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Introduction

Historically, the study of modules over finite dimensional algebras has started with the study

of the finite dimensional modules over these algebras. This is sufficient when dealing with

a finite dimensional algebra of finite representation type, where there are only finitely many

indecomposable modules of finite length (up to isomorphism). Any module is the direct sum

of modules of finite length and, moreover, this decomposition is unique (up to isomorphisms)

by means of the famous Krull-Remak-Schmidt-Azumaya Theorem. When dealing with algebras

of infinite representation type, it has been proven by Auslander in [8], that indecomposable

modules of infinite length occur in this case. The first example is the Kronecker algebra, ie. the

path algebra of the quiver:

• //
// •

This is a tame hereditary algebra of infinite representation type and its module category has

been extensively investigated. We can describe the finite length modules in the following picture:

. . . . . .

p qt

...

Figure 1: Auslander-Reiten quiver of the category of finite length modules over the Kronecker algebra.

Here p and q denote, respectively, the preinjective and the preprojective component, where

the indecomposable projective (resp. injective) modules belong to. In the middle, t denotes a

sincere, stable and separating family of tubes, which are connected and uniserial length categories

themselves, consisting of regular modules. Examples of infinite dimensional modules occurring

in this category are the Prüfer modules, the adic modules and the generic module G. The first

two kind of modules somehow resemble the Prüfer and the adic abelian groups and the generic

G is defined as the unique indecomposable infinite dimensional module with finite length over

its endomorphism ring.

The study of pure-injective modules over a finite dimensional algebra is crucial for the problem

of describing infinite dimensional modules. Indeed, the infinite dimensional modules of this type

are the first that have been widely studied in literature, see for instance [22, 52, 70]. Pure-

injective modules have a wide range of nice properties coming from different point of views: first
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of all, they have a cogenerating property, indeed any module can be (purely) embedded in a

pure-injective module, furthermore, they give rise to the Ziegler spectrum, a topological space

which is relevant for studying of the representation theory of a ring from a model-theoretic

perspective.

The classification of pure-injective modules over a tubular algebra is the main motivation for

the present work. The category of modules over a tubular algebra has been widely studied

in literature. In 1984, Ringel gave a detailed description of the structure of the Auslander-

Reiten quiver of the category of finite dimensional modules over a tubular algebra Λ (see [56]).

Afterwards, the infinite dimensional Λ-modules has been studied by different authors, see eg.

[2, 31, 32, 53, 55].

Tubular algebras belong to a wider class of algebras of infinite representation type, called con-

cealed canonical algebras. The category of modules over a concealed canonical algebra, as stated

by Lenzing and de La Peña in [47], is characterized by the presence of a family of standard tubes

in its Auslander-Reiten quiver, which is stable, sincere and separating.

In the specific case of tubular algebras, there is a countable number of tubular families tw,

w ∈ Q≥0 ∪ {∞}, and the indecomposable Λ-modules can belong either to a tubular family or to

the, so called, preprojective or preinjective component, respectively denoted by p0 and q∞.

For any rational number w ∈ Q≥0, there is a trisection of the finite dimensional indecomposable

Λ-modules, (pw, tw,qw), where pw consists of the preprojective component p0 together with all

the tubular families tα, for α < w, and qw consists of the preinjective component q∞ together

with all the tubular families tβ, for β > w. If w is irrational, then we only have a bisection

(pw,qw), with pw and qw as above.

......p0 q∞

t0 t∞tw
pw qw

......p0 q∞

t0 t∞
pw qw

Figure 2: Trisection of mod-Λ for w rational (left) and bisection of mod-Λ for w irrational (right).

Consider the torsion class Bw = ◦pw, cogenerated by pw, and the torsionfree class Cw = qw
◦,

generated by qw. We define a new class Mw as the intersection of Bw and Cw and, following

[53], modules in Mw are said of slope w.

If w is rational, all the finite dimensional modules in tw belong to Mw and if w is irrational we

only have infinite dimensional modules in Mw.

The problem of classifying pure-injective modules over a tubular algebra has been of particular

interest during the last years. Starting from an article by Ringel in 2005, see [54], this subject

has been approached from the point of view of tilting theory by Angeleri Hügel and Kussin, in

[3], and by Harland and Prest in [32], from a model-theoretic perspective.

In [3], the authors have outlined a partial classification of the pure-injective modules in Mod-Λ,

which is satisfactory for modules of rational slope. For the irrational slope case, say w, it is
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known that there exists a unique cotilting module of slope w, denoted by Ww, and the pure-

injective modules of this slope belong to Prod(Ww), ie. they are direct summands of product

of copies of Ww.

In this thesis, we approach this problem from the point of view of tilting/cotilting theory, more

precisely we consider the torsion pair (Qw, Cw), for w irrational, where Cw = qw
◦, and we look

at the category Aw which is the heart of a t-structure arising from this torsion pair. t-structures

are the analogous of torsion pairs in a triangulated setting. This concept has been introduced

in 1982 by Beilinson, Bernstein and Deligne, in [13]. The heart of a t-structure is an abelian

subcategory of the initial triangulated category. In the setting of the derived category of a

module category, Happel, Reiten and Smalø, in [30], have developed a theory connecting tilting

theory and t-structures. Starting from a torsion pair generated by a tilting module over a ring

R, they defined a t-structure in Db(Mod-R) whose heart is an abelian category closely related

to Mod-R. This theory has had several developments in the last years. Colpi, Gregorio and

Mantese, in [17], proved that the heart of a t-structure arising from a torsion pair in Mod-Λ

is a Grothendieck category if and only if the torsion pair is cogenerated by a cotilting module,

hereafter called cotilting torsion pair. Afterwards, this result has been generalized by Čoupek

and Št’ov́ıček, in [20], for a general Grothendieck category G.

The heart Aw, considered above, is a locally coherent Grothendieck category and its injective

objects correspond to the pure-injective modules of slope w over the tubular algebra Λ. This

is true since the torsion pair (Qw, Cw) is actually a cotilting torsion pair and the cotilting

module cogenerating it becomes an injective cogenerator for Aw. This moves our problem from

classifying pure-injectives in Mod-Λ to classifying injectives in the category Aw.

In a Grothendieck category G, the direct sum of the injective envelopes of all the simple objects

in G forms an injective cogenerator for G, therefore it is immediate to see that in order to classify

the indecomposable injective objects in a Grothendieck category G one should first focus on the

simple objects in G. In this sense, we will use a theorem that relates the simple objects in the

heart of a t-structure coming from a torsion pair to some peculiar objects in the original category.

Indeed, it has been proven in [1] that the simple objects in the heart A of a t-structure arising

from a torsion pair (Q, C) in a Grothendieck category are precisely the objects S ∈ A of the

form S = Y [1] with Y torsionfree, almost torsion, or S = Q with Q torsion, almost torsionfree.

Torsionfree, almost torsion objects in G are torsionfree objects whose proper quotients are tor-

sion, and torsion, almost torsionfree objects are defined dually. Somehow, one can think about

torsionfree almost torsion objects as objects very close to the ”border” of the torsion pair.

As a first application of the latter characterization of simples in the heart, we focus our attention

to the category of modules over the Kronecker algebra, mentioned at the beginning. In [5],

Angeleri Hügel and Sánchez have provided, for this category, a complete classification of all

the cotilting torsion pairs, which are parametrized by subsets P of a noncommutative curve

of genus zero X. Moreover, this classification actually resembles the classification of cotilting

torsion pairs in the category of modules over a commutative noetherian ring (cf. [4]). For each

heart arising from a cotilting torsion pair in the category of modules over the Kronecker algebra,

we will describe its atom spectrum. This spectrum has been first introduced by Kanda in [35]
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for a general abelian category and it is a generalization of the prime spectrum for commutative

rings. Accordingly, it has a structure of topological space and, for a Grothendieck category

G, it is strongly related to the spectrum of the indecomposable injective objects. Indeed, as

proven in [35], there is an injective map between the atom spectrum and the spectrum of

the indecomposable injectives in G. This correspondence becomes a bijection if G is a locally

noetherian category.

The result we will achieve is the following:

Theorem (Theorem 5.4.4). Let G = Mod-Λ, with Λ the Kronecker algebra. Consider P ⊆ X
and let CP be the infinite dimensional cotilting module, together with its corresponding cotilting

torsion pair (QP , CP ) (as in Table 5.1). Consider the heart AP of the t-structure arising from

the cotilting torsion pair (QP , CP ). We have the following:

• If P ( X, then:

ASpec(AP ) = G[1] ∪ {Sx | Sx simple regular in
⋃
x∈P
Ux}∪

∪ {Sx[1] | Sx simple regular in
⋃
x∈P̄

Ux}.

• If P = X, then:

ASpec(AX) = G[1] ∪ {Sx | Sx simple regular Λ-module}.

For all the hearts arising from cotilting torsion pairs in the module category over the Kronecker

algebra, there is a bijection between their atom spectrum and the set of indecomposable in-

jectives. This is expected for the case P = ∅, in which the cotilting module cogenerating the

torsion pair is the so called Reiten-Ringel tilting module, ie. W = G⊕
⊕

x∈X S
∞
x , where G is the

generic module and S∞x are Prüfer modules. Contrary to this, the result is somehow surprising

for all the other cases; indeed, for the cotilting module W, the associated heart is equivalent to

the category of quasi-coherent sheaves over a noncommutative regular projective curve X and

therefore it is a locally noetherian Grothendieck category. In all the other cases, the associated

heart is not locally noetherian but it turns out to be a, so called, Gabriel category, ie. a category

with Gabriel dimension, and it has been proven in [65] that the bijection between the atom

spectrum and the spectrum of indecomposable injectives holds for these categories too.

Going back to the problem of classifying pure-injective modules over a tubular algebra Λ, we

proceed by setting our approach in a more geometrical environment. The category of modules

over a tubular algebra Λ is strictly related to the category of quasi-coherent sheaves over a

tubular curve X, denoted by QcohX.

In [47], Lenzing and de la Peña have proved that there is a derived equivalence between the

category QcohX, where X is a noncommutative regular projective curve of genus zero over a

field k, and the category Mod-Λ, where Λ is a concealed canonical algebra. Indeed, starting

from a tilting sheaf T in QcohX, the algebra Λ is isomorphic to End(T ), and moreover every

concealed canonical algebra arises in this way. In particular, this holds for tubular algebras, and
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the curves X such that the corresponding algebra is tubular are called tubular curves.

Noncommutative curves of genus zero over a field k are a generalization of the weighted projective

lines introduced by Geigle and Lenzing in 1987 (see [26]). The category of quasi-coherent

sheaves over these kind of curves has been widely studied from different point of views, see eg.

[2, 42, 39, 48] for some general theory, [40, 44] for the specific case of tubular curves, [41] for a

K-theoretical perspective and [67] for the Calabi-Yau properties.

As the derived equivalence mentioned above may suggest, the category of coherent sheaves over

a tubular curve X, cohX, has a similar description to the category of modules over a tubular

algebra Λ, indeed, also in this case classes of sheaves can be distinguished by a notion of slope,

which is a rational number or infinity. Passing to the infinite dimensional world, the category

of quasi-coherent sheaves over X is the direct limit closure of the category of coherent sheaves

over X, denoted by cohX. In [2], the authors have extended the notion of slope of a sheaf to the

non-coherent ones, which, in this case, can be an element of the real numbers or infinity.

The advantages of working in this geometrical framework are numerous. First of all, in cohX the

slope is defined as the ratio of degree and rank, which are two linear forms over the Grothendieck

group of cohX, and this cleary makes computations easier. Moreover, the category of modules

over a tubular algebra Λ is not hereditary, but cohX it is a hereditary category and this simplifies

the theory from the homological point of view. Last but not least, all the indecomposable sheaves

in cohX fall into tubular families tw, w ∈ Q ∩ {∞}, therefore we do not have the preprojective

and the preinjective components as in Mod-Λ, simplifying the context of the work.

Furthermore, it follows by a criterion of Jensen and Lenzing (see [51, Theorem 5.4]) that starting

with a pure-injective modules over a tubular algebra Λ, we obtain a pure-injective sheaf in

QcohX. This means that describing pure-injectives in Mod-Λ is the same as describing pure-

injectives in QcohX.

In QcohX the slope of a sheaf is defined as in Mod-Λ, ie. a sheaf has slope w ∈ R ∪ {∞} if it

belongs to the class Mw = Bw ∩ Cw, where Bw = ◦pw and Cw = qw
◦, as before. If w is rational,

then the tubular family tw falls entirely into the class Mw and if w is irrational Mw consists

only of (quasi-coherent) non-coherent sheaves.

As we did for the category of modules over a tubular algebra, we can consider the torsion pair

(Qw, Cw) in QcohX. The heart of the t-structure arising from this torsion pair is well known

for the rational slope case, indeed it is actually equivalent to the category QcohX′, where X′ is

another tubular curve (if X is a curve over an algebraically closed field k, then X′ = X). Dealing

with an irrational number w is a totally different story, indeed the heart Aw in this case is a

locally coherent Grothendieck category and not much more is known.

The purpose of the last part of this thesis is to construct a quasi-coherent sheaf over a tubular

curve X of a prescribed irrational slope w such that it becomes simple in the heart Aw. In

order to do this, a complex procedure that entwines the properties of continued fractions and

universal extensions has been outlined by the author, together with Jan Št’ov́ıček. In more

details, the continued fraction expansion of the irrational number w is a way to approximate the

number itself via an increasing sequence of rational numbers converging to w. Along with this,

the universal extensions provide a functorial way to produce extensions of two fixed coherent
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sheaves in such a way the slope of the middle sheaf in the short exact sequence is one of the

rational numbers in the continued fraction expansion of w. This procedure provides the following

result:

Proposition (Proposition 8.1.8). Let w = [n0;n1, n2, . . . ] be a positive irrational number to-

gether with its continued fraction form. Let L be the structure sheaf and Sx be simple sheaf

in a tube of maximal rank. Set P−2 = L and P−1 = Sx. Then, there exists a sequence of

monomorphism:

P0 ↪−→ P2 ↪−→ P4 ↪−→ . . . ↪−→ P2i ↪−→ P2i+2 ↪−→ . . . (1)

where P2i, for i ≥ 0, is obtained as the universal extension of P2i−2 with respect to P2i−1, iterated

n2i times. Moreover, the direct union P = lim−→P2i is a quasi-coherent non-coherent sheaf of slope

w.

The last statement of the Proposition is a consequence of a result of Reiten and Ringel (see [53]).

The crucial part in proving that the slope of this non-coherent sheaf P is precisely w comes from

the fact that the slope of the P2i’s in the sequence increases according to the continued fraction

approximation of w.

•

tα<w tα>w

t∞

tα<w[1]

Cw Cw[1]

Qw

Aw

R

Figure 3: Heart of the t-structure arising from the torsion pair (Qw, Cw).

As mentioned above, for an irrational number w we can associate a torsion pair (Qw, Cw) whose

related heart Aw is a locally coherent Grothendieck category and, inside this heart, we prove

the following:

Proposition (Proposition 8.2.1). The non-coherent sheaf P = lim−→P2i defined as in Proposition

8.1.8 becomes a simple object in the category Aw.

Summary of content

Chapter 1 is a brief overview of the basic notions we are going to use throughout the thesis.

First, we give the definition and properties of a Grothendieck category. Passing through the

notion of a torsion pair we consider a triangulated category and define t-structures. Afterwards,

we focus our attention on purity in Grothendieck categories, defining pure-injective objects and

specializing this definition for the case of a module category. The last part of the chapter is
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devoted to localizations, together with their link to the theory of torsion pairs, and the properties

of Gabriel categories.

In Chapter 2 we move to tilting theory. The definition of tilting and cotilting objects in a

Grothendieck category is given. Focusing more on the latter ones, we will describe the properties

of the heart of a t-structure when it is obtained from a torsion pair cogenerated by a cotilting

object. At the end of the chapter, we describe the simples in this heart as torsionfree, almost

torsion and, dually, torsion, almost torsionfree, objects in the original Grothendieck category.

Chapter 3 is dedicated to the description of the category of modules over a concealed canonical

algebra. First of all, the category is described in terms of separating tubular families and from

the point of view of the morphisms between modules. Subsequently, we specialize the description

of the category of modules over a tubular algebra Λ, describing the multitude of torsion pairs

in this category, the tilting and cotilting Λ-modules and classifying partially the pure-injective

modules in it.

The fourth Chapter is completely dedicated to the description of the atom spectrum of an abelian

category, as defined in [35]. We give the definition as set of equivalence classes of monoform

objects and outline some properties. Afterwards, we focus on the topological properties of this

spectrum and on the partial order that arises in it from its topological structure.

Chapter 5 is completely about the Kronecker algebra. The main goal of this chapter is to

describe the atom spectrum of the different hearts arising from the cotilting torsion pairs in the

category of modules over the Kronecker algebra. Doing so, we give a complete description of

the simple objects of these hearts and, consequently, a clear classification of the indecomposable

injective objects in these hearts.

In Chapter 6 we give an axiomatic description of the category of quasi-coherent sheaves over a

noncommutative curve, specializing in the case of a curve of genus zero, ie. tubular curve. We

describe the link between this category and the category of modules over a concealed canonical

algebra.

Chapter 7 is devoted to the illustration of the main tools we will use for the construction of the

sheaf of irrational slope, that is our candidate for becoming simple in the corresponding heart.

Indeed, first we give the definition of a continued fraction and exhibit its properties. Afterwards,

we focus on universal and co-universal extensions, following [47].

In Chapter 8 is the main core of the thesis. We fix an irrational number w and construct a

quasi-coherent sheaf that becomes simple in the heart Aw of the t-structure arising from the

torsion pair cogenerated by the only cotilting module of slope w. Afterwards, we prove that all

the simple objects in the heart Aw come from quasi-coherent sheaves precisely of slope w in the

original category.

13
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Chapter 1

Preliminaries

This chapter is devoted to describing the general theory on which we develop the rest of the

thesis. First, we define Grothendieck categories and we describe their most relevant properties,

focusing on locally coherent and locally noetherian Grothendieck categories. Afterwards, we

outline the theory of torsion pairs in a Grothendieck category G and we introduce t-structures

in triangulated categories. After a quick summary of approximation theory and purity in

Grothendieck categories, we focus on localizations, introducing quotient categories and cate-

gories with Gabriel dimension.

1.1 Grothendieck categories

Let C be an abelian category. Let us introduce three axioms defined by Grothendieck in [29]:

(AB3) For every set {Ai | i ∈ I} of objects in C, the coproduct
⊕

i∈I Ai exists in C.
(AB4) C satisfies (AB3) and the coproduct of a family of monomorphisms is a monomorphism

(ie. the coproduct functor is exact).

(AB5) C satisfies (AB3) and filtered colimits of exact sequences are exact.

and their duals:

(AB3*) For every set {Ai | i ∈ I} of objects in C, the product
∏
i∈I Ai exists in C.

(AB4*) C satisfies (AB3*) and the product of a family of epimorphisms is a epimorphism (ie. the

product functor is exact).

(AB5*) C satisfies (AB3*) and filtered limits of exact sequences are exact.

We have the following lemma:

Lemma 1.1.1. [61, Corollary IV.8.3] C is (AB3) (resp. (AB3*)) if and only if C is cocomplete

(resp. complete).

Definition 1.1.2. An object G in C is a generator in C if the functor HomC(G,−) is faithful

(equivalently, if HomC(G,C) 6= 0 for any nonzero C ∈ C)

we have that:
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Proposition 1.1.3. [61, Proposition IV.6.2] Let C be an (AB3) abelian category. If G is a

generator of C, then for any object C ∈ C there is an epimorphism G(I) → C, for some index

set I.

Definition 1.1.4. An abelian category is called Grothendieck category if it has a generator and

satisfies (AB5).

Proposition 1.1.5. [61, Proposition V.1.1] If C is a cocomplete abelian category, then the

following are equivalent:

(1) C is (AB5)

(2) Given X ∈ C, Y ⊆ X and a directed system {Ai | i ∈ I}, with Ai ⊆ X, we have:(∑
I

Ai

)
∩ Y =

∑
I

(Ai ∩ Y )

(3) Given a morphism ϕ : X → X ′ in C and a directed system {Bi | i ∈ I}, with Bi ⊆ X ′, we

have:

ϕ−1

(∑
I

Bi

)
=
∑
I

ϕ−1(Bi)

From now on, G will denote a Grothendieck category.

Proposition 1.1.6. [61, Proposition IV.6.6] Let X ∈ G. The class of all subobjects of X and

the class of all quotient objects of X are actually sets.

Proof. Let G be a generator of G. For any monomorphism β : B → X, consider the set 〈β〉 =

{f ∈ Hom(G,X) : f factor through β}. Since Hom(G,X) is a set, it is sufficient to show that

if β : B ↪→ X and β′ : B′ ↪→ X represent different subobjects, then 〈β〉 6= 〈β′〉. Consider the

pullback diagram:

B ∩B′ γ
//

γ′

��

B

β
��

B′
β′

// X

β and β′ are monomorphism, and so are γ and γ′. Moreover, since β and β′ represent different

subobjects, γ and γ′ cannot be both isomorphisms, say γ is not. In this case γ is not an

epimorphism, hence Coker γ 6= 0. Call ν : B → Coker γ, since the functor Hom(G,−) is faithful,

Hom(G, ν) 6= 0. Therefore there exists α ∈ Hom(G,B) such that να 6= 0. Hence βα doesn’t

factor through βγ = β′γ′ and this means that βα ∈ 〈β〉 \ 〈β′〉, therefore 〈β〉 6= 〈β′〉.

Definition 1.1.7. An object X ∈ G is called finitely generated if, whenever there are subobjects

Xi, i ∈ I, such that:

X =
∑
i∈I

Xi

there exist an index i0 such that X = Xi0 .
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Lemma 1.1.8. [61, Lemma V.3.1] Let 0 → X ′ → X → X ′′ → 0 be a short exact sequence in

G. Then:

(1) If X is finitely generated, then so is X ′′.

(2) If X ′ and X ′′ are finitely generated, then so is X.

Proposition 1.1.9. [61, Proposition V.3.2] An object X ∈ G is finitely generated if and only if

the functor HomC(X,−) commutes with directed colimits.

We denote the subcategory of finitely generated object of G by fg(G). The category G is locally

finitely generated if every object X ∈ C is a directed union

X =
⋃
i∈I

Xi

of finitely generated subobjects Xi ⊆ X. Clearly, the category of modules over a ring R is locally

finitely generated.

Lemma 1.1.10. [61, Lemma V.3.3] Let G be a locally finitely generated Grothendieck category.

If f : Y → X is an epimorphism with X ∈ fg(G), then there exists a finitely generated subobject

Y ′ ⊆ Y such that f(Y ′) = X.

Definition 1.1.11. An object X ∈ G is finitely presented if it is finitely generated if every

epimorphism f : Y → X, where Y ∈ fg(G), is such that Ker(f) ∈ fg(G).

Proposition 1.1.12. [61, Proposition V.3.4] Suppose G is locally finitely generated. An object

X ∈ G is finitely presented if and only if the functor HomG(X,−) commutes with direct limits.

We denote the subcategory of finitely presented object of G by fp(G). This subcategory is closed

under extension and if 0→ X ′ → X → X ′′ → 0 is a short exact sequence in G with X ∈ fp(G),

then X ′′ ∈ fp(G) if and only if X ′ ∈ fp(G), see [33]. The category G is locally finitely presented

if every object X ∈ G is a direct limit

X = lim−→Xi

of finitely presented objects Xi. Clearly, in a locally finitely presented category every finitely

generated object has an epimorphism from a finitely presented object.

Definition 1.1.13. An object X ∈ G is coherent if it is finitely presented and every finitely

generated subobject Y ⊆ X is finitely presented.

This definition is equivalent to: an object X ∈ G is coherent if every epimorphism f : X → Z,

with Z ∈ fp(G), is such that Ker(f) ∈ fp(G). Clearly, every finitely generated subobject of a

coherent object is again coherent. We denote the subcategory of coherent objects as coh(G).

This subcategory is exact and closed under extension (see [33, Proposition 1.5]).

Summarizing, we have this chain of subcategories:

G ⊇ fg(G) ⊇ fp(G) ⊇ coh(G)
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and these inclusions become equalities under some condition. First of all, the category G is

called locally coherent if every object X ∈ G is a direct limit

X = lim−→Xi

of coherent objects Xi. We have:

Theorem 1.1.14. [33, Theorem 1.6] Let G be a locally finitely presented Grothendieck category.

The following conditions are equivalent:

(1) G is locally coherent.

(2) fp(G) = coh(G).

(3) fp(G) is an exact subcategory of G.

(4) fp(G) is an abelian category.

Example 1.1.15. Let R be a ring and consider mod-R = fp(Mod-R), the category of finitely

presented right R-modules. Then, by [33, Proposition 2.1] the category of functors from

mod-R to the category Ab of abelian groups, denoted by (mod-R,Ab), is a locally coherent

Grothendieck category.

Definition 1.1.16. An object X ∈ G is called noetherian if for any ascending chain, X0 ⊆
X1 ⊆ X2 ⊆ . . . , of subobjects of X, there exists i ∈ Z≥0 such that Xi = Xi+1 = . . . .

The subcategory of G consisting of all the noetherian objects of G is denoted by noeth(G).

Proposition 1.1.17. [61, Proposition 4.1] An object X ∈ G is noetherian if and only if every

subobject of X is finitely generated.

Moreover, from [61, Propostion 4.2], we have that noeth(G) is an abelian category. A noetherian

object is clearly finitely generated, therefore fg(G) ⊇ noeth(G).

The category G is called locally noetherian if it has a family of noetherian generators, in this case

every object is the directed colimit of noetherian subobject and fg(G) = noeth(G). Therefore,

for a locally noetherian category we have the following chain of subcategories:

G ⊇ noeth(G) ⊇ fp(G) ⊇ coh(G).

Furthermore:

Proposition 1.1.18. Let G be a locally noetherian Grothendieck category, then:

noeth(G) = fg(G) = fp(G) = coh(G).

Proof. We need to prove that noeth(G) ⊆ fp(G) ⊆ coh(G). Let X ∈ noeth(G), let f : Y → X

be an epimorphism with Y ∈ fg(G) = noeth(G). Complete to the short exact sequence 0 →

18



K → Y
f→ X → 0. Since Y is noetherian and K is a subobject of Y , by Proposition 1.1.17,

K ∈ fg(G). Therefore X ∈ fp(G).

Now, if X ∈ fp(G), consider a finitely generated, ie. noetherian, subobject Y ⊆ X. Let

g : Z → Y be an epimorphism with Z ∈ fg(G) = noeth(G). Complete to the short exact

sequence 0→ K → Z
g→ Y → 0. Z ∈ noeth(G), therefore, by Proposition 1.1.17, K ∈ noeth(G),

hence K ∈ fp(G). This implies Y ∈ fp(G) and therefore X ∈ coh(G).

Clearly, from Proposition 1.1.18 and Theorem 1.1.14, we infer that if G is locally noetherian,

then G is locally coherent and we have a chain of implications for G:

loc. noetherian =⇒ loc. coherent =⇒ loc. finitely presented =⇒ loc. finitely generated

1.2 Torsion pairs

Let G be a Grothendieck category. Let M be a class of objects in G and let X ∈ G. We say

that:

• X is generated by M, if X is a quotient object of coproducts of objects in M.

• X is cogenerated by M, if X is a subobject of products of objects in M.

Moreover, we denote by:

• GenM: the class of all objects in G generated by M.

• CogenM: the class of all objects in G cogenerated by M.

• AddM (addM): the class of objects in G isomorphic to a direct summand of a (finite)

direct sum of objects in M.

• ProdM: the class of objects in G isomorphic to a direct summand of a direct product of

objects in M.

If M = {M} for M ∈ G, we write GenM , CogenM , AddM and ProdM . All these classes are

full subcategories of G.

Furthermore, we say that:

• M is generating for G if G = GenM.

• M is cogenerating for G if G = CogenM.

Definition 1.2.1. A torsion pair is a pair T = (T ,F), where T and F are two full subcategories

of G, such that:

(1) HomG(T ,F) = 0.

(2) For any X ∈ G, there is a short exact sequence:

0 −→ T −→ X −→ F −→ 0

where T ∈ T and F ∈ F .
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T is called the torsion class and F is called the torsionfree class.

We say that a torsion pair T is:

• split : if every short exact sequence 0→ T → X → F → 0, with T ∈ T and F ∈ F , splits.

• hereditary : if the torsion class T is closed under subobjects.

• of finite type: if the torsionfree class F is closed under direct limits.

Given a class of objects M⊂ G, set:

M◦ = Ker HomG(M,−) = {B ∈ G | HomG(M,B) = 0 for all M ∈M}

M⊥ = Ker Ext1
G(M,−) = {B ∈ G | Ext1

G(M,B) = 0 for all M ∈M}

M⊥>0 =
⋂
i>0

Ker ExtiG(M,−) = {B ∈ G | ExtiG(M,B) = 0 for all M ∈M, i > 0}

The classes ◦M, ⊥M and ⊥>0M are defined dually. If M = {M} for M ∈ M, we write M◦,

M⊥, M⊥>0 , ◦M , ⊥M and ⊥>0M .

Remark 1.2.2. Fixed a torsion pair T = (T ,F), it follows from the definition that F = T ◦ and

T = ◦F . In particular, T is closed under extensions, quotient objects and all colimits that exist

in G and, dually, F is closed under extensions, subobjects and limits.

Let M be a class of objects in G and T = (T ,F) a torsion pair in G. We have that:

• T is generated by M if F =M◦ and T = ◦(M◦).
• T is cogenerated by M if T = ◦M and F = (◦M)◦.

If G is a locally noetherian Grothendieck category, denote by G0 = fp(G). We have the following:

Theorem 1.2.3. [21, §4.4][20, Lemma 3.11] Let G be a locally noetherian Grothendieck category.

There is a bijective correspondence between as follows:

{torsion pairs of finite type in G} oo // {torsion pairs in G0}
(T ,F) � // (T ∩ G0,F ∩ G0)

(lim−→T0, lim−→F0) (T0,F0)�oo

Moreover, (lim−→T0, lim−→F0) coincides with the torsion pair (Gen T0, T0
◦) generated by T0.

1.3 t-structures

In a triangulated setting, the notion of torsion pair translates to the notion of t-structure. Here

we present some relevant properties.

Consider a triangulated category D, with shift functor [1].

Definition 1.3.1. A pair of full subcategories of D, (D≤0,D≥0), is called a t-structure if it

satisfies the properties below. We use the following notation: D≤n = D≤0[−n] and D≥n =

D≥0[−n].

20



(1) HomD(D≤0,D≥1) = 0,

(2) D≤0 ⊆ D≤1 and D≥0 ⊇ D≥1

(3) For every object X ∈ D, there is a triangle:

A −→ X −→ B −→ A[1]

with A ∈ D≤0 and B ∈ D≥1.

D≤0 is called the aisle and D≥0 is called the coaisle of the t-structure.

For a t-structure (D≤0,D≥0), the full subcategory defined as:

A = D≤0 ∩ D≥0

is called the heart of the t-structure.

Proposition 1.3.2. [13, Proposition 1.3.3] The inclusion of D≤n inside D, for any n, admits

a right adjoint τ≤n, and the inclusion of D≥n inside D, for any n, admits a left adjoint τ≥n.

Moreover, for any X ∈ D, there is a triangle:

τ≤0X −→ X −→ τ≥1X −→ τ≤0X[1]

which is the unique triangle, up to isomorphism, such that the first term is in D≤0 and the third

is in D≥1.

Let us state some properties of the heart in the following

Proposition 1.3.3. (1) The heart A of a t-structure (D≤0,D≥0) is an abelian category, closed

under extension in D (ie. given X,Z ∈ A and a triangle X → Y → Z → X[1] in D, then

Y ∈ A.)

(2) A sequence 0 → X → Y → Z → 0 is exact in A if and only if there is a triangle

X → Y → Z → X[1] in D with X,Y, Z ∈ A.

(3) For X,Y ∈ A, there is an isomorphism Ext1
A(X,Y ) ∼= HomD(X,Y [1]) which is functorial

in both variables.

Proof. (1) Part of [13, Théorème 1.3.6].

(2) It follows from [13, Proposition 1.2.2].

(3) We define a map

ε : Ext1
A(X,Y )→ HomD(X,Y [1]),

in the following way: let [ξ] ∈ Ext1
A(X,Y ), with ξ : 0 → Y → E → X → 0, for some

E ∈ A. By (2), the abelian structure on the heart of the t-structure comes from the

triangulated structure of D, therefore we have a triangle:

Y −→ E −→ X
α−→ Y [1]

and we define ε([ξ]) := α. This map is well defined, indeed: if ξ′ : 0→ Y → E′ → X → 0
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is such that ξ′ ∈ [ξ], we have the commutative diagram:

0 Y E X 0

0 Y E′ X 0

∼

and hence:
Y E X Y [1]

Y E′ X Y [1]

∼

α

α′

where the last square commutes. This implies α = α′.

Let now α ∈ HomD(X,Y [1]). Let M(α) be the mapping cone of α, then we have the

following sequence:

Y −→M(α)[−1] −→ X
α−→ Y [1] −→M(α)

Since, by (1), A is closed under extensions in D, we have M(α)[−1] ∈ A. We define a map

ε′ : HomD(X,Y [1])→ Ext1
A(X,Y )

which sends α ∈ HomD(X,Y [1]) to the short exact sequence in A:

0 −→ Y →M(α)[−1] −→ X −→ 0

which comes from the triangle in A

Y −→M(α)[−1] −→ X
α−→ Y [1].

ε′ is a right and left inverse of ε. Hence Ext1
A(X,Y ) ∼= HomD(X,Y [1]).

Example 1.3.4. Let B be an abelian category, consider D = D(B) the derived category of B.

The pair (D≤0,D≥0) defined as:

D≤0 = {X ∈ D | H i(X) = 0 for i > 0}

D≥0 = {X ∈ D | H i(X) = 0 for i < 0}

is a t-structure, called the standard t-structure. The heart of this t-structure is

A = D≤0 ∩ D≥0 = {X ∈ D | H i(X) = 0 for i 6= 0} = G

1.3.1 The t-structure induced by a torsion pair

In [30], the authors have defined a way to construct t-structures in the derived category of an

abelian category B starting from a torsion pair in B. We describe this construction in the setting
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of Grothendieck categories.

In the following, we fix a Grothendieck category G and a torsion pair T = (Q, C) on it.

Definition 1.3.5. The t-structure induced by the torsion pair T is the pair (D≤0,D≥0), of

subcategories of Db(G), defined by:

D≤0 = {X ∈ Db(G) | H0(X) ∈ Q, H i(X) = 0 for i > 0}

D≥0 = {X ∈ Db(G) | H−1(X) ∈ C, H i(X) = 0 for i < −1}

The pair (D≤0,D≥0) as in the definition above is indeed a t-structure, by [30, Proposition 2.1],

whose heart is the following category:

A = D≤0 ∩ D≥0 = {X ∈ Db(G) | H0(X) ∈ Q, H−1(X) ∈ C, H i(X) = 0 for i 6= −1, 0}

In the sequel, we will denote by

A = G(Q, C)

the heart of the t-structure induced by the torsion pair (Q, C) on the category G.

We know, by Proposition 1.3.3, that A is an abelian category, whose exact structure is given by

the triangles of Db(G) and for any two objects X,Z ∈ A there are functorial isomorphisms

ExtiA(X,Z) ∼= HomDb(A)(X,Z[i]), for i = 0, 1.

Proposition 1.3.6. [30, Corollary I.2.2(b), Proposition I.3.2] Let A = G(Q, C). The pair

(C[1],Q) is a torsion pair in A.

Moreover, we have:

(i) Q is cogenerating for G if and only if Q is generating for A.

(ii) C is generating for G if and only if C[1] is cogenerating for A.

Moreover, we have the following:

Theorem 1.3.7. [63, Theorem 3.12] Let A = G(Q, C) such that either Q is cogenerating or C
is generating for G. Then, there is an equivalence of triangulated categories:

F : Db(G)→ Db(A)

that extends the identity functor on A, ie. F |A = idA.

Theorem 1.3.8. [63, Theorem 5.2] Let A = G(Q, C) such that either Q is cogenerating for G.

Then, A is hereditary, ie. Ext2
A(−,−) = 0, if and only if the torsion pair (Q, C) is split and

pdimAQ ≤ 1, for any Q ∈ Q.

In the following, we collect some useful facts to compute Hom and Ext groups in the heart A.

Lemma 1.3.9. Let A = G(Q, C). The following statements hold true for C, Y ∈ C and Q ∈ Q.

(i) HomA(Q,C[1]) ∼= Ext1
G(Q,C),
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(ii) If either Q is cogenerating or C is generating for G, Ext1
A(Q,C[1]) ∼= Ext2

G(Q,C)

(iii) HomA(Y [1], C[1]) ∼= HomG(Y,C),

(iv) Ext1
A(Y [1], C[1]) ∼= Ext1

G(Y,C),

(v) Ext1
A(Y [1], Q) ∼= HomG(Y,Q).

Proof. The statements follow from the isomorphism in Proposition 1.3.3(3) and the fact that

for any object X,Y ∈ G there is an isomorphism

HomDb(G)(X[i], Y [j]) ∼= Extj−iG (X,Y ).

A natural question that arises in this framework is the following: under which condition on the

torsion pair (Q, C) the heart A = G(Q, C) is a Grothendieck category? This problem has been

widely treated in literature, see for example [17, 50] and [20].

Being an (AB3) category, G has coproducts, therefore, also its derived category, Db(G), has co-

products. From [50, Proposition 3.2], we have that the heart A is an (AB3) category. Moreover,

the coaisle of the t-structure (D≤0,D≥0) defined above is closed under taking coproducts in

Db(G). This means, via [50, Proposition 3.3], that the heart A is an (AB4) category. We have

the following:

Theorem 1.3.10. [50, Corollary 4.10] Let A = G(Q, C). Suppose that either C is generating

or Q is cogenerating for G. Then A is a Grothendieck category if and only if (Q, C) is of finite

type in G.

For the purposes of the present work, we underline the behavior of colimits in the heart. Indeed,

in A = G(Q, C), direct limits are defined via the so called Milnor colimit of a sequence in Db(G),

we refer to [50, Section 3] for the detailes.

What is relevant is the fact that, under the assumption that C is closed under direct limits in

G, colimits of sequences in Q or C[1] in the heart behave as colimits of sequences in Q or C in

G. Indeed:

Proposition 1.3.11. [50, Proposition 4.2] Let (Q, C) be a torsion pair of finite type and consider

A = G(Q, C). The following assertions hold:

(1) If (Ci)i∈I is a direct system in C then there is an isomorphism in A:

(lim−→Ci)[1] ∼= lim−→A(Ci[1]).

(2) If (Qi)i∈I is a direct system in Q then there is an isomorphism in A:

lim−→Qi ∼= lim−→AQi.

Whenever G is a locally coherent category, it is possible to say more about the heartA = G(Q, C).

Theorem 1.3.12. [59, Theorem 5.2] Let G be a locally coherent Grothendieck category and let

(Q, C) be a torsion pair in G. The following are equivalent:
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(1) A = G(Q, C) is a locally coherent Grothendieck category.

(2) (Q, C) is of finite type and (Q∩ fp(G), C ∩ fp(G)) is a torsion pair in fp(G).

If, in addition, G is locally noetherian, these assertion are equivalent to:

(3) (Q, C) is of finite type.

1.4 Approximations

Let G be a Grothendieck category. Consider a full subcategory S of G and let M ∈ G.

Definition 1.4.1. A morphism f : M → X with X ∈ S is a S-preenvelope of M if the map

HomG(f,E) : HomG(X,E)→ HomG(M,E)

is surjective for any E ∈ S, in other words, if any map M → E factors through f for any E ∈ S.

An S-preenvelope f : M → X of M is called special if f is injective and Coker(f) ∈ ⊥S.

An S-preenvelope f : M → X of M is an S-envelope if whenever gf = f for g ∈ EndG(X) we

have that g is an automorphism.

S is a preenveloping class (resp. special preenveloping, enveloping) if every object in G has an

S-preenvelope (resp. a special S-preenvelope, an S-envelope).

Dually, a morphism f : X →M with X ∈ S is a S-precover of M if the map

HomG(E, f) : HomG(E,X)→ HomG(E,M)

is surjective for any E ∈ S, in other words, if any map E →M factors through f for any E ∈ S.

An S-precover f : X →M of M is called special if f is surjective and Ker(f) ∈ S⊥.

An S-precover f : M → X of M is an S-cover if whenever fg = f for g ∈ EndG(X) we have

that g is an automorphism.

S is a precovering class (resp. special precovering, covering) if every object in G has an S-precover

(resp. a special S-precover, an S-cover).

We have the following:

Theorem 1.4.2. [24, Theorems 1.2 and 3.2] Let S be a full subcategory of G.

(1) If S is closed under direct limits and is precovering, then it is covering.

(2) If S is closed under coproducts and direct limits and S = lim−→S0 for a class S0 ⊆ S, then

it is covering.

1.5 Purity

In this section we describe the notion of purity and pure-injectivity for an object in a Grothendieck

category. The concept of purity has been introduced by Prüfer in 1923, in the context of abelian

groups, then developed by Cohn in 1959, for modules over a ring.
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Here, G is a locally finitely presented Grothendieck category with products. We define the

pure-exact sequences in the sense of Crawley-Boevey (see [21, §3])

Definition 1.5.1. A short exact sequence 0 → X
f→ Y

g→ Z → 0 in G is called pure-exact if,

for any A ∈ fp(C), the sequence

0 −→ HomG(A,X) −→ HomG(A, Y ) −→ HomG(A,Z) −→ 0

is exact. In this case, f is called a pure monomorphism and g is a pure epimorphism.

Accordingly, for an object Y ∈ G, a subobject X ⊆ Y is a pure subobject if the embedding

X ↪→ Y is a pure monomorphism.

Definition 1.5.2. An object E ∈ G is pure-injective if it is injective with respect to pure

monomorphisms, ie. if ι : X → Y is a pure monomorphism and f : X → E is a morphism, then

there is a morphism g : Y → E such that gι = f .

There are many equivalent definitions of pure-injectivity for an object.

Theorem 1.5.3. [51, Theorem 5.4] Let E ∈ G. The following are equivalent:

(i) E is pure-injective.

(ii) Every pure-exact sequence 0→ E → Y → Z → 0 splits.

(iii) For any index set I, the summation map Σ: E(I) → E, whose components are identity

maps on E, factors through the canonical embedding E(I) → EI , yielding an extension of

the summation map Σ: EI → E.

If G = Mod-R for a ring R, then a further equivalent is:

(iv) The functor (E ⊗R −) is an injective object in the functor category (R-mod,Ab).

In the context of a general Grothendieck category, the definition of a pure-injective object

using pure-exact sequences does not apply, since the existence of finitely presented objects is not

ensured. Hence, in this case, we say that an object E in a Grothendieck category is pure-injective

if it satisfies condition (iii) of Theorem 1.5.3.

1.6 Localizations

1.6.1 Quotient categories

Definition 1.6.1. A full subcategory X of G is called a Serre subcategory of G if, for any short

exact sequence 0→ X → Y → Z → 0 in G, we have Y ∈ X if and only if X ∈ X and Z ∈ X .

Given a Serre subcategory X of G we can construct the so called quotient category G/X in the

following way.

(1) The objects of G/X coincide with the objects of G.
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(2) Let X,Y ∈ G. Define the set of morphisms in G/X as:

HomG/X (X,Y ) : = lim−→
(X′,Y ′)

HomG(X ′, Y/Y ′)

where the abelian groups HomG(X ′, Y/Y ′) define an inductive system for X ′ and Y ′ run-

ning through all the subobjects of X and Y such that X/X ′, Y ′ ∈ X (see [25, III.1]).

(3) For X,Y, Z ∈ G, there is a composition law:

HomG/X (X,Y )×HomG/X (Y, Z)→ HomG/X (X,Z).

For the detailed definition of this composition law, we refer to [25, III.1].

In this situation, it is possible to define a canonical functor Q : G → G/X by Q(X) = X, for

each object X ∈ G, and the canonical map HomG(X,Y ) 7→ HomG/X (X,Y ), for any X,Y ∈ G.

Lemma 1.6.2. [25, Lemmes III.1.1, 1.2, 1.3, 1.4] The quotient category G/X is an additive

category and Q is an additive functor. Moreover, the following hold for a morphism f : X → Y

in G:

(1) The morphism Q(f) is the zero morphism (resp. a monomorphism or an epimorphism) if

and only if Im f ∈ X (resp. Ker f ∈ X or Coker f ∈ X ).

(2) Q(f) has a kernel and a cokernel and Q(Ker f) ∼= Ker Q(f) and Q(Coker f) ∼= Coker Q(f).

(3) Q(f) is an isomorphism if and only if Ker(f) and Coker(f) belong to X .

Proposition 1.6.3. [25, Proposition III.1.1] For a Serre subcategory X of G, the quotient

category G/X is an abelian category. Moreover, the quotient functor Q : G → G/X is an exact

functor.

The quotient category is a universal construction in the following sense.

Proposition 1.6.4. [25, Corollaire III.1.2] Let X be a Serre subcategory of G and let F : G → B
an exact functor from G to an abelian category B. If F (X) = 0 for any object X ∈ X , then there

is a unique functor H : G/X → B making the following diagram commute:

G

F
��

Q
// G/X

H
}}

B

where Q : G → G/X is the canonical quotient functor.

Definition 1.6.5. A Serre subcategory X of G is called localizing subcategory if the quotient

functor Q : G → G/X has a right adjoint S : G/X → G. In this case the functor L = S ◦Q is

called localization functor.

Being a right adjoint functor, S is left exact and, by [25, Proposition III.2.3(a)], there is a

natural equivalence QS ∼= 1G/X , where 1G/X is the identity functor on G/X . For a localizing
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subcategory X , we say that an object X ∈ G is X -closed if X ∼= L(X). Notice that, in [25], this

is an a posteriori characterization of the closed objects, indeed, they are defined, in the setting

of Serre subcategories, as the objects satisfying the following equivalent conditions.

Lemma 1.6.6. [25, Lemme III.2.1] Let X ∈ G. The following are equivalent:

(1) For any morphism f : M → N such that Ker f and Coker f belong to X , the morphism

HomG(f,X) is an isomorphism.

(2) No nonzero subobject of X belong to X . Moreover, any short exact sequence 0 → X →
M → Y → 0 with Y ∈ X splits.

(3) For any object Y ∈ G, the morphism HomG(Y,X)→ HomG/X (QY,QX) is an isomorphism

of abelian groups.

This notion is useful to describe injective envelopes of objects in the quotient category.

Proposition 1.6.7. [25, Proposition III.3.6] Let X be a Serre subcategory of G. Let E = E(X)

be the injective envelope of an object X ∈ G such that no nonzero subobjects of X belong to X .

Then E is X -closed and QE is an injective envelope of QX.

Localizing subcategories can be characterized in the setting of Grothendieck categories via the

following.

Proposition 1.6.8. [25, Corollaire III.3.1, Proposition III.4.8] Let X be a Serre subcategory of

G. The following are equivalent:

(1) X is a localizing subcategory of G.

(2) Every object X ∈ G has a maximal subobject in X .

(3) Let (Xi, fi)i∈I be an inductive system in G such that Xi ∈ X , for any i ∈ I. Then

lim−→Xi ∈ X .

Theorem 1.6.9. [25, Lemme III.2.4, Corollaire III.3.2, Proposition III.4.9] Let X be a localizing

subcategory of G. Then X and G/X are Grothendieck categories. More precisely, every injective

object in G/X is isomorphic to a QE, for an injective object E ∈ G such that no nonzero

subobjects of E belong to X . If (Ui)i∈I is a family of generators in G, then (QUi)i∈I is a family

of generators in G/X . Moreover, the canonical functor Q commutes with colimits.

Corollary 1.6.10. [25, Corollaire III.4.1] If G is locally noetherian and X be a localizing sub-

category of G, then X and G/X are locally noetherian Grothendieck categories. Moreover, the

section functor S commutes with colimits.

1.6.2 Gabriel categories

Consider T = (T ,F) a hereditary torsion pair in G. By Remark 1.2.2, we know that T is closed

under extensions, quotient objects and arbitrary direct sums. Moreover, being T hereditary, T
is closed under subobject. This means that T is a localizing subcategory of G. Hence, we have

the so called localization sequence:

T
inc // G
T

oo

Q
// G/T

S
oo
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where inc is the inclusion functor, T is the left-exact torsion radical (see [61, §VI.3]), the

Grothendieck category G/T is the localization of G at T and Q and S are the quotient functor

and the section functor, respectively, of the localization.

For a set X of objects in G, we denote by 〈X 〉htor the smallest hereditary torsion class containing

X . The Gabriel filtration of G is a transfinite chain of hereditary torsion classes of G

{0} = G−1 ⊆ G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ . . .

defined as follows:

• G−1 = {0}
• suppose that α is an ordinal for which Gα has already been defined. Let Qα : G → G/Gα

be the quotient functor. We define Gα+1 as:

Gα+1 = 〈Gα ∪ {X ∈ G | Qα(X) is simple in G/Gα}〉htor

• if λ is a limit ordinal, then:

Gλ = 〈
⋃
α<λ

Gα〉htor

Let α be an ordinal. An object X in G is said to be α-torsion if and only if X ∈ Gα (it is called

α-torsionfree if and only if it belongs to the torsionfree class Gα◦). The torsion class Gα induces

the localization sequence:

Gα
inc // G
Tα

oo

Qα
// G/Gα

Sα
oo

Definition 1.6.11. Let T = (T ,F) be a hereditary torsion pair on G. An object X of G is

called T-cocritical if X ∈ F and every proper quotient of X is in T .

If we consider the hereditary torsion pair Tα = (Gα,Gα◦) given by a hereditary torsion class in

the Gabriel filtration of G, we say that an object X is α-cocritical instead of Tα-cocritical.

Lemma 1.6.12. Let T = (T ,F) be a hereditary torsion pair and let Q : G → G/T be the quotient

functor. The following are equivalent for X ∈ G:

(i) X is T-cocritical

(ii) Q(X) is simple in G/T and X ∈ F

Proof. (i) ⇒ (ii): Let Y be a nonzero subobject of Q(X) ∈ G/T . Then, applying the sec-

tion functor S : G/T → G, we have S(Y ) ⊆ SQ(X). Moreover, SQ(X) ⊆ E(X), indeed: by

Proposition 1.6.7, the injective envelope E(X) is T -closed, hence SQ(X) ⊆ SQ(E(X)) ∼= E(X).

X is essential in E(X), therefore we have that S(Y ) 6= 0 if and only if S(Y )∩X 6= 0, then, since

X is T-cocritical, X/(S(Y ) ∩X) ∈ T . Applying the functor Q to the short exact sequence:

0→ S(Y ) ∩X → X → X/(S(Y ) ∩X)→ 0
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we obtain that Q(X) ∼= Q(S(Y ) ∩X) ⊆ QS(Y ) = Y ⊆ Q(X). Therefore Y ∼= Q(X).

(ii) ⇒ (i): Let Y be a nonzero subobject of X, then Y ∈ F and Q(Y ) is nonzero. Since Q

is an exact functor and Q(X) is simple, Q(Y ) = Q(X). Hence, applying Q to the sequence

0→ Y → X → X/Y → 0, we get Q(X/Y ) = 0 hence X/Y ∈ T .

Notice that, given the class Gα in the Gabriel filtration, we can define Gα+1, using Lemma 1.6.12,

as

Gα+1 = 〈Gα ∪ {X ∈ G | X is α-cocritical}〉htor.

Remark 1.6.13. [68, Remark 2.12] A Grothendieck category G has a generator G. Moreover, G

has just a set of subobjects and, equivalently, a set of quotient objects. One can show that:

Gα+1 = 〈Gα ∪ {X ∈ G | X is a quotient of G,Qα(X) is simple in G/Gα}〉htor

As a consequence, we obtain that there is a cardinal κ such that Gα = Gκ for all α ≥ κ, just

take κ = sup{α | there is H ⊆ G such that Qα(G/H) is simple}.

Consider the union Ḡ =
⋃
α Gα of all the localizing subcategories in the Gabriel filtration (this

makes sense by Remark 1.6.13).

Definition 1.6.14. For an object X ∈ G, we say that X has Gabriel dimension if there is a

minimal ordinal δ such that X ∈ Gδ, and we write Gdim(X) = δ. If Ḡ = G, we say that G is

a Gabriel category with Gabriel dimension Gdim(G) = κ, where κ is the smallest ordinal such

that Gκ = G.

Proposition 1.6.15. Every locally noetherian Grothendieck category is a Gabriel category.

Proof. Let G be a locally noetherian Grothendieck category and consider its Gabriel filtration:

{0} = G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ . . .

By Remark 1.6.13 this filtration stabilizes, ie. there is a cardinal κ such that Gα = Gκ for all

α ≥ κ. Let N be the set of all the noetherian generators of G. We prove that N ⊆ Gκ. Indeed:

suppose that there is N ∈ N such that N /∈ Gκ. Consider the set:

I = {X ⊆ N | N/X /∈ Gκ}

which is not empty since 0 ∈ I. Since N is noetherian, I has a maximal element X̄. Therefore,

for any object Y such that X̄ ⊆ Y ⊆ N , we have N/Y ∈ Gκ. Moreover, N/X̄ is κ-torsionfree,

indeed: if it is not, it has a nonzero κ-torsion part Tκ(N/X̄) such that (N/X̄)/Tκ(N/X̄) is

κ-torsionfree, but all the proper quotients of N/X̄ are κ-torsion, by the maximality of X̄. This

means that N/X̄ is κ-cocritical, since it is κ-torsionfree and any proper quotient of N/X̄ is in

Gκ. Hence, Qκ(N/X̄) is simple in G/Gκ and then N/X̄ ∈ Gκ+1 = Gκ. Contradiction. N ⊆ Gκ,

therefore Gκ = G.
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Chapter 2

Introduction to tilting theory

In this chapter we will define tilting and cotilting objects in a Grothendieck category and we

describe their basic properties. Afterwards, we will see that cotilting objects play a crucial role

to see whether the heart of a t-structure induced by a torsion pair is a Grothendieck category or

not. Finally, we will give some criteria to describe simple objects and their injective envelopes

in the heart.

2.1 Tilting and cotilting objects

Let G be a Grothendieck category.

Definition 2.1.1. An object T ∈ G is called tilting if:

T⊥ = GenT.

In this case, the pair (GenT, T ◦) is a torsion pair in G, which is called tilting torsion pair. The

class GenT is called tilting class and it is cogenerating for G.

Recall that the projective dimension, pdimX, of an object X ∈ G is the smallest integer number

n ≥ −1 such that Extn+1
G (X,−) = 0. The injective dimension of an object X ∈ G, idimX, is

defined dually, ie. the smallest integer number n ≥ −1 such that Extn+1
G (−, X) = 0.

In [16, Proposition 2.1, Remark 2.2], it is proven that the equality T⊥ = GenT is equivalent to

the following three conditions:

(T1) pdimT ≤ 1, ie. Ext2
G(T,−) = 0.

(T2) Ext1
G(T, T (α)) = 0, for all cardinals α.

(T3) for an object X ∈ G, if HomG(T,X) = 0 = Ext1
G(T,X), then X = 0.

If G = Mod-Λ for some ring Λ, we call T a tilting module and condition (T3) can be rephrased

as follows:

(T3’) There is a short exact sequence:

0 −→ Λ −→ T0 −→ T1 −→ 0
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where T0, T1 ∈ AddT .

Two tilting objects T and T ′ are said to be equivalent if they induce the same tilting class

GenT = GenT ′ or, equivalently, AddT = AddT ′.

The dual definition is as follows.

Definition 2.1.2. An object C ∈ G is called cotilting if:

⊥C = CogenC.

In this case, the pair (◦C,CogenC) is a torsion pair in G, which is called cotilting torsion pair.

The class CogenC is called cotilting class and it is generating for G.

Two cotilting objects C and C ′ are said to be equivalent if they induce the same cotilting class

CogenC = CogenC ′ or, equivalently, ProdT = ProdT ′.

Example 2.1.3 (Left noetherian ring). For a left noetherian ring Λ with a fixed duality D

(eg. D = HomZ(−,Q/Z) or D = Homk(−, k) if Λ is a finite dimensional k-algebra) there is

a complete classification of all tilting and cotilting modules via resolving subcategories. Recall

that a subcategory S ⊆ mod-Λ is called resolving if it contains Λ and it is closed under direct

summands, extensions and kernel of epimorphisms. Tilting and cotilting modules are related as

follows.

Theorem 2.1.4. [4, 12] If Λ is a left noetherian ring, there is a bijection between:

{
resolving subcat.

of mod-Λ with modules
of proj. dim. ≤ 1

}
oo //

{
equivalence classes of

tilting modules
in Mod-Λ

}
oo //

{
equivalence classes of

cotilting modules
in Λ-Mod

}
S = ⊥(Gen(T )) ∩mod-Λ T � //�oo D(T )

S � // 00S⊥ S>

where S⊥ is a tilting torsion class and S> = {X ∈ Λ-Mod | TorΛ
1 (S,X) = 0 for any S ∈ S} is

a cotilting torsionfree class.

A homological description of the cotilting objects in a Grothendieck category G has been provided

in [20]. This description is dual to the one for the tilting case, given above. First of all, we note

that the injective dimension of a cotilting object is at most one.

Proposition 2.1.5. [20, Proposition 2.7] Let F be a torsionfree class in G and suppose that F
is generating for G. Then idimC ≤ 1 for any C ∈ F⊥.

If C ∈ G is a cotilting object, then, by [20, Corollary A.3], CI is also a cotilting object such that

CogenCI = CogenC. In particular, for every C ′ ∈ ProdC, idimC ′ ≤ 1 and there is an injective

resolution:

0 −→ C ′ −→ E0 −→ E1 −→ 0

Moreover, there is a dual resolution for the injective objects in terms of objects in ProdC. This

is a generalization of [15, Proposition 1.8] in the setting of Grothendieck categories.
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Lemma 2.1.6. [20, Lemma 2.8] Let C ∈ G such that ⊥C = CogenC. Assume that K ∈
CogenC. Then there is a short exact sequence

0 −→ K −→ CI −→ L −→ 0

where I is a set and L ∈ CogenC.

Proposition 2.1.7. [20, Proposition 2.9] Let C be a cotilting object in G. Given an injective

object W ∈ G (an injective cogenerator, in particular), there is a short exact sequence

0 −→ C1 −→ C0 −→W −→ 0

with C0, C1 ∈ ProdC.

We can now state the homological characterization of cotilting objects in G.

Theorem 2.1.8. [20, Theorem 2.10] An object C ∈ G is cotilting if and only if it satisfies the

following three conditions.

(C1) idimC ≤ 1, ie. Ext2
G(−, C) = 0.

(C2) Ext1
G(Cα, C) = 0, for all cardinals α.

(C3) For every injective cogenerator W ∈ G, there is a short exact sequence:

0 −→ C1 −→ C0 −→W −→ 0

where C0, C1 ∈ ProdC.

Proof. For the convenience of the reader, we repeat the proof.

If C is cotilting then we use Propositions 2.1.5 and 2.1.7.

Conversely, suppose that C satisfies (C1)-(C3). By (C2) we have that ProdC ⊆ ⊥C and, by

(C1), ⊥C is closed under subobjects. Therefore CogenC ⊆ ⊥C. We need to prove the reverse

inclusion.

We know that CogenC is a torsionfree class of a torsion pair in G. Let A ∈ ⊥C and consider

the short exact sequence:

0 −→ T −→ A −→ F −→ 0

coming from the torsion pair (◦C,CogenC). Consider now an injective cogenerator W ∈ G and

the short exact sequence from (C3):

0 −→ C1 −→ C0 −→W −→ 0

Applying HomG(T,−) to this sequence, we obtain:

HomG(T,C0) −→ HomG(T,W ) −→ Ext1
G(T,C1)

where HomG(T,C0) = 0, and since ⊥C = ⊥ProdC is closed under subobjects, T ∈ ⊥ProdC,
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hence Ext1
G(T,C1) = 0. This implies HomG(T,W ) = 0 and, since W is a cogenerator, T = 0.

This means that A ∼= F ∈ CogenC, hence ⊥C = CogenC.

We have the generating property of CogenC left to prove. Let X ∈ G be any object and let W

be an injective cogenerator. Consider the monomorphism ι : X ↪→W I , for a set I. Clearly, also

W I is an injective cogenerator and we can apply (C3), obtaining the exact sequence:

0 −→ C1 −→ C0
π−→W I −→ 0

with C1, C0 ∈ ProdC. Take the pullback of π along ι:

0 // C1
// P

π′ //� _

ι′

��

G //� _

ι
��

0

0 // C1
// C0

π //W I // 0

Then, since P ⊆ C0 implies P ∈ CogenC, we have that X is an epimorphic image of an object

in CogenC.

2.2 Cotilting objects and Grothendieck hearts

In the context of module theory, Bazzoni proved, in [10], that all cotilting modules are pure-

injective. For a general Grothendieck category, this result has been generalized by Čoupek and

Št’ov́ıček, in [20]. As seen in Definition 1.5.2, an object is pure-injective if it is injective with

respect to pure monomorphisms. A further characterization is the following:

Theorem 2.2.1. [20, Proposition 3.4] Let G be a Grothendieck category and let E ∈ G. The

following are equivalent:

(1) E is pure-injective in G.

(2) There is a generator G ∈ G such that HomG(G,E) is a pure-injective right EndG(G)-

module.

(3) HomG(G,E) is a pure-injective EndG(G)-module for any generator G ∈ G.

Using this characterization, Čoupek and Št’ov́ıček proved the following:

Theorem 2.2.2. [20, Theorem 3.9]. If C is a cotilting object in a Grothendieck category G,

then C is pure-injective and the cotilting torsion pair (◦C,CogenC) is of finite type in G.

This Theorem, together with Theorem 1.2.3, shows that if C is a cotilting object in a locally

noetherian Grothendieck category G, then we can define, in G0 = fp(G), a torsion pair (◦C ∩
G0,CogenC∩G0) such that the torsionfree class is generating for G0. In [20], Čoupek and Št’ov́ıček

use approximation theory to prove that this assignment is, de facto, a bijective correspondence.

This is a result of Buan and Krause, in [14], and the proof needs also a Theorem from [21].

34



Theorem 2.2.3. [14, Theorem 1.13] Let G be a locally noetherian Grothendieck category and

let G0 = fp(G). There is a bijective correspondence:

{cotilting torsion pairs in G} oo //

{
torsion pairs in G0 with

generating torsionfree class

}
(Q, C) � // (Q∩ G0, C ∩ G0)

(lim−→Q0, lim−→C0) (Q0, C0)�oo

Let now G be a Grothendieck category and (Q, C) a torsion pair in G. Let us consider the heart

A = G(Q, C), as in Section 1.3.1. A classical property of Grothendieck categories is the existence

of an injective cogenerator. When G is a module category, Colpi, Gregorio and Mantese, in [17],

proved that the heart A has an injective cogenerator if and only if there is a cotilting module

W ∈ G such that C = CogenW . And this injective cogenerator in A is given by W [1]. This

result has been generalized in [20] for an arbitrary Grothendieck category.

Proposition 2.2.4. [20, Proposition 4.4] Let G be a Grothendieck category, let (Q, C) be a

torsion pair in G with C generating for G, and A = G(Q, C). Then the following hold for an

object W ∈ G.

(i) W [1] is injective in A if and only if W ∈ C ∩ C⊥.

(ii) W [1] is an injective cogenerator of A if and only if W is a cotilting object in G with

C = CogenW .

Proof. We repeat the proof for the convenience of the reader.

(i) Since C is generating for G, by Proposition 1.3.6, C[1] is cogenerating in A. Therefore, if

W [1] is injective in A, then it is a summand of an object in C[1]. In particular, W ∈ C
and, by Lemma 1.3.9(iii), W ∈ C⊥.

Conversely, if W ∈ C ∩ C⊥ in G, then the injective dimension of W in G is at most one by

Proposition 2.1.5. Moreover, using Lemma 1.3.9(ii) and (iii), we have:

Ext1
A(C[1],W [1]) = 0 and Ext1

A(Q,W [1]) ∼= Ext2
G(Q,W ) = 0

therefore W [1] is injective in A since every object in A is an extension of an object in C[1]

by an object in Q.

(ii) Suppose W is a cotilting object in G such that C = CogenW . By [20, Corollary 2.12],

product of copies of W in G coincides with the corresponding product in Db(G) ∼= Db(A),

hence we have ProdW [1] ⊆ A and, in particular, arbitrary product of copies of W [1] exist

in A and agree with the ones in G. By (i), ProdW [1] consists of injective objects and each

object in C[1] is a subobject in A of a product of copies of W [1] by Lemmata 1.3.9 and

2.1.6. Since C[1] is cogenerating in A, W [1] is an injective cogenerator in A.

Conversely, let W [1] be an injective cogenerator in A. We have seen above that W ∈ C∩C⊥

in G and idim(W ) ≤ 1. Since C is torsionfree in G, we have CogenW ⊆ C ⊆ ⊥W in G.

Suppose that A ∈ ⊥W in G and consider the short exact sequence 0 → T → A → F → 0

arising from the torsion pair (Q, C). Then T ∈ ⊥W , indeed: idimW ≤ 1, hence, since

35



⊥W is closed under subobjects, Ext1
G(T,W ) = 0. But, since W [1] is assumed to be a

cogenerator in A, we have that 0 = Ext1
G(T,W ) ∼= HomA(T,W [1]) implies T = 0, hence

A ∼= F ∈ C. Hence ⊥W = C.
Finally, we know that CogenW is a torsionfree class in G in the torsion pair (◦W,CogenW ).

Suppose that A ∈ C and consider an exact sequence 0 → X → A → Y → 0 arising from

the torsion pair (◦W,CogenW ). Then X ∈ C and HomA(X[1],W [1]) ∼= HomG(X,W ) = 0,

but since W [1] is assumed to be a cogenerator in A, we have that X = 0 and hence

A ∈ C ∈ CogenW . Therefore CogenW = C.

Now, with the same philosophy of generalizing the result in [17] concerning the relation between

cotilting objects and hearts which are Grothendieck categories, we state the following:

Theorem 2.2.5. [20, Theorem 4.5] Let G be a Grothendieck category, let (Q, C) be a torsion

pair in G such that C is generating for G and let A = G(Q, C). The following are equivalent:

(i) A is a Grothendieck category.

(ii) A has an injective cogenerator.

(iii) C = CogenW = ⊥C for a cotilting object W ∈ G.

Proof. Also in this case, we repeat the proof.

(i) =⇒ (ii): It is well known, for instance see [61, Corollary X.4.3].

(ii) =⇒ (iii): Follows directly from Proposition 2.2.4(ii).

(iii) =⇒ (i): Proposition 2.2.4 tells us that the category of injective objects in A is equivalent to

ProdW . Furthermore, via the dual argument in [9, Proposition IV.1.2], if two abelian categories

with enough injective objects B and B′ have equivalent corresponding subcategories of injective

objects, then B ∼= B′.
We want to construct a Grothendieck category A′ whose full subcategory of injective objects

is equivalent to ProdW . To this end, let G ∈ G be a generator. Let R = EndG(G) and

W ′ = HomG(G,W ) ∈ Mod-R. By Proposition 2.2.1 and Theorem 2.2.2, W ′ is a pure-injective

R-module. Moreover, it follows from [61, §X.4] that the functor HomG(G,−) induces an equiv-

alence:

ProdW ∼= ProdW ′.

Consider now the category B = (R-mod,Ab) of all additive functors from R-mod to the category

of all abelian groups Ab. B is a locally coherent Grothendieck category and the functor:

T : Mod-R→ B

M 7→ (M ⊗R −)
∣∣
R-mod

is fully faithful, preserves products and sends pure-injective modules to injective objects of B
(see [34, Theorem B.16]). In particular, set W ′′ = T (W ′) ∈ B, we have an equivalence

ProdW ∼= ProdW ′′
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Since W ′′ is an injective object in B, we have a hereditary torsion pair (T ′,F ′) in B, with

T ′ = ◦W ′′ and F ′ = CogenW ′′. ProdW ′′ is, by definition, the subclass of F ′ consisting of

injective objects in B. Let us consider the quotient category A′ = B/T ′. This is a Grothendieck

category whose category of injective objects is equivalent to ProdW (see [25, Proposition III.4.9

and Corollaire III.3.2]). Then A ∼= A′ and we have the claim.

Recall that a pure-injective object E ∈ G is called Σ-pure-injective if E(I) is pure-injective

for every set I. In the setting of a module category over a ring, if the cotilting module is Σ-

pure-injective, then the heart of t-structure arising from the associated cotilting torsion pair is

a locally noetherian Grothendieck category. This fact has been proved by Colpi, Mantese and

Tonolo in [18]. Afterwards, this result has been generalized, in [43], in the wider setting of hearts

of cosilting t-structures on compactly generated triangulated categories, of which the case of the

derived category of a Grothendieck category is an example. We have, therefore:

Proposition 2.2.6. [43, Proposition 5.6] Let A = G(Q, C) for a torsion pair (Q, C) such that

C = CogenW , with W a cotilting object. Then A is a locally noetherian Grothendieck category

if and only if W is Σ-pure-injective.

In the particular case when G = Mod-Λ, with Λ a connected artin algebra, and (Q, C) is a torsion

pair in G with some specific properties, the heart A = G(Q, C) has the following geometric

interpretation:

Proposition 2.2.7. [3, Proposition 2.5] Suppose that the following conditions hold:

(i) there is a Σ-pure-injective cotilting Λ-module W such that C = CogenW ,

(ii) the torsion pair (Q, C) splits,

(iii) Λ ∈ C and D(ΛΛ) ∈ Q,

(iv) Q∩ ⊥Q = 0

(v) pdimM ≤ 1, for any M ∈ C.

Then the heart A = G(Q, C) is equivalent to the category QcohX of quasi-coherent sheaves over

a noncommutative curve of genus zero X, and the category fp(A) of finitely presented objects in

A corresponds to the category cohX of coherent sheaves.

2.3 Simple objects in the heart

Let us consider a Grothendieck category G and a torsion pair (Q, C) in it. Notice that the

definitions and properties that we are going to present can be rephrased in the more general

setting of abelian categories.

Definition 2.3.1. An object Y is said to be torsionfree, almost torsion if it satisfies:

(i) Y ∈ C and all proper quotients of Y are in Q, and

(ii) for any short exact sequence 0→ Y → B → C → 0 with B ∈ C, then C ∈ C.

Dually, we say that Y is torsion, almost torsionfree if it satisfies the dual properties:
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(i’) Y ∈ Q and all proper subobjects of Y are in C, and

(ii’) for any short exact sequence 0→ B → C → Y → 0 with C ∈ Q, then B ∈ Q.

Remark 2.3.2. Observe that condition (i) in Definition 2.3.1 can be rephrased as follows

(I) Y ∈ C and every nonzero morphism f : Y → B, with B ∈ C, is a monomorphism in G.

Proof. Suppose that (i) holds for an object Y , then if f is not a monomorphism, Ker f 6= 0 and

Im f is a proper quotient of Y , therefore Im f ∈ Q. But then HomG(Im f,B) 6= 0, contradiction.

Suppose now that (I) holds for Y and consider a proper quotient Q of Y . Let 0 → Q′ → Q →
Q′′ → 0 be the sequence for Q arising from the torsion pair (Q, C). The composite Y → Q→ Q′′

is a monomorphism by (I), since Q′′ ∈ C. Therefore the epimorphism Y → Q is a monomorphism

and hence an isomorphism, contradicting the fact that Q is a proper quotient of Y .

Dually, condition (i’) has an equivalent characterization as:

(I’) Y ∈ Q and every nonzero morphism g : B → Y , with B ∈ Q, is an epimorphism in G.

We have the following:

Lemma 2.3.3. [1, Lemma 3.2] Let X,X ′ ∈ G be both torsionfree, almost torsion, or both

torsion, almost torsionfree. If HomG(X,X ′) 6= 0, then X ∼= X ′.

Proof. Every morphism 0 6= f : X → X ′ is a monomorphism by condition (I) for X, hence

Coker f ∈ C by condition (ii). By condition (i) for X ′ it follows Coker f = 0.

The torsion, almost torsionfree case is proven dually.

Remark 2.3.4. If G is locally finitely generated and (Q, C) is of finite type (e.g. when it is a

cotilting torsion pair), then all torsion, almost torsionfree objects are finitely generated.

Proof. Let X ∈ Q be an almost torsionfree object which is not finitely generated, then we

can write X = lim−→Xi, where Xi are finitely generated subobjects of X. Since X is almost

torsion free, all the Xi’s are in C and C is closed under direct limits, therefore X ∈ C. This is a

contradiction.

Let A = G(Q, C) be the heart of the t-structure induced by the torsion pair (Q, C). The following

formulae are useful to compute kernels and cokernels of morphisms in the heart.

Lemma 2.3.5. [1, Lemma 3.4]

(1) Let f : X → Y be a morphism in A = G(Q, C), and let Z be the cone of f in Db(G).

Consider the canonical triangle, given by the truncation functors:

K = τ≤−1Z −→ Z −→ τ≥0Z −→ K[1]

where τ≤−1Z ∈ D≤−1 and τ≥0Z ∈ D≥0. Then:

KerA(f) = K[−1] CokerA(f) = τ≥0Z.
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(2) Let h : Y → X be a morphism in G with Y,X ∈ C. Then:

• h[1] : Y [1]→ X[1] is a monomorphism in A if and only if Kerh = 0 and Cokerh ∈ C.

• h[1] : Y [1]→ X[1] is an epimorphism in A if and only if Cokerh ∈ Q.

(3) Let h : Y → X be a morphism in G with Y,X ∈ Q. Then:

• h : Y → X is a monomorphism in A if and only if Kerh ∈ C.

• h : Y → X is an epimorphism in A if and only if Cokerh = 0 and Kerh ∈ Q.

Proof. Recall that the cone of h has homologies Kerh in degree −1, Cokerh in degree 0, and

zero elsewhere.

(1) See [28, pp. 281].

(2) We know from (1) that KerA(h[1]) = 0 if and only if the cone of h[1] belongs to D≥0. This

means Kerh = 0 and Cokerh ∈ C. Similarly, CokerA(h[1]) = 0 if and only if the cone of

h[1] belongs to D≤−1, which means that Cokerh ∈ Q.

(3) We use the fact that the cone of h belongs to D≥0 if and only if Kerh ∈ C, and it belongs

to D≤−1 if and only if Cokerh = 0 and Kerh ∈ Q.

Now, we can state the main characterization Theorem for simple objects in the heart.

Theorem 2.3.6. [1, Theorem 3.3] (cf. [69, Lemma 2.2]) The simple objects in A are precisely

the objects S of the form S = Y [1] with Y torsionfree, almost torsion, or S = Q with Q torsion,

almost torsionfree.

Proof. From the torsion pair (C[1],Q) in A, we have a canonical exact sequence 0 → Y [1] →
S → Q → 0 with Y ∈ C and Q ∈ Q. From this we see that a simple object S is either of the

form S = Y [1] or S = Q. Let us show that an object of the form S = Y [1] with Y ∈ C is simple

if and only if Y is torsionfree, almost torsion. The other case is proven dually.

First, assume that S = Y [1] is simple and Y ∈ C. Consider a proper subobject U of Y . Then the

map h : U → Y gives rise to an epimorphism h[1] : U [1]→ Y [1] = S, hence Y/U = Cokerh ∈ Q
by Lemma 2.3.5(2). So, (i) in Definition 2.3.1 is verified. To prove (ii), we consider a short exact

sequence 0 → Y
h→ B → C → 0 with B ∈ C. Here h[1] : S → B[1] is a monomorphism, and

C = Cokerh ∈ C again by Lemma 2.3.5(2).

Conversely, we show that (i) and (ii) imply that S is simple. To this end, we claim that every

morphism 0 6= f : S → A in A is a monomorphism. Since S = Y [1] ∈ C[1], f factors through

the torsion part of A with respect to the torsion pair (C[1],Q). Hence, we can assume, without

loss of generality, that A = C[1] for some C ∈ C. Then f = g[1] with g : Y → C, and by

assumption g is a monomorphism with cokernel in C. But then it follows from Lemma 2.3.5(2)

that KerA(f) = 0, and the claim is proven.

Suppose that G is a locally noetherian Grothendieck category. If there is a torsion pair of finite

type in G such that the torsion class is cogenerating for G, then we can prove a more convenient

criterion for the simplicity of an object in the heart. Indeed:

Proposition 2.3.7. Let G be a locally noetherian Grothendieck category and let G0 = fp(G).

Consider a torsion pair (Q0, C0) in G0 such that:
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(i) C0 is generating for G0,

(ii) Q = lim−→Q0 is cogenerating for G.

Then, a nonzero object S ∈ C = lim−→C0 becomes simple in the heart A if and only if for any

non-split short exact sequence 0→ S → E → Q→ 0 in G with Q ∈ Q0, we have E ∈ Q.

Proof. First of all, notice that the pair (Q, C) = (lim−→Q0, lim−→C0) is, by Theorem 1.2.3, a tor-

sion pair of finite type in G. Furthermore, by Theorem 1.3.10, the heart A = G(Q, C) is a

Grothendieck category.

Suppose first that for any non-split short exact sequence 0 → S → E → Q → 0 in G with

Q ∈ Q0, we have E ∈ Q. Let g : Y → S[1] be a nonzero morphism in the heart A. By

Proposition 1.3.6, Q is cogenerating for G if and only if Q is generating for A, and moreover,

by Proposition 1.3.11(2), we have that Q = lim−→Q0 = lim−→AQ0, therefore Q0 is generating in A.

For this reason there exists an epimorphism π = (πi)i:∐
i

Qi
π−→ Y

g−→ S[1]

where Qi ∈ Q0, for any i, and since the composition is nonzero, there is at least a nonzero

component in π yielding a nonzero morphism α : Qj → S[1], with α = gπj, where j : Qj ↪−→∐
Qi, for a certain j.

For this reason, we can suppose, without loss of generality, that Y ∈ Q0. Using Lemma 1.3.9(i),

from the morphism g : Y → S[1] in A we obtain a non-split short exact sequence in G, 0→ S →
E → Y → 0, where E ∈ Q by hypothesis. Therefore we get a triangle in Db(G):

S −→ E −→ Y
g−→ S[1]

from which we obtain a short exact sequence in the heart 0→ E → Y
g→ S[1]→ 0, proving that

g is an epimorphism. Hence S[1] is simple in A.

Conversely, suppose that S[1] is simple in A. Consider a non-split short exact sequence 0 →
S → E → Q→ 0 in G, with Q ∈ Q0. This gives rise to a triangle in Db(G):

S −→ E −→ Q
g−→ S[1]

where the map g is surjective in the heart since S[1] is simple. Let Z be the cone of g, Z = E[1].

Consider the canonical triangle given by the truncation functors:

τ≤−1Z −→ Z −→ τ≥0Z −→ K[1]

By Lemma 2.3.5(1), Coker g = τ≥0Z. Since g surjective, τ≥0Z = 0. Therefore Z ∼= τ≤−1Z. This

means that Z ∈ D≤−1 = D≤0[1], so E ∈ D≤0, hence H0(E) = E ∈ Q.

Assume now that G = Λ-Mod and A = G(Q, C) is a Grothendieck category, for a torsion theory

(Q, C). We know, from Theorem 2.2.5, that this happens if and only if C = Cogen(W ) for a

cotilting module W . In this case, W [1] is an injective cogenerator of A and every Λ-module
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has a special C-cover and a special C⊥-envelope. In the following we prove that the injective

envelopes of the objects in the heart come from these special C-covers and special C⊥-envelopes.

Proposition 2.3.8. [1, Proposition 4.1]

(1) Let Y ∈ C, and let 0→ Y
f→ B → C → 0 be a special C⊥-envelope. Then Y [1]

f [1]→ B[1] is

an injective envelope of Y [1] in A.

(2) Let Q ∈ Q, and let 0 → B
f→ C

g→ Q → 0 be a special C-cover. Then Q → B[1] is an

injective envelope of Q in A.

Proof. (1) Since Y and C are in C, we have B ∈ C ∩ C⊥ = ProdW , so B[1] is injective.

Moreover, it follows from Lemma 2.3.5 that there is an exact sequence 0 → Y [1]
f [1]→

B[1]→ C[1]→ 0 in A. Finally, f [1] is left minimal in A since so is f in Λ-Mod.

(2) Since C is closed under submodules, B ∈ C ∩C⊥ = ProdW , so B[1] is injective. Moreover,

it follows from Lemma 2.3.5 that there is an exact sequence 0 → Q
h→ B[1]

f [1]→ C[1] → 0

in A.

It remains to check that h is left minimal. Consider an endomorphism β[1] ∈ EndA(B[1])

with β[1]◦h = h. Then there is γ[1] ∈ EndA(C[1]) yielding a commutative diagram whose

rows are given by distinguished triangles:

Q
h // B[1]

β[1]

��

f [1]
// C[1]

γ[1]

��

g[1]
// Q[1]

Q
h // B[1]

f [1]
// C[1]

g[1]
// Q[1]

and therefore, a commutative diagram with distinguished triangles:

B

β

��

−f
// C

γ

��

−g
// Q

h // B[1]

B
−f
// C

−g
// Q

h // B[1]

Since g is right minimal, γ is an isomorphism. Hence β and β[1] are isomorphisms.
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Chapter 3

Concealed-canonical algebras

In this chapter we define concealed-canonical algebras and we illustrate their module categories

in terms of their Auslander-Reiten quiver. Mainly following [3] and [53], we describe the torsion

pairs in Mod-Λ and some other relevant subclasses. Subsequently, we specialize on tubular alge-

bras, ie. concealed-canonical algebras of tubular representation type, where classes of modules

can be distinguished by a notion of slope, which is a real number or infinity. We will describe

tilting and cotilting modules over tubular algebras and its pure-injective modules.

Let us fix a finite dimensional connected artin algebra Λ over a field k, for simplicity we consider

k algebraically closed. We denote by Mod-Λ (mod-Λ) the category of (finitely presented) right

Λ-modules.

3.1 The setup

Given a class X of indecomposable Λ-modules of finite length, we say that an indecomposable Λ-

module of finite length M is a proper predecessor of X provided it does not belong to X and there

is a sequence of indecomposable Λ-modules (Mi)
n
i=0 with M0 = M and HomΛ(Mi−1,Mi) 6= 0,

for all 1 ≤ i ≤ n, such that Mn belongs to X . Dually, we say that M is a proper successor of

X if it does not belong to X and there is a sequence of indecomposables (Mi)
n
i=0 with Mn = M

and HomΛ(Mi−1,Mi) 6= 0, for all 1 ≤ i ≤ n, such that M0 belongs to X .

Definition 3.1.1. A tubular family t is a class consisting of all the indecomposable Λ-modules

belonging to a set of tubes, ie. connected uniserial length categories, in the Auslander-Reiten

quiver of Λ.

We say that a tubular family t in mod-Λ is:

• sincere, if every simple module occurs as the composition factor of at least one module

from t.

• stable, if t does not contain indecomposable projective or injective modules.

• separating, if it is standard, ie. there are no indecomposable modules M of finite length

which are both proper predecessors of t and proper successors of t, and any map from a

proper predecessor of t to a proper successor of t factors through any of the tubes in t.
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Let us denote by p the class of indecomposable finite length Λ-modules which are proper pre-

decessors of t, called the preprojective component, and by q the class of indecomposable finite

length Λ-modules which are proper successors of t, called the preinjective component. Then, the

separating condition can be rephrased as: any indecomposable module of finite length belongs

either to p, t or q and we say that t separates p from q, yielding the canonical trisection of

mod-Λ, (p, t,q), as in the following picture:

p q

t

...

Figure 3.1: Auslander-Reiten quiver of mod-Λ.

Moreover:

HomΛ(q,p) = HomΛ(q, t) = HomΛ(t,p) = 0

and any map from p to q factors through a module in t.

Definition 3.1.2. A concealed canonical algebra Λ is a finite dimensional algebra with a sincere,

stable and separating tubular family t.

Tame hereditary algebras and canonical algebras are examples of concealed canonical algebras.

Remark 3.1.3. Every concealed canonical algebra is obtained as the endomorphism ring of a

tilting module T over a canonical algebra Λ′, we refer to [53, Sections 2.2 and 2.3] for the

detailed definition of a canonical algebra and the description of the concealed canonical algebra

as End(T )op.

From now on, we fix Λ to be a concealed canonical algebra. All the results we are going to present

are proven for canonical algebras, but they can be extended to concealed canonical algebras as

shown in [53, Chapter 9].

We denote by τ and τ− the Auslander-Reiten translations in mod-Λ and by D the classical

duality Homk(−, k). We have the following:

Proposition 3.1.4. [47, (S6) and (S8)(i)] Let Λ be a concealed-canonical algebra. The follow-

ings hold:

(i) DExt1
Λ(M,X) ∼= HomΛ(X, τM), for M ∈ add(p ∪ t) and X ∈ mod-Λ.

(i’) DExt1
Λ(X,N) ∼= HomΛ(τ−N,X), for N ∈ add(t ∪ q) and X ∈ mod-Λ.

(ii) gl.dim Λ ≤ 2.

(iii) τ : add(p ∪ t) → add(p ∪ t) and τ− : add(t ∪ q) → add(t ∪ q) have unique structures as

functors making the isomorphisms in (i) and (i’) functorial. Furthermore, restricting τ

and τ− to add(t) we obtain an autoequivalence:

τ : add(t)←→ add(t) : τ−
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(i) and (i’) are called Auslander-Reiten formulae.

Remark 3.1.5. Consider a tubular family t which is sincere, stable and separating, then all the

indecomposable projective modules belong to p and all the indecomposable injective modules

belong to q. This implies that:

(1) If X ∈ p ∪ t, then pdimX ≤ 1.

(2) If X ∈ q ∪ t, then idimX ≤ 1.

The standard tubes, in the tubular family t, are denoted by Ux, for x ∈ X an index set. By [47,

(S8)(ii)], the tubular family decomposes as:

t =
∐
x∈X
Ux

and add(t) is an abelian exact subcategory of mod-Λ. The simple objects and the composition

factors in add(t) are called simple regular modules and regular composition factors, respectively.

The set of all simple regular modules in Ux is called the clique of Ux. The order of the clique is

called the rank of Ux. Moreover, from [47, (S8)(iii)], we have that all the tubes except finitely

many are homogeneous, ie. of rank 1.

Prüfer and adic Λ-modules

Every simple regular module Sx ∈ Ux determines a ray, ie. an infinite sequence:

Sx ↪→ Sx,2 ↪→ Sx,3 ↪→ Sx,4 ↪→ . . .

where Sx,n denotes the unique indecomposable module in Ux of regular length n with socle Sx,

the corresponding direct limit is the Prüfer module S∞x = lim−→Sx,n.

Dually, we define the coray ending at Sx as the infinite sequence:

· · ·� Sx,−4 � Sx,−3 � Sx,−2 � Sx

where Sx,−n denotes the unique indecomposable module in Ux of regular length n with top Sx,

the corresponding inverse limit is the adic module S−∞x = lim←−Sx,−n. The Prüfer and the adic

modules are indecomposable, infinite dimensional and pure-injective.

3.2 Torsion pairs in Mod-Λ

Following [53, Section 3.1], we mainly consider three torsion pairs in Mod-Λ.

• The torsion pair (Q, C) = (Gen(q),q◦), generated by q. This torsion pair is split by [53,

Proposition 1.5]. Moreover, as shown in [53, Chapter 10], there is an infinite dimensional

cotilting module W associated to this torsion pair, whose cotilting class is C = Cogen W,

and:

W = G⊕
⊕
x∈X

S∞x
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where G is the so called generic module, that we will introduce later.

• The torsion pair (D,R) = (◦t, (◦t)◦), cogenerated by t. This is a split torsion pair, as

shown in [53, Corollary 5.3]. The modules in D are called divisible modules and the ones

in R are called reduced modules. Furthermore, the infinite dimensional module W is a

tilting module whose tilting class is D = Gen W, see [53, Chapter 10].

• The torsion pair (Gen(t),F), with F = t◦, generated by t. The modules in Gen(t) are

called torsion modules and the ones in F are called torsionfree modules. This is not a

split torsion pair and clearly F ⊆ C, indeed: if X ∈ F = t◦ and there is a nonzero

morphism Q→ X with Q ∈ q ⊆ Gen(t), we have Y ∈ add(t) and a nonzero map Y → X,

contradiction.

We have the following:

Theorem 3.2.1 (Basic splitting result). [53, Theorem 5.2, Corollary 5.4] For the classes C and

D defined above, it holds Ext1
Λ(C,D) = 0. Moreover, for any X ∈ C, pdimX ≤ 1, and for any

Y ∈ D, idimY ≤ 1.

The following is an infinite dimensional version of the Auslander-Reiten formulae defined in

Proposition 3.1.4.

Lemma 3.2.2. [62] Let M,X ∈ Mod-Λ. Assume that M is finitely generated without non-zero

projective summands. Then:

(i) If pdimM ≤ 1, then HomΛ(X, τM) ∼= DExt1
Λ(M,X).

(ii) If idim τM ≤ 1, then DHomΛ(M,X) ∼= Ext1
Λ(X, τM).

Using this Lemma we can easily see that D = ◦t = t⊥ and C = q◦ = ⊥q.

Consider now the class of torsion modules in C, defined as

T = C ∩Gen(t)

ie. Λ-modules in C generated by t. It is clear that any Prüfer module S∞x belongs to T .

Proposition 3.2.3. [53, Section 3.4] Every module in T is the direct union of modules in add(t)

and T = lim−→ t.

Proof. If M = lim−→Mi with Mi ∈ add(t), then clearly M ∈ Gen(t). Moreover, for any Y ∈ q, by

Proposition 1.1.12, HomΛ(Y,M) = lim−→HomΛ(Y,Mi) = 0. Therefore M ∈ C.
Conversely, assume that M ∈ C is generated by t. There is an epimorphism g :

⊕
i∈I Xi →M ,

where Xi ∈ add(t). Then M = lim−→ Im(gi), where gi : Xi → M is the i-th component of g.

But Im(gi) ∈ add(t ∪ q), for any i, since they are factor modules of Xi ∈ add(t). And also

Im(gi) ∈ C, for any i, since they are submodules of M and C is a torsionfree class, hence closed

under submodules. This implies that Im(gi) ∈ add(t).

Since add(t) is an exact abelian subcategory of mod-Λ, we have that T is an exact abelian

subcategory of Mod-Λ. In particular, T is closed under kernels, images, cokernels and direct

sums.
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3.2.1 The class ω = C ∩ D

Let us consider now the class ω defined as:

ω = C ∩ D

It is immediate to see that all the Prüfer modules belong to ω. Indeed: clearly S∞x ∈ C, for all

x ∈ X. Moreover, S∞x is the injective envelope of any Sx,n in the category T , see [55]. Because

of this, Ext1
Λ(X,S∞x ) = 0 for any X ∈ add(t), hence S∞x ∈ D. Furthermore, still from [55], we

have that the Prüfer modules are all the indecomposable injectives in the category T and every

object in T has an injective envelope. Denote by

ω0 = T ∩ D

the full subcategory of all the injective objects in T . Thus, ω0 is the full subcategory of all direct

sums of Prüfer modules.

The class ω plays a relevant role from the point of view of approximation theory.

Theorem 3.2.4. [53, Theorem 4.1] For any X ∈ C, there is a short exact sequence:

0 −→ X
f−→M −→M ′ −→ 0

with M ∈ ω and M ′ ∈ ω0, such that f is an ω-envelope of X.

If X ∈ F , then M ∈ F . If X ∈ T , then M ∈ T .

We denote by G the generic module. This is the unique indecomposable infinite dimensional

module which has finite length over its endomorphism ring. In the notation of [53], G is the

unique infinite dimensional module in F ∩ D, ie. it is the only torsionfree divisible module (cf.

[55, Theorem 5.3 and p.408]). Moreover, G is the only (up to isomorphism) indecomposable

module in ω whose endomorphism ring is a skew field (see [53, Theorem 6.1]). By [53, Corollary

6.2], there exists an embedding from the module G in a direct sum of Prüfer modules.

Modules in ω are described by the following:

Theorem 3.2.5. [53, Theorem 6.4] Any module in ω is a direct sum of Prüfer modules and of

copies of the generic module.

Notice that, via this characterization, we have that F∩ω = Add(G). Moreover, all the indecom-

posables in ω have a local endomorphism ring. As a consequence, it follows from the Theorem

of Krull-Remak-Schmidt-Azumaya that the direct sum decomposition in the Theorem above is

unique up to isomorphisms.

Corollary 3.2.6. [53, Corollaries 6.5, 6.6 and 6.7] The following hold:

(1) The modules in C are precisely the modules cogenerated by T and precisely the modules

which can be embedded in ω0.

(2) If X ∈ F , then in the ω-envelope of X, we have M ∼= G(α), for a cardinal α. If X is also

of finite length, then M ∼= Gn, for an integer n > 0.
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(3) The generic module G is of finite length as an EndΛ(G)-module.

Furthermore, ω is a covering class for divisible modules:

Theorem 3.2.7. [53, Theorem 7.1, Corollary 7.2] For any Y ∈ D, there is a short exact

sequence:

0 −→M ′ −→M
g−→ Y −→ 0

with M ∈ ω and M ′ is a direct sum of copies of the generic module, such that g is an ω-cover of

X. If X ∈ Q, then M ∈ ω0. If X is also of finite length, then M ′ ∼= Gn, for an integer n > 0.

As a direct consequence of this Theorem and the Basic splitting result, we have the following

description of C and D as (see [53, Proposition 7.3]):

C = ⊥ω and D = ω⊥

and from this it follows:

Lemma 3.2.8. [53, Lemma 8.4] The classes C,D and ω are closed under products.

In addition, we have:

Proposition 3.2.9. [53, Corollary 8.1] Any Prüfer module is generated by G and D = Gen(G).

Proof. Following [53, Chapter 8]. Let Sx be a simple regular module. S∞x ∈ C, hence pdimS∞x =

1, and let p : P → S∞x be a projective cover. Take the ω-envelope of P , P → M . By the

enveloping property, we can factor p through M and obtain a surjective map M → S∞x . But

since P ∈ F , by Theorem 3.2.4, M ∈ F ∩ ω = Add(G).

For the second statement, clearly Gen(G) ⊆ D. Indeed: G ∈ D and D is a torsion class, hence

closed under direct sums and factor modules. Conversely, the ω-cover of a module in D is

surjective, by Theorem 3.2.7, therefore D ⊆ Gen(ω), but any module in ω is a direct sum of

Prüfers and copies of G, thus generated by G.

Let us consider again the module

W = G⊕
⊕
x∈X

S∞x .

As we have mentioned above, it is an infinite dimensional cotilting module whose associated

cotilting torsion pair is (Q, C) and it is also an infinite dimensional tilting module whose associ-

ated tilting torsion pair is (D,R). Let W0 be the torsion part of W, ie. W0 =
⊕

x∈X S
∞
x . We

have:

Proposition 3.2.10. [53, Proposition 10.1]

ω = Add(W) = Prod(W) = Prod(W0).

Remark 3.2.11. According to the decomposition of t as
∐
x∈X Ux, we can describe T = lim−→ t as

the coproduct of categories denoted T (x) for any x ∈ X, ie. T (x) = lim−→Ux. Recall that there
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are finitely many simple regular modules in Ux and, for almost all x ∈ X, there is only one

simple regular module. This implies that there are finitely many Prüfer modules in T (x) and,

for almost all x ∈ X, there is only one Prüfer module in T (x). Let ω0(x) be the full subcategory

of all the direct sums of copies of the Prüfer modules in T (x). Therefore, we can divide ω0 in

further subclasses ω0(x), for x ∈ X. As shown in the following picture:

R Add(G)

...

...

...

ω0(x)

ω0(x′)

Q

ω0

Figure 3.2: Subclasses of Mod-Λ.

ω0 is separating in the following sense:

HomΛ(ω0,R) = HomΛ(ω0,Add(G)) = HomΛ(Q,R) =

= HomΛ(Q,Add(G)) = HomΛ(Q, ω0) = 0

and any map h : X → Y , with X ∈ R or X ∈ Add(G) and Y ∈ Q, factors through ω0: indeed,

take an ω-cover of Y

0 −→M ′ −→M −→ Y −→ 0

with M ∈ ω0 and M ′ ∈ Add(G). Apply HomΛ(X,−) to obtain:

0 −→ HomΛ(X,M ′) −→ HomΛ(X,M) −→ HomΛ(X,Y ) −→ Ext1
Λ(X,M ′)

but Ext1
Λ(X,M ′) = 0 because (D,R) is a split torsion pair. Therefore HomΛ(X,M)→ HomΛ(X,Y )

is a surjection and the map h factors through M ∈ ω0.

3.3 Tubular algebras

A concealed canonical algebra Λ can be of domestic, tubular or wild representation type. This

is determined via a numerical invariant called genus, as shown in [47, Theorem 7.1].

In the domestic case, Λ is tame concealed, ie. Λ ∼= EndΛ′(T ), where T is a preprojective or

preinjective tilting module over a finite dimensional tame hereditary algebra Λ′.

From now on, Λ is a tubular algebra, ie. a concealed canonical algebra of tubular representation

type.

The structure of mod-Λ is well known, see for example [47, 56]. According to [56, Theorem

5.2(4)], there is a preprojective component, called p0, and a preinjective component, called q∞.

Denote by I0 the ideal which is maximal with respect to the property that it annihilates all

the modules in p0 and by I∞ the ideal which is maximal with respect to the property that it
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annihilates all the modules in q∞. Then, we obtain two factor algebras

Λ0 = Λ/I0 and Λ∞ = Λ/I∞,

which are both tame concealed.

Denote by t0 the Auslander-Reiten components of mod-Λ which contains regular Λ0-modules

and by t∞ the Auslander-Reiten component of mod-Λ which contains regular Λ∞-modules. Both

t0 and t∞ are sincere and separating tubular families, but they are not stable, indeed t0 contains

indecomposable projective Λ-modules and t∞ contains indecomposable injective Λ-modules.

Denote now by q0 the indecomposable Λ-modules which do not belong to p0 or t0, then t0

separates p0 from q0. Furthermore, denote by p∞ the indecomposable Λ-modules which do not

belong to q∞ or t∞, then t∞ separates p∞ from q∞. Furthermore, the indecomposable modules

in q0 ∩p∞ fall into a countable number of sincere stable separating tubular families indexed by

the positive rational numbers, denoted by tα, α ∈ Q>0.

All the tubular families tα, for α ∈ Q̂≥0 = Q≥0∪{∞}, are such that, for α, β ∈ Q̂≥0 with α < β,

tα generates tβ and tβ cogenerates tα.

Fix a number w ∈ R̂≥0 = R≥0 ∪ {∞}, set:

pw = p0 ∪
⋃
α<w

tα and qw =
⋃
w<β

tβ ∪ q∞

If w ∈ Q̂≥0, then we obtain a trisection (pw, tw,qw), in which tw is a sincere tubular family

that separates pw and qw, stable if w /∈ {0,∞}. If w is irrational, then all the indecomposable

modules fall into two distinct classes pw and qw and we have a bisection (pw,qw).

The category mod-Λ can be depicted as follows:

...p0 q∞

t0 t∞{tα | α ∈ Q>0}

Figure 3.3: Auslander-Reiten quiver of mod-Λ, for a tubular algebra Λ.

3.3.1 Torsion pairs in tubular algebras

For w ∈ R̂≥0, we consider the following torsion pairs in Mod-Λ.

• The torsion pair (Qw, Cw), generated by qw, where Qw = Gen(qw) and Cw = qw
◦. If

w ∈ Q̂≥0, this torsion pair is split. Using the Auslander-Reiten formulas, we have Cw =

qw
◦ = ⊥qw. (See [53, Section 13.1]).

In this case, the heart Aw, arising from this torsion pair, is equivalent to the cate-

gory QcohXw of quasi-coherent sheaves over a non-commutative curve of genus zero Xw
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parametrizing the family tw. We will describe this category in Chapter 6.

...
p0 q∞

...

tw

QwCw

pw qw

...
p0 q∞

...

QwCw

pw qw

Figure 3.4: Torsion pair (Qw, Cw) for w rational (left) and w irrational (right)

• The torsion pair (Bw,Pw), cogenerated by pw, where Bw = ◦pw and Pw = Bw◦. Moreover,

via the separating condition, we have Bw = ◦(
⋃
α<w tα). Using the Auslander-Reiten

formulas, we have Bw = ◦pw = pw
⊥. (See [53, Section 13.3]).

...
p0 q∞

...

tw

BwPw

pw qw

...
p0 q∞

...

BwPw

pw qw

Figure 3.5: Torsion pair (Bw,Pw) for w rational (left) and w irrational (right)

• The torsion pair (Gen(tw),Fw), generated by tw, where Fw = tw
◦. Moreover, via the sep-

arating condition, we can state that Fw = (
⋃
w≤γ tγ)◦ = (tw ∪ qw)◦. Using the Auslander-

Reiten formulas, we have Fw = tw
◦ = ⊥tw. (See [3, Section 6.2]).

...
p0 q∞

...

tw

Gen(tw)Fw

pw qw

...
p0 q∞

...

Gen(tw)Fw

pw qw

Figure 3.6: Torsion pair (Gen(tw),Fw) for w rational (left) and w irrational (right)

• The torsion pair (Dw,Rw), cogenerated by tw, where Dw = ◦tw and Rw = Dw◦. If

w ∈ Q≥0, this torsion pair is split. Moreover, since, for any α < w, tα is cogenerated by

tw, we have Dw = ◦(
⋃
α≤w tα) = ◦(pw ∪ tw). Using the Auslander-Reiten formulas, we

have Dw = ◦tw = tw
⊥. (See [3, Section 6.2]).

For α ∈ Q>0, we have the trisection (pα, tα,qα), where tα is a sincere stable and separating

tubular family, therefore we can rephrase in the setting of tubular algebras many results we have

seen for general concealed canonical algebras. In particular, there is a subcategory

ωα = Cα ∩ Dα
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...
p0 q∞

...

tw

DwRw

pw qw

...
p0 q∞

...

DwRw

pw qw

Figure 3.7: Torsion pair (Dw,Rw) for w rational (left) and w irrational (right)

for which every property described in Section 3.2.1 holds. Especially, ωα contains a generic

module Gα and Prüfer modules S∞x,α. Following [53, Section 13.2], there are also generic modules

G0 and G∞. According to Proposition 3.2.9, for α ∈ Q>0, we have that Dα = ◦tα = Gen(Gα).

Lemma 3.3.1. [53, Lemma 13.2] Let α, β ∈ Q̂≥0. If α < β, then tα generates Gβ. If, in

addition, α 6= 0, then Gα generates tβ.

We have the following properties for the classes defined above:

Lemma 3.3.2. [3, Lemma 6.3][53, Lemma 13.4] Let w ∈ R>0.

(i) For v ≤ w, Cv ⊆ Cw and Bv ⊇ Bw.

(ii) We have:

Cw =
⋂

w<v∈R>0

Cv =
⋂

w<γ∈Q>0

Fγ and Bw =
⋂

w>v∈R>0

Bv =
⋂

w>α∈Q>0

Dα.

(iii) Qw = lim−→qw and, if w /∈ Q, Cw = lim−→pw.

(iv) Pw ⊂ Cw and Qw ⊂ Bw. If w ∈ Q>0, then Pw ⊂ Fw ⊂ Cw and Qw ⊂ Dw ⊂ Bw.

(v) (Cw)⊥ ⊂ Bw and

Bw =
⋂

w>v∈R̂

(Cv)⊥ =
⋂

w>v∈R̂

Qv =
⋂

w>α∈Q̂

Qα =

= {M ∈ Mod-Λ |M ∈ Gen(tα) for any α ∈ Q, 0 < α < w}

= {M ∈ Mod-Λ |M ∈ Gen(Gα) for any α ∈ Q, 0 < α < w}.

Consider now, for any w ∈ R̂≥0, the class:

Mw = Cw ∩ Bw

Definition 3.3.3. We say that a Λ-module M has slope w if M ∈Mw.

Clearly, if α ∈ Q̂≥0, the modules in tα and in ωα have slope α.

Proposition 3.3.4. [53, Proposition 13.5] The subcategories Cw,Bw and Mw are closed under

products and direct limits.

Theorem 3.3.5. [53, Theorem 13.1] Any indecomposable Λ-module which does not belong to

p0 or q∞ has a slope. For 0 ≤ w < w′ ≤ ∞, we have HomΛ(Mw′ ,Mw) = 0.

52



Proof. We repeat the proof in [53].

Mw ⊆ Cw and, from 3.3.2(v), Mw′ ⊆ Bw′ ⊆ Qw. Therefore HomΛ(Mw′ ,Mw) = 0, because

(Qw, Cw) is a torsion pair.

Let now M be an indecomposable Λ-module which does not belong to p0 or q∞. Because of

this, HomΛ(q∞,M) = 0. Let w be the infimum of all α ∈ Q̂≥0 such that HomΛ(qα,M) = 0.

Since qw =
⋃
w>α qα, we have HomΛ(qw,M) = 0, therefore M ∈ qw

◦ = Cw.

Now we need to prove that M ∈ Bw. First of all, if w = 0, this follows immediately from

the fact that M is indecomposable and is not in p0. Let then w > 0. Let α be a rational

number such that 0 < α < w. Assume M /∈ Qα. Since (Qα, Cα) is a split torsion pair and M

is indecomposable, we infer that M ∈ Cα. Therefore HomΛ(qα,M) = 0 and this implies, by

definition of w, that w ≤ α. This is a contradiction. Consequently, M ∈ Qα, for any rational

number α with 0 < α < w. Hence, via 3.3.2(v), M ∈ Bw =
⋂
w>α∈Q̂Qα.

We have many examples of modules of rational slope but, if w is irrational, not many modules of

slope w are known. For w irrational,Mw does not contain any nonzero module of finite length.

In [53], Reiten and Ringel have provided two useful theorems to construct infinite dimensional

modules of irrational slope.

Theorem 3.3.6 (First construction). [53, Section 13.4] Let α1 > α2 > . . . be a decreasing

sequence of rational numbers converging to w ∈ R>0. Choose modules Mi ∈ add(tαi), for i ≥ 1.

Then
∏
iMi/

⊕
iMi ∈Mw.

Theorem 3.3.7 (Second construction). [53, Section 13.4] Let α1 < α2 < . . . be an increasing

sequence of rational numbers converging to w ∈ R>0. Choose modules Mi ∈ add(tαi) such that

Mi ⊆Mi+1 for any i ≥ 1, then M = lim−→Mi ∈Mw.

3.3.2 Tilting and cotilting Λ-modules

First of all, let us consider the torsion pairs (Bw,Pw) and (Qw, Cw). Following [3, Section 6.1],

the class add(pw) is a resolving class, ie. closed under direct summands, extensions and kernel

of epimorphisms, therefore, by Theorem 2.1.4, Bw is a tilting class. Hence there is a tilting

module Lw such that Bw = Gen(Lw) and Pw = Lw
◦. This tilting module is infinite dimensional,

otherwise Lw ∈ Bw ∩ ⊥Bw ∩mod-Λ = Bw ∩ add(pw) = ◦pw ∩ add(pw), which is not possible.

Furthermore, the class qw is the dual of a resolving class pw̄ ⊂ Λ-mod. It follows that Cw = (pw̄)>

is a cotilting class given by a large cotilting module Ww such that Cw = Cogen(Ww) and

Qw = ◦Ww.

If w ∈ Q>0, we have the trisection (pw, tw,qw) and we are in the same setting as in [53, Chapter

10]. Here, the cotilting module Ww, that cogenerates the class Cw, also generates the class

Dw = ◦tw and there is an explicit description for it:

Ww = Gw ⊕
⊕
x∈X

S∞x,w

whereGw is the generic module in ωw and the S∞x,w are the Prüfer module of slope w, parametrized

by the set X, as seen in Section 3.1.
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For an irrational number w, we have the following:

Theorem 3.3.8. [3, Theorem 6.4] Let w ∈ R>0 \Q>0, then:

(1) Lw is the only tilting module of slope w, up to equivalence.

(2) Ww is the only cotilting module of slope w, up to equivalence.

(3) The following are equivalent:

(i) M ∈Mw.

(ii) M is a pure submodule of a product of copies of Ww.

(iii) M is a pure epimorphic image of a direct sum of copies of Lw.

Proof. By definition the modules Lw and Ww have slope w. Indeed:

Lw ∈ Bw ∩ ⊥(Bw) ⊆ Bw ∩ Cw and Ww ∈ Cw ∩ Cw⊥ ⊆ Cw ∩ Bw.

(1) Let T be a tilting module of slope w. By Lemma [3, Lemma 5.4], the resolving subcategory

of mod-Λ corresponding to T is S = ⊥(T⊥)∩mod-Λ = add(pw). This implies, by Theorem

2.1.4, that T is equivalent to Lw.

(2) Let C be a cotilting module of slope w. Then ⊥Bw ⊂ ⊥C, since C ∈ Bw, and ⊥C =

Cogen(C) ⊂ Cw, since Cw is a torsionfree class and C ∈ Cw. Since pw ⊂ ⊥Bw and
⊥C is closed under direct limits, we have lim−→pw ⊂ ⊥C. Lemma 6.2.6(iii) tells us that

lim−→pw = Cw, hence Cw = ⊥C. So C is equivalent to Ww.

(3) By [11, Proposition 4.3(2)], we have that the class Mw is definable, hence closed under

direct sums, direct products, pure submodules and pure epimorphic images. This proves

“(ii) implies (i)” and “(iii) implies (i)”.

Let us prove “(i) implies (ii)”: Consider a module M ∈Mw. From the complete cotorsion

pair (Cw, Cw⊥) we get a special Cw⊥-envelope of M :

0 −→M −→ C0 −→ C1 −→ 0

where C0 ∈ Cw⊥ and C1 ∈ Cw. Since M ∈ Cw, also C0 ∈ Cw. Since, by Theorem 3.2.1, the

modules in Cw have projective dimension at most 1, the class Cw⊥ is closed under quotient

modules, therefore C1 ∈ Cw⊥. This means that C0, C1 ∈ Cw ∩ Cw⊥ = Prod(Ww).

Moreover, the sequence defined above is pure-exact, indeed: let X ∈ mod-Λ, we can assume

w.l.o.g. that X is indecomposable with HomΛ(X,C1) 6= 0, hence X ∈ pw. Then, since

M ∈ Bw = pw
⊥, we have Ext1

Λ(X,M) = 0, therefore the sequence

0 −→ HomΛ(X,M) −→ HomΛ(X,C0) −→ HomΛ(X,C1) −→ 0

is exact, proving the purity of the approximation sequence. Hence, M is a pure submodule

of some module in Prod(Ww).

The implication from (i) to (iii) is proven dually.
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3.3.3 Pure-injective Λ-modules

A first characterization of pure-injective modules arising from tubular components in the Auslander-

Reiten quiver of Artin algebras has been given by Ringel in [54]. The Theorem stated in [54,

2.2] can be reinterpreted in the context of tubular algebras via the following.

Theorem 3.3.9. [54, 2.2] Let w ∈ Q≥0. A Λ-module M is pure-injective and belongs to Mw if

and only if there is a decomposition M = M ′⊕M ′′ where M ′ ∈ Prod(tw) and M ′′ ∈ Add(Ww) =

Prod(Ww).

Let us recall that a Λ-module M is called superdecomposable if it has no indecomposable direct

summands. In [32], the authors proved that, if the field k is countable, then pure-injective

modules of irrational slope can be superdecomposable. We have:

Theorem 3.3.10. [32, Corollary 7.4] Let w be a positive irrational number. If the field k is

countable, then there is a superdecomposable pure-injective Λ-module of slope w.

The proof of this Theorem uses methods from logic and model theory of modules.

In the case of a cotilting module, which is pure-injective by Theorem 2.2.2, the superdecompos-

able part of the module is not relevant in the computation of the cotilting class. Indeed, we

have the following:

Theorem 3.3.11. [64, Theorem 3.7] Let W be a cotilting Λ-module. Then Prod(W ) contains

a family of indecomposable module (Mi)i∈I such that W is a direct summand in a direct limit of

modules in Prod{Mi | i ∈ I} and ⊥W =
⋂
i∈I
⊥Mi.

Finally, for the irrational slope case, we have the following characterization of pure-injective

Λ-modules, given by Angeleri Hügel and Kussin in [3].

Theorem 3.3.12. [3, Corollary 6.6] Let w ∈ R>0 \ Q>0. Then the cotilting module Ww is

pure-injective, not Σ-pure-injective and the class Prod(Ww) is the class of all pure-injective

Λ-modules of slope w.

Proof. Ww is pure-injective by Theorem 2.2.2 and Prod(Ww) is the class of all pure-injective

Λ-modules of slope w by Theorem 3.3.8(3).

Assume that Ww is Σ-pure-injective. Then every product of copies of Ww and any pure

submodule of such product is Σ-pure-injective. This implies, using Theorem 3.3.8(3), that

Mw = Prod(Ww). Hence Lw ∈ Mw ⊆ Cw⊥, and since Cw consists of modules of projective

dimension at most one, Gen(Lw) ⊆ Cw⊥, and Cw⊥ = Bw by Lemma 3.3.2(v). Since Qw ⊆ Bw,

by Lemma 3.3.2(iv), we have that (Qw,Bw) is a split torsion pair satisfying the assumption of

Proposition 2.2.7. So, the heart Aw of the t-structure arising from the previous torsion pair

is equivalent to the category QcohY of quasi-coherent sheaves over a noncommutative curve

of genus zero Y, this category will be described completely in Chapter 6. This is a locally

noetherian Grothendieck category whose category of coherent objects is denoted by cohY and

H0 denotes the subcategory of finite length objects in cohY. As we will see in Proposition 6.1.2,

there is a family of connected uniserial Hom-orthogonal length categories Uy, y ∈ Y, such that
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all Uy have finite τ -period and H0 =
∐
y∈Y Uy. Therefore, if S is a simple object in H0, then its

injective envelope E(S) has only finitely many non-isomorphic composition factors. Moreover,

S is of the form S = Y [1], for Y ∈ pw, or S = Q, for Q ∈ qw.

In the first case, Y ∈ pα, for some α < w, and there is α < β < w such that E(S) has

all composition factors in pβ[1] and therefore HomAw(tβ[1], E(S)) = 0. On the other hand,

Y is cogenerated by tβ, so there is a nonzero morphism Y → B for some indecomposable

module B ∈ tβ. This morphism yield a nonzero map S → B[1] and therefore a nonzero map

B[1]→ E(S), by the injectivity of E(S). This is a contradiction.

This shows that the simples in H0 are all of the form S = Q, for some Q ∈ qw, so they belong

to the torsionfree class in the torsion pair (Cw[1],Qw) in Aw. But then the noetherian tilting

object V = Λ[1] ∈ Cw[1] cannot have a simple quotient, another contradiction.

For the sake of completeness, we summarize in the following Theorem the list of all indecom-

posable pure-injective Λ-modules.

Theorem 3.3.13. [3, Theorem 6.7] The following is a complete list of the indecomposable pure-

injective Λ-modules:

(i) the finite dimensional indecomposable Λ-modules,

(ii) the Prüfer modules, the adic modules and the generic module of slope w ∈ Q≥0,

(iii) the indecomposable modules in Prod(Ww), with w ∈ R≥0 \Q≥0,

(iv) the Prüfer modules, the adic modules and the generic module over Λ0 and Λ∞,

(v) a finite number of Prüfer Λ-modules of slope 0 and a finite number of adic module of slope

∞ (we refer to [3] for more details about these modules).

The modules in (iii) are the ones we aim to characterize in greater detail. In the next Chapter

we introduce a tool that could provide a better understanding of these modules.
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Chapter 4

The Atom Spectrum

In this chapter we introduce the notion of atom spectrum for a Grothendieck category. This is

a generalization of the prime spectrum for a commutative ring and, in the same fashion, it is

endowed with a topological space structure. The notion of atom spectrum has been introduced

by Kanda in [35] in the more general setting of abelian categories, and properties have been

developed by Vámos and Virili in [65].

4.1 Definition and properties

Definition 4.1.1. Let G be an Grothendieck category and let X be an object of G. X is said to

be monoform if, given any subobject H of X and a morphism ϕ ∈ HomG(H,X), ϕ is non-zero

if and only if it is a non-zero monomorphism.

Lemma 4.1.2. [65, Lemma 2.10] Let X ∈ G. The following conditions are equivalent:

(i) X is monoform.

(ii) for any non-zero subobject H ⊆ X, the unique object isomorphic to both a subobject of X

and to a subobject of X/H is the zero object.

(iii) X is uniform and, for any non-zero subobject H ⊆ X, the unique object isomorphic to

both a subobject of H and to a subobject of X/H is the zero object.

In [35], the author uses (ii) of the Lemma above as a definition of monoform object. Let us

collect some useful facts.

Proposition 4.1.3. Let X ∈ G. Then:

(i) If X is a simple object, then it is monoform.

(ii) If X is monoform, then any nonzero Y ⊆ X is monoform.

(iii) If X is monoform, then it is uniform.

Proof. (i) This is clear, since any simple object has only trivial subobjects.

(ii) [35, Proposition 2.2] Let X be monoform and Y ⊆ X, then, if Y is not monoform, there is

a proper subobject H ⊆ Y such that Y and Y/H have a common nonzero subobject H ′.

But H ′ is also a subobject of X and X/H and this is a contradiction.
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(iii) [35, Proposition 2.6] Let X be monoform and suppose it is not uniform, then there exist

two proper subobjects H and H ′ of X such that H ∩H ′ = 0, therefore we have:

X ⊇ H ∼= H ⊕H ′/H ′ ⊆ X/H ′

and this cannot happen since X is monoform.

Theorem 4.1.4. [35, Theorem 2.9] Let X be a noetherian object in G. There is a filtration:

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xn = X

such that Xi/Xi−1 is a monoform object, for any i = 1, . . . , n. In particular, X1i s a monoform

subobject if X.

We say that two monoform objects in G are atom-equivalent if they have a common non-zero

subobject.

Lemma 4.1.5. [35, Lemma 5.8][65, Lemma 2.13] Two monoform objects X and X ′ are atom-

equivalent if and only if E(X) ∼= E(X ′).

Proof. Assume X and X ′ have a common non-zero subobject Y . Then, since X and X ′ are

uniform, we have E(X) ∼= E(Y ) ∼= E(X ′).

Conversely, assume E(X) ∼= E(X ′). Then X and X ′ are, up to isomorphism, both non-zero

subobjects of E(X). Since X is uniform, E(X) is uniform. Therefore X and X ′ have X ∩X ′ as

a common non-zero subobject.

We denote by X the class of all monoform objects atom-equivalent to the monoform object X,

these equivalence classes are called atoms.

Definition 4.1.6. The atom spectrum of an abelian category G, denoted by ASpec(G), is the

class of all atoms in G.

In the case of a Grothendieck category G, it can be shown that given a monoform object X,

the class of all monoform objects equivalent to X has a maximum X̄, in the sense that any

monoform object equivalent to X is isomorphic to a subobject of X̄, which is characterized in

the following proposition.

Proposition 4.1.7. [65, Proposition 2.12] Let G be a Grothendieck category, let X be an object

of G. Consider the torsion pair TX = (TX ,FX) cogenerated by E = E(X). The followings are

equivalent:

(i) X is monoform.

(ii) QX(X) is the unique simple object in G/TX , up to isomorphisms (where QX : G → G/TX
denotes the quotient functor relative to TX).

(iii) there exists a hereditary torsion pair T = (T ,F) such that X ∈ F and Q(X) is simple in

G/T .
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Moreover, if the above conditions are verified, a monoform object Y is equivalent to X if and

only if Y is isomorphic to a subobject of SXQX(X) (where SX : G/Tx → G denotes the section

functor relative to TX).

Remark 4.1.8. Notice that condition (iii) says precisely that an object X is monoform if and

only if there exists a hereditary torsion pair T such that X is T-cocritical.

The atom spectrum of an abelian category may not be a set. On the other hand, we have that

ASpec(G) is a set, whenever G is a Grothendieck category. This is a consequence of the following

lemma.

Lemma 4.1.9. [65, Lemma 2.13] Let G be a Grothendieck category. There is a well-defined

injective map of sets:

ASpec(G) // Spec(G)

X � // E(X)

Proof. This is clear by Lemma 4.1.5.

Theorem 4.1.10. [35, Theorem 5.9] Let G be a locally noetherian Grothendieck category. The

map:

ASpec(G) // Spec(G)

X � // E(X)

is a well-defined bijection of sets.

Proof. By Lemma 4.1.9 we have injectivity. Since G is locally noetherian, an indecomposable

injective I has a noetherian subobject I ′. By Theorem 4.1.4, there is a monoform subobject H

of I ′ such that E(H) = I. This proves surjectivity.

This result has been generalized for Gabriel categories in [65].

Example 4.1.11. Let Λ be the Kronecker algebra. The category Λ-Mod is a locally noetherian

Grothendieck category. Therefore ASpec(Λ-Mod) ∼= Spec(Λ) and the only two indecomposable

injective modules are the injective envelopes of the two simple Λ-modules, S1 and S2, which are

monoform. So we have ASpec(Λ-Mod) = {S1, S2}.
The generic module G, for example, is not monoform, indeed we have a short exact sequence

0→ S1 → G→
⊕
S∞ → 0 (see [53, Theorem 6.1]) and S1 is a submodule of any Prüfer module.

4.2 Topology and partial order on the atom spectrum

Definition 4.2.1. Let M be an object of G. Define two subsets of the atom spectrum:

ASuppM = {α ∈ ASpec(G) | α = H for a monoform subquotient H of M}

called the atom support of M , and

AAssM = {α ∈ ASpec(G) | α = H for a monoform subobject H of M}
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called the set of associated atoms of M .

It is clear that the atom support of a simple object S is the set containing only the atom S.

Proposition 4.2.2. [35, Propositions 3.3 and 3.5] Let 0→ L→M → N → 0 be a short exact

sequence in G. Then:

(1) ASuppM = ASuppL ∪ASuppN

(2) AAssL ⊂ AAssM ⊂ AAssL ∪AAssN .

The atom spectrum of a Grothendieck category G has a structure of topological space in terms

of atom support.

Definition 4.2.3. Let Φ be a subset of ASpec(G). We say that Φ is open if for any atom α ∈ Φ,

there exists a monoform object H ∈ G such that H = α and ASuppH ⊂ Φ.

The family of all open subsets of ASpec(G) satisfies the axioms of topology.

Proposition 4.2.4. [36, Proposition 3.2] The family {ASuppM |M ∈ G} is the set of all open

subsets of ASpecG. If G is locally noetherian, then the family {ASuppM |M noetherian in G}
is an open basis of ASpec(G).

In [36, Proposition 3.5], the author proved that the atom spectrum of an abelian category is a

T0-space (or Kolmogorov space), ie. a space in which, for any distinct points x1 and x2 in it,

there exists an open subset containing exactly one of them. The atom spectrum is a discrete

space if the category satisfies some properties.

Proposition 4.2.5. [36, Proposition 3.7] Let G be a locally noetherian Grothendieck category:

(1) For an atom α ∈ ASpec(G), the subset {α} is open if and only if there exists a simple

object S in G such that S = α.

(2) For any noetherian object M in G, the subset ASuppM of ASpec(G) with the induced

topology is discrete if and only if M has finite length.

(3) ASpec(G) is a discrete topological space if and only if any noetherian object in G has finite

length.

Proof. (1) Any nonzero object in G has a simple subquotient. Indeed: let M ∈ G, there exists

a nonzero noetherian subobject L of M and L is finitely generated. Since L has a maximal

subobject, it also has a simple quotient object which is a subquotient of M . Thus, if {α}
is open, by definition, there exists a monoform object H in G such that ASuppH ⊂ {α}.
There exists a simple subquotient S of H, hence S ∈ ASuppH ⊂ {α} implies S = α.

Conversely, for a simple object S in G, ASuppS = {S} and this is an open subset of

ASpec(G).

(2) Suppose that ASuppM is discrete. Then by (1), since the singletons are open, any element

of ASuppM is represented by a simple object in Å. By [35, Remark 3.6], AAssM is

nonempty, therefore any quotient object of M has a simple subobject. Hence, for any
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filtration we can find a refinement and so a composition series for M . Therefore M has

finite length.

Conversely, assume that M has finite length. Because of this, any subquotient of M has

a simple subobject and so any element of ASuppM can be represented by a simple object

in G. Hence, ASuppM with the induced topology is discrete.

(3) Assume that ASpec(G) is discrete. Then by (2), any noetherian object in G has finite

length.

Conversely, assume that any noetherian object has finite length. Since any object in G has

a noetherian subobject, for any α ∈ ASpec(G), there exists a noetherian monoform object

H such that H = α. By assumption, H has finite length, hence there exists a simple

subobject S of H and so S = α. By (1), the topological space ASpec(G) is discrete.

Let X be a T0-space. We can define an order on X in this way: for any x, y ∈ X, we have

x � y if and only if x ∈ {y}, where {y} is the topological closure of {y} in X. This is called

specialization order and it is a partial order. Conversely, a partially ordered set P can be seen

as a topological space as follows: a subset Φ of P is open if and only if for any p, q ∈ P such

that p � q, p ∈ Φ implies q ∈ Φ. These correspondences defined above are mutually inverse.

ASpec(G) becomes a partially ordered set defining a specialization order ≤ on it. We have the

following:

Proposition 4.2.6. [36, Proposition 4.2] Let G be a Grothendieck category and α, β ∈ ASpec(G).

Then the following are equivalent:

(1) α ≤ β, i.e. α ∈ {β}.
(2) If Φ is an open subset of ASpec(G) such that α ∈ Φ, then β ∈ Φ. In other words, β belongs

to the intersection of all the open subsets containing α.

(3) For any object M in G such that α ∈ ASuppM , we have β ∈ ASuppM .

(4) For any monoform object H in G such that H = α, we have β ∈ ASuppH.

Proof. (1) ⇒ (2): Let Φ be an open subset of ASpec(G) such that α ∈ Φ. If β /∈ Φ, then

{β} ⊂ X \ Φ, and since X \ Φ is closed, we have ¯{β} ⊂ X \ Φ, and so α /∈ Φ. Contradiction.

(2)⇒ (3)⇒ (4)⇒ (1) follows from the definition of the topology on ASpec(G) and Proposition

4.2.4.

Moreover we have:

Proposition 4.2.7. [36, Proposition 4.4] Let X be a T0-space with the specialization order �.

Let x ∈ X and Φ a subset of X containing x.

(1) x is maximal in Φ if and only if {x} is the intersection of some family of open subsets of

Φ.

(2) x is minimal in Φ if and only if {x} is a closed subset of Φ.

Proof. (1) Suppose that x is maximal in Φ. Let {Φλ}λ∈Λ be the family of all open subsets of

Φ containing x. It is clear that {x} ⊂
⋂
λ∈Λ Φλ. Let now y ∈

⋂
λ∈Λ Φλ. We need to show
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that y = x, or equivalently, since x is maximal, x � y. Let Ψ an open set such that x ∈ Ψ,

then x ∈ Ψ ∩Φλ ⊂ Φ and Ψ ∩Φλ is open. Therefore y ∈ Φµ = Ψ ∩Φλ for a certain µ ∈ Λ

and then y ∈ Ψ and we have the claim.

Conversely, suppose that {x} =
⋂
λ∈Λ Φλ, where {Φλ}λ∈Λ is a family of open subsets of Φ.

Let x � y, then by Proposition 4.2.6, y is contained in all the open subsets of X containing

x, in particular y ∈
⋂
λ∈Λ Φλ. Therefore y = x.

(2) Suppose that x is minimal in Φ. Let y ∈ {x}, then y � x, but since x is minimal, y = x.

This means that {x} = {x}, ie. is closed.

Suppose that {x} is closed. Let y � x, ie. y ∈ {x}. Since {x} is closed, {x} = {x} implies

y ∈ {x}, hence y = x.
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Chapter 5

The case of the Kronecker Algebra

Let us now consider the Kronecker algebra Λ, ie. the path algebra of the quiver:

• //
// •

This is a tame hereditary algebra and the Auslander-Reiten quiver of mod-Λ is:

. . . . . .

p qt

...

Figure 5.1: Auslander-Reiten quiver of mod-Λ.

As in Chapter 3, p is the preprojective component, q is the preinjective component and t is a

sincere stable and separating family of regular homogeneous tubes, t =
⋃
x∈X Ux. We denote

by S∞x and S−∞x the Prüfer and the adic module, respectively, corresponding to the simple

regular Sx. Further, we denote by G the generic module, ie. the unique (up to isomorphism)

indecomposable module which has infinite length over Λ, but finite length over its endomorphism

ring. Recall, from [53, 55], that EndRG is a division ring.

5.1 Cotilting torsion pairs in Mod-Λ

We want to describe the torsion pairs in the category of modules over Λ which are cogenerated

by infinite dimensional cotilting modules. As we have mentioned in Theorem 2.2.3, cotilting

modules in Mod-Λ have been completely classified in [14], we recall the result in this specific

setting:

Theorem 5.1.1. [14, Theorem 1.5, Corollary 3.10] Let C be a cotilting module over the Kro-

necker algebra Λ. Then C is equivalent to one of the following:

• a finitely generated preprojective cotilting module of the form Pn+1 ⊕ Pn+2, for n ≥ 0,

• a finitely generated preinjective cotilting module of the form Qn+1 ⊕Qn+2, for n ≥ 0,
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• a cotilting module of the form:

CP = G⊕
∏
x∈P

S−∞x ⊕
⊕
x/∈P

S∞x , for P ⊆ X.

Moreover, there is a correspondence between:

{
equivalence classes
of cotilting modules

}
oo //

{
torsion pairs in mod-Λ

with generating torsionfree class

}
associating to any cotilting module C, the torsionfree class C = ⊥C ∩mod-Λ and to any torsion

pair (Q, C) in mod-Λ, a cotilting module C such that ProdC = lim−→F ∩ (lim−→F)⊥.

We summarize all the torsion pairs in mod-Λ with generating torsionfree class in the following

table:

cotilting module torsion pair in mod-Λ

Pn+1 ⊕ Pn+2, (n ≥ 0) (add({Pi | i > n} ∪ t ∪ q), add(P1 ⊕ · · · ⊕ Pn))

Qn+1 ⊕Qn+2, (n ≥ 0) (add(Q1 ⊕ · · · ⊕Qn), add(p ∪ t ∪ {Qi | i > n}))

G⊕
∏
x∈P S

−∞
x ⊕

⊕
x/∈P S

∞
x , (P ⊆ X) (add(

⋃
x∈P Ux ∪ q), add(p ∪

⋃
x/∈P Ux))

Every cotilting module C gives rise to a cotilting torsion pair, (◦C,CogenC), where CogenC =

lim−→(⊥C ∩mod-Λ), by [14, Lemma 1.1].

Using Theorems 2.2.3 and 1.2.3, we have the following table:

subset of X infinite dimensional torsion pair of finite type in Mod-Λ
cotilting Λ-module with generating torsionfree class

P = ∅ C∅ = G⊕
⊕

x∈X S
∞
x (Gen q,q◦)

∅ 6= P ( X CP = G⊕
∏
x∈P S

−∞
x ⊕

⊕
x/∈P S

∞
x (Gen(

⋃
x∈P Ux ∪ q), (

⋃
x∈P Ux ∪ q)◦)

P = X CX = G⊕
∏
x∈X S

−∞
x (Gen t, t◦)

Table 5.1: Infinite dimensional cotilting Λ-modules and their cotilting torsion pairs.

5.2 Hearts arising from cotilting torsion pairs

To shorten the notation, we denote by B the category Mod-Λ, where Λ is the Kronecker algebra.

Let us analyze more specifically the cotilting torsion pairs described above, giving also a de-

scription of the different hearts arising from them. Notice that all the hearts we are going to

describe are locally coherent categories.

• If P = ∅, the cotilting module C∅ is the so called Reiten-Ringel tilting module W:
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W = G⊕
⊕
x∈X

S∞x

and it cogenerates the torsion pair (Q, C) = (◦W,Cogen W), which is generated by q. The

heart A = B(Q, C) is equivalent to the locally noetherian Grothendieck category QcohX
of quasi-coherent sheaves over a non-commutative curve of genus zero X (see [3, Section

3.1]). We will describe this category in Chapter 6.

p ...

t

q p[1] ...

t[1]

A ∼= QcohX

C Q C[1]

Figure 5.2: Auslander-Reiten quiver of the heart A = B(Q, C), for P = ∅.

• If ∅ 6= P ( X, the cotilting module is

CP = G⊕
∏
x∈P

S−∞x ⊕
⊕
x/∈P

S∞x

and it cogenerates the torsion pair (QP , CP ) = (◦CP ,CogenCP ), which is generated by the

set
⋃
x∈P Ux ∪ q. This cotilting module is not Σ-pure-injective, therefore, by Proposition

2.2.6, the heart AP = B(QP , CP ) is not locally noetherian.

p ...⋃
x/∈P Ux

...⋃
x∈P Ux

q p[1] ...⋃
x/∈P Ux[1]

AP

CP QP CP [1]

Figure 5.3: Auslander-Reiten quiver of the heart AP = B(QP , CP ), for P ( X.

• If P = X, the cotilting module is

CX = G⊕
∏
x∈X

S−∞x

and it cogenerates the torsion pair (Gen t,F) = (◦CX,CogenCX), which is generated by t.

The cotilting module CX is not Σ-pure-injective, therefore, also in this case, via Proposition

2.2.6, the heart AX = B(Gen t,F) is not a locally noetherian category.

Remark 5.2.1. Notice that there are inclusions F ⊂ CP ⊂ C and Q ⊂ QP ⊂ Gen t.
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p ...

t

q p[1]

AX

F Gen t F [1]

Figure 5.4: Auslander-Reiten quiver of the heart AX = B(Gen t,F), for P = X.

Theorem 5.2.2. [1, Example 6.2] Let P ⊆ X. The complete list of simple objects in the heart

AP = B(QP , CP ) is:

• {Sx | Sx simple regular in
⋃
x∈P Ux} ∪ {Sx[1] | Sx simple regular in

⋃
x/∈P Ux}, whenever

P 6= X.

• {Sx | Sx simple regular} ∪ {G[1]}, whenever P = X.

Moreover, for P ⊆ X, we have that:

• The short exact sequence

0 −→ Sx −→ S−∞x [1] −→ S−∞x [1] −→ 0

is a minimal injective coresolution in AP for a simple regular module Sx ∈
⋃
x∈P Ux.

• The short exact sequence

0 −→ Sx[1] −→ S∞x [1] −→ S∞x [1] −→ 0

is a minimal injective coresolution in AP for a simple regular module Sx ∈
⋃
x/∈P Ux.

• If P = X, then the object G[1] is simple injective in AX.

Proof. To prove the claim, according to Theorem 2.3.6, we show that:

(1) If P 6= ∅, then X ∈ QP is almost torsionfree if and only if X is simple regular in
⋃
x∈P Ux.

(2) If P 6= X, then X ∈ CP is almost torsion if and only if X is simple regular in
⋃
x/∈P Ux.

(3) If P = ∅, there are no torsion, almost torsionfree modules.

(4) If P = X, then X ∈ CP is almost torsion if and only if X ∼= G.

First of all, observe that the indecomposable modules in CP are the modules in p∪
⋃
x 6∈P Ux and

the indecomposable modules in QP are the modules in
⋃
x∈P Ux ∪ q.

(1): Let Sx be simple regular in
⋃
x∈P Ux. Then Sx ∈ QP is torsion, almost torsionfree:

(i) All proper subobjects of Sx are preprojective, hence in CP .

(ii) Let 0 → A → B → Sx → 0 be an exact sequence with B ∈ QP . Consider the canonical

exact sequence 0→ A′ → A→ A→ 0 with A′ ∈ QP and A ∈ CP , and assume that A 6= 0.
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In the push-out diagram

0 // A

��

f
// B

α
��

g
// Sx

=

��

// 0

0 // A
f ′
// B′

g′
// Sx // 0

the map α is surjective and thus B′ ∈ QP . Notice that B′ cannot have nonzero direct

summands in q, because they would be submodules of Ker g′ ∼= A ∈ CP . So we conclude

that B′ ∈ C ∩Gen t is a direct sum of regular and Prüfer modules belonging to the tubes⋃
x∈P Ux, cf. [53, 3.4 and 3.5]. But then also Ker g′ ∼= A ∈ CP must be of this form, a

contradiction. This proves that A ∈ QP .

Conversely, if X ∈ QP is almost torsionfree, then X /∈ CP = (
⋃
x∈P Ux)◦, so there is a

simple regular module Sx ∈
⋃
x∈P Ux with a non-zero map f : Sx → X. But then Sx ∼= X

by Lemma 2.3.3.

(2): We now turn to the case P 6= X, which is somehow dual to case (1), and pick a simple

regular module Sx ∈
⋃
x 6∈P Ux. First of all, observe that the generic module G ∈ t◦ ⊂ CP is

not almost torsion, since the exact sequence 0 → S−∞x → G → S∞x → 0 from [14, 2.4] yields a

proper quotient of G in CP . Then Sx ∈ CP is torsionfree, almost torsion:

(i) All proper quotients of Sx are in add q.

(ii) Let 0 → Sx → B → C → 0 be an exact sequence with B ∈ CP . Consider the canonical

exact sequence 0→ C ′ → C → C → 0 with C ′ ∈ QP and C ∈ CP and assume C ′ 6= 0. In

the pullback diagram:

0 // Sx
f ′
// B′

α

��

g′
// C ′

��

// 0

0 // Sx
f
// B

g
// C // 0

α is injective and then B′ ∈ CP . Moreover, B′ ∈ Gen t indeed, consider the following

diagram:

0 // t(B′)
i // B′

π // B′ // 0

0 // Sx
f ′
// B′

g′
// C ′ // 0

where the upper row is the canonical short exact sequence coming from the torsion pair

(Gen t,F). Suppose that B′ 6= 0. The composition πf ′ = 0, because Sx ∈ Gen t and

B′ ∈ F . From this we obtain that Ker g′ = Im f ′ ⊆ Kerπ, therefore there is a nonzero

map from C ′ to B′. This is a contradiction, since C ′ ∈ QP ⊆ Gen t and B′ ∈ F . Hence

B′ = 0 and B′ ∈ Gen t.

So we have that B′ ∈ CP ∩Gen t is a direct sum of regular and Prüfer modules belonging

to the tubes
⋃
x/∈P Ux and therefore also C ′ ∼= B′/Sx ∈ QP must be of this form. This is

a contradiction. This proves that C ∈ CP .
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For the converse implication, it suffices to prove tha,t for any almost torsion module X ∈ CP ,

there is a simple regular module Sx ∈
⋃
x 6∈P Ux with HomΛ(Sx, X) 6= 0. Indeed, this would

imply X ∼= Sx by Lemma 2.3.3.

So, let us assume that such Sx does not exist. Then X ∈ t◦, and by [53, 6.6] there is a short

exact sequence

0→ X
f→ G(α) → Z → 0

where G(α) ∈ CP and thus, by property (ii), also Z belong to CP . Moreover, X /∈ p, because

every P ∈ p is the first term of a short exact sequence 0→ P → P ′ → Sx → 0 with P ′ ∈ p ⊂ CP
and a simple regular module Sx ∈

⋃
x∈P Ux ⊂ QP . Furthermore, X is indecomposable, since if it

is not it would have a proper quotient in CP . Moreover X ∈ ◦p, because if there is a nonzero map

X → P , with P ∈ p, then X has a direct summand in p, but X is indecomposable, so X ∈ p,

contradiction. It follows that X ∈ ◦t. In fact, any 0 6= h : X → Sx with Sx simple regular would

have to be a proper epimorphism with Sx ∈ QP . But then Ext1
Λ(Z, S) ∼= DHomΛ(Sx, Z) = 0,

and h would factor through f , contradicting the fact that HomΛ(G,Sx) = 0. So we conclude

that X belongs to t◦ ∩ ◦t = AddG (see Section 3.2.1). But then X ∼= G, which is impossible as

we have observed above.

(3): Assume P = ∅. Then QP = Add q, and every Q ∈ q is the end-term of a short exact

sequence 0→ Sx → Q′ → Q→ 0, where Q′ ∈ q and Sx /∈ q is simple regular, so Q is not almost

torsionfree. Moreover, all simple regular modules are torsionfree, almost torsion by (2).

(4): It remains to check the case P = X. Then the torsion pair is (Gen t,F), where F = t◦ and

G is torsionfree, almost torsion. Indeed, G ∈ F , and

(i) If g : G→ B is a proper epimorphism, and 0→ B′ → B → B → 0 is the canonical exact

sequence with B′ ∈ Gen t and 0 6= B ∈ F , then B ∈ F ∩ ◦t = AddG (see Section 3.2.1).

So G
g→ B → B is a morphism over a simple artinian ring Q, which is Morita equivalent

to EndΛ(G) (see [23] and [5, 1.7 and 1.8] for the details). Thus, G
g→ B → B a split

monomorphism, which is a contradiction. Hence B ∈ Gen t.

(ii) If 0 → G
f→ B → C → 0 is an exact sequence with B ∈ F , applying HomΛ(Sx,−), with

Sx a simple regular module, we obtain an exact sequence:

HomΛ(Sx, B)→ HomΛ(Sx, C)→ Ext1
Λ(Sx, G) ∼= DHomΛ(G,Sx)

where the first and third term are zero, showing that C ∈ F .

Conversely, if X ∈ F is almost torsion, then X is cogenerated by G, hence HomΛ(X,G) 6= 0,

and X ∼= G by Lemma 2.3.3.

Finally, to prove that the injective coresolutions have the stated form, we apply Proposition

2.3.8 first to the special CP -cover 0→ S−∞x → S−∞x → Sx → 0 of Sx ∈
⋃
x∈P Ux and then to the

special CP⊥-envelope 0→ Sx → S∞x → S∞x → 0 of Sx ∈
⋃
x/∈P Ux.

Remark 5.2.3. Recall from [63, Theorem 5.2] that AP is hereditary only if (QP , CP ) is a split

torsion pair. But if P is infinite and Sx is a simple regular in the tube Ux, then by [58,
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Proposition 5] there is a non-split exact sequence 0 →
⊕

x∈P Sx →
∏
x∈P Sx → G(α) → 0 with⊕

x∈P Sx ∈ QP and G(α) ∈ t◦ ⊂ CP .

5.3 Atom spectrum of the hearts

After the description of the simple objects in the different hearts arising from the torsion pairs

in Mod-Λ, we compute the atom spectrum of these hearts.

As a notation for the whole section, we denote by P̄ the complement of P inside X and, again,

B = Mod-Λ. We distinguish tho cases: first, when P ( X (which includes the case P = ∅) and

second, when P = X.

5.3.1 Case P ( X

We focus on the torsion pair TP = (QP , CP ) generated by the set
⋃
x∈P Ux ∪ q and cogenerated

by the cotilting module CP defined in Table 5.1.

By Lemma 4.1.9 there is an injection between ASpec(AP ) and Spec(AP ) which, by Proposition

2.2.4, is equal to the set of the indecomposable objects in Prod(CP [1]). If P = ∅, then, by

Theorem 4.1.10, this injection is actually a bijection.

By Theorem 5.2.2, the simple objects in AP are:

{Sx | Sx simple regular in
⋃
x∈P
Ux} ∪ {Sx[1] | Sx simple regular in

⋃
x∈P̄

Ux}

and these are monoform by Proposition 4.1.3(i), clearly not atom-equivalent.

Again by Theorem 5.2.2, the injective envelope of Sx, for x ∈ P is S−∞x [1], and the injective

envelope of Sx[1], for x ∈ P̄ is S∞x [1].

This is not the complete list of monoform objects in AP . Recall that, as in Remark 3.2.11, we

can decompose the subcategory T = lim−→ t as a coproduct of categories T (x) = lim−→Ux. We have:

Proposition 5.3.1. G[1] is a monoform object in AP = B(QP , CP ).

Proof. By [3, Corollary 5.8], in AP there is a hereditary torsion pair TP̄ = (TP̄ ,FP̄ ), where:

TP̄ =
∐
x∈P̄

T (x)[1] and FP̄ = CogenCP̄ [1].

Clearly G[1] ∈ FP̄ . Let Z be a proper quotient of G[1]. Hence Z ∈ CP [1], since CP [1] is a torsion

class in the heart, meaning that Z = C[1] for some C ∈ CP . Therefore, by Lemma 2.3.5, the

proper epimorphism h[1] : G[1] → C[1] in AP comes from a morphism in Mod−Λ, h : G → C,

with Cokerh ∈ QP and Kerh 6= 0. The latter comes from the fact that the exact sequence

0→ Kerh→ G
h̄→ Imh→ 0 is in CP , therefore 0→ Kerh[1]→ G[1]

h̄[1]→ Imh[1]→ 0 is in CP [1]

and h[1] is a proper epimorphism, so Kerh[1] 6= 0.
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In B we have the sequence:

0 // Kerh // G
h //

h̄ "" ""

C // Cokerh // 0

Imh
. �

<<

Since G ∈ D = ◦t, which is a torsion class, and C ∈ CP , which is a torsionfree class, we have

that Imh ∈ CP ∩ D, ie. Imh ∈ ω but its Prüfer summands come only from ω0(x), with x ∈ P̄
(see Theorem 3.2.5 and Remark 3.2.11). So we have:

Imh = G(α) ⊕
⊕
x∈P̄

S∞x
(βx),

for some cardinals α, βx. Moreover,

Kerh =
⋂
α

KerπG ∩
⋂
x∈P̄

⋂
βx

Kerπx,

where πG and πx are the corestrictions of the map h̄ to the different copies of G and S∞x (for

x ∈ P̄ ) respectively. Now, if G is a direct summand of Imh, πG is an isomorphism, KerπG = 0

and Kerh = 0, but this is a contradiction, since Kerh 6= 0.

Therefore, Imh has no nonzero direct summands from Add(G), hence:

Imh =
⊕
x∈P̄

S∞x
(βx) ∈

∐
x∈P̄

T (x) ⊆ Gen t.

From the short exact sequence 0 → Imh → C → Cokerh → 0 we have that C ∈ Gen t ∩ CP ,

therefore C ∈
∐
x∈P̄ T (x) and so C[1] = Z ∈ TP̄ .

Therefore, we have seen that any proper quotient of G[1] is in TP̄ , which means that G[1] is

TP̄ -cocritical and so monoform by Proposition 4.1.7.

Remark 5.3.2. Notice that G[1] is not atom-equivalent to any simple object in AP , since, if it

is atom-equivalent to one of them then, by Lemma 4.1.5, their injective envelopes should be

isomorphic, and this is a contradiction.

We can now describe the atom spectrum of AP , as follows:

ASpec(AP ) = G[1] ∪ {Sx | Sx simple regular Λ-module in
⋃
x∈P
Ux}∪

∪ {Sx[1] | Sx simple regular Λ-module in
⋃
x∈P̄

Ux}.

This shows that the injection between ASpec(AP ) and Spec(AP ) is actually a bijection also

when ∅ 6= P ( X, and the description of the atom spectrum is complete.

The partial order in ASpec(AP ) is the following: the singletons {Sx[1]} and {Sx} are open

by Proposition 4.2.5(1), and, by Proposition 4.2.7(1), the corresponding atoms are maximal.

Moreover, G[1] ≤ Sx[1], for any simple regular in
⋃
x∈P̄ Ux, indeed: let H be a monoform object
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in AP such that H = G[1], then H and G[1] have a common nonzero subobject Y . For a simple

regular module, we have the short exact sequence in AP : 0 → S−∞x [1] → G[1] → S∞x [1] → 0.

Let Z be a pullback in the following diagram:

0 // Z //� _

��

Y //� _

��

Y/Z //
� _

��

0

0 // S−∞x [1] // G[1] // S∞x [1] // 0

where the last vertical arrow is a monomorphism by [61, Proposition IV.5.1]. We have: Y/Z �

Y ↪→ H and since S∞x [1] is uniserial and Y/Z ⊆ S∞x [1], Sx[1] ⊆ Y/Z. This means that Sx[1] ∈
ASuppY ⊆ ASuppH (see Proposition 4.2.2(1)). By Proposition 4.2.6, we reach the conclusion.

When P 6= ∅, let us suppose that G[1] ≤ Sx, for Sx ∈
⋃
x∈P t, then, by Proposition 4.2.6(3),

we have that Sx ∈ ASuppG[1], therefore Sx is atom equivalent to a subobject of a proper

quotient object of G[1], but in Proposition 5.3.1 we have seen that any proper quotient of G[1]

belongs to the hereditary torsion class
∐
x∈P̄ T (x)[1], and so Sx has to be in there too. This is

a contradiction.

5.3.2 Case P = X

Consider now the torsion pair generated by t, TX = (Gen t,F), in B, which is cogenerated by

the cotilting module CX defined in Table 5.1.

Also here we have an injective map between ASpec(AX) and Spec(AX), which corresponds, by

Proposition 2.2.4, to the set of indecomposable objects in Prod(CX[1]). From Theorem 5.2.2,

we know that the simple objects in AX are G[1] and Sx, for any simple regular Λ-module in t,

and these are, by Proposition 4.1.3(1), all monoform objects, clearly not atom-equivalent. Their

injective envelopes are, respectively, G[1] and S−∞x [1], for any x ∈ X. Therefore we can conclude

that the atom spectrum is:

ASpec(AX) = G[1] ∪ {Sx | Sx simple regular Λ-module}.

Therefore, also in this case, ASpec(AX) and Spec(AX) are in bijection.

Notice that any singleton {α}, for α ∈ ASpec(AX), is open by Proposition 4.2.5(1). Therefore,

the topology on ASpec(AX) is discrete.

5.4 Gabriel dimension of the hearts

In this Section, we aim to prove that AP = B(QP , CP ) and AX = B(Gen t, t◦) are Gabriel

categories.

If P = ∅, then A∅ = B(Q, C) = QcohX. This is a locally noetherian Grothendieck category,

as we will see in Chapter 6, hence by Proposition 1.6.15, A∅ is a Gabriel category and we

will compute its Gabriel dimension. In the remaining two cases, ie. when P 6= ∅, we do not

have the locally noetherianness for the hearts AP but the bijection between ASpec(AP ) and
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Spec(AP ) still holds. As mentioned in Chapter 4, Theorem 4.1.10 has been generalized for

Gabriel categories in [65], therefore it is reasonable to think that also AP , for P 6= ∅, is a

Gabriel category. We will compute directly its Gabriel dimension.

Recall that, as seen in Definition 1.6.1, a class of objects S of an abelian category A is a Serre

subcategory if it is closed under subobjects, quotient objects and extensions. S is a localizing

subcategory of A if it is a Serre subcategory and it is closed under arbitrary direct sums, ie. it

is a hereditary torsion class.

In order to compute the Gabriel dimension of the hearts, we distinguish three cases: P = ∅,

∅ 6= P ( X and P = X.

5.4.1 Case A = B(Q, C)

As we have seen in Section 5.3.1, A is equivalent to QcohX and therefore a locally noetherian

Grothendieck category. By Proposition 1.6.15, A is a Gabriel category.

We build the Gabriel filtration step by step. Recall that, for a class of objects X in A, we denote

by 〈X 〉htor the smallest hereditary torsion class containing X .

Set G−1 = {0}. We have, by definition:

G0 = 〈{X ∈ A | X is simple in A}〉htor

therefore, using Theorem 5.2.2:

G0 = 〈{Sx[1] | Sx simple regular Λ-module}〉htor.

Following [3, Section 5.2], G0 = T [1], where T = lim−→ t (see Proposition 3.2.3), and the corre-

sponding torsionfree class is G0
◦ = lim−→(q ∪ p[1]).

The next step is:

G1 = 〈G0 ∪ {X ∈ A | Q0(X) is simple in A/G0}〉htor

where Q0 : A → A/G0 is the quotient functor. By Lemma 1.6.12, we have that the objects in

A which become simple objects in A/G0 are precisely the 0-cocritical objects, ie. the cocritical

objects with respect to the torsion pair T0 = (G0,G0
◦). By Proposition 5.3.1, G[1] is monoform,

hence it is 0-cocritical via Remark 4.1.8. We claim the following:

Lemma 5.4.1. If X is a 0-cocritical object in A, then Q0(X) ∼= Q0(G[1]).

Proof. If X ∈ A is a 0-cocritical object, then, Q0(X) is simple in A/G0 and moreover, by Remark

4.1.8, X is monoform in A.

Since we have a complete description of ASpec(A), we have that either X ∈ Sx[1] or X ∈ G[1]:

the first is not possible, because, if it is true, then X and Sx[1] have a common nonzero subobject,

but Sx[1] is simple, then Sx[1] ⊆ X, which is a contradiction since HomA(Sx[1], X) = 0 (recall

that Sx[1] ∈ G0 and X ∈ G0
◦). Then X ∈ G[1], ie. there is an object Y ∈ A such that

X ⊇ Y ⊆ G[1]. This means that, in the quotient category A/G0, Q0(X) ⊇ Q0(Y ) ⊆ Q0(G[1]).

But Q0(X) is simple in A/G0 and, by Lemma 1.6.12, Q0(G[1]) is simple too, therefore Q0(X) ∼=
Q0(G[1]).

72



So we have G1 = 〈G0 ∪G[1]〉htor.

Theorem 5.4.2. If A = G(Q, C), then GdimA = 1.

Proof. Consider the algebra Λ as a Λ-module. Since Λ ∈ p (Λ is the direct sum of the projective

Λ-modules), Λ ∈ F = t◦. By Theorem 3.2.4, we have the ω-envelope of Λ, which is injective

since Λ ∈ C: 0 → Λ → M → M ′ → 0, where M ∈ ω and M ′ ∈ ω0, ie. M ′ is a direct sum of

Prüfer modules.

Since Λ ∈ F , also M ∈ F which means that M ∈ F ∩ ω = Add(G). So we have a short exact

sequence entirely lying in C:
0→ Λ→ G(α) →M → 0

that gives rise to a short exact sequence in A, entirely lying in C[1]:

0→ Λ[1]→ G(α)[1]→M [1]→ 0.

Now, since G(α)[1] ∈ G1 and G1 is closed under subobjects, we have Λ[1] ∈ G1. For the same

reason, the family {Z | Z ⊆ (Λ[1])n, n ∈ N} is contained in G1 and this, by [17, Lemma 3.4], is

a family of generators for A, therefore G1 = A. This means that the Gabriel filtration stops at

G1, therefore GdimA = 1.

5.4.2 Case AP = B(QP , CP )

Let us move to the category AP , for ∅ 6= P ( X. Set G−1 = {0} and, by definition, we have:

G0 = 〈{X ∈ AP | X is simple in AP }〉htor

thus, by Theorem 5.2.2:

G0 = 〈{Sx | Sx simple regular in
⋃
x∈P
Ux} ∪ {Sx[1] | Sx simple regular in

⋃
x∈P̄

Ux}〉htor.

It is clear that all the modules in the ray of Sx, for x ∈ P , are in G0, therefore the Prüfer modules

S∞x , for x ∈ P , are in G0. The same argument can be applied to the ray of Sx[1], for x ∈ P̄ ,

therefore S∞x [1] ∈ G0, for x ∈ P̄ .

The next torsion class in the Gabriel filtration is:

G1 = 〈G0 ∪ {X ∈ AP | Q0(X) is simple in AP /G0}〉htor

where Q0 : AP → AP /G0 is the quotient functor. By Lemma 1.6.12, the simple objects in A/G0

are precisely the cocritical objects with respect to the torsion pair T0 = (G0,G0
◦), ie. the 0-

cocritical objects. Consider the torsion pair (TP̄ ,FP̄ ) defined in the proof of Proposition 5.3.1,

where:

TP̄ =
∐
x∈P̄

T (x)[1] and FP̄ = CogenCP̄ [1].
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It is clear that TP̄ ⊆ G0, hence G[1] is 0-cocritical. Moreover, with the same argument as in

Lemma 5.4.1, we can prove that if X ∈ AP is a 0-cocritical object, then Q0(X) ∼= Q0(G[1]).

In conclusion we have:

G1 = 〈G0 ∪G[1]〉htor.

Theorem 5.4.3. If AP = G(QP , CP ), then GdimAP = 1.

Proof. We consider, as in Theorem 5.4.2, the Λ-module Λ. Consider, as before, the ω-envelope

of Λ: 0 → Λ → M → M ′ → 0 and, since Λ ∈ F , this short exact sequence is actually:

0→ Λ→ G(α) →M ′ → 0, with M ′ ∈ ω0. Consider the canonical sequence given by the torsion

pair (QP , CP ) for M ′, 0 → t(M ′) → M ′ → M ′/t(M ′) → 0, where t is the torsion radical, and

denote with Y the pullback of the maps G(α) →M ′ and t(M ′)→M ′. We obtain the following

commutative diagram:

0

��

0

��

0 // Λ // Y

��

// t(M ′)

��

// 0

0 // Λ // G(α)

��

//M ′

��

// 0

M ′/t(M ′)

��

M ′/t(M ′)

��

0 0

where t(M ′) ∈ QP , M ′/t(M ′) ∈ CP and Y ∈ CP since G(α) ∈ CP . Moreover, since M ′ ∈ ω0,

we can write M ′ as a direct sum of copies of Prüfer modules, therefore t(M ′) is a direct sum of

Prüfer modules lying in
∐
x∈P T (x). So, the upper row becomes

0→ Λ→ Y →
⊕
x∈P

S∞x
(βx) → 0

and gives rise to a short exact sequence in AP :

0→
⊕
x∈P

S∞x
(βx) → Λ[1]→ Y [1]→ 0

with
⊕

x∈P S
∞
x

(βx) ∈ G0. From the short exact sequence 0 → Y → G(α) → M ′/t(M ′) → 0,

which is entirely in CP , we obtain a short exact sequence in AP :

0→ Y [1]→ G(α)[1]→M ′/t(M ′)[1]→ 0

showing that Y [1] ∈ G1. Therefore, by the extension closure property of G1, Λ[1] ∈ G1. From

[17, Lemma 3.4] we know that the heart AP has a set of generators {Z | Z ⊆ (Λ[1])n, n ∈ N},
which is, therefore, entirely in G1 and so G1 = AP , showing that GdimAP = 1.
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5.4.3 Case AX = B(Gen t,F)

Let now P = X. By Theorem 5.2.2, the simple objects in AX are G[1] and Sx, for x ∈ X.

Therefore, setting G−1 = {0}, we obtain:

G0 = 〈{Sx | Sx simple regular} ∪ {G[1]}〉htor.

It is clear that all the objects in the ray of Sx, for any x ∈ X, are in G0, and hence all the Prüfer

objects S∞x ∈ G0, for any x ∈ X.

As in the previous section, we can show that the object Λ[1] is in G0. Take the ω-envelope of

the regular module Λ ∈ F :

0→ Λ→ G(α) →M → 0.

The first two terms of this short exact sequence are in F and M ∈ ω0 ⊆ Gen t, therefore, there

is a short exact sequence in the heart AX:

0→M → Λ[1]→ G(α)[1]→ 0.

Since M is a direct sum of Prüfer objects, M ∈ G0, hence Λ[1] ∈ G0. This means that the set

{Z | Z ⊆ (Λ[1])n, n ∈ N} of generators of the heart given by [17, Lemma 3.4] is entirely in G0

showing that G0 = AX and GdimAX = 0.

We summarize all the results obtained in Sections 5.3 and 5.4 in the following Theorem.

Theorem 5.4.4. Let G = Mod-Λ, with Λ the Kronecker algebra. Consider P ⊆ X and let CP

be the infinite dimensional cotilting module, together with its corresponding cotilting torsion pair

(QP , CP ), as in Table 5.1. Let AP = G(QP , CP ). We have the following:

• If P ( X, then GdimAP = 1 and

ASpec(AP ) = G[1]∪{Sx | Sx simple regular
⋃
x∈P
Ux}∪{Sx[1] | Sx simple regular

⋃
x∈P̄

Ux}.

• If P = X, then GdimAX = 0 and

ASpec(AX) = G[1] ∪ {Sx | Sx simple regular Λ-module}.
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Chapter 6

Weighted noncommutative regular

projective curves

In this chapter we describe the category of quasi-coherent sheaves over a noncommutative curve

X. First, we consider only the category of coherent (ie. finitely generated) sheaves over X and

we give an axiomatic description of it. Here, classes of sheaves can be distinguished by a notion

of slope, which is a rational number or infinity. We define the slope of a sheaf E as the ratio of

two integer numbers, degree and rank of E, which are linear forms on the Grothendieck group of

the category. Afterwards, we specialize on tubular curves, which are weighted noncommutative

curves with orbifold Euler characteristic equal to 0. The category QcohX of quasi-coherent

sheaves over a tubular curve X is derived equivalent to the category of modules over a tubular

algebra, seen in Chapter 3. We will describe QcohX at the very end of the chapter, where we

focus on the torsion pairs in it and on the sheaves of irrational slope.

Throughout the whole chapter, we fix an algebraically closed field k.

6.1 Coherent sheaves over a noncommutative curve

Axioms 6.1.1. A noncommutative curve X is given by the category of coherent sheaves over

X itself, we call it H = cohX. It formally behaves like a category of coherent sheaves over a

regular projective curve over k (see [42]):

(NC1) H is small, connected, abelian and every object in H is noetherian,

(NC2) H is a k-category with finite-dimensional Hom- and Ext-spaces,

(NC3) There is an autoequivalence τ on H, called the Auslander-Reiten translation, such that

the Serre duality

Ext1
H(X,Y ) = DHomH(Y, τX)

holds, where D = Homk(−, k) is the vector space duality. (In particular H is then heredi-

tary),

(NC4) H contains an object of infinite length.

Assume H satisfies (NC1) to (NC4). We denote by H0 the class of the indecomposable sheaves
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of finite length, called the torsion sheaves, and by H+ the class of the indecomposable sheaves

without simple subsheaves, called the vector bundles (or torsionfree sheaves), denoted also by

vectX. The pair (addH0, addH+) is, indeed, a torsion pair.

Proposition 6.1.2. [49, Proposition 1.1] Each indecomposable coherent sheaf in H either be-

longs to H0 or to H+. Moreover, we have

H0 =
∐
x∈X
Ux,

where each Ux is a connected uniserial length category.

Assume that H satisfies also the following condition:

(NC5) X consists of infinitely many points.

Then we call X a weighted noncommutative regular projective curve over k. It is shown in [42]

that, in this case, X satisfies also the following condition:

(NC6) For any x ∈ X there is an integer number p(x) ≥ 1, called weight, that denotes, up to

isomorphisms, the number of simple objects in Ux and we have p(x) = 1 for all x ∈ X up

to finitely many.

Let {x1, . . . , xt} be finite set of the points in the curve X such that p(xi) > 1 for any 1 ≤ i ≤ t.
The weight type of the curve X is a vector (p1, . . . , pt), where pi = p(xi), for 1 ≤ i ≤ t.
For x ∈ X, the connected uniserial length categories Ux, appearing in Proposition 6.1.2, are

called tubes. We can classify the tubes with respect to the weight of the corresponding point x.

• For p(x) = 1: Ux is said of rank 1 and it is called homogeneous. There is only one simple

object Sx in Ux and it satisfies Ext1
H(Sx, Sx) 6= 0 (equivalently τSx ∼= Sx).

• For p(x) > 1: Ux is said of rank p(x) and it is called exceptional. The set of all p(x)

simple objects in Ux is given by the Auslander-Reiten orbit, {Sx, τSx, . . . , τp(x)−1Sx}, with

Sx = τp(x)Sx and Ext1
H(Sx, Sx) = 0.

More generally, a coherent sheaf E ∈ H is called exceptional if E is indecomposable and

Ext1
H(E,E) = 0. It follows, from an argument by Happel and Ringel, that in this case End(E)

is a skew field. It is easy to see that the exceptional sheaves in Ux are only the indecomposable

of length smaller than p(x)− 1, which makes sense only if p(x) > 1. This means that there are

only finitely many exceptional sheaves of finite length.

If p(x) = 1 for all x ∈ X, then X is called a non-weighted noncommutative regular projective

curve over k. Notice that a non-weighted curve is a particular case of a weighted curve. Indeed,

this definition can be rephrased in the following way: X is a non-weighted noncommutative

regular projective curve if the category H = cohX satisfies (NC1) to (NC5) and additionally

(NC6’) Ext1
H(S, S) 6= 0 (equivalently τS ∼= S) for any simple object S ∈ H.

The condition (NC6’) implies the fact that p(x) = 1 for all x ∈ X.

Let us consider another condition:
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(g-0) H admits a tilting object.

It has been shown in [47] that this condition implies the existence of a tilting object Tcan ∈ H+,

called canonical, whose endomorphism algebra is a canonical algebra, in the sense of [57].

If H satisfies (NC1) to (NC4) and (g-0), then X is called a noncommutative curve of genus zero

(or exceptional curve). In this case the condition (NC5) is automatically satisfied (see [39]).

The Grothendieck Group

For an object X ∈ H, denote by [X] the isomorphism class of X in H. We define K0(H),

the Grothendieck group of H, as the free abelian group generated by the set {[X] | X ∈ H},
modulo the additivity relation on short exact sequences, ie. for any short exact sequence in H,

0→ X → Y → Z → 0, we have [Y ] = [X] + [Z].

As mentioned above, for X of genus zero, H admits a tilting object whose endomorphism ring is

a canonical algebra, therefore the Grothendieck group K0(H) is a finitely generated free abelian

group (see [41, 47]).

K0(H) is equipped with the Euler form, which is a bilinear form over k, defined on isoclasses of

objects X,Y ∈ H by:

〈[X], [Y ]〉 = dimk HomH(X,Y )− dimk Ext1
H(X,Y ).

To ease the notation we write 〈X,Y 〉, without the brackets. It is easy to see from the Serre

duality that 〈X,Y 〉 = −〈Y, τX〉 and since τ is an autoequivalence, we have 〈X,Y 〉 = 〈τX, τY 〉.

Rank and line bundles

Since H0 is a Serre subcategory of H, we consider the quotient category H/H0 and let π : H →
H/H0 be the quotient functor, which is an exact functor. In [49, Proposition 3.4], it is proven

that H/H0 is equivalent to the category mod−k(H) of finite dimensional modules over the

function field k(H) of X, which is a skew field.

For a coherent sheaf F , we define the rank of F by the following formula:

rk(F ) := dimk(H)(πF ).

The rank is additive on short exact sequences, meaning that for any short exact sequence

0→ E → F → G→ 0, we have:

rk(F ) = rk(E) + rk(G).

Therefore, it induces a linear form rk: K0(H)→ Z on the Grothendieck group of H.

The finite length objects are precisely the objects of rank zero, ie. rk(H0) = 0, and every object

in H+ has positive rank. Moreover, by [45, §10.2(H 5), Remark 10.2(ii)], the rank is τ -invariant.

We call line bundles the vector bundles of rank one. A line bundle L is called special if for each

x ∈ X there is (up to isomorphism) precisely one simple sheaf Sx with Ext1
H(Sx, L) 6= 0.
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Remark 6.1.3. Notice that, since Sx is in a tube of rank p(x) and it is such that Sx ∼= τp(x)Sx,

using Serre duality, we can say that a line bundle is special if, for any x ∈ X, there is precisely

one 0 ≤ j ≤ p(x) − 1 such that HomH(L, τ jSx) 6= 0. Moreover, it is clear that, for the j as

above, 0 6= HomH(L, τ jSx) = HomH(L, τ j+np(x)Sx) for any n ∈ Z.

If X is a noncommutative curve of genus zero, then every line bundle is an exceptional sheaf (see

[39, Chapter 8]). Furthermore:

Proposition 6.1.4. [49, Lemma 1.3, Proposition 1.6] Every non-zero morphism from a line

bundle L to a vector bundle is a monomorphism, and EndH(L) ∼= k. Every vector bundle has a

line bundle filtration.

From now on, we always consider a noncommutative regular projective curve H = cohX together

with a fixed special line bundle L, which is considered as the structure sheaf.

Remark 6.1.5. Without loss of generality, we can suppose that, for the structure sheaf L and

for any x ∈ X, HomH(L, τ jSx) 6= 0 if and only if j ≡ 0 mod p(x). Clearly, HomH(L, Sx) can

be regarded as a left End(Sx)-module and a right End(L)-module. If the field k is algebraically

closed, then:

dimEnd(L) HomH(L, Sx) = 1 and dimEnd(Sx) HomH(L, Sx) = 1.

For the details, we refer to [39, 46].

The average Euler form

Let X be a weighted noncommutative regular projective curve and let (p1, . . . , pt) be the weight

type of X. Denote by p̄ the least common multiple of p1, . . . , pt. We define the average Euler

form as

〈〈E,F 〉〉 =

p̄−1∑
j=0

〈τ jE,F 〉 =

p̄−1∑
j=0

dim Hom(τ jE,F )− dim Ext1(τ jE,F ).

Remark 6.1.6. Consider a simple sheaf Sx in a tube Ux of rank p(x). Then, for a coherent sheaf

E ∈ H and since τ is an autoequivalence, we have:

〈〈E,Sx〉〉 =

p̄−1∑
j=0

〈τ jE,Sx〉 =

p̄−1∑
j=0

〈E, τ−jSx〉.

Recall that the τ -orbit of Sx is periodic with period p(x) and that p̄ is a positive integer multiple

of p(x). Therefore, we can rewrite the last sum as:

〈〈E,Sx〉〉 =

p̄−1∑
j=0

〈E, τ−jSx〉 =

p̄−1∑
j=0

〈E, τ jSx〉.

Clearly, this result holds also for 〈〈E,F 〉〉, with F ∈ H0.
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Numerical invariants and representation type

An important numerical invariant for the weighted curve X is the so called orbifold (or virtual)

genus of X, which is defined as (when k is an algebraically closed field):

gorb(X) = 1 +
p̄

2

(
t∑
i=1

(
1− 1

pi

)
− 2

)
.

See [42, Corollary 13.16]. The orbifold genus of X is strictly related to another important

invariant, called the orbifold Euler characteristic, χ′orb(X), defined via the average Euler form,

which is used to determine the representation type of the category H = cohX, we refer to [42,

Chapter 13] for the precise definition. Following [42, Chapter 13], this classification holds:

• χ′orb(X) > 0 (equivalently: gorb(X) < 1): X is domestic.

• χ′orb(X) = 0 and X is non-weighted: X is elliptic.

• χ′orb(X) = 0 and X is weighted (equivalently: gorb(X) = 1): X is tubular.

• χ′orb(X) < 0 (equivalently: gorb(X) > 1): X is wild.

Degree and slope

Let X be a noncommutative regular projective curve and let (p1, . . . , pt) be the weight type of

X, when weighted. Denote by p̄ = l.c.m.{pi}ti=1.

Definition 6.1.7. For an object F ∈ H, we define the degree function deg : K0(H)→ Z as:

deg(F ) = 〈〈L,F 〉〉 − rk(F )〈〈L,L〉〉

Clearly, deg(L) = 0 and deg is positive and τ -invariant on sheaves in H0.

Remark 6.1.8 (Degree of simple sheaves). If Sx is a simple sheaf in Ux, then p̄ = l.c.m.{pi}ti=1 is

an integer multiple of p(x). Set p̄ = mp(x) for m ∈ Z>0. We have:

deg(Sx) = 〈〈L, Sx〉〉 − rk(Sx)〈〈L,L〉〉 = 〈〈L, Sx〉〉 =

p̄−1∑
j=0

〈L, τ jSx〉 =

=

p̄−1∑
j=0

dimk Hom(L, τ jSx)− dimk Ext1(L, τ jSx) = (Hom(H0,H+) = 0)

=

p̄−1∑
j=0

dimk Hom(L, τ jSx) = m

p(x)−1∑
j=0

dimk Hom(L, τ jSx) = (Remarks 6.1.3 and 6.1.5)

= m.

Therefore:

deg(Sx) =
p̄

p(x)
.

Definition 6.1.9. Let F be a non-zero coherent sheaf in H. The slope of F , denoted by µ(F ),
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is defined as the ratio:

µ(F ) =
deg(F )

rk(F )
.

The slope of a sheaf is an element in Q̂ = Q ∪ {∞} and the sheaves of slope ∞ are the ones in

H0 (ie. of rank 0). Moreover, F is called semistable (resp. stable) if for every non-zero proper

subsheaf F ′ ⊆ F we have µ(F ′) ≤ µ(F ) (resp. µ(F ′) < µ(F )).

Proposition 6.1.10. Let 0→ E → F → G→ 0 be a short exact sequence in H, then:

(1) µ(E) ≤ µ(F ) if and only if µ(F ) ≤ µ(G),

(2) if µ(E) ≤ µ(G) then µ(E) ≤ µ(F ) ≤ µ(G).

These properties hold too if we replace ”≤” with ”<”.

Proof. It is clear using the definition of slope and the fact that degree and rank are additive on

short exact sequences.

Using the notion of (semi)stability for a sheaf, we can classify vector bundles in H (we refer to

[26, Proposition 5.5], [42], [39, Proposition 8.1.6], [49])

Theorem 6.1.11. Let H = cohX be a weighted noncommutative regular projective curve over

k.

(1) If χ′orb(X) > 0 (domestic type), then every indecomposable vector bundle is stable and

exceptional. Moreover, H admits a tilting bundle.

(2) If χ′orb(X) = 0 (elliptic or tubular type), then every indecomposable coherent sheaf is

semistable. If X is tubular (ie. p̄ > 1), then H admits a tilting bundle. If X is elliptic

(ie. p̄ = 1), then every indecomposable coherent sheaf E is non-exceptional and satisfies

τE ∼= E.

(3) If χ′orb(X) < 0 (wild type), then every Auslander-Reiten component in H+ is of type ZA∞.

(H may or may not admit a tilting bundle).

Tubular curves

In this section, H will denote the category of coherent sheaves over a noncommutative regular

projective curve of tubular type X over an algebraically closed field k. We can completely

describe the shape of this category using again the notion of semistability. Notice that the next

result gives a similar description of the category of coherent sheaves over an elliptic curve, due

to Atiyah (see [7]).

Denote by tα the class of all indecomposable semistable sheaves in H of slope α ∈ Q̂. In

particular, t∞ coincides with H0. We have:

Theorem 6.1.12. Let X be a noncommutative regular projective curve of tubular type. Then

the following holds:
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(i) For each α ∈ Q̂, the category add tα is an exact abelian subcategory of H, closed under

extensions, under the Auslander-Reiten translation τ and it is equivalent to the category

H0, ie. every F ∈ add tα is of finite length in tα and there is a decomposition:

tα =
∐
x∈X
Uα,x

where Uα,x is a connected uniserial category with p(x) simple objects. Moreover, the simple

objects in add tα are the stable sheaves and if F is stable, Endk(F ) ∼= k.

(ii) Let F ∈ add tα and F ′ ∈ add tα′, for α, α′ ∈ Q̂. If α < α′, then HomH(F ′, F ) = 0.

(iii) We have:

H = add

∨
α∈Q̂

tα


meaning that H is the additive closure of all the tubular families tα and HomH(tα, tβ) = 0

for α > β.

Proof. (i) See [26, Proposition 5.2(i)(ii)], [26, Theorem 5.6(ii)(iii)] and [48, Theorem 4.4].

(ii) See [26, Proposition 5.2(iii)].

(iii) See [44, Theorem 2.2].

•∞

X

H0

•
α′

X

tα′

•
α

X

tα

Q

Hom

Figure 6.1: Tubular families in cohX.

Let (p1, . . . , pt) be the weight type of X and let p̄ = l.c.m.{pi}. Since X is tubular, the orbifold

genus of this curve is gorb = 1. Hence:

1 +
p̄

2

(
t∑
i=1

(
1− 1

pi

)
− 2

)
= 1.

By direct computation, it is possible to see that this happens if and only if the weight type

of X is (2,2,2,2), (3,3,3), (2,4,4) or (2,3,6). As one can notice, any weight type is completely

determined by the integer p̄, which can be 2, 3, 4 or 6, and every divisor of p̄ appears in the

weight type.

Remark 6.1.13. As we have seen, for each α ∈ Q̂, tα ∼= H0. Therefore, an indecomposable sheaf

in Uα,x is τ -periodic with period p(x). This allows us to extend the result in Remark 6.1.6 in
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such a way that, for any E,F ∈ H:

〈〈E,F 〉〉 =

p̄−1∑
j=0

〈τ jE,F 〉 =

p̄−1∑
j=0

〈E, τ jF 〉.

Proposition 6.1.14. If X is of tubular type, the degree function deg : K0(H)→ Z is τ -invariant

on H.

Proof. Let F ∈ H be an indecomposable in a tube Uα,x, therefore F is τ -periodic with period

p(x). We have:

deg(τF ) = 〈〈L, τF 〉〉 − rk(F )〈〈L,L〉〉

but:

〈〈L, τF 〉〉 =

p̄−1∑
j=0

〈τ jL, τF 〉 =

p̄−1∑
j=0

〈τ j−1L,F 〉 = 〈〈L,F 〉〉

since p̄ is a multiple of the τ -orbit of F . Hence:

deg(τF ) = 〈〈L, τF 〉〉 − rk(F )〈〈L,L〉〉 = 〈〈L,F 〉〉 − rk(F )〈〈L,L〉〉 = deg(F ).

Proposition 6.1.15. If X is of tubular type, any special line bundle L ∈ H belongs to a tube of

maximal rank in its tubular family, ie. in the tube of rank p̄ = l.c.m.{pi}.

Proof. Suppose L ∈ tα is not in a tube of maximal rank, so in a tube of rank p < p̄. This means

that L is τ -periodic with period p, ie. L ∼= τpL. By Remark 6.1.3, for any x ∈ X, there exists

precisely one j with 0 ≤ j ≤ p(x)− 1 such that HomH(L, τ jSx) 6= 0. This happens in particular

for x ∈ X such that the rank of the tube Ux is maximal, ie. p(x) = p̄, and, in this case, let j be

exactly the integer such that HomH(L, τ jSx) 6= 0. Applying τ , we get:

0 6= HomH(L, τ jSx) ∼= HomH(τL, τ j+1Sx) ∼= . . . ∼= HomH(τpL, τ j+pSx)

but HomH(τpL, τ j+pSx) ∼= HomH(L, τ j+pSx) = 0, since Sx is τ -periodic with period p̄ which is

strictly larger than p. This leads to a contradiction.

Proposition 6.1.16 (Riemann-Roch formula). [42, Theorem 13.8] For any E,F ∈ H, we have:

〈〈E,F 〉〉 = rk(E) deg(F )− deg(E) rk(F ).

Remark 6.1.17. Using the Riemann-Roch formula, it is easy to see that, for any E,F ∈ H:

−〈〈E,F 〉〉 = 〈〈F,E〉〉.

Notice that, if rk(E) 6= 0 6= rk(F ), we have that 〈〈E,F 〉〉 = rk(E) rk(F )(µ(F ) − µ(E)). From

this, it follows directly that:

Proposition 6.1.18. [2, Lemma 7.2] If E,F ∈ H are indecomposable coherent sheaves such

that µ(E) < µ(F ), then there exists j with 0 ≤ j ≤ p̄− 1 such that HomH(E, τ jF ) 6= 0.
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Proof. If E,F are indecomposables such that µ(E) < µ(F ), then, by definition of slope,

rk(E) deg(F )− deg(E) rk(F ) > 0. Hence, using the Riemann-Roch formula:

〈〈E,F 〉〉 =

p̄−1∑
j=0

dimk HomH(E, τ jF )− dimk Ext1
H(E, τ jF ) > 0

which means:
p̄−1∑
j=0

dimk HomH(E, τ jF ) >

p̄−1∑
j=0

dimk Ext1
H(E, τ jF ) ≥ 0

hence:
p̄−1∑
j=0

dimk HomH(E, τ−jF ) > 0

therefore, there is at least one j such that HomH(E, τ jF ) 6= 0

Corollary 6.1.19. Let E,F ∈ H be non-exceptional indecomposable coherent sheaves such that

µ(E) < µ(F ), then HomH(E,F ) 6= 0.

Bounded derived category of H

Since H is hereditary, the bounded derived category Db(H) is the repetitive category:

Db(H) = add

(∨
n∈Z
H[n]

)
= add

 ∨
(n,α)∈Z×Q̂

tα[n]


ie, Db(H) is the additive closure of copies ofH and [n] denotes the shift functor. For all X,Y ∈ H
and all m,n ∈ Z, we have:

HomDb(H)(X[n], Y [m]) ∼= Extm−nH (X,Y )

We define the Grothendieck group K0(Db(H)) of Db(H), in a similar fashion to K0(H), as the

abelian group generated by the isomorphism classes of complexes in Db(H) together with the

relations [X] + [Z] = [Y ] for any distinguished triangle X → Y → Z → X[1] in Db(H). There

is a canonical isomorphism between K0(H) and K0(Db(H)) which maps a class [X] ∈ K0(H) to

the class [X] ∈ K0(Db(H)) and assigns to the class [C] ∈ K0(Db(H)), for C = (Cn)n∈Z ∈ Db(H),

the element
∑

n∈Z(−1)n[Cn] ∈ K0(H).

We can extend the definition of the Euler form in K0(H) to stalk complexes in Db(H). Indeed,

let X,Y ∈ H, using the bilinearity of the Euler form, we have:

〈[X[n]], [Y [m]]〉 = 〈(−1)n[X], (−1)m[Y ]〉 = (−1)n+m〈[X], [Y ]〉.

We can also extend the definition of degree and rank to stalk complexes in Db(H). Indeed, for
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X ∈ H, using linearity:

deg([X[n]]) = deg([(−1)nX]) = (−1)n deg([X])

rk([X[n]]) = rk([(−1)nX]) = (−1)n rk([X])

Interval categories

The interval category H〈α〉, for α ∈ Q̂, is the full subcategory of Db(H) defined by:

H〈α〉 = add

∨
β>α

tβ ∨
∨
γ≤α

tγ [1]


This is the heart of the t-structure arising from the split torsion pair (Tα,Fα) in H given by:

Tα =
∨
β>α

tβ and Fα =
∨
γ≤α

tγ

From [39, Theorem 8.1.6], we have that H〈α〉 = cohX and clearly H〈α〉0 = tα[1] and Db(H) ∼=
Db(H〈α〉) (if the field k is not algebraically closed, H〈α〉 = cohXα, for some tubular curve Xα).

There is a rank function defined in K0(H〈α〉), namely rkα : K0(H〈α〉) → Z such that, for

F ∈ H〈α〉, rkα(F ) = r deg(F ) − d rk(F ), where d, r ∈ Z are coprime and α = d/r, see [39,

Proposition 8.1.6]. It is easy to see that:

rkα(F ) =

0, if and only if F ∈ tα[1]

n > 0, if and only if F ∈ H〈α〉+

This rank function induces a normalized rank function in H, rkα : K0(H)→ Z.

Moreover, a sequence 0 → E′ → E → E′′ → 0 with objects in H ∩ H〈α〉 is exact in H if and

only if it is exact in H〈α〉, indeed both condition are equivalent to E′ → E → E′′ → E′[1] being

a triangle in Db(H).

6.2 Quasi-coherent sheaves over a noncommutative curve

Let us consider a noncommutative regular projective curve X, so a category H = cohX satisfying

(NC1) to (NC6).

From [42, Lemma 3.5], H can be seen as a noncommutative noetherian projective scheme in

the sense of Artin-Zhang (see [6]) and it satisfies Serre’s Theorem. This means that there is a

positively H-graded noetherian ring R (where H is an ordered abelian group of rank one) such

that:

H ∼=
modH(R)

modH0 (R)
,

ie. H is the quotient category of the category of finitely generated H-graded R-modules modulo

the Serre subcategory of those modules which are finite-dimensional over k.
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With this description we define
#»H = QcohX, the category of quasi-coherent sheaves over X, as

the quotient category:
#»H ∼=

ModH(R)

ModH0 (R)
,

where ModH0 (R) denotes the localizing subcategory of ModH(R) of all the H-graded torsion,

ie. locally finite dimensional, modules. The category
#»H is a hereditary and locally noetherian

Grothendieck category, every object of
#»H is a direct limit of objects in H, ie.

#»H = lim−→H. The

category H is the full subcategory of coherent objects in
#»H, ie. H = fp(

#»H), by Proposition

1.1.18.

Moreover, we remark that
#»H can also be recovered from H as the category of left-exact (covari-

ant) k-linear functors from Hop to Mod−k (see [25, Théorème 1]).

Let τ be the Auslander-Reiten translation on H and let τ− be its (quasi-)inverse. It follows

from [38, Theorem 4.4] that in
#»H there is a generalized Serre duality in the following sense. For

all E ∈ H and all X ∈ #»H there are isomorphisms:

DExt1
#»H(E,X) ∼= Hom #»H(X, τE) and Ext1

#»H(X,E) ∼= DHom #»H(τ−E,X),

where D = Homk(−, k) denotes the vector space duality.

Tilting bundles and concealed-canonical algebras

Let X be a noncommutative curve of genus zero and consider H = cohX and
#»H = QcohX. Fix

a tilting bundle T ∈ H.

The endomorphism ring Λ = End(T ) is a concealed-canonical algebra and every concealed-

canonical algebra arises in this way (see [47]).

As an object in
#»H, T is a noetherian tilting object and it is a compact generator of D = Db( #»H).

The right derived functor of HomH(T,−) induces an equivalence of derived categories (see [26,

Theorem 3.2]):

RHomD(T,−) : Db(cohX)←→ Db(mod-Λ): −⊗L
ΛT

And therefore an equivalence of derived categories:

RHomD(T,−) : Db(QcohX)←→ Db(Mod-Λ): −⊗L
ΛT (6.1)

Moreover, the tilting torsion pair (T ,F) = (T⊥, T ◦) in H induces a torsion pair (F [1], T ) in

mod-Λ, which is actually the torsion pair (Q, C) defined in Section 3.2. This torsion pair is split

by [26, Corollary 3.10]. Therefore, it is possible to identify Mod-Λ with the full subcategory

Add(T ∪ F [1]) of Db(H).

Prüfer and adic sheaves

Let Sx be a simple sheaf in a tube Ux. The ray starting at Sx is the infinite sequence:

Sx ↪→ Sx,2 ↪→ Sx,3 ↪→ Sx,4 ↪→ . . .
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where Sx,n denotes the unique indecomposable coherent sheaf in Ux of length n with socle Sx,

the corresponding direct limit is the Prüfer sheaf S∞x . Dually, we define the coray ending at Sx

as the infinite sequence:

· · ·� Sx,−4 � Sx,−3 � Sx,−2 � Sx

where Sx,−n denotes the unique indecomposable coherent sheaf in Ux of length n with top Sx,

the corresponding inverse limit is the adic sheaf S−∞x .

From Theorem 6.1.12, we know that there is an equivalence between H0 and tα, for α ∈ Q̂,

therefore we can define the Prüfer and adic sheaves arising from rays and corays in tα. Indeed,

let Sx,α be a simple object in tα. The ray starting at Sx,α is the infinite sequence:

Sx,α ↪→ Sx,α,2 ↪→ Sx,α,3 ↪→ Sx,α,4 ↪→ . . .

where Sx,α,n denotes the unique indecomposable coherent sheaf in tα of length n with socle Sx,α,

the corresponding direct limit is the Prüfer sheaf S∞x,α. Dually we define the coray ending at

Sx,α and the adic sheaf S−∞x,α .

The sheaf of rational functions

Definition 6.2.1. A quasi-coherent sheaf G is called generic (in the sense of [44]) if it is non-

coherent and Hom #»H(T,G) and Ext1
#»H(T,G) have finite End(G)-length, where T is the tilting

module that gives the equivalence 6.1.

The sheaf K of rational functions is the injective envelope of the structure sheaf L of
#»H. This is

another indecomposable quasi-coherent, non-coherent sheaf. It is torsionfree, ie. Hom #»H(H0,K) =

0, by [40, Lemma 14], and it is a generic sheaf in the sense of [44]. Moreover, its endomorphism

ring is the function field, End #»H(K) ∼= EndH/H0
(πL) ∼= k(H).

Injective sheaves

A complete classification of injective sheaves has been done in [2]. Indeed we have the following:

Proposition 6.2.2. [2, Proposition 3.6] The indecomposable injective sheaves in
#»H are (up to

isomorphism) the sheaf of rational functions K (or generic sheaf) and the Prüfer sheaves S∞x ,

for any simple Sx ∈ H0.

It is clear that the Prüfer sheaves are the injective envelopes of the torsion sheaves in the

corresponding uniserial category in H0 and the generic sheaf K is the injective envelope of the

vector bundles.

Bounded derived category of
#»H

#»H = QcohX is a hereditary category, therefore, also in this case, the derived category Db( #»H) is

the repetitive category:

Db( #»H) = add

(∨
n∈Z

#»H[n]

)
.
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Every object in Db( #»H) can be written as
⊕

i∈I Xi[i], for a finite subset I ⊆ Z and Xi ∈
#»H for

all i. Moreover, for any coherent sheaf E,F ∈ H and any n,m ∈ Z:

HomDb( #»H)(E[n], F [m]) ∼= Extm−n#»H
(E,F )

Torsion pairs and slope of a quasi-coherent sheaf

Consider a noncommutative curve of genus zero X. Using the equivalence 6.1:

RHomD(T,−) : Db(QcohX)←→ Db(Mod-Λ): −⊗L
ΛT

between QcohX and Mod-Λ, given by a tilting sheaf T ∈ H, it is possible to transfer many

properties that hold for concealed-canonical algebras to the category of quasi-coherent sheaves

over X.

Let w ∈ R̂ = R ∪ {∞}. We define:

pw =
⋃
α<w

tα qw =
⋃
w<β

tβ,

where α, β ∈ Q̂. Notice that, if w is rational, we have a trisection in H, (pw, tw,qw), such that

Hom #»H(qw, tw) = Hom #»H(tw,pw) = Hom #»H(qw,pw) = 0.

If w is irrational, we have a bisection in H, (pw,qw), such that Hom #»H(qw,pw) = 0.

We define two classes:

Cw = qw
◦ and Bw = ◦pw

Remark 6.2.3. It is immediate to see that Cw is closed under direct limits, indeed: for any

direct system (Ei)i∈I in Cw and for any Q ∈ qw, Hom #»H(Q, lim−→Ei) ∼= lim−→Hom #»H(Q,Ei) = 0, by

Proposition 1.1.12. Therefore lim−→Ei ∈ qw
◦ = Cw.

Lemma 6.2.4. [2, Lemma 7.3][53, Proposition 1.5] For every w ∈ R̂ the pair (Qw, Cw), where

Qw = Gen(qw), is a torsion pair of finite type, which is split in case w ∈ Q̂.

Proof. For the convenience of the reader, we repeat the proof.

It follows from [53, Lemma 1.4] that Gen(qw) is closed under extension, indeed in the locally

noetherian setting the same proof works replacing ”finite length” by ”finitely presented”. Then,

by [53, Lemma 1.3], Gen(qw) = ◦(qw
◦) = ◦Cw, therefore the pair (Gen(qw), Cw) is a torsion pair,

which is of finite type by Remark 6.2.3.

Let now w ∈ Q̂. Consider a short exact sequence η : 0→ X → Y → Z → 0, with X ∈ Gen(qw)

and Z ∈ Cw. We can assume that X is a subobject if Y and that Z = Y/X. If Z is finitely

presented, then, by Serre duality, we have Ext1
#»H(Z,X) ∼= DHom #»H(X, τZ) and hence it is zero

by the property of the torsion pair. Hence η splits.

If Z ∈ Cw not finitely presented, let us consider the set of subobjects U of Y such that U ∩X = 0

and Y/(U +X) ∈ Cw. As shown in [53, Proposition 1.5], there is a maximal object U in this set

and Y = X ⊕ U and so η splits.
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Remark 6.2.5. The torsion pair (add qw, add(tw ∪ pw)) in H has a generating torsionfree class

for H by [45, Proposition 10.7], therefore, since
#»H is a locally noetherian Grothendieck category,

we can use Theorem 2.2.3 to prove that (Qw, Cw) is a cotilting torsion pair and Cw = Cogen Ww,

for a cotilting sheaf Ww.

The following is similar to Lemma 3.3.2 for concealed canonical algebras:

Lemma 6.2.6. [2, §7] Let w ∈ R̂.

(i) For v ≤ w, Cv ⊆ Cw and Bv ⊇ Bw.

(ii) Cw =
⋂

w<v∈R̂

Cv and Bw =
⋂

R̂3v<w

Bv.

(iii) Qw = lim−→qw and, if w /∈ Q, Cw = lim−→pw.

(iv) Bw =
⋂

R̂3v<w

Qv.

(v)
⋃
w∈R̂

Cw = C∞ =
#»H and

⋂
w∈R̂

Cw = 0.

(vi)
⋂
w∈R̂

Cw = 0 and
⋃
w∈R̂

Cw = C∞ =
#»H.

(vii)
⋂
w∈R̂

Bw = B∞ = ◦H+ and H ∩
⋃
w∈R̂

Bw = H.

Definition 6.2.7. Define the class Mw as:

Mw = Bw ∩ Cw.

A quasi-coherent sheaf E ∈ #»H has slope w if E ∈Mw.

Clearly the slope of a quasi-coherent sheaf is an element of R̂ = R ∪ {∞}. For coherent sheaves

this definition agrees with the definition of slope as the quotient of degree and rank and if w is

irrational we have only non-coherent sheaves in Mw.

Theorem 6.2.8. [2, Theorem 7.6] [53, Theorem 13.1] Every indecomposable sheaf has a well-

defined slope w ∈ R̂. Moreover, if w < w′, we have Hom #»H(Mw′ ,Mw) = 0.

Proof. Also here, we repeat the proof.

Let X ∈ #»H be indecomposable. Then 0 6= X ∈
⋃
w∈R̂ Cw \

⋂
w∈R̂ Cw, by Lemma 6.2.6(v).

Consider w ∈ R̂ to be infimum of all α ∈ Q̂ such that X ∈ Cα. Since qw =
⋃
α>w qα, we have

Hom #»H(qw, X) = 0, which means X ∈ Cw.

Now, observe that:

Bw =
⋂
α<w

◦tα

and Gen(qα) ⊆ ◦tα. Hence, if X /∈ Bw, then there is a rational β < w with X /∈ Gen(qβ).

But (Gen(qβ), Cβ) is a split torsion pair, and since X is indecomposable, we get X ∈ Cβ. Since

β < w, this is a contradiction to the minimality of w.

For the second part of the statement, we refer to Theorem 3.3.5. Indeed, notice that Mw ⊆ Cw
and Mw′ ⊆ Bw′ ⊆ Qw, by Lemma 6.2.6(iv), and since (Qw, Cw) is a torsion pair we have

Hom #»H(Mw′ ,Mw) = 0.
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We can define, as in Section 3.2.1, the class ωw for any w ∈ Q̂ as:

ωw = Cw ∩ Dw,

where Dw is the class of divisible sheaves with respect to tw:

Dw = ◦tw = tw
⊥.

It is clear that Prüfer sheafes of slope w belong to ωw. Moreover, for any w ∈ Q̂ there is an

infinite dimensional module of slope w, Gw, which is generic in the sense of Definition 6.2.1 (see

[44, Theorem 4.4]). We have also an analogue of Theorem 3.2.5, indeed any sheaf in ωw is a

direct sum of Prüfer sheaves of slope w and of copies of the generic sheaf Gw.

Moreover, we can prove the left-approximation property of the class ωw, as in Theorem 3.2.4.

For every F ∈ Cw, we obtain short exact sequences:

0 −→ F
f−→ X −→ X ′ −→ 0

where X ∈ ωw and X ′ is a direct sum of Prüfer sheaves in ωw. In particular, if F is torsionfree

with respect to the tubular family tw, ie. F ∈ Fw = tw
◦, then also X ∈ Fw.

Notice that if w = ∞, then we can identify ω∞ with the class of all the injective sheaves in

QcohX.

The class of all Prüfer sheaves in ωw is separating in the following sense:

Proposition 6.2.9. Let F1, F2 ∈ H be indecomposable coherent sheaves of slopes µ(F1) = w1

and µ(F2) = w2 and suppose w1 < w2. For any w ∈ Q such that w1 < w < w2, any map

f : F1 → F2 factors through a direct sum of Prüfer sheaves of slope w.

Proof. Consider the torsion pair (Qw, Cw) as in Lemma 6.2.4 with heart Aw = QcohXw. Clearly

F1 ∈ Cw and F2 ∈ Qw and HomH(F1, F2) ∼= Ext1
Aw(F1[1], F2), by Lemma 1.3.9(v).

We have the following diagram in the heart Aw:

0 // F2
// E // F1[1] // 0

0 // F2
// G

(α)
w [1] //

⊕
x∈X(S∞x,w[1])(βx) // 0

for some cardinal numbers α, βx. Here, the upper short exact sequence comes from the map

f : F1 → F2 via the isomorphism above and the lower one is the ωw-left-approximation of F2. It

is clear that F2 ∈ Fw, hence also the middle term of the approximation is in Fw, therefore it is

a coproduct of copies of the generic sheaf of slope w.

In Aw = QcohXw, Gw[1] is an injective sheaf and since we are in a locally noetherian category
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G
(α)
w [1] is injective too. We can complete the diagram as follows:

0 // F2
// E

��

// F1[1]

��

// 0

0 // F2
// G

(α)
w [1] //

⊕
x∈X(S∞x,w[1])(βx) // 0

Which translates in Db(Aw) as a diagram of triangles

F2
// E

��

// F1[1]

��

f [1]
// F2[1]

F2
// G

(α)
w [1] //

⊕
x∈X(S∞x,w[1])(βx) // F2[1]

Therefore f [1] factors through the direct sum of the shifts of Prüfer sheaves, which means,

shifting back to
#»H, that we have a factorization:

F1

&&

f
// F2

⊕
x∈X(S∞x,w)(βx)

88

6.2.1 Sheaves of irrational slope

If w is rational, we have seen plenty of examples of sheaves of slope w, such as the Prüfer sheaves,

the adics and the generic Gw.

If w is not rational, we provide a tool to construct a quasi-coherent sheaf of slope w. This is a

modification of the Second Construction in [53, Section 13.4].

Theorem 6.2.10 (Construction). Let α1 < α2 < . . . be a sequence of rational numbers con-

verging to w and choose coherent sheaves Ei ∈ add(tαi) such that Ei ⊆ Ei+1 for all i ≥ 1,

then:

E = lim−→Ei ∈Mw.

Proof. It is clear that all sheaves Ei belong to Cw and since Cw is closed under direct limits,

we have that E ∈ Cw. Now, for any rational number α < w we can fix an i such that α < αi.

Therefore, any Ej ∈ add(qα) for all j ≥ i. This means that E ∈ Gen(qα) for all rationals

α < w. It is obvious that Gen(qα) ⊆ Bα, so E ∈
⋂
α<w,α∈Q Bα implies E ∈ Bw. Therefore

E ∈ Bw ∩ Cw =Mw.

Remark 6.2.11. As seen in Lemma 6.2.4, we have, for w irrational, a torsion pair (Qw, Cw) of

finite type, whose corresponding heart Aw =
#»H(Qw, Cw) is, by Theorem 1.3.12, a locally coherent

Grothendieck category. Very few things are known about this category.
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Since the torsionfree class Cw∩H is generating for H, by Theorem 2.2.3, (Qw, Cw) is cogenerated

by a cotilting sheaf Ww which becomes an injective cogenerator of Aw by Proposition 2.2.4(ii).

The explicit description of this cotilting sheaf is unknown and, therefore, the study of injective

objects in Aw would be useful for this purpose. To this end, we focus on the description of the

simple objects in Aw and we will develop this topic in Chapter 8.
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Chapter 7

Continued fractions and universal

extensions

In this chapter we introduce continued fractions and universal extensions. We will need these

tools in Chapter 8 to describe the simples in the heart Aw of the t-structure arising from the

torsion pair (Gen(qw), Cw), where w ∈ R̂ \ Q̂.

7.1 General facts on continued fractions

A continued fraction is an expression of the form

n0 +
1

n1 + 1
n2+ 1

n3+...

where n0 is an arbitrary integer number and n1, n2, . . . are positive integers. The terms ni can

be finitely or infinitely many. We use the following notation for a continued fraction with a finite

(resp. infinite) number of terms:

[n0;n1, n2, . . . , nd] = n0 +
1

n1 + 1
···+ 1

nd

, [n0;n1, n2, . . . ] = n0 +
1

n1 + 1
n2+...

.

For a finite continued fraction [n0;n1, n2, . . . , nd], we say that its order is d + 1. Every finite

continued fraction represents a finite number of rational operations on its elements. Therefore,

it can be represented as an ordinary number in Q.

Example 7.1.1. Let us consider the following finite continued fraction α = [−2; 1, 3, 5]. Ex-

panding it, we obtain:

[−2; 1, 3, 5] = −2 +
1

1 + 1
3+ 1

5

= −2 +
1

1 + 5
16

= −2 +
16

21
= −26

21
.

Definition 7.1.2. Given an infinite continued fraction α = [n0;n1, n2, . . . ], we define, for k ∈ N,

the k-th convergent of the continued fraction as the finite continued fraction αk = [n0;n1, . . . , nk].
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Clearly this definition works also if the continued fraction α is finite of order n and provided that

k < n. We call even-convergent a k-convergent with k an even number and, similarly, we define

the odd-convergent. An arbitrary k-convergent of a continued fraction is a continued fraction

itself, therefore it can be expressed as a rational number:

αk =
pk
qk
∈ Q

where pk and qk are coprime. This will be more clear using the recursion in Proposition 7.1.5.

Example 7.1.3. Consider the continued fraction as in Example 7.1.1. The convergents are:

α0 = [−2] = −2, α1 = [−2; 1] = −1, α2 = [−2; 1, 3] = −5/4 and α4 = α = −26/21.

Remark 7.1.4. Consider the finite continued fraction [n0;n1, . . . , nd−1, 1]. Expanding it, it is

clearly visible that this is the same as the continued fraction [n0;n1, . . . , nd−1 + 1]. For this

reason, from now on we can suppose, without loss of generality, that the last term of all the

finite continued fractions is different from 1.

The following result is a fundamental tool in the theory of continued fractions.

Proposition 7.1.5 (Recursion for convergents). [37, Theorem 1] Let α = [n0;n1, n2, . . . ] be a

continued fraction. Consider

p−2 = 0, p−1 = 1,

q−2 = 1, q−1 = 0.

For arbitrary k ≥ 0, the convergents of α satisfy the following equalities:

pk = nkpk−1 + pk−2,

qk = nkqk−1 + qk−2.

Moreover, we have the following properties for a continued fraction α = [n0;n1, n2, . . . ]:

Proposition 7.1.6. [37, Theorem 2, Corollary, Theorem 3, Corollary]

(1) For all k ≥ 0:

qkpk−1 − pkqk−1 = (−1)k.

(2) For all k ≥ 1:
pk−1

qk−1
− pk
qk

=
(−1)k

qk−1qk
.

(3) For all k ≥ 1:

qkpk−2 − pkqk−2 = (−1)k−1nk.

(4) For all k ≥ 2:
pk−2

qk−2
− pk
qk

=
(−1)k−1nk
qk−2qk

.
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Remark 7.1.7. By Proposition 7.1.6(2), we have that:∣∣∣∣pk−1

qk−1
− pk
qk

∣∣∣∣ =
1

qk−1qk

and this is the smallest nonzero distance between pk−1/qk−1 and any rational number whose

denominator is less or equal qk. Indeed: let a/b 6= pk−1/qk−1 be such that b ≤ qk, we have:∣∣∣∣pk−1

qk−1
− a

b

∣∣∣∣ =

∣∣∣∣pk−1b− aqk−1

qk−1b

∣∣∣∣ ≥ 1

qk−1b
≥ 1

qk−1qk
.

Theorem 7.1.8. [37, Theorem 14] To every α ∈ R corresponds a unique continued fraction,

whose value is α. If α is rational, the continued fraction is finite. If α is irrational, the continued

fraction is infinite.

Using these properties one can prove the following.

Proposition 7.1.9. [37, Theorem 4] Consider a continued fraction α = [n0;n1, n2, . . . ]. Even-

convergents form an increasing sequence of rational numbers. Odd-convergents form a decreas-

ing sequence of rational numbers. Moreover, every odd-convergent is greater than any even-

convergent.

In particular, every even-convergent is smaller than α and every odd-convergent is greater than

α and we can state the following.

Proposition 7.1.10. [37, Theorem 8] Consider an infinite continued fraction α = [n0;n1, n2, . . . ].

Let αk = pk/qk be a k-convergent, for k ≥ 0. Then pk/qk is greater than any even-convergent

of αk and it is smaller than any odd-convergent of αk.

Lemma 7.1.11. Let a/b and c/d be two rational numbers such that b 6= d or b 6= −d. If

a/b ≤ c/d, then:
a− c
b− d

≤ a

b
≤ a+ c

b+ d
≤ c

d
≤ c− a
d− b

.

The same holds if we replace ”≤” by ”<” or ”=”.

Proof. Straightforward.

Remark 7.1.12. Fix now α = [n0;n1, n2, . . . ], for any k ≥ 0 we can define a sequence:

pk
qk
,
pk + pk+1

qk + qk+1
,
pk + 2pk+1

qk + 2qk+1
, . . . ,

pk + nkpk+1

qk + nkqk+1
=
pk+2

qk+2
,

whose elements are called intermediate convergents, which is increasing if k is even and decreasing

if k is odd.

7.2 Universal and co-universal extensions

In this section we are going to introduce the notion of universal extension, which has been

described mainly in [47, Ch.3]. In [39], Kussin has developed this concept in the setting of
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noncommutative curves. In literature, universal extensions are also called tubular mutations,

tubular shifts or twist functors (cf. for instance [48, 60, 66]).

Let X be a noncommutative curve of tubular type and consider H = cohX. Consider a tube

Ux,α, of rank p(x), in a fixed tubular family tα in H. Let Sx be a sheaf in the mouth of Ux,α,

hence this is a simple object in Ux,α, considered as a connected uniserial category. Let Sx be

the additive closure of the Auslander-Reiten orbit of Sx, ie. Sx = add({τ jSx | 1 ≤ j ≤ p(x)}),
which is a semisimple abelian category.

Lemma 7.2.1. Every k-linear functor F : Sx → mod−k is representable by the following object

in Sx:

Z =

p(x)⊕
j=1

F (τ jSx)⊗ τ jSx,

where the tensor product is taken over End(Sx) ∼= k (see Theorem 6.1.12(i)).

Proof. Let F be contravariant (the covariant case is dual), an object S ∈ Sx is of the form

S =
⊕p(x)

j=1 (τ jSx)mj , for some mj ∈ Z≥0, then:

F (S) = F

p(x)⊕
j=1

(τ jSx)mj

 =

p(x)⊕
j=1

F ((τ jSx)mj ) =

p(x)⊕
j=1

F (τ jSx)mj ,

therefore it is enough to check how F works for a single τ iSx, with 1 ≤ i ≤ p(x).

We claim F (τ iSx) ∼= Hom(τ iSx, Z). Now:

Z =

p(x)⊕
j=1

F (τ jSx)⊗ τ jSx ∼=
p(x)⊕
j=1

(τ jSx)dj ,

where dj = dimEnd(Sx) F (τ jSx), hence:

Hom(τ iSx, Z) ∼= Hom

τ iSx, p(x)⊕
j=1

(τ jSx)dj

 ∼= p(x)⊕
j=1

Hom(τ iSx, (τ
jSx)dj ) =

= Hom(τ iSx, (τ
iSx)di) ∼= End(τ iSx)di ∼= End(Sx)di ∼= F (τ iSx).

Let us apply this argument to the functor F = Ext1(−, E)
∣∣
Sx , for E ∈ H. We get a natural

equivalence of functors ηE : Hom(−, Ex)
∣∣
Sx
∼= Ext1(−, E)

∣∣
Sx , where:

Ex =

p(x)⊕
j=1

Ext1
H(τ jSx, E)⊗ τ jSx ∈ Sx.

Via Yoneda lemma, we know that:

Hom(Hop,Ab)(HomH(−, Ex)
∣∣
Sx ,Ext1

H(−, E)
∣∣
Sx) ∼= Ext1

H(Ex, E),
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hence the natural equivalence ηE corresponds to an exact sequence:

ηE : 0 −→ E −→ TSxE −→ Ex −→ 0

such that the Yoneda composition Hom(U,Ex) → Ext1(U,E) sending f to ηE · f is an isomor-

phism for each U ∈ Sx. We call TSxE an Sx-universal extension of E (here, Sx is taken as a

representative of the Auslander-Reiten orbit which Sx is built from).

Via the identification Ext1(−, E)
∣∣
Sx = Hom(−, Ex)

∣∣
Sx , the assignment E 7→ Ex extends into a

functor for which a map u : E → E′, inH, is sent to a map ux : Ex → E′x satisfying u·ηE = ηE′ ·ux.

Dually, consider the functor F = Ext1(E,−)
∣∣
Sx , for E ∈ H. Applying the argument, we get a

natural equivalence of functors ηE : Hom(xE,−)
∣∣
Sx
∼= Ext1(E,−)

∣∣
Sx , where:

xE =

p(x)⊕
j=1

Ext1
H(E, τ jSx)⊗ τ jSx ∈ Sx.

By the Yoneda lemma, we have:

Hom(Hop,Ab)(HomH(xE,−)
∣∣
Sx ,Ext1

H(E,−)
∣∣
Sx) ∼= Ext1

H(E, xE),

hence the natural equivalence ηE corresponds to an exact sequence:

ηE : 0 −→ xE −→ T ?SxE −→ E −→ 0

such that the Yoneda composition Hom(xE,U)→ Ext1(E,U) sending f to f · ηE is an isomor-

phism for each U ∈ Sx. We call T ?SxE an Sx-co-universal extension of E (here, as above, Sx is

taken as a representative of the Auslander-Reiten orbit which Sx is built from).

In a similar fashion, via the identification Ext1(E,−)
∣∣
Sx
∼= Hom(xE,−)

∣∣
Sx , the assignment

E 7→ xE extends into a functor for which a map u : E → E′, in H, is sent to a map xu : xE → xE′

satisfying ηE
′ · u = xu · ηE .

Similarly we define the universal morphisms with respect to Sx considering the functors Hom(−, E)
∣∣
Sx

and Hom(E,−)
∣∣
Sx . We get natural equivalences:

γE : Hom(−, E)
∣∣
Sx
∼= Hom(−, xE)

∣∣
Sx and γE : Hom(E,−)

∣∣
Sx
∼= Hom(Ex,−)

∣∣
Sx

where:

xE =

p(x)⊕
j=1

HomH(τ jSx, E)⊗ τ jSx ∈ Sx,

and:

Ex =

p(x)⊕
j=1

HomH(E, τ jSx)⊗ τ jSx ∈ Sx.
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These natural equivalences, by means of the Yoneda lemma, give rise to two morphisms:

γE : xE −→ E and γE : E −→ Ex.

which are, respectively, Sx-universal and Sx-co-universal morphisms of E.

Let us describe some properties of the universal construction we have outlined above. First of

all, let us fix a tube Ux,α of rank p(x) in a tubular family tα in H. Let Sx be the additive closure

of the Auslander-Reiten orbit of a simple object Sx in Ux,α, ie.

Sx = add({τ jSx | 1 ≤ j ≤ p(x)})

Let E,G ∈ H and consider:

ηE : 0 −→ E
αE−→ TSxE

βE−→ Ex −→ 0 and ηG : 0 −→ xG
αG−→ T ?SxG

βG−→ G −→ 0

where ηE is the Sx-universal extension of E and ηG is the Sx-co-universal extension of G.

Let us consider the trisection of H, defined in Section 6.2, given by (pα, tα,qα), where:

pα =
⋃
β<α

tβ qα =
⋃
α<γ

tγ ,

such that

HomH(qα, tα) = HomH(tα,pα) = HomH(qα,pα) = 0.

It is clear that add(pα) = tα
◦ and add(qα) = ◦tα, where the Hom-orthogonal is taken inside H.

Denote by ρα the subclass of add(pα) consisting of coherent sheaves whose Sx-co-universal

morphism is surjective. Dually, denote by λα the subclass of add(qα) consisting of coherent

sheaves whose Sx-universal morphism is injective.

We have the following:

Proposition 7.2.2. [47, (S10)(i)] For E,G, ηE , η
G as above, the following properties hold:

(i) If E ∈ add(pα), then TSxE ∈ ρα and βE is the Sx-co-universal morphism for TSxE.

(i’) If G ∈ add(qα), then T ?SxG ∈ λα and αG is the Sx-universal morphism for T ?SxG.

Proof. (i) Let E ∈ add(pα) and consider the long exact sequence of functors on Sx:

0 = Hom(−, E)
∣∣
Sx −→ Hom(−, TSxE)

∣∣
Sx
−◦βE−→ Hom(−, Ex)

∣∣
Sx

ηE−→
ηE−→Ext1(−, E)

∣∣
Sx −→ Ext1(−, TSxE)

∣∣
Sx

Ext1(−,βE)−→ Ext1(−, Ex)
∣∣
Sx −→ 0

By definition of Sx-universal extension, the map ηE is an isomorphism. This means that

TSxE ∈ Sx◦ and that Ext1(−, βE) is an isomorphism. By Serre duality, also Hom(βE ,−) is

an isomorphism. This proves that the map βE : TSxE → Ex is a Sx-co-universal morphism.

Since E ∈ add(pα), then it is obvious that there are no nonzero morphisms from Uy,α,

with y 6= x, to TSxE, hence TSxE ∈ ρα.
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(i’) We proceed dually. Let G ∈ add(qα) and consider the long exact sequence of functors on

Sx:

0 = Hom(G,−)
∣∣
Sx −→ Hom(T ?SxG,−)

∣∣
Sx

αG◦−−→ Hom(xG,−)
∣∣
Sx

ηG−→
ηG−→Ext1(G,−)

∣∣
Sx −→ Ext1(T ?SxG,−)

∣∣
Sx

Ext1(αG,−)−→ Ext1(xG,−)
∣∣
Sx −→ 0

By definition of Sx-co-universal extension, the map ηG is an isomorphism. This means that

T ?SxG ∈
◦Sx and that Ext1(αG,−) is an isomorphism. By Serre duality, also Hom(−, αG)

is an isomorphism. This proves that the map αG : xG → T ?Sx is a Sx-universal morphism.

Since G ∈ add(qα), then it is obvious that there are no nonzero morphisms from T ?SxG to

Uy,α, with y 6= x, hence T ?SxG ∈ λα.

The assignments E 7→ TSxE and G 7→ T ?SxG turn out to be functors, indeed:

Proposition 7.2.3. [39, 0.4.2(2)] [47, (S10)(ii)] For E,G, ηE , η
G as above, the following prop-

erties hold:

(i) If ε : 0 → E → E′ → C → 0 is such that E′ ∈ add(pα) and C ∼= Ex, then there is a

commutative diagram:

ε : 0 // E // E′ //

∼=
��

C //

∼=
��

0

ηE : 0 // E
αE // TSxE

βE // Ex // 0

(i’) If ε : 0 → K → G′ → G → 0 is such that G′ ∈ add(qα) and K ∼= xG, then there is a

commutative diagram:

ηG : 0 // xG
αG //

∼=
��

T ?SxG
βG

//

∼=
��

G // 0

ε : 0 // K // G′ // G // 0

(ii) For any morphism u : E → F in add(pα), there exists a unique morphism TSxu : TSxE →
TSxF yielding a commutative diagram:

0 // E //

u

��

TSxE //

TSxu

��

Ex //

ux

��

0

0 // F // TSxF // Fx // 0

(ii’) For any morphism w : F → G in add(qα), there exists a unique morphism T ?Sxw : T ?SxF →
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T ?SxG yielding a commutative diagram:

0 // xF //

wx

��

T ?SxF
//

T ?Sxw

��

F //

w

��

0

0 // xG // T ?SxG
// G // 0

Therefore, the assignments E 7→ TSxE and G 7→ T ?SxG are functors, respectively:

TSx : add(pα) −→ ρα and T ?Sx : add(qα) −→ λα.

Proof. (i) Since ηE is an Sx-universal extension and C ∈ Sx, the isomorphism Hom(C,Ex) ∼=
Ext1(C,E) implies that there is a map f ∈ Hom(C,Ex) such that ε = ηE · f . Therefore

we obtain a pullback diagram:

ε : 0 // E // E′ //

��

C //

f
��

0

ηE : 0 // E
αE // TSxE

βE // Ex // 0

where Ker f ∈ Sx since Ex, C ∈ Sx and Sx is an abelian category. Moreover, by Snake

lemma, Ker f is a subobject of E′ ∈ add(pα), therefore Ker f ∈ add(pα). Hence f is a

monomorphism.

Since C and Ex are of the same length, f is an isomorphism.

(i’) The proof is dual. Since ηG is an Sx-co-universal extension and K ∈ Sx, the isomorphism

Hom(xG,K) ∼= Ext1(G,K) implies that there is a map f ∈ Hom(xG,K) such that ε = f ·ηG.

Therefore we obtain a pushout diagram:

ηG : 0 // xG
αG //

f

��

T ?SxG
βG

//

��

G // 0

ε : 0 // K // G′ // G // 0

where Coker f ∈ Sx since xG,K ∈ Sx and Sx is an abelian category. Moreover, by Snake

lemma, Coker f is a quotient object of G′ ∈ add(qα), therefore Coker f ∈ add(qα). Hence

f is an epimorphism.

Since K and xG are of the same length, f is an isomorphism.

(ii) Let u : E → F be a nonzero morphism in add(pα). Since u · ηE = ηF · ux, we have the
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following commutative diagram:

ηE : 0 // E //

u

��

TSxE //

��

Ex // 0

u · ηE = ηF · ux : 0 // F // X //

��

Ex //

ux
��

0

ηF : 0 // F // TSxF // Fx // 0

We define TSxu : TSxE → TSxF as the composition of the vertical arrows in the middle.

The uniqueness of TSxu follows from the commutativity of the left rectangle and from the

fact that Ex ∈ Sx.

(ii’) Let w : F → G be a nonzero morphism in add(qα). Since ηG · w = xw · ηF , we have the

following commutative diagram:

ηF : 0 // xF //

xw

��

T ?SxF
//

��

F // 0

ηG · w = xw · ηF : 0 // xG // X //

��

F //

w

��

0

ηG : 0 // xG // T ?SxG
// G // 0

We define T ?Sxw : T ?SxF → T ?SxG as the composition of the vertical arrows in the middle.

The uniqueness of T ?Sxw follows from the commutativity of the right rectangle and from

the fact that xG ∈ Sx.

Proposition 7.2.4. [47, (S10)(iii,iv)] For E,G, ηE , η
G as above, the following properties hold:

(i) The functor TSx : add(pα) → ρα is an equivalence, it is exact on short exact sequences

with terms from add(pα) and induces an isomorphism:

Ext1
H(E,F ) ∼= Ext1

H(TSxE, TSxF ).

(i’) The functor T ?Sx : add(qα) → λα is an equivalence, it is exact on short exact sequences

with terms from add(qα) and induces an isomorphism:

Ext1
H(F,G) ∼= Ext1

H(T ?SxF, T
?
SxG).

Proof. (i) Let E ∈ ρα, consider the surjective Sx-co-universal morphism γE : E → Ex. Denote

the kernel of γE by T−SxE, which is clearly an object in add(pα). The assignment E 7→ T−SxE

extends to a functor T−Sx : ρα → add(pα), which is by Proposition 7.2.2(i) a left inverse to

TSx .
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To see that it is also a right inverse, start with E ∈ ρα and consider the sequence

ηE : 0→ T−SxE −→ E
γE−→ Ex −→ 0

which gives us a long exact sequence:

0 −→Hom(−, Ex)
∣∣
Sx

ηE−→ Ext1(−, T−SxE)
∣∣
Sx −→

−→Ext1(−, E)
∣∣
Sx

Ext1(−,γE)−→ Ext1(−, Ex)
∣∣
Sx −→ 0

Since γE is a co-universal morphism, Hom(γE ,−) is an isomorphism. Therefore, by Serre

duality, Ext1(−, γE) is an isomorphism, proving that ηE is an Sx-universal extension.

Let 0→ E′ → E → E′′ → 0 be a short exact sequence in add(pα), consider the following

diagram:

0

��

0

��

0

��

ηE′ : 0 // E′

u

��

αE′ // TSxE

TSxu

��

βE′ // E′x

ux

��

// 0

ηE : 0 // E

v
��

αE // TSxE

TSxv

��

βE // Ex

vx
��

// 0

ηE′′ : 0 // E′′

��

αE′′ // TSxE
′′

��

βE′′ // E′′x

��

// 0

0 0 0

whose rows and the left column are exact. The right column is exact since the functor

sending E → Ex is exact because Ext1(U,−), with U ∈ Sx, is exact on short exact

sequences with terms in add(pα). This implies that also the middle column is exact.

Since TSx and T−Sx are mutually inverse equivalences, it is clear that, for E,F ∈ add(pα),

Ext1
H(E,F ) ∼= Ext1

H(TSxE, TSxF ).

(i’) We proceed dually. Let G ∈ λα, consider the injective Sx-universal morphism γG : xG→ G.

Denote the cokernel of γG by T−?Sx G, which is clearly an object in add(qα). The assignment

G 7→ T−?Sx G extends to a functor T−?Sx : ρα → add(pα), which is by Proposition 7.2.2(i’) a

left inverse to T ?Sx .

To see that it is also a right inverse, start with G ∈ add(qα) and consider the sequence

ηG : 0→ xG
γG−→ G −→ T−?Sx G −→ 0

which gives us a long exact sequence:

0 −→Hom(xG,−)
∣∣
Sx

ηE−→ Ext1(T−?Sx G,−)
∣∣
Sx −→

−→Ext1(G,−)
∣∣
Sx

Ext1(γG,−)−→ Ext1(xG,−)
∣∣
Sx −→ 0
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Since γG is a universal morphism, Hom(−, γG) is an isomorphism. Therefore, by Serre

duality, Ext1(γG,−) is an isomorphism too, proving that ηG is an Sx-co-universal extension.

Let 0→ G′ → G→ G′′ → 0 be a short exact sequence in add(qα), consider the following

diagram:

0

��

0

��

0

��

ηG
′
: 0 // xG′

xu

��

αG
′
// T−?Sx G

′

T−?Sx u

��

βG
′
// G′

u

��

// 0

ηG : 0 // xG

xv

��

αG // T−?Sx G

T−?Sx v

��

βG
// G

v

��

// 0

ηG
′′

: 0 // xG′′

��

αG
′′
// T−?Sx G

′′

��

βG
′′
// G′′

��

// 0

0 0 0

whose rows and the right column are exact. The left column is exact since the functor

sending G → xG is exact because Ext1(−, U), with U ∈ Sx, is exact on short exact

sequences with terms in add(qα). This implies that also the middle column is exact.

Since T ?Sx and T−?Sx are mutually inverse equivalences, it is clear that, for F,G ∈ add(qα),

Ext1
H(F,G) ∼= Ext1

H(T ?SxF, T
?
Sx
G).
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Chapter 8

Sheaves of irrational slope

Let X be a noncommutative curve of tubular type. As mentioned in Remark 6.2.11, very few

things are known about the category Aw =
#»H(Qw, Cw), when w is an irrational number. By

Theorem 1.3.12, Aw is a locally coherent Grothendieck category and in this chapter we give a

first characterization of the simple objects in it.

First, we fix a positive irrational number w and we use the methods described in Chapter 7 to

construct a quasi-coherent sheaf over X of slope w via a sequence of indecomposable coherent

sheaves of smaller slope. Second, we prove that the sheaf obtained in this way actually becomes

a simple object in the heart Aw of the t-structure arising from the torsion pair (Gen qw,qw
◦).

Subsequently, we prove that any simple object in the heart Aw of the t-structure arising from

the torsion pair (Gen(qw), Cw), where w ∈ R̂ \ Q̂, comes from a quasi-coherent sheaf of slope w.

8.1 Construction of a sheaf of irrational slope

Let X be a noncommutative curve of tubular type over an algebraically closed field k, as described

in Chapter 6 and let H = cohX. Consider the weight type (p1, . . . , pt) of X and denote by

p̄ = l.c.m.{pi}1≤i≤t = max{pi}1≤i≤t.

Definition of the process

Setting. Consider a positive irrational number w together with its continued fraction form

[n0;n1, n2, . . . ]. Let L be the structure sheaf in H, which is, by Proposition 6.1.4, an endo-

simple object. Recall that L is in a tube of maximal rank, ie. of rank p̄, as seen in Proposition

6.1.15 and:

deg(L) = 0 and rk(L) = 1. (8.1)

Let Sx ∈ H0 be a simple sheaf in a tube of maximal rank p̄. This is a stable sheaf and therefore

endo-simple, by Theorem 6.1.12(i). Recall that we have (see Remark 6.1.8):

deg(Sx) =
p̄

p̄
= 1 and rk(Sx) = 0. (8.2)
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Since L ∈ H+, we can apply the Sx-universal extension functor TSx to L. Set:

P0 = Tn0
Sx
L

where T kSxL = TSxT
k−1
Sx

L, for k ≥ 1. This is well defined, since every T kSxL ∈ H0
◦, for 1 ≤ k ≤ n0,

by Proposition 7.2.2(i).

P0 is an indecomposable and endo-simple coherent sheaf, since L is such and TSx is an equiva-

lence. We have the following:

Lemma 8.1.1. Let w, L and Sx be as in Setting. Then, for any 0 ≤ n ≤ n0, we have:

deg(TnSxL) = n and rk(TnSxL) = 1.

Proof. We proceed by induction on n. If n = 0, then the Lemma holds for (8.1).

Suppose that the Lemma holds for a certain n. We obtain Tn+1
Sx

L as the Sx-universal extension

of TnSxL, therefore there is a short exact sequence:

0 −→ TnSxL −→ Tn+1
Sx

L −→
p̄⊕
j=1

Ext1(τ jSx, T
n
SxL)⊗ τ jSx −→ 0

Recall that degree and rank are additive on short exact sequence, by definition, and τ -invariant,

by Proposition 6.1.14 and [45, §10.2(H 5), Remark 10.2(ii)]. So, we get:

deg(Tn+1
Sx

L) = deg(TnSxL) +

p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL) deg(τ jSx) =

= deg(TnSxL) +

 p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL)

deg(Sx),

rk(Tn+1
Sx

L) = rk(TnSxL) +

p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL) rk(τ jSx) =

= rk(TnSxL) +

 p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL)

 rk(Sx),

Recall that, by definition of average Euler form, we have:

〈〈Sx, TnSxL〉〉 =

p̄∑
j=1

dim Hom(τ jSx, T
n
SxL)− dim Ext1(τ jSx, T

n
SxL).

Using Riemann-Roch formula (see Proposition 6.1.16), we obtain:

p̄∑
j=1

dim Hom(τ jSx, T
n
SxL)− dim Ext1(τ jSx, T

n
SxL) = deg(Sx) rk(TnSxL)− rk(Sx) deg(TnSxL)

By Proposition 7.2.2(i), Hom(τ jSx, T
n
Sx
L) = 0, for any 1 ≤ j ≤ p̄. Therefore, by (8.2) and
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inductive hypothesis, we get:

p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL) = deg(Sx) rk(TnSxL)− rk(Sx) deg(TnSxL) = 1

Therefore, using again (8.2) and the inductive hypothesis:

deg(Tn+1
Sx

L) = deg(TnSxL) +

 p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL)

 deg(Sx) =

= deg(TnSxL) + deg(Sx) = n+ 1,

rk(Tn+1
Sx

L) = rk(TnSxL) +

 p̄∑
j=1

dim Ext1(τ jSx, T
n
SxL)

 rk(Sx) =

= rk(TnSxL) + rk(Sx) = 1.

In particular, if n = n0 in Lemma 8.1.1, we obtain:

deg(P0) = deg(Tn0
P−1

L) = n0 and rk(P0) = rk(Tn0
P−1

L) = 1. (8.3)

Moreover:

µ(P0) =
deg(P0)

rk(P0)
= n0. (8.4)

Definition 8.1.2. Let w, L and Sx be as in Setting. Define P−2 = L and P−1 = Sx.

For i ∈ Z≥0, define the w-convergent sheaves with respect to L and Sx, as the coherent sheaves

Pi, obtained by the following recursion:

Pi =

T
ni
Pi−1

Pi−2, if i is even

T ?
ni

Pi−1
Pi−2, if i is odd.

Moreover, for 1 ≤ k ≤ ni−1, we call T kPi−1
Pi−2 and T ?

k

Pi−1
Pi−2 the k-th intermediate w-convergent

sheaves after Pi−2 with respect to L and Sx.

It is clear that P0, as it is defined above, is the 0-th w-convergent sheaf with respect to L and

Sx.

Remark 8.1.3. Notice that, since TPi and T ?Pi are equivalences, all the (intermediate) w-convergent

sheaves are indecomposable and endo-simple since L and Sx are such. Moreover, since L and

Sx are exceptional sheaves and, by Proposition 7.2.4, TPi and T ?Pi preserve extension groups, all

the (intermediate) w-convergent sheaves are exceptional.

Proposition 8.1.4. Let w, L and Sx be as in Setting. Let Pi be the w-convergent sheaves with

respect to L and Sx as in Definition 8.1.2.

For all even i ≥ 0 and for all 0 ≤ n ≤ ni, we have:

deg(TnPi−1
Pi−2) = n deg(Pi−1) + deg(Pi−2)
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rk(TnPi−1
Pi−2) = n rk(Pi−1) + rk(Pi−2). (8.5)

For all odd i ≥ 0 and for all 0 ≤ n ≤ ni, we have:

deg(T ?
n

Pi−1
Pi−2) = n deg(Pi−1) + deg(Pi−2)

rk(T ?
n

Pi−1
Pi−2) = n rk(Pi−1) + rk(Pi−2). (8.6)

Moreover, for all i ≥ 0:

〈〈Pi, Pi−1〉〉 = (−1)i. (8.7)

Proof. We prove (8.7) by induction on i ≥ 0. For the inductive step of the proof, we consider

two cases: first, for i odd, we prove the formulas in (8.6), and then for i even, we prove the

formulas in (8.5). Both cases are proven using induction on n.

Base case i = 0. This case follows from Lemma 8.1.1. Indeed, for all 0 ≤ n ≤ n0, we have:

deg(TnSxL) = n = n deg(Sx) + deg(L)

rk(TnSxL) = 1 = rk(Sx) + rk(L)

and, by the Riemann-Roch formula:

〈〈P0, P−1〉〉 = 〈〈P0, Sx〉〉 = rk(P0) deg(Sx)− deg(P0) rk(Sx) = 1.

Therefore (8.7) holds for i = 0.

Inductive step. Fix a positive integer number i. Suppose that (8.7) holds for i− 1.

Suppose first that i is even. We prove the identities (8.5) by induction on n.

If n = 0, then (8.5) clearly holds.

Suppose (8.5) holds for a certain n > 0, then we obtain Tn+1
Pi−1

Pi−2 as the Pi−1-universal extension

of TnPi−1
Pi−2. Therefore, we have the following short exact sequence:

0 −→ TnPi−1
Pi−2 −→ Tn+1

Pi−1
Pi−2 −→

p̄⊕
j=1

Ext1(τ jPi−1, T
n
Pi−1

Pi−2)⊗ τ jPi−1 −→ 0

Degree and rank are τ -invariant and additive on short exact sequences, so:

deg(Tn+1
Pi−1

Pi−2) = deg(TnPi−1
Pi−2) +

p̄∑
j=1

dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2) deg(τ jPi−1) =

= deg(TnPi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2)

 deg(Pi−1),

rk(Tn+1
Pi−1

Pi−2) = rk(TnPi−1
Pi−2) +

p̄∑
j=1

dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2) rk(τ jPi−1) =

= rk(TnPi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2)

 rk(Pi−1).

110



By definition of average Euler form and using the Riemann-Roch formula (see Proposition

6.1.16), we get:

p̄∑
j=1

dim Hom(τ jPi−1,T
n
Pi−1

Pi−2)− dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2) =

= deg(Pi−1) rk(TnPi−1
Pi−2)− rk(Pi−1) deg(TnPi−1

Pi−2).

By Proposition 7.2.2(i), Hom(τ jPi−1, T
n
Pi−1

Pi−2) = 0, for any integer j. Moreover, by inductive

hypothesis, the identities in (8.5) hold for TnPi−1
Pi−2 and, since (8.7) holds for i− 1, which is an

odd number, we obtain:

p̄∑
j=1

dim Ext1(τ jPi−1,T
n
Pi−1

Pi−2) = deg(Pi−1) rk(TnPi−1
Pi−2)− rk(Pi−1) deg(TnPi−1

Pi−2) =

= deg(Pi−1)(n rk(Pi−1) + rk(Pi−2))− rk(Pi−1)(n deg(Pi−1) + deg(Pi−2)) =

= deg(Pi−1) rk(Pi−2)− rk(Pi−1) deg(Pi−2) =

= −〈〈Pi−1, Pi−2〉〉 = −(−1)i−1 = 1.

Hence, using again the inductive hypothesis for n, we get:

deg(Tn+1
Pi−1

Pi−2) = deg(TnPi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2)

deg(Pi−1) =

= deg(TnPi−1
Pi−2) + deg(Pi−1) =

= n deg(Pi−1) + deg(Pi−2) + deg(Pi−1) =

= (n+ 1) deg(Pi−1) + deg(Pi−2),

rk(Tn+1
Pi−1

Pi−2) = rk(TnPi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(τ jPi−1, T
n
Pi−1

Pi−2)

 rk(Pi−1) =

= rk(TnPi−1
Pi−2) + rk(Pi−1) =

= n rk(Pi−1) + rk(Pi−2) + rk(Pi−1) =

= (n+ 1) rk(Pi−1) + rk(Pi−2).

Proving that (8.5) holds for Tn+1
Pi−1

Pi−2. In particular, if n = ni, we have:

deg(Pi) = deg(TniPi−1
Pi−2) = ni deg(Pi−1) + deg(Pi−2)

rk(Pi) = rk(TniPi−1
Pi−2) = ni rk(Pi−1) + rk(Pi−2).

Suppose now that i is odd. The proof is dual to the even case and we prove the identities in

(8.6) by induction on n.

If n = 0, then it is clear that (8.6) holds.

Suppose (8.6) holds for a certain n > 0, then we obtain T ?
n+1

Pi−1
Pi−2 as the Pi−1-co-universal
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extension of T ?
n

Pi−1
Pi−2. Therefore, we have the following short exact sequence:

0 −→
p̄⊕
j=1

Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1)⊗ τ jPi−1 −→ T ?
n+1

Pi−1
Pi−2 −→ T ?

n

Pi−1
Pi−2 −→ 0

Degree and rank are τ -invariant and additive on short exact sequences, so:

deg(T ?
n+1

Pi−1
Pi−2) = deg(T ?

n

Pi−1
Pi−2) +

p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1) deg(τ jPi−1) =

= deg(T ?
n

Pi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1)

 deg(Pi−1),

rk(T ?
n+1

Pi−1
Pi−2) = rk(T ?

n

Pi−1
Pi−2) +

p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1) rk(τ jPi−1) =

= rk(T ?
n

Pi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1)

 rk(Pi−1).

By definition of average Euler form and using the Riemann-Roch formula (see Proposition

6.1.16), we get:

p̄∑
j=1

dim Hom(T ?
n

Pi−1
Pi−2,τ

jPi−1)− dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1) =

= deg(T ?
n

Pi−1
Pi−2) rk(Pi−1)− rk(T ?

n

Pi−1
Pi−2) deg(Pi−1).

By Proposition 7.2.2(i’), Hom(T ?
n

Pi−1
Pi−2, τ

jPi−1) = 0, for any integer j. Moreover, by inductive

hypothesis, the identities in (8.6) hold for T ?
n

Pi−1
Pi−2 and, since (8.7) holds for i− 1, which is an

even number, we obtain:

p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1) = deg(T ?
n

Pi−1
Pi−2) rk(Pi−1)− rk(T ?

n

Pi−1
Pi−2) deg(Pi−1) =

= (n deg(Pi−1) + deg(Pi−2)) rk(Pi−1)− (n rk(Pi−1) + rk(Pi−2)) deg(Pi−1) =

= deg(Pi−2) rk(Pi−1)− rk(Pi−2) deg(Pi−1) =

= −〈〈Pi−2, Pi−1〉〉 = 〈〈Pi−1, Pi−2〉〉 = (−1)i−1 = 1.

Hence, using again the inductive hypothesis for n, we get:

deg(T ?
n+1

Pi−1
Pi−2) = deg(T ?

n

Pi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1)

deg(Pi−1) =

= deg(T ?
n

Pi−1
Pi−2) + deg(Pi−1) =

= n deg(Pi−1) + deg(Pi−2) + deg(Pi−1) =
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= (n+ 1) deg(Pi−1) + deg(Pi−2),

rk(T ?
n+1

Pi−1
Pi−2) = rk(T ?

n

Pi−1
Pi−2) +

 p̄∑
j=1

dim Ext1(T ?
n

Pi−1
Pi−2, τ

jPi−1)

 rk(Pi−1) =

= rk(T ?
n

Pi−1
Pi−2) + rk(Pi−1) =

= n rk(Pi−1) + rk(Pi−2) + rk(Pi−1) =

= (n+ 1) rk(Pi−1) + rk(Pi−2).

Proving that (8.6) holds for n+ 1. In particular, for n = ni, we have:

deg(Pi) = deg(T ?
ni

Pi−1
Pi−2) = ni deg(Pi−1) + deg(Pi−2),

rk(Pi) = rk(T ?
ni

Pi−1
Pi−2) = ni rk(Pi−1) + rk(Pi−2).

Moreover, in both cases, (8.7) holds, indeed:

〈〈Pi, Pi−1〉〉 = rk(Pi) deg(Pi−1)− deg(Pi) rk(Pi−1) =

= (ni rk(Pi−1) + rk(Pi−2)) deg(Pi−1)− (ni deg(Pi−1) + deg(Pi−2)) rk(Pi−1) =

= rk(Pi−2) deg(Pi−1)− deg(Pi−2) rk(Pi−1) =

= −〈〈Pi−1, Pi−2〉〉 = (−1)(−1)i−1 = (−1)i.

This concludes the proof.

From now on, to ease the notation, we set for k ≥ −2:

µk = µ(Pk) =
deg(Pk)

rk(Pk)
.

8.1.1 Relation with the continued fractions

The recursion described in Proposition 8.1.4 is a two-term recursion and it is closely related to

the recursion for the convergents of a continued fraction defined in Proposition 7.1.5.

Let us set, for any integer k ≥ −2:

deg(Pk) = pk and rk(Pk) = qk.

Via this identification, we can translate the recursions (8.5) and (8.6) in Proposition 8.1.4 to the

language of continued fractions, indeed:

deg(P−2) = deg(L) = 0 = p−2 and deg(P−1) = deg(Sx) = 1 = p−1

rk(P−2) = rk(L) = 1 = q−2 and rk(P−1) = rk(Sx) = 0 = q−1

and for any k ≥ 0:

deg(Pk) = nk deg(Pk−1) + deg(Pk−2) = nkpk−1 + pk−2 = pk
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rk(Pk) = nk rk(Pk−1) + rk(Pk−2) = nkqk−1 + qk−2 = qk

Hence, the slope of the k-th w-convergent sheaf Pk is:

µk =
deg(Pk)

rk(Pk)
=
pk
qk

= wk.

where wk is the k-th convergent of the continued fraction [n0;n1, n2, . . . ] representing the real

number w, fixed at the beginning.

Using this correspondence, we can translate many properties of the continued fractions to the

w-convergent sheaves setting. For example, it is immediate to see that (8.7) in Proposition 8.1.4

corresponds to Proposition 7.1.6(1), indeed:

〈〈Pk, Pk−1〉〉 = rk(Pk) deg(Pk−1)− deg(Pk) rk(Pk−1) = qkpk−1 − pkqk−1 = (−1)k.

Remark 8.1.5. It follows from Proposition 7.1.9 that the slopes of the even w-convergent sheaves

form an increasing sequence in Q≥0, ie.

µ0 < µ2 < · · · < µk < µk+2 < . . .

(with k even), that converges to w.

Dually, the slopes of the odd w-convergent sheaves form a decreasing sequence in Q≥0, ie.

µ1 > µ3 > · · · > µk > µk+2 > . . .

(with k odd), that converges to w.

Moreover, µk < w for k even, µk > w for k odd and this implies that µi < µj , for any i even

and j odd.

As seen in Remark 7.1.7, the distance between two consecutive convergents, pk−1/qk−1 and pk/qk,

of w is minimal in the sense that the interval (pk−1/qk−1, pk/qk) (or the interval (pk/qk, pk−1/qk−1))

does not contain any rational number whose denominator is less or equal than qk. This translates

in the language of w-convergent sheaves as:

Lemma 8.1.6. Let F ∈ H such that rk(F ) ≤ rk(Pk) for a certain k ≥ −1, then, if k is odd, we

have µ(F ) ≤ µk−1 or µ(F ) ≥ µk and, if k is even, we have µ(F ) ≤ µk or µ(F ) ≥ µk−1.

Proof. By Remark 7.1.7, we know that |µk−1−µk| is smaller than the distance between µk−1 and

any other rational with denominator less or equal than rk(Pk). So |µk−1 − µ(F )| ≥ |µk−1 − µk|,
which means that, if k is odd, µ(F ) cannot be in the interval (µk−1, µk) therefore µ(F ) ≤ µk−1

or µ(F ) ≥ µk and, if k is even, µ(F ) cannot be in the interval (µk, µk−1) therefore µ(F ) ≤ µk

or µ(F ) ≥ µk−1.

Remark 8.1.7. Notice that, for any i ≥ 0, the k-th intermediate w-convergent sheaves after

Pi−2, as in Definition 8.1.2, are related to the intermediate convergents of the continued fraction

representing w. Indeed, setting deg(Pk) = pk and rk(Pk) = qk as above, we get by Proposition
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8.1.4 (we show it for i even, but it clearly holds also for i odd):

µ(T kPi−1
Pi−2) =

deg(T kPi−1
Pi−2)

rk(T kPi−1
Pi−2)

=
k deg(Pi−1) + deg(Pi−2)

k rk(Pi−1) + rk(Pi−2)
=
kpi−1 + pi−2

kqi−1 + qi−2
.

These are the intermediate convergent of w as in Remark 7.1.12. Hence, we obtain, for 0 ≤ k ≤
ni, a sequence of slopes of k-th intermediate w-convergent sheaves after Pi−2. This sequence is

increasing for i even:

µ(Pi−2) < µ(TPi−1Pi−2) < · · · < µ(T kPi−1
Pi−2) < · · · < µ(TniPi−1

Pi−2) = µ(Pi)

and it is decreasing for i odd:

µ(Pi−2) > µ(T ?Pi−1
Pi−2) > · · · > µ(T ?

k

Pi−1
Pi−2) > · · · > µ(T ?

ni

Pi−1
Pi−2) = µ(Pi).

Notation: From now on, we denote by P2i the even w-convergent sheaves and by P2i+1 the odd

w-convergent sheaves, for i ∈ Z≥0.

Proposition 8.1.8. Let w, L and Sx be as in Setting. Let P2i, for i ∈ Z≥0, be the even

w-convergent sheaves with respect to L and Sx. There exists a sequence of monomorphism:

P0 ↪−→ P2 ↪−→ P4 ↪−→ . . . ↪−→ P2i ↪−→ P2i+2 ↪−→ . . . (?)

such that the direct union P = lim−→P2i is a quasi-coherent non-coherent sheaf of slope w.

Proof. Fix i ∈ Z≥0. For any 0 ≤ k < n2i+2, T k+1
P2i+1

P2i = TP2i+1(T kP2i+1
P2i). Therefore, from the

iterated P2i+1-universal extensions, we obtain a sequence of monomorphisms:

P2i ↪−→ TP2i+1P2i ↪−→ T 2
P2i+1

P2i ↪−→ . . . ↪−→ T
n2i+1−1
P2i+1

P2i ↪−→ T
n2i+1

P2i+1
P2i = P2i+2

whose composition P2i ↪−→ P2i+2 is a monomorphism. By the generality of the argument we

obtain a sequence of monomorphisms:

P0 ↪−→ P2 ↪−→ P4 ↪−→ . . . ↪−→ P2i ↪−→ P2i+2 ↪−→ . . .

By Remark 8.1.5, µ2i < µ2i+2, for any i ∈ Z≥0. Therefore, by Theorem 6.2.10, P = lim−→P2i is a

quasi-coherent non-coherent sheaf of slope w.

8.1.2 Properties of the quotients

Let w be a positive irrational number and consider its continued fraction form [n0;n1, n2, . . . ].

For i ∈ Z≥0, let Pi be the w-convergent sheaves with respect to the structure sheaf L and a

simple sheaf Sx in a tube of maximal rank.

For any integer i ≥ 0, let us denote by Q2i+1 the cokernel of the map P2i → P2i+2 in (?).

Proposition 8.1.9. For any i ∈ Z≥0, µ(Q2i+1) = µ2i+1.
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Proof. For any i ∈ Z≥0, we have a short exact sequence

0 −→ P2i −→ P2i+2 −→ Q2i+1 −→ 0

Degree and rank are additive on short exact sequences, hence, using Proposition 8.1.4, we infer

that:

µ(Q2i+1) =
deg(Q2i+1)

rk(Q2i+1)
=

deg(P2i+2)− deg(P2i)

rk(P2i+2)− rk(P2i)
=

=
n2i+2 deg(P2i+1) + deg(P2i)− deg(P2i)

n2i+2 rk(P2i+1) + rk(P2i)− rk(P2i)
=

deg(P2i+1)

rk(P2i+1)
= µ2i+1

Lemma 8.1.10. For any integer i, j ≥ 0 with j > i, we have:

P2j/P2i
∼=

j−1⊕
k=i

Q2k+1.

Proof. Fix an integer i ≥ 0. We prove it by induction on j > i.

If j = i+ 1 then P2i+2/P2i = Q2i+1.

Suppose that for j > i, we have:

P2j/P2i
∼=

j−1⊕
k=i

Q2k+1.

Consider the following diagram:

0

��

0

��

0 // P2i
// P2j

��

//
⊕j−1

k=i Q2k+1

��

// 0

0 // P2i
// P2j+2

��

// K

��

// 0

Q2j+1

��

Q2j+1

��

0 0

where the bottom equality comes from the Snake lemma. For every odd ` such that 2i < ` < 2j,

µ(Q`) = µ` > µ2j+1 = µ(Q2j+1), by Remark 8.1.5. Therefore, using Theorem 6.1.12(ii), we

have:

Ext1

(
Q2j+1,

j−1⊕
k=i

Q2k+1

)
∼= DHom

(
j−1⊕
k=i

Q2k+1, τQ2j+1

)
∼= D

(
j−1⊕
k=i

Hom(Q2k+1, τQ2j+1)

)
= 0.
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Proving that the right column in the diagram splits, hence:

K ∼= Q2j+1 ⊕
j−1⊕
k=i

Q2k+1 =

j⊕
k=i

Q2k+1.

Proposition 8.1.11. For any integer i ≥ 0:

P/P2i
∼=
⊕
k≥i

Q2k+1.

Proof. By Lemma 8.1.10, we get a sequence of short exact sequences:

0 // P2i
// P2i+2

��

// Q2i+1

��

// 0

0 // P2i
// P2i+4

��

// Q2i+1 ⊕Q2i+3

��

// 0

0 // P2i
// P2i+6

��

// Q2i+1 ⊕Q2i+3 ⊕Q2i+5

��

// 0

and since direct limits are exact in
#»H, we get the short exact sequence:

0 −→ P2i −→ P −→
⊕
k≥i

Q2k+1 −→ 0.

8.2 On simples in Aw

As in Section 6.2, for every irrational number w, we define:

Cw = qw
◦ =

⋃
w<β

tβ

◦ and Gen(qw) = Qw = ◦Cw.

By Lemma 6.2.4, (Qw, Cw) is a torsion pair of finite type and, by Theorem 1.3.12, the heart

Aw =
#»H(Qw, Cw) is a locally coherent Grothendieck category, whose injective cogenerator comes

from a cotilting sheaf Ww such that Cw = Cogen Ww (as seen in Remark 6.2.11). In this Section

we want to describe the behavior of simple objects in Aw.

Consider w a positive irrational number, L the structure sheaf in
#»H and Sx a simple sheaf in

a tube of maximal rank. Let Pi be the w-convergent sheaf with respect to L and Sx as in

Definition 8.1.2.

We have seen in Proposition 8.1.8, that the direct limit P = lim−→P2i of the sequence (?) is a

quasi-coherent sheaf of slope w. It is clear that P ∈ Cw, so P [1] ∈ Aw is in Cw[1] and moreover,

by Proposition 1.3.11, P [1] = (lim−→P2i)[1] ∼= lim−→Aw(P2i[1]). We have the following.

Proposition 8.2.1. P [1] is a simple object in Aw.
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Proof. Using Proposition 2.3.7, we need to prove that for any non-split short exact sequence

0→ P → E → Q→ 0, with Q ∈ qw we have E ∈ Gen(qw).

Consider a non-split short exact sequence 0 → P → E → Q → 0, with Q ∈ qw. From the

isomorphism Ext1
#»H(Q,P ) ∼= HomAw(Q,P [1]), we get a nonzero map g : Q → P [1] in Aw. Since

Q is coherent, from Proposition 1.1.12, we get HomAw(Q, lim−→P2i[1]) ∼= lim−→HomAw(Q,P2i[1]).

Therefore there exists a nonzero map gi : Q→ P2i[1], for a certain i, such that g factors through

gi.

Notice that, in the construction described in Section 8.1, the sequence of the ranks of the Pi’s

is strictly increasing. Therefore, since Q is fixed, we can choose, without loss of generality, i in

such a way that rk(Q) ≤ rk(P2i−1).

From the map gi we get a non-split short exact sequence in
#»H:

0 −→ P2i −→ E′ −→ Q −→ 0

where P2i and Q are coherent, therefore E′ is coherent. Since P2i ∈ Cw and Q ∈ qw, we have

µ2i < µ(Q), therefore by Proposition 6.1.10, µ2i < µ(E′) < µ(Q).

By the additivity of the rank function and from the fact that rk(Q) ≤ rk(P2i−1), we have:

rk(E′) = rk(P2i) + rk(Q) ≤ rk(P2i) + rk(P2i−1) ≤ n2i+1 rk(P2i) + rk(P2i−1) = rk(P2i+1).

Where the last equality comes from Proposition 8.1.4. By Lemma 8.1.6 with k = 2i + 1,

we can conclude that µ(E′) ≤ µ2i or µ(E′) ≥ µ2i+1. The first case is not possible, hence

µ(E′) ≥ µ2i+1 > w, which implies E′ ∈ Gen(qw).

From the short exact sequences in
#»H, 0→ P2i → E′ → Q→ 0 and 0→ P → E → Q→ 0 , we

get the following diagram in Db( #»H):

P2i
//

��

E′ //

��

Q
gi // P2i[1]

��

P // E // Q
g
// P [1]

where the map E′ → E comes from the triangulated structure of Db( #»H). So, in
#»H we obtain

the diagram:

0 // P2i
//

� _

��

E′ //

��

Q // 0

0 // P // E // Q // 0

By the Snake lemma, we get a short exact sequence:

0 −→ E′ −→ E −→ Q −→ 0

where Q = P/P2i ∈ Add qw by Proposition 8.1.11. Therefore E ∈ Gen(qw).

Recall that, as we have seen in Theorem 2.3.6, the simple objects in the heart of a t-structure
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induced by a torsion pair can come either from a torsionfree almost torsion object or from a

torsion almost torsionfree object in the original category. In the following we prove that sheaves

becoming simple in Aw can only be torsionfree almost torsion and, moreover, they are all of

slope w. We first prove a lemma.

Lemma 8.2.2. Let S ∈ Aw be a simple object, then:

(i) If S = Y [1] for Y ∈ Cw, then Y /∈ pw.

(ii) If S = Q for Q ∈ Qw, then Q /∈ qw.

Proof. (i) Suppose Y ∈ pw is coherent and let Pi be an w-convergent sheaf, as in Definition

8.1.2, of slope µi = pi/qi with an even i such that µ(Y ) < µi. This is possible since

µ(Y ) is fixed and we have an infinite strictly increasing sequence of even convergents of w,

converging to w. Then, by Proposition 7.1.9, µ(Y ) < µi < w < µi−1.

Using Proposition 6.1.18, we obtain a map g : Y → Pi, which is a monomorphism by

Remark 2.3.2(I). Let C = Coker g and by the short exact sequence 0→ Y
g→ Pi → C → 0

we infer that rk(C) < rkPi = qi. Therefore, by Lemma 8.1.6, we have two possibilities:

µ(C) ≤ µi or µ(C) ≥ µi−1. But the first one is not possible, indeed: if µ(C) < µi, then

there is a nonzero map from Pi ∈ tµi to a sheaf of smaller slope, which contradicts Theorem

6.1.12(ii). Furthermore, if µ(C) = µi, then Y has slope µi too, since add(tµi) is an abelian

subcategory of H (see Theorem 6.1.12(i)), contradicting the fact that µ(Y ) < µi. Hence,

from µ(C) ≥ µi−1, we infer that C ∈ qw.

Therefore, the short exact sequence 0→ Y
g→ Pi → C → 0 induces a short exact sequence

in Aw:

0 −→ C −→ Y [1]
g[1]−→ Pi[1] −→ 0

where C and Pi[1] are nonzero. But, since Y [1] = S is simple in Aw, this is a contradiction.

(ii) The proof is dual. Suppose that Q is coherent, ie. Q ∈ qw. Let Pi be an w-convergent

sheaf, as in Definition 8.1.2, of slope µi = pi/qi with an odd i such that µi < µ(Q). This

is possible since µ(Q) is fixed and we have an infinite strictly decreasing sequence of odd

convergents of w, converging to w. Then, using Proposition 7.1.9, µi−1 < w < µi < µ(Q).

Consider the nonzero map g : Pi → Q, which exists by Proposition 6.1.18. By Remark

2.3.2(I’), g is an epimorphism. Set K = Ker g and by the short exact sequence 0→ K →
Pi

g→ Q → 0 we infer that rk(K) < rkPi = qi. Using Lemma 8.1.6, we have that either

µ(K) ≤ µi−1 or µ(K) ≥ µi. But the latter is not possible, indeed: if µ(K) > µi, then there

is a nonzero map from K to Pi which is a sheaf of slope smaller than µ(K), contradicting

Theorem 6.1.12(ii). Furthermore, if µ(K) = µi, then by the abelianity of add(tµi) as a

subcategory of H (see Theorem 6.1.12(i)), we have µ(Q) = µi. This contradicts the fact

that µi < µ(Q). Hence, from µ(K) ≤ µi−1, we infer that K ∈ pw.

Therefore, the short exact sequence 0→ K → Pi
g→ Q→ 0 induces a short exact sequence

in Aw:

0 −→ Pi
g−→ Q −→ K[1] −→ 0

where both Pi and K[1] are nonzero. But, since Q = S is simple in Aw, this is a contra-

diction.
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Theorem 8.2.3. If S ∈ Aw is a simple object, then S = Y [1] for a quasi-coherent sheaf

Y ∈Mw.

Proof. First of all, let us prove that S comes from a torsionfree almost torsion sheaf in
#»H. If

not, then S comes from a sheaf Q ∈ #»H which is torsion almost torsion free. By Remark 2.3.4,

every torsion almost torsionfree object in
#»H is coherent, but this contradicts Lemma 8.2.2(ii).

So S = Y [1] for a Y ∈ Cw, torsionfree almost torsion.

Let us prove now that Y ∈ Bw. Consider a nonzero map f : Y → E with E ∈ pw. Then, since

Y ∈ Cw and by Remark 2.3.2(I), f is a monomorphism. Y is, then, a subsheaf of a coherent

sheaf and therefore coherent, contradicting Lemma 8.2.2(i). So Y ∈ ◦pw = Bw.
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