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Forecasting time series with artificial neural networks

Having accurate time series forecasts helps to be prepared for upcoming events. As
many real world time series have nonlinear and irregular behavior, traditional ap-
proaches may be lacking performance. A suitable alternative method is artificial neural
network models, that can achieve high accuracy in various difficult tasks. The objective
of given thesis is to give theoretical and practical guidelines for applying neural networks
in time series forecasting with packages h2o and neuralnet for statistical programming
language R, and library Keras for programming language Python. An empirical study
was conducted on five different datasets to compare multilayer perceptron model per-
formance with long short-term memory model, and iterative, direct and multi-neural
network modeling strategies with each other. The performance of neural network mod-
els were compared with liner baseline models to expose whether the results have any
practical gain. When comparing the network structures, the results indicate the su-
periority of long short-term memory models. Furthermore, long short-term memory
models offered improvement over linear baseline model almost in case of all datasets.
Based on these results, neural networks proved to have great performance for time series
forecasting, and should be considered as an alternative to linear models.

Keywords: Artificial neural networks, time series analysis, forecasting
CERCS research specialization: Artificial Intelligence (P176)

Aegridade prognoosimine tehisnärvivõrkude meetodil

Aegridade võimalikult täpne prognoosimine võimaldab olla valmis tulevasteks muu-
tusteks. Tihti iseloomustab päriselulisi andmeid mittelineaarsed ja ebaregulaarsed muu-
tused, mida on klassikalistel lineaarsetel aegrea prognoosimudelitel keeruline arvesse
võtta. Sellistel juhtudel võib sobilikuks osutuda tehisnärvivõrkude meetod, mis suudab
ka keerulistes prognoosiülesannetes hea täpsuse saavutada. Antud töö eesmärgiks on
anda nii teoreetilisi kui ka praktilisi juhised tehisnärvivõrkude kasutamiseks aegridade
prognoosimisel, kui kasutada programmeerimiskeele R jaoks välja töötatud pakette h2o
ja neuralnet ning Python jaoks arendatud paketti Keras. Viie erineva andmestiku
korral viidi läbi protsess, mille käigus võrreldi mitmekihilise närvivõrgu ja rekurrentse
närvivõrgu ühe erivormi, LSTMi (ingl.k. long short-term memory), tulemusi. Lisaks
võrreldi omavahel ka erinevaid prognooside modelleerimise strateegiaid: iteratiivset,
otsest kui ka mitme närvivõrgu meetodit. Saadud prognooside headust hinnati võr-
reldes parima lineaarse (naiivne või ARIMA) baasmudeliga. Parimaks närvivõrkude
struktuuriks, mis töös vaadeldud andmestike korral saavutas prognoosimisel parimad
tulemused nii võrreldes teiste närvivõrkude kui ka lineaarse baasmudeliga, oli LSTM-
mudel. Selle meetodi tulemuste põhjal võib väita, et närvivõrkude kasutamine võib olla
heaks alternatiiviks lineaarsetele mudelitele.

Märksõnad: Neurovõrgud, aegridade analüüs, prognostika
CERCS teaduseriala: Tehisintellekt (P176)
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Introduction

Time series forecasting is useful in large variety of domains, such as finance, economics
and biology, for example. Forecasting can help to be prepared for what is coming in
the future, or even profit from the upcoming changes. In order to have highest benefit,
it is needed to obtain forecasts with high accuracy.

Unfortunately, many real world time series are very difficult to forecast. Although
there have been many statistical modeling techniques developed, the performance could
always be improved. Many of the statistical techniques produce accurate forecasts in
case of data with linear relations. The problem arises with nonlinearities that are often
difficult to capture. For example, series may contain chaotic component caused by
psychological, or even political factors.

In recent decades, a surge of new machine learning method, artificial neural networks,
have achieved excellent results in different problems related to computer vision and
natural language processing. An artificial neural network is a system of computational
units that send information to each other over weighted connections. The parameters of
the model are the connecting weights, and these are estimated during training process.
The training algorithm seeks to minimize the error of predictions by changing the
parameter values in a way that characterizes the population of training sample. The
most useful property of artificial neural networks, that could give advantage in time
series forecasting, is the ability to capture nonlinearities, and therefore offer a solution
where statistical linear methods would have poor performance.

The first objective of this thesis is to give guidance for applying artificial neural networks
in time series forecasting tasks. The second objective is to experiment developing
univariate neural network models with packages neuralnet and h2o for R, and Keras for
Python, and to compare results in the setting of time series forecasting. The comparison
will be based on five datasets that exhibit different nonlinearities. The performance will
be evaluated over different forecasting horizons, the number of preceding observations,
different modeling strategies, neural network architectures and network structure. The
results will be compared with naïve and ARIMA models as baseline.

The thesis will be structured as follows. Section 1 provides fundamental knowledge
of artificial neural network models, different architectures and model training process.
Section 2 will give brief overview of time series forecasting problem, and linear meth-
ods used as baseline models. Furthermore, the section describes how artificial neural
networks are applied in time series forecasting tasks. Finally, Section 3 consists of em-
pirical study with results of comparing different neural networks with baseline models
in case of five datasets and three programming packages in R and Python.
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1 Artificial Neural Networks

1.1 Introduction

This section is based on the book by Haykin (2009: pp. 1-9) if not referred otherwise.

Artificial neural networks (ANN), or more commonly referred to as neural networks
(NN), are machines which consist of layers of simple processing units, each storing
experimental knowledge, and sending the information to each other as signals over
weighted connections.

Artificial neural networks can be considered as oversimplified models of biological ner-
vous systems, that are mainly used for producing decisions or actions based on some
given or obtained input information. The brain, as the core of the nervous system,
receives impulses with information from receptors. After the information is perceived,
and the decision made, the impulses will be converted to system output by effectors.
These concepts that are illustrated also on Figure 1 can be considered as the core of
artificial neural networks systems.

Figure 1. "Nerve cell with signal flows from input as dendritic cell receptors to outputs
of effector cells at axon terminals." by Prof. Loc Vu-Quoc is licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported licence.

The research towards the artificial neural networks we know today started off from the
theory by Hebb (1949) in neuroscience. He claimed that the nerve fibers that communi-
cate persistently with each other will increase the effectiveness of the signals. This idea
was taken into use for developing computational methods for pattern recognition, sim-
ulating the action between neurons in a biological brain. Rosenblatt (1959) proposed
the original Perceptron, one of the first artificial neural network models. Additionally,
he provided a proof for a theorem about the convergence of weights of the connections
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in Perceptron learning algorithm.

