~ de(nnk){U%k ®x"}.

If we choose s such that [T}, x] and [Ty, x"] are two distinct inertial classes, then we can conclude that
irreducible sub representations of

indg&nk){U%k ® x}

are atypical. Hence, using the identity (29) recursively we get that irreducible sub representations of Uy, (x)
are atypical representations, for all positive integers m.

To prove the theorem we have to justify that we can choose a character k as in the previous paragraph.
Now for any character k non-trivial on 6r* (such a character exists since ¢r > 2) and trivial on 1+ pp, the
equality of the inertial classes [T}, x] and [T}, x"] implies the equality of multiplicities of x; in the multi-
sets {x1,x2s---» Xn} and {Xx1, X2, X, .-, Xnk *}. The equality of multiplicities implies x;x,' = . If
qr > 3, then we have at least two non-trivial tame characters and hence we can choose k distinct from a
possibly tame character x;x;, '

Ifl(x;) =1, for 1 <i<mn-—1, and l(x,) > 1, then we can always find x such that [T, x] and [T, x"] are
distinct inertial classes. We note that the induction hypothesis here is supplied by depth-zero case stated as
Theorem 2.0.8

Consider the case where n = 3, ¢gp = 3 and n is the non-trivial character of k. We have the character
X = x1 X x2Xy3 of T5. Assume that there exists i # j and 4, j € {1, 2, 3} such that XiX}l =, with I(n) = 1.
If such a pair (4, j) does not exist, then our present proof goes through. Now, twisting with the character x;
if necessary, and permuting the characters x1, x2 and x3 if necessary, we may assume that x; =id, x2 = 7.
This arrangement still satisfies the condition (IH). If I(x3) = 1, then we are depth-zero case and we refer to
Theorem 2.0.8 for a proof of this result. If I(y3) > 1, then K5 irreducible subrepresentations of Uy, (x1 X x2)
are atypical, for m > 1 (we refer to 208 or [BM02], Appendix]| for a proof). Now, the above proof shows that
irreducible subrepresentations of Uy ., (x) are atypical, for m > 1. This shows the theorem in the present
case. 0
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The pair (Jy (1), x) is a Bushnell-Kutzko type for the inertial class s (see [BK99, Section 8]). From the
above theorem we deduce the following result:

Theorem 4.3.2. Let g > 3 if n > 3 and qr > 2 if n € {2,3}. Let 7 be a typical representation for the
inertial class s = [Ty, x| then T is a subrepresentation of ind?”(l)(x). Moreover we have

dim¢ Homg, (T, zgz (x)) = dim¢ Homg,, (7, indJKX”(l) (x))
Remark 4.3.3. When #krp = 2 and n = 2 Henniart showed in [BM02][A.2.6, A.2.7] that the Bushnell-
Kutzko type for the inertial class s = [Tz, x1 X xa2], X1X2—1 # id has two typical representations one given
by

. G
1nd(]j(21()oF) (x)

and the other representation turns out to be the complement (it follows from [Cas73, Proposition 1(b)] that
there is a unique complement) of indi?fl()”)(x) mn ind?jé()”)(x). But for #kpr > 2 and n > 3 we expect that

typical representations are precisely the irreducible sub representations of
. 1 Kn
1nd(]x(1)(x).

For #kp =2 and n > 2 a typical representation may not be contained in the above representation as shown

by Henniart for the case of GLy(F).

5. TYPICAL REPRESENTATIONS FOR GLj3(F)

Any inertial class of the group G3 belongs to one of the following classes (see Lemma [2.0.6)):

1 [Gs, 0], where o is a cuspidal representation of G3
2 [Ga x G1,0 R x], where o is a cuspidal representation of Gy and x is any character of F'*.
3 [T5,x = x1 X x2 X x3], where x1, x2 and x5 are three characters of F'*.

Typical representations for any inertial class of the form s = [G3, 0] are classified in the work of Pasktinas
[Pas05]. Up to isomorphism there exists a unique typical representation for s. Similarly, the theorem B33
shows that, if ¢r > 2, then up to isomorphism there exists a unique typical representation for any inertial
class of the form [Go x G1,0 K x]. If gr > 2, then for any inertial class s = [T5, x] we showed that any
typical representation occurs as a sub representation of ind?x (1) X- The pair (Jy (1), x) is a Bushnell-Kutzko
type for s. Moreover, we also have the multiplicity result Theorem We conclude the following result
for GL3(F).

Theorem 5.0.1. Let qr > 2 and s be any inertial class of Gs. Typical representations for s are precisely
the irreducible subrepresentations of indg(: As, where (Jg, Xs) is a Bushnell-Kutzko type for s.
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