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Abstract—This work aims to increase the impact of 

computer vision on robotic positioning and grasping in 

industrial assembly lines. Real-time object detection and 

localization problem is addressed for robotic grasp-and-place 

operation using Selective Compliant Assembly Robot Arm 

(SCARA). The movement of SCARA robot is guided by deep 

learning-based object detection for grasp task and edge 

detection-based position measurement for place task. Deep 

Convolutional Neural Network (CNN) model, called KSSnet, is 

developed for object detection based on CNN Alexnet using 

transfer learning approach. SCARA training dataset with 4000 

images of two object categories associated with 20 different 

positions is created and labeled to train KSSnet model. The 

position of the detected object is included in prediction result 

at the output classification layer. This method achieved the 

state-of-the-art results at 100% precision of object detection, 

100% accuracy for robotic positioning and 100% successful 

real-time robotic grasping within 0.38 seconds as detection 

time. A combination of Zerocross and Canny edge detectors is 

implemented on a circular object to simplify the place task. For 

accurate position measurement, the distortion of camera lens is 

removed using camera calibration technique where the 

measured position represents the desired location to place the 

grasped object. The result showed that the robot successfully 

moved to the measured position with positioning Root Mean 

Square Error (0.361, 0.184) mm and 100%  for successful place 

detection. 
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I. INTRODUCTION 

Selective Compliant Assembly Robot Arm (SCARA) 
robot was developed as a new concept for assembly robots 
by Prof. Hiroshi Makino at University of Yamanashi in 1981 
[1]. SCARA robot could move its gripper to any position 
within a circular space defined as its work envelope. As it is 
built based on a serial architecture, which means that the first 
motor carries the other motors, it requires a small footprint. 
On the other hand, SCARA controlling software requires 
inverse kinematics for linear movement which may increase 
its design cost [2]. The performance of SCARA robots, 
which are most adept in pick-and-place tasks, could be 
improved by increasing their speed, precision and capability 
[3]. Despite huge researches on computer vision, yet their 
impact on the robotic applications in industry is not very 
significant [4]. 

Recently, deep Convolutional Neural Networks (CNNs) 
have effectively affected deep learning models for different 
image processing applications such as object detection within 
input images [5], [6]. Transfer learning is an effective and 

fast way to build a CNN model rather than design and train it 
from scratch. In this approach, a pre-earned knowledge is 
adjusted and implemented to perform a new desired task 
such as robot grasp [7]. This approach is important since 
most successful deep learning-based robotic grasping 
research has used transfer learning to achieve state-of-the-art 
results and AlexNet [8] has been widely implemented in 
these studies [9]. In addition, the features that have been 
earned over large-scale datasets are generic in nature and can 
be used for new deep learning-based applications [10], [11]. 

In this paper, a deep CNN model is trained for real-time 
object and grasp detection based on AlexNet CNN. Four 
thousand images are acquired, labeled and processed as a 
training dataset for the derided robot grasp application over 
40 classes. In these classes two object categories are 
associated with 20 different positions. To place the grasped 
object, a combination of Zerocross and Canny edge detectors 
[12] has been used for position measurement of a circular 
object in undistorted images based on camera calibration 
process [13], [14]. For grasp-and-place experimental 
implementation we used GLOBOT KSS-1500 SCARA robot 
[15] equipped with FLIR Point Grey Chameleon3 camera 
which is supported by USB3 Vision toolbox in MATLAB 
[16]. 

II. DEEP LEARNING-BASED OBJECT DETECTION FOR

ROBOTIC GRASPING 

A. Convolutional Neural Network Object Detection Model 

The structure of CNN object detection model 
implemented in this research is called KSSnet and it is based 
on AlexNet pre-trained model [8]. The pre-trained model is 
tailored for robot grasping task by changing the dimensions 
of the final layers to match 40 lasses using Deep Network 
Designer MATLAB application [17]. Then, CNN model is 
fine-tuned on the new image dataset implementing transfer 
learning process [7]. 

B. Training Dataset 

SCARA robots usually deal with regular shaped objects 
in industrial assembly lines. Two cylindrical-shaped objects 
(labeled as AO and BO) with different dimensions and color 
are selected to represent assembly objects in assembly lines. 
Table I shows properties of the selected objects. SCARA 
training dataset is created based on AO and BO object 
categories as follows. Twenty positions in world coordinate 
are defined and associated with each object category. Each 
pair of object category and associated position is considered 
as a class in training dataset. 
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