Minsky and Papert (1969) published research showing the weakness of perceptron mod-
els. They offered a multilayer solution for tackling some drawbacks, but due to the lack
of theoretical results, the research for neural networks stagnated.

The early eighties brought extensive research back to life, with newly attained impor-
tant theoretical results of learning process and improvements in computer processing
capacities. A new movement of parallel distributed processes (Rumelhart et al., 1986)
based on the idea that when many simple processing units catching smaller distributed
pieces of information are combined together, they can achieve intelligent output. This
period of extensive research provided many concepts that are still in use.

Another generation of ANN-s started from the work of Hinton (2006), when he managed
to show a greedy learning algorithm in case of multiple hidden layers. This result
made it possible to train much deeper networks than had been trained before, and
has consequently given a competitive edge when compared to other machine learning
methods.

There are numerous different neural network architectures developed, and will be de-
veloped hereinafter, for various specific tasks of simple classification, regression, image,
audio and video processing, natural language processing, etc.

Artificial neural network methods have many very good properties. Firstly, neural
networks can capture nonlinear relations. Secondly, the algorithms are computationally
powerful as many calculations are run parallel on distributed structure. Thirdly, the
models have the ability to generalize the gained knowledge to generate output for objects
that had not been seen in the training process. Fourth, networks have capability of
adapting interneuron connection weights when there are changes in the environment.

1.2 Fundamentals

This section is based on the book by Haykin (2009: pp. 10-15) if not referred otherwise.

Neural networks consist of information-processing units called neurons, often referred
to as nodes. A simple model of a neuron consists of three basic elements: connecting
links, a summation and an activation function (Figure 2).
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xj wkj Σ ϕ(·)

Activation
function

yk

Output

x1 wk1

...

...
xm wkm

Weights

x0 = +1Fixed input wk0 = bk

Inputs

Figure 2. Model of an artificial neuron k.

Each neuron k will get input signals x1, . . . , xm. Connecting link, or synapse, connects
the input signal xj with neuron k, and this interneuron link is characterized by the
weight wkj. The weights show the strength and importance of given connection, and
therefore can take both positive and negative values.

Usually an additional external input called bias bk is added to the input of a neuron k.
It has the ability to increase or decrease the net input of the neuron. Equivalently, it
is possible to decompose the bias into external fixed input x0 = +1 with corresponding
weight wk0, i.e bk = wk0x0 = wk0.

All the weighted inputs are summed together into net input vk. The sum can be ex-
pressed as follows:

vk =
m∑
j=1

wkjxj + bk

=
m∑
j=0

wkjxj.

The net input of a neuron will be fed into activation function ϕ(·) in order to limit the
amplitude of the output yk in some needed extent. The choice of the activation function
depends on task that needs to be solved, and an overview of the most used functions is
given below (Goodfellow, Bengio & Courville, 2016: pp. 187-191).

• In regular binary classification task the output should give enough information to
separate the classes. Typical activation function in this case is a logistic sigmoid
function that squashes the output to interval (0,1) :

ϕ(vk) =
1

1 + exp(−vk)
.

Sometimes having the output in interval of (−1,1) can give computational advan-
tage, and in this case a suitable function is hyperbolic tangent function:

ϕ(vk) = tanh(vk).

7



• In other cases a very often used activation function for hidden neurons is

ϕ(vk) = max{0,vk}.

When this activation function is used then the neuron is called a rectified linear
unit. This activation gives great computational advantage as the function has
constant derivatives, and this makes the computations in learning algorithms far
more efficient.

The output of a single neuron is the result of activation function:

yk = ϕ(vk) = ϕ

( m∑
j=0

wkjxj

)
.

1.3 Network Architectures

The neural networks can have fundamentally different architectures, and the choice of
the architecture will affect the choice of learning algorithms. Haykin (2009, pp. 21-23)
covers three classes of them. The first two are strictly layered networks, meaning that
the neurons are organized as layers.

Single-Layer Feedforward Networks
This is the simplest layered network, and it consists of two layers - input and output
layer. As there are no calculations performed in the input layer, it is not counted and
that is why this type of model is called single-layer network. The input nodes are fed
directly into output layer, and after some calculations the output of the whole network
is produced.

The term feedforward indicates that the information flows through the connecting links
only in one direction - from input nodes into output nodes.

Multilayer Feedforward Networks
When there is one or more hidden layers of neurons between input and output layers,
then model is referred to as multilayer feedforward network. This architecture also
requires the signals to flow only in forward direction - from input layer to first hidden
layer, then in case of additional hidden layers consecutively into each of them, and from
the last hidden layer into the output layer.

On Figure 3 we can see two-layer network that has 5 input nodes, one hidden layer with
3 computational nodes and an output layer with a single neuron.

By far the most common multilayer feedforward network architecture is multilayer
perceptron, which is introduced in detail in Section 1.4. Often the terms feedforward
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network and multilayer perceptron are used as synonyms (Goodfellow et al., 2016: pp.
164). Another class of models that is also considered as a multilayer feedforward network
is convolutional neural networks. This subclass is not introduced in given thesis, but a
great overview can be found in Chapter 4.17 of the book by Haykin (2009).

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

x5

ŷ

Figure 3. Example of two-layer feedforward network, where ŷ denotes the output pro-
duced by output neuron is considered as the prediction of model. Based on the number
of neurons it can be referred as 5-3-1 network.

Recurrent Networks
The networks where the information flow direction is not strictly one-way, and at least
one feedback loop exists, are referred to as recurrent neural networks. The feedback
loop allows the output of a neuron to influence the input of itself or any other neuron in
the same layer or preceding layer. In the first case, when the output is fed into the same
neuron’s input, the loops are often called self-feedback loops. There is a feedforward
network depicted in Figure 3, but with additional feedback loops it is considered as a
recurrent networks (see Figure 4).

The class of recurrent neural networks is very diverse, many special models cast aside
the traditional layered structure. A subclass of recurrent neural networks called long
short-term memory models are introduced in Section 1.5.2.
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Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

x5

ŷ

Figure 4. Example of a recurrent neural network, where ŷ denotes the prediction for
true value y produced by output neuron. The network is recurrent as the first neuron
of the hidden layer has a self-feedback loop, and the last neuron of the hidden layer has
feedback loop to the last node of input layer.

1.4 Multilayer Perceptron

The sections about multilayer perceptron are based on the book by Haykin (2009: pp.
120-126) if not referred otherwise.

A multilayer perceptron (MLP) is a neural network architecture which contains at least
one hidden layer of neurons, and where all the connections between layers are strictly
feedforward. A classical multilayer perceptron is fully connected, i.e every neuron in
preceding layer is connected to all neurons in the subsequent layer.

Multilayer perceptron can be referred to as deep feedforward network (Goodfellow et al.,
2016: pp. 164). This term was adapted in late 2000s with the significant improvement
in computational power, which made it possible to train deeper networks, remarkably
higher number of hidden layers and neurons (Boehmke, 2018).

The role of hidden neurons is to detect different patterns and features that characterize
the data. The patterns are discovered as a part of learning process when the input
data is transformed into a new feature space. These transformed values attempt to
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separate the values more easily according to some pattern when comparing with original,
untransformed values.

In order to have an effective network, it is needed to find optimal values of free param-
eters – weights and biases – that identify patterns that characterize the data.

During the learning process the inputs are fed through the network with initial set
of weights until the output values are achieved. The outputs are compared with real
values, and an error metric will be calculated. The error is then fed into a chosen cost
function. Multiple possible cost functions, or often called loss functions, are introduced
in Section 1.4.3. The technical objective of the learning process is to minimize the cost
function. For this purpose the parameters are modified iteratively after every batch of
samples, until a minimum of the cost function is reached. Classical batch consists of all
training samples.

The output error raises the issue of credit-assignment problem, i.e how to divide "the
blame" of high output error between all the parameters that were used to calculate
certain outputs, and how to penalize or reward the hidden neurons in respect to their
responsibility. The sizes of the effect on the cost function can be calculated as partial
derivatives of the cost function with respect to different parameters, i.e as a gradient vec-
tor of the cost function. The gradient will be calculated based on the back-propagation
algorithm introduced in Section 1.4.1. The parameters are then penalized or rewarded
in accordance to the gradient with opposite sign, in order to reduce the function. This
method is called gradient decent method, and will be together with an improved algo-
rithm of it, called as stochastic gradient descent method, introduced in Section 1.4.2.

1.4.1 The Back-Propagation Algorithm

The notation in this subsection is following the book by Haykin (2009: pp. 129-141),
and it is integrated with technical nuances by Goodfellow et al. (2016: pp. 200-209).

The algorithm consists of two parts – the forward propagation and the backward prop-
agation. In the first part, an observation, or set of observations, are fed through the
network, and the corresponding cost values are computed. During the backward prop-
agation step, the gradients for parameters - weights and biases - are computed.

The complexity of the algorithm increases with the number of hidden layers. First,
the gradients are computed for output layer. Second, the gradients will be computed
subsequently for each preceding hidden layer. Derivation of gradient vectors is described
for both types of layers in the following paragraphs. Additionally, the full algorithm for
fully connected multilayer perceptron that optimizes run-time by keeping the values of
reoccurring computations in memory is presented as Algorithm 1 in Appendix A.
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Deriving the Gradient Vector of the Cost Function for Output Layer
Consider n-th iteration of learning process. Let the output layer be the l-th layer in the
network, let the output layer consist of ml neurons. In the notation for output value
y
(l)
j (n) the superscript l indicates the layer, subscript j indicates the neuron j in the
corresponding layer, and argument n indicates the iteration step. As y(l)j (n) is output
value on the output layer, and therefore considered as prediction for the observation,
the output will be denoted with hat, i.e, ŷ(l)j (n), to separate true values and predictions
of given observation.

Recall, the output ŷ(l)j (n) of a neuron j ∈ {1, 2, . . . ,ml} in the l-th layer can be calcu-
lated as a result of an activation function over net input for the neuron j, i.e

ŷ
(l)
j (n) = ϕj(v

(l)
j (n)) = ϕj

(ml−1∑
i=0

w
(l)
ji (n)y

(l−1)
i (n)

)
,

where y(l−1)i (n), i = 1, . . .ml−1 are outputs from preceding (l − 1)-th hidden layer with
ml−1 neurons as input for neuron j, y

(l−1)
0 (n) is the external input fixed to size +1,

w
(l)
ji (n), i = 0, . . . ,m are the weights of the connecting links from input y(l−1)i (n) to

neuron j, and ϕ(·) is the activation function. For simplicity the notation is abbreviated
by leaving out the iteration step argument (n) as all the calculations presented in this
section are for the iteration step n.

In the matrix notation the last formula can be expressed as a dot product of vectors
W

(l)
j =

(
w

(l)
j1 , w

(l)
j2 , . . . , w

(l)
jml−1

)
and y(l−1) =

(
y
(l−1)
1 , y

(l−1)
2 , . . . , y

(l−1)
ml−1

)T in the following
way

ŷ
(l)
j = ϕj

(
W

(l)
j y(l−1) + bj

)
.

The error produced by output ŷ(l)j is calculated as a difference of output value and the
true value yj, and this can be expressed as

ej = yj − ŷ(l)j .

The cost function E(·) is a continuously differentiable function of the parametersW (l)
j .

To find the gradient, it must be noted that E(W
(l)
j ) is a function composition, and

therefore the chain rule of calculus must be used.

The gradient of a cost function on the weights on neuron j in the output layer ∇
W

(l)
j
E

is expressed as a vector in the following way

∇
W

(l)
j
E =

(
∂E
∂w

(l)
j1

,
∂E
∂w

(l)
j2

, . . . ,
∂E

∂w
(l)
jml−1

)
.

Each partial derivative can be calculated according to chain rule as

∂E
∂w

(l)
ji

=
∂E
∂ej

∂ej

∂ŷ
(l)
j

∂y
(l)
j

∂v
(l)
j

∂v
(l)
j

∂w
(l)
ji

.
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Taking the derivatives with respect to ŷ(l)j on the both sides of the equation ej = yj− ŷ(l)j

yields
∂ej

∂ŷ
(l)
j

= −1.

Taking the derivatives with respect to v(l)j on the both sides of the equation ŷ(l)j = ϕj(v
(l)
j )

yields
∂ŷ

(l)
j

∂v
(l)
j

= ϕ′j(v
(l)
j ).

Taking the derivatives with respect to w
(l)
ji on the both sides of the equation v

(l)
j =∑ml−1

i=0 w
(l)
ji y

(l−1)
i yields

∂v
(l)
j

∂w
(l)
ji

= y
(l−1)
i .

Therefore the partial derivative ∂E
∂w

(l)
ji

is calculated as

∂E
∂w

(l)
ji

= − ∂E
∂e

(l)
j

· ϕ′j(v
(l)
j )y

(l−1)
i .

The gradient matrix on all weights is as follows

∇W (l)E =
(
∇
W

(l)
1
E , . . . ,∇

W
(l)
ml

E
)
.

Finding the Gradient Vector of the Cost Function for Hidden Layers
When the neuron j is in the output layer l, the gradient calculations are as straightfor-
ward as shown above, because the error signal is computed when comparing with the
true value. But when the neuron j is in a hidden layer, then there is no true output
value to compute exact error, and therefore the error signal must be fed backwards
from the output neuron k of output layer l to preceding hidden layers. Figure 5 depicts
the signal-flow between neuron j in the last, (l − 1)-th hidden layer and the error ek
produced by the output of neuron k in the output layer.
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Figure 5. Signal-flow graph illustrating how the output neuron k is connected with
neuron j in preceding hidden layer. (Haykin, 2009: pp. 132)

The gradient vector of weights ∇
W

(l−1)
j
E of neuron j in (l-1)-th layer consists in this

case of partial derivatives ∂E
∂w

(l−1)
ji

that are derived in the similar way as for the output

neurons shown above,
∂E

∂w
(l−1)
ji

=
∂E

∂y
(l−1)
j

∂y
(l−1)
j

∂v
(l−1)
j

∂v
(l−1)
j

∂w
(l−1)
ji

.

The main difference is that the partial derivative ∂E
∂y

(l−1)
j

is a sum over all output layer

neurons error effects on output y(l)j

∂E
∂y

(l−1)
j

=

ml∑
k=1

∂E
∂ek

∂ek

∂ŷ
(l)
k

=

ml∑
k=1

∂E
∂ek

∂ek

∂v
(l)
k

∂v
(l)
k

∂y
(l−1)
j

.

The partial derivative ∂ek

∂v
(l)
k

can be calculated by taking derivative of ek = yk − ŷ(l)k =

yk − ϕk(v
(l)
k ) with respect to v(l)k as follows

∂ek

∂v
(l)
k

= −ϕ′k(v
(l)
k ).

The net input v(l)k of neuron k is based on the outputs y(l−1)j of the preceding hidden
layer and an external input y(l−1)0 = +1, i.e

v
(l)
k =

ml−1∑
j=0

w
(l)
kj y

(l−1)
j .

The partial derivative of ∂v
(l)
k

∂y
(l−1)
j

is equal to

∂v
(l)
k

∂y
(l−1)
j

= w
(l)
kj .
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By using the expressions derived above the desired partial derivative ∂E
∂w

(l−1)
ji

can be

calculated as

∂E
∂w

(l−1)
ji

=

(
ml∑
k=1

∂E
∂ek

∂ek

∂v
(l)
k

∂v
(l)
k

∂y
(l−1)
j

)
∂y

(l−1)
j

∂v
(l−1)
j

∂v
(l−1)
j

∂w
(l−1)
ji

=

=

(
−

ml∑
k=1

∂E
∂ek
· ϕ′k(v

(l)
k )w

(l)
kj

)
· ϕ′j(v

(l−1)
j )y

(l−2)
i .

1.4.2 Stochastic Gradient Descent Method

This section is based on the book by Goodfellow et al. (2016: pp. 80-84, 149-150,
290-296).

Stochastic gradient decent (SGD) is one of the most used algorithms for training a deep
learning model. It is based on the gradient decent algorithm, but introduces an accel-
erated approach to finish the learning process. Therefore, the first following paragraph
will describe the gradient decent method to introduce the general approach, and the
subsequent paragraph will add a feature to general approach in order to accelerate the
learning process.

The Gradient Descent Algorithm
The gradient descent method is the technique of reducing a value of a function f(·), e.g
in the learning process a cost function E(·), in the direction of the opposite sign of the
derivative. We know that the value f(x− η · sign(f ′(x))) < f(x), when η is small.

The gradient decent method uses entire training set at every iteration, and changes the
parameters in order to minimize the cost.

The back-propagation algorithm yields a gradient for cost function, and therefore chang-
ing the weights in the direction of negative gradient will reduce to cost. The adjusted
matrix of weights W(k)∗ that will reduce the cost, can be calculated in the following
way

W(k)∗ ←W(k) − η∇W(k)E(ŷ(k),y),

b(k)∗ ← b(k) − η∇b(k)E(ŷ(k),y),

where k iterates over layers, i.e., k ∈ {1,2, . . . , l}, and where a positive scalar η is called
the learning rate.

The learning rate is the parameter with the strongest impact on the convergence speed
of gradient descent. One possibility for the choice of learning rate is to use a fixed
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value η. Using too small value of η may result in a slow convergence, but too large
value can make the learning process unstable. An additional option is to fix a schedule
of η1, η2, . . . , where the learning rates gradually decrease over time. It is sufficient
to choose the schedule based on two conditions to guarantee the convergence of the
method. The conditions are following,

∞∑
i=1

ηi =∞, and

∞∑
i=1

η2i <∞.

An another approach to optimize the learning process is to add momentum term. The
term is composed as a weighted sum of past gradients, and this can act as accelerator
or stabilizing term for the calculated gradient. It can reduce the effect of computed
gradient when the sign of momentum term and computed gradient do not concur, or in
the opposite it can magnify the effect of the gradient when the signs concur.

When using the momentum terms mW ,mb the parameters are updated in the following
way

mW ← αmW − η∇W(k)E(ŷ(k),y),

W(k)∗ ←W(k) + mW ,

mb ← αmb − η∇b(k)E(ŷ(k),y),

b(k)∗ ← b(k) + mb,

where α is a hyperparameter to change the size of impact of previous gradients, α ∈
[0,1). With higher α the previously calculated gradients affect the outcome with higher
magnitude.

The stopping criterion for gradient decent is the convergence, which has been reached
when the gradient is zero-vector. In practice, it is often enough when the gradient has
reached a small value close to zero.

The Stochastic Gradient Method
Evaluating the cost at every iteration step over all training observations can be com-
putationally expensive. Furthermore, using larger training set does not improve the
estimation of gradient vector by as large factor. This has motivated further devel-
opment of the regular gradient decent into the stochastic gradient decent algorithm
presented as Algorithm 2 in Appendix A.

Instead of using the whole training set for computing the cost in one iteration, only
a small sample, also referred to as minibatch, is used. The observations are drawn
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randomly from the training set, and typically the size of a minibatch ranges from
24 =16 to 28 =256. Averaging gradients over the minibatch gives an unbiased estimate
for the gradient.

Stochastic gradient decent method gives an important advantage over regular gradient
decent as the time used for computation stays on the same level even when the training
set is larger. Furthermore, the algorithm can achieve tolerated maximal limit of cost
before it has processed all the observations in training set.

1.4.3 Cost Functions

Changhau (2017) has gathered together most of the cost functions, often referred to as
loss functions, that are used by deep learning models. The cost function that will be
minimized must be chosen according to the problem type - regression or classification,
and whether the overestimates or underestimates should be punished. The author
brought out following cost functions for training a regression model.

Consider error e(i) = y(i) − ŷ(i) of i-th observation in training batch, where y(i) is true
value of an output of observation, ŷ(i) is the predicted value. Let cost function be
E = E(θ), where θ denotes all parameters, the weights and biases.

• L1 Loss function sums the absolute errors of n observations, and it is calculated
as

E =
n∑

i=1

|e(i)|.

• Mean Absolute Error (MAE) measures the distance between predicted and
true values. It is calculated as the L1 loss, but the result of L1 is averaged
between observations. Therefore the cost function of MAE is

E =
1

n

n∑
i=1

|e(i)|.

• Mean Absolute Percentage Error (MAPE) measures the percentage error
between predicted and true values. It is calculated as

E =
1

n

n∑
i=1

∣∣∣∣e(i)y(i)

∣∣∣∣ · 100.

• L2 Loss function, often referred to as sum of squared errors, sums the squared
errors of n observations, and it is calculated as

E =
n∑

i=1

(e(i))2.
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• Mean Squared Error (MSE) is calculated as the L2 loss, but the result of L2
is averaged between observations. Therefore the cost function of MSE is

E =
1

n

n∑
i=1

(e(i))2.

• Mean Squared Logarithmic Error (MSLE) is a variant of MSE where the
prediction and true value are log-transformed. The corresponding cost function
of MSLE is calculated as

E =
1

n

n∑
i=1

(
log(y(i) + 1)− log(ŷ(i) + 1)

)2
.

The choice of a certain cost function is affected by the interpretation of outliers that
produce high error. By using the MAE statistic the outliers do not affect the cost
function as much as in case of MSE, and therefore MAE is preferable in the case when
the outliers occur more often, and may be due to an erroneous measurement. With
MSE the huge differences will cause a very high cost, and is therefore preferred when
the measurement is done correctly, and the value is truly an outlier in the output space.
In contrary, MSLE is able to penalize more the under-estimates than the over-estimates.

1.5 Long Short-Term Memory Model

Recurrent networks conquer the problem of storing previously processed information
for using it later for upcoming predictions. Long short-term memory (LSTM) model
introduced by Hochreiter & Schmidhuber (1997) is one of the most effective approaches
of recurrent networks. A brief overview is based on essay by Olah (2015).

Firstly, the general concept of unrolled recurrent neural networks is introduced in Sec-
tion 1.5.1. Secondly, in Section 1.5.2 the idea of unrolled recurrent neural networks was
used in order to describe the structure of long short-term memory models.

1.5.1 Unrolled Recurrent Neural Network

Recurrent neural networks differ from feedforward networks as they have feedback loops.
These loops can be unrolled and visualized as sequences, where every module, or cell,
in the chain will produce two types of output - the prediction for the output value, and
the information passed to next module as input (Figure 6).

This chain-like representation of recurrent neural networks make it suitable for sequence
modeling tasks. These tasks include natural language processing, speech recognition,
video processing, time series forecasting, etc.
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Figure 6. Unrolled recurrent neural network. (Olah, 2015). Retrieved from https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/.

1.5.2 The Structure of Long Short-Term Memory Models

The LSTM model structure is based on unrolled recurrent neural network depicted on
Figure 6. In LSTM model every cell of the chain is constructed in a special way, as
shown on Figure 7.

Every LSTM cell consists of three gates with sigmoid layer: forget gate, input gate and
output gate, and the modules pass information sequentially through cell states Ct and
hidden states ht, where t is the index of the value in a sequence.

Cell state Ct−1 contains information from the past that is passed on to a t-th cell. As this
past information may contain information that has lost its relevance, the information
flow is limited by the forget gate value ft, which assigns a value in interval [0,1]. If the
forget gate value is close to one, most of the past information can continue the flow,
but if the value is close to zero, most of the past information is forgotten. The value of
forget gate is calculated as follows:

ft = σ(Wf · [ht−1, xt] + bf ),

where Wf and bf are corresponding weights matrix and bias vector, xt is input at t,
and σ(·) indicates sigmoid function.

The next, input gate, decides which information is needed to pass as information update
to cell state. The input gate layer value is calculated as follows:

it = σ(Wi · [ht−1, xt] + bi).

The candidate values for update process, C̃t, are obtained by squashing input to interval
[−1,1] by tanh(·) function. The values C̃t result from

C̃t = tanh(WC · [ht−1, xt] + bC).
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Figure 7. The structure of a LSTM model cell. The upper horizontal line indicates cell
state flow, the lower horizontal connections hidden state flow. Yellow boxes represent
learned network layers, and pink circles pointwise operations. From “Understanding
LSTM Networks” by Olah (2015). Retrieved from https://colah.github.io/posts/
2015-08-Understanding-LSTMs/

The new cell state Ct is a linear combination of remained information from past cell
state and new information added, i.e, Ct = ftCt−1 + itC̃t.

The last gate, output gate, will decide which information is going to be the output, i.e,
the output gate layer value ot is filtering values from cell state Ct in order to produce
the output. The corresponding values are evaluated in similar way to ft and it,

ot = σ(Wo · [ht−1, xt] + bo).

Before filtering, the cell state value Ct is squashed by tanh(·) function. The output
value ht, calculated as follows:

ht = ot tanh(Ct),

is returned as prediction ŷt = ht at time step t, and it is also forwarded to the next
module at time t+ 1 as input.
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2 Time Series Forecasting

The following two subsections, Section 2.1 and Section 2.2, giving brief overview of time
series, and introducing classical forecasting methods are based on book by Brockwell
and Davis (2002: pp. 15, 23-24, 29-33, 50, 55, 180, 203) if not noted otherwise.

2.1 Fundamentals

A time series is a set of sequential observations yt ordered by the time point of measure-
ment t. A time series is referred to as discrete time series when the set of observation
time points t is a countable set, t = 1,2, . . . . The observations are denoted as yt.

The forecast of an outcome at unobserved time point, T + h, is based on the values
measured earlier. Here T is a number of observed values, and h shows which successive
time point after T is forecast. The prediction at T + h, given on values yT is denoted
as ŷT+h|T .

Time series prediction starts usually with plotting the series, and observing it to identify
whether the series has trend, seasonal component, apparent behavioral changes, or any
outlying observations. In case of trend, and/or seasonal component, it must be taken
into account and eliminated, as required by most forecasting methods.

First, the time series can be decomposed to trend Tt, seasonal component St, and
random error component εt, as given in

yt = f(St,Tt,εt).

The most used formulations of function f are

• yt = St + Tt + εt,

• yt = St · Tt · εt.

An example of decomposed time series is on Figure 8.

Second, trend and seasonal component can be eliminated by differencing the series. In
the following section ∇ operator denotes lag-1 difference computed as

∇yt = yt − yt−1 = (1−B)yt,

where B is operator for backwards shift,

Byt = yt−1.
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Figure 8. An example of time series additive decomposition.

It is possible to achieve a sequence {∇kyt}Tt=1 = {∇(∇k−1yt)}Tt=1 that has no trend.
The seasonal component can be eliminated by using seasonal differencing with seasonal
differencing operator ∇s as

∇syt = yt − yt−s = (1−Bs)yt,

where s is the length of one seasonal period (e.g, s = 12 for monthly data).

The property that is desired by most methods of time series forecasting is stationarity.
A series is considered to be stationary when the statistical properties are similar for
every possible sub-series drawn from it. Detrending is the most helpful way to make
the series stationary for a lot, not to say for the most of time series.

2.2 Linear methods

2.2.1 Naïve method

The authors Hyndman and Athanasopoulos (2018) have given brief overview of naïve
forecasting methods as follows.

Naïve forecast at some successive time point T + h is simply the last observed value of
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the series, i.e,
ŷT+h|T = yT .

The simple naïve forecast is optimal for predicting random walk, therefore this simple
method gives good predictions for financial time series.

In case of seasonal component, the naïve forecast is equal to the last observation at the
same season, i.e,

ŷT+h|T = yT+h−s(k+1),

where k is the number of complete seasonal periods for the length of h calculated as
k =

⌊
h−1
s

⌋
.

2.2.2 ARIMA model

ARIMA stands for autoregressive integrated moving-average models. ARIMA(p,d,q)

model is able to handle a series generated by autoregressive process of order p, AR(p),
and moving-average process of order q, MA(q), even in case of non-stationary series, if
it is possible to make it stationary by differencing it d times.

A series {Yt}Tt=1 is generated by moving-average process of order q if Ỹt = Yt −E(Yt) is
linear combination of previous q forecast errors, random values, i.e.,

Ỹt = Zt + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q,

where β is intercept, Zt ∼ N(0, σ2) are independent random variables, and θ1, . . . , θq

are parameters.

A series is generated by autoregressive process of order p if Ỹt can be expressed as linear
combination of previous p values of the same series, i.e,

Ỹt = Zt + φ1Ỹt−1 + φ2Ỹt−2 + · · ·+ φpỸt−p,

where Zt ∼ N(0, σ2) are independent random variables, and φ1, . . . , φp are parameters.

A series {Yt}Tt=1 is generated by ARIMA(p,d,q) process if

∇dỸt = Zt +

p∑
i=1

φi∇dỸt−i +

q∑
j=1

θjZt−j,

or equally,
φ(B)(1−B)dỸt = θ(B)Zt,

where θ(·) and φ(·) are following polynomials:

θ(x) = 1 +

q∑
j=1

θjx
j
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and

φ(x) = 1−
p∑

i=1

φix
i.

Seasonal ARIMA model
ARIMA is able to take into account seasonal effect by introducing seasonal autore-
gressive and moving-average processes, and seasonal differencing. The models in this
subclass are referred to as SARIMA models.

A series {Yt}Tt=1 is generated by SARIMA(p,d,q)× (P,D,Q)s process if

φ(B)Φ(Bs)(1−B)d(1−Bs)DỸt = θ(B)Θ(Bs)Zt,

where s is period of seasonal component, D is the order of lag-s differencing operator, P
and Q are correspondingly the orders of seasonal autoregressive and seasonal moving-
average processes, and Θ(·) and Φ(·) are following polynomials:

Θ(x) = 1 +

Q∑
j=1

Θjx
j

and

Φ(x) = 1−
P∑
i=1

Φix
i.

2.3 Artificial Neural Network Methods

The predictive power of artificial neural networks lies in both, the ability to find differ-
ent patterns in the data, and in the ability to capture nonlinear relations (Haykin, 2009:
pp. 1-2). These are highly desired properties in time series forecasting, and this has
driven numerous authors to apply neural networks for time series forecasting problems
in various domains, e.g., signal processing (Lapedes & Farber, 1987; Carillo, González &
Gracia-Linares, 2015), weather forecast (Maqsood, Khan & Abraham, 2004), econom-
ical series of production, consumption (Srinivasan, Liew & Chang, 1994), forecasting
financial series of stock prices (White, 1988; Siami-Namin & Siami Namin, 2018) and
currency prices (Kuan & Liu, 1995; Adhikari & Agrawal, 2013).

Artificial neural networks methods used in time series methods include variety of dif-
ferent architectures. The simplest architecture used is feedforward network, which in-
cludes multilayer perceptron (Carillo et al, 2015), radial basis function models (Montaño
Moreno, Pol & Gracia, 2011) and extreme learning machines (Singh & Balasundaram,
2007). Also, recurrent networks are applied, Elman network (Kuan & Liu, 1995), and
long short-term memory network (Siami-Namin & Siami Namin, 2018), for example.
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Most of the network models use the idea of autoregressive series. The input for the
model will be a set of previously observed values, and the output node contains the
future values to be forecast ahead (Zhang, Patuwo & Hu, 1998). Additionally, more
variables can be given as input, e.g., weekday or month identificator, or related time
series. For instance, for forecasting temperature values, it is possible to add as input
both, previous temperature and atmospheric pressure values.

Two widely used architectures, multilayer perceptron and long short-term memory
model, are used in the comprehensive comparison in given work. Strategies how to
apply these architectures in time series forecasting task will be covered in Section 2.3.2.

When forecasting time series H steps ahead it is possible to follow one of the following
approaches. It is possible to forecast just the H-th step ahead, but it is also possible
to forecast the value for each time step h until H. In this thesis the second approach is
followed, as the first can be forecast with similar approaches as the second. Predictions
for the full horizon H can be forecast by three different methods introduced in Section
2.3.2, and H-step-ahead forecast can be obtained by two of those.

2.3.1 Data Preprocessing

When training neural networks for any type of predictive task, it is often beneficial to
apply preprocessing transformations prior to model training.

One way to improve the optimization algorithms is to standardize the data prior to
training process. This will ensure that even when the weights are initialized randomly,
the algorithm converges faster, as it does not have to find optimal weights from notice-
ably different range of values (Bishop, 1995: pp. 296-298). Standardized values of a
feature y are computed as

ỹi =
yi − ȳ
s

,

where ȳ = 1
N

∑N
i=1 yi is sample mean, s is unbiased sample standard deviation calculated

as s =
√

1
N−1

∑N
i=1(yi − ȳ)2, and N is sample size.

However, it must be noted that parameters mean and variance for standardization must
be estimated from the training data. When the trained network is used to forecast based
on new samples, the data must be standardized based on parameters estimated from
training data.

When using ARIMA model in time series forecasting it is required that the series can be
made stationary by differencing. So far there is no consensus which data preprocessing
methods should be used prior developing a neural network model as concluded by
Makridakis, Spiliotis and Assimakopoulos (2018). The series can be deseasonalized,
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detrended and/or transformed using Box-Cox power transformations in order to achieve
better and more stable forecast performance. The decision should be based on particular
data, often as a result of comparing forecasts by models trained with transformed and
original data.

2.3.2 Modeling Strategies

There are three main strategies of using neural networks in forecasting time series. In
case of one-step forecasting problem, all the approaches will give same results, but in
multi-step forecasting task the forecasts will be calculated differently.

Iterative Strategy
The iterative strategy will produce one model to predict all h = 1, . . . , H steps in
the future. This model has only one output neuron that will predict value at next
time step, and in order to achieve H forecasts it is iterated H times. The predicted
value of one iteration will be used as an input for forecasting the value at next time
step. This results in forecasts ŷt+h, that are computed given on n + 1 past values:
ŷt+(h−1), . . . , ŷt+1, yt, . . . , yt−n+(h−1). An example of the iterative approach with multi-
layer perceptron architecture in case of h = 3 and n = 4 is given on Figure 9(a).

The iterative strategy has following positive features: it seeks to minimize the error
of one-step forecasts, and only one model is to be fitted according to this strategy
(Hyndman & Ben Taieb, 2012). However, this method is criticized to have typically
less accurate forecasts for long period as it iteratively drops off the past observed values
and replaces with predicted values (Zhang et al., 1998).

Direct Strategy
Following the direct strategy only one model will be fitted. In this approach the output
layer consists of H neurons, as shown on Figure 9(b) for the case H = 3. This has
advantage of using all useful past observations, with reducing the computational power
needed to forecast H future values, as only one model is fitted (Zhang et al., 1998).
This approach is widely used in many practical solutions in various case studies (Lee &
Jeong, 2017; Montaño Moreno et al., 2011; Zhang et al., 1998).

Multi-Neural Network strategy
The multi-neural network strategy, will haveH separate models, one for each forecasting
step h. Each model will take as input n+ 1 past observations yt, yt−1, . . . , yt−n, and will
output ŷt+h. An example of multilayer perceptron model with multi-neural network
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ŷt+3

(a) Iterative strategy

Input layer Hidden layer Output layer

yt

yt−1

yt−2

yt−3

yt−4
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ŷt+3

(c) Multi-neural network strategy

Figure 9. Examples of different strategies on multilayer perceptron architecture for
forecasting the time series value ŷt+3 after h = 3 steps ahead given on five past obser-
vations yt, yt−1, yt−2, yt−3, yt−4. On subplot (a) it is assumed that the ŷt+1 and ŷt+2 have
already been forecast iteratively.
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strategy to forecast value at future step h = 3 given on five past observations is shown
on Figure 9(c).

Hyndman & Ben Taieb (2012) highlight that this strategy is computationally exhaus-
tive, as it requires fitting multiple models. Moreover, the forecasts can be not as
coherent as with iterative strategy, as the models for different horizons are estimated
independently. When compared to iterative strategy, it has advantage of using all past
observations for forecasting.

This strategy is sometimes also referred to as direct strategy (Ben Taieb, Bontempi,
Atiya & Sorjamaa, 2012; Hyndman & Ben Taieb, 2012), but the term multi-network
strategy will be preferred not to confuse it with previously introduced direct strategy.

Combined Strategies
It is possible combine the three strategies. For example, Zhang (1994) describes strategy
that fits H models, but forecasts are made iteratively. At every iteration the input con-
sists of all past observations yt, . . . , yt−n and previously forecast values ŷt+1, . . . , ŷt+(h−1),

and the output of the model consists of new predictions for ŷt+1, . . . , ŷt+(h−1) and a new
forecast for ŷt+h.

2.4 Evaluating the Performance of a Model

When evaluating the model performance, it is possible to measure error on the same
data that was used to train the model. These obtained errors are called in-sample
errors. When the trained model is evaluated by the performance on yet unseen data,
then the errors are referred to as out-of-sample errors.

Makridakis et al. (1982) concluded in their empirical study for time series forecasting
that the model fitting errors, also referred as in-sample errors, underestimated forecast-
ing errors on the unseen data. This conclusion has found approval by many authors
according to Tashman (2000), and therefore evaluating model performance is based, by
default, on out-of-sample errors.

2.4.1 Training, Validation and Test Sets

In order to have unseen data for model evaluation, the time series is split in two dis-
tinct sets: train and test set, where train data consists of sequential values until some
timepoint T, and test set contains values starting from time T + 1 (Makridakis et al.,
1982). There is no fixed rule how the data should be split, but it is common to use
some proportion between training and test set, 70% vs. 30%, 80% vs. 20%, 90% vs.
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10%, for example (Zhang et al., 1998). When the original series is short, then the test
set should be size of input lags plus forecasting horizon.

Ord, Fildes & Kourentzes (2017: pp. 344-349) highly recommend using an extra set,
commonly referred to as validation set. Validation set is obtained by dividing the
training data into two subsequences, where validation set again acts as future unseen
data. The combination of hyperparameters, e.g. number of hidden layers, hidden
nodes, is considered as the best when corresponding model gives the lowest error on the
validation set.

The authors Ord et al. (2017: pp. 344-349) bring out that validation set is used also
in the neural network training phase in order to avoid overfitting. After predefined
amount of iterations of the optimization algorithm, backpropagation, for example, the
forecast error is calculated on the validation set. The training can be stopped when the
validation error does not decrease anymore, as this indicates that further training can
lead to overfitting.

Again, when separating the validation set from training data, there is no fixed rule on
how to choose the proportion for the split. However, it is often similar to what was
used for separating the test data.

2.4.2 Out-of-Sample Error Evaluation Methods

Tashman (2000) has compared the three following methods for out-of-sample error
evaluation.

Fixed-Origin Evaluation
One approach to evaluate out-of-sample errors, is fixed-origin method. By this approach
the whole input data is used only once as a whole to compute the forecast errors for
horizon H. This method has a major drawback: only one error estimate can be obtained
for the output, i.e., unseen data. The errors calculated in this way can be affected by
the uniqueness of the unseen data, e.g. extreme fluctuations or uncommon stability,
and therefore may not give the most reliable result.

Rolling-Origin Evaluation
Rolling-origin evaluation is a successive updating method, where the output data is
successively added to input data after it has been assigned a one-step-ahead forecast.
This way it is possible to obtain many forecasts, and the total error value obtained by
many forecast errors is more reliable.
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Rolling Windows Evaluation
Rolling window approach is similar to rolling-origin approach, but difference is in the
length of input data. With rolling-origin method the size of input data increases after
adding a value from output data. In rolling window method the size of input data is
held fixed, and after adding a new output value, the oldest observation of inputs is
discarded.

The neural networks do not need the previous data to be kept if the trained models
are not refitted. The input size will be determined by network structure, and is equal
for each time step. The previous time steps will be discarded by neural network, and
therefore rolling window approach is simple yet effective approach for developing neural
network models for time series forecasting.

2.4.3 Sampling Design

In practice, each of training, validation and testing subseries is transformed with rolling
window method into a matrix of input values and output values (Brownlee, 2018). If
a series contains values y1, y2, . . . , yN , and the input for model should have p past
observations to forecast H future values, then the input-output matrix consists of n =

N −H − p+ 1 rows and p+H columns, as shown in Table 1.

The input-output matrix obtained from training subseries is used for developing the
model. The matrix obtained from validation set is used for computing the validation
error, and this is the basis for choosing the best model from every modeling technique.
The matrix obtained from transforming the testing set, is used for final evaluation
between different architectures.

Table 1. Input-output matrix obtained from series of length N, for predicting H steps
ahead based on p previous values, where n = N −H − p+ 1.

Input Output
Sample id yT−(p+1) yT−(p+2) . . . yT yT+1 yT+2 . . . yT+H

1 y1 y2 . . . yp yp+1 yp+2 . . . yp+H

2 y2 y3 . . . yp+1 yp+2 yp+3 . . . yp+H+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

n yn yn+1 . . . yN−H yN−H+1 yN−H+2 . . . yN

2.4.4 Error Measures

There are multiple error measures used for evaluating forecasting accuracy. The follow-
ing overview of the most common measures for evaluation of errors et = yt− ŷt is based
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on Hyndman & Koehler (2006).

• Mean Absolute Error: MAE= 1
n

∑n
i=1 |et|, as introduced in Section 1.4.3.

• Mean Absolute Percentage Error: MAPE= 1
n

∑n
i=1

∣∣ et
yt

∣∣ · 100, as introduced
in Section 1.4.3.

• Root Mean Squared Error: RMSE=
√

1
n

∑n
i=1(et)

2, the square root of MSE
introduced in Section 1.4.3.

It must be taken into account that when the series {yt} contains values equal to 0, then
MAPE measure is undefined, and when series has values close to 0 then MAPE will
give extreme values.

In addition to measures given above, it is possible to combine two calculated measures
to a relative measure. Often, one of the measures is calculated on some baseline model,
and the other one on the alternative model. The relative measure indicates if the
alternative model can be considered as an improvement over the baseline model. For
example, relative RMSE is given by

RelRMSE =
RMSE
RMSEb

,

where subscript b indicates the measure calculated on baseline model. As desired error
measure is as low as possible, the relative measure can be interpreted in the following
way. If the relative measure is less then one, the alternative is performing better then
baseline model, and if the relative measure is greater than 1, the alternative model does
not give better forecast.

When choosing a best performing model amongst multiple neural network models that
give error estimates of the same magnitude, Goodfellow et al. (2016: 112) advise to
invoke a principle referred to as Occam’s razor. Based on this principle a simpler model
should be chosen, if the models describe the data equally well.

2.5 Approaches for Improving the Neural Network Model Per-
formance

The following section is based on Goodfellow et al. (2016: pp. 117, 226-231, 253-262).

2.5.1 Regularization

The generalization error, that is the error which a model makes to predict on the new
unseen data, increases with overfitting. In addition to using validation set for stopping
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the training process when the generalization error starts to increase, there are more
possibilities for keeping overfitting under control.

Regularization is any kind of modification in the learning algorithm with the aim to
lower the generalization error but not the training error.

Parameter Regularization
The following parameter norm penalty ideas, L1 and L2 regularization, are used widely
in linear models. In neural network learning algorithm the penalized parameters are
only the weights W connecting neurons, and not the bias parameters b. Recall, θ
denotes both, now penalized weights and regular, unpenalized biases.

The penalty effect is obtained by adding a regularization term Ω(θ) to the cost function
E(θ) that is to be minimized. Therefore, the regularized cost function Ẽ(θ) is given by

Ẽ(θ) = E(θ) + αΩ(θ),

where α is a hyperparameter regulating the contribution of regularization term.

In case of L2 regularization, the added regularization term Ω(θ) is following:

Ω(θ) =
1

2

∥∥W∥∥2
2

=
1

2

∑
w∈W

w2,

and in case of L1 regularization, the added regularization term Ω(θ) is following (Nielsen,
2015):

Ω(θ) =
∥∥W∥∥

1
=
∑
w∈W

∣∣w∣∣.
Dropout
Another regularization method, dropout, is a method of dropping non-output neurons
from the network. In case of learning algorithm with minibatches, like SGD introduced
in Section 1.4.2, the neurons chosen to be excluded are drawn randomly with chosen
probability for each of the minibatches. The probability of including a neuron is again
a hyperparameter that can be tuned manually to find the best performing model. It
is shown that this method reduces the generalization error, especially of deep neural
networks, that often suffer from overfitting. However, to obtain the level of lower
validation error has a cost of training a larger network and large number of iterations
in the learning algorithm.

2.5.2 Ensemble Models

It is possible to reduce error by combining output of multiple separate models. The
motivation for the approach is that usually, different models will make different errors
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on the test set.

Ensemble models can be constructed in many ways. It can contain the models con-
structed with exactly the same architecture. In this case different output is obtained
by introducing randomness in the initialization of parameters, and/or in the choice of
minibatches, for example. In addition, an ensemble model can be constructed of models
with different architecture.

Kourentzes, Barrow & Crone (2014) advise using median or mode operators for com-
bining results from multiple models. They emphasize that mean operator is sensitive
to outliers and has poor performance when the distribution of outputs is skewed. The
authors demonstrated in their empirical study the superiority of median operator when
compared to mean operator. Furthermore, they proposed mode operator for combining
the models. As a result, the authors concluded that mode operator results in lower
error compared to median operator when the ensemble contained of at least 30 individ-
ual models. However, as the improvement over median operator was not remarkable,
median operator is still more popular.

2.5.3 Hybrid Models

Several empirical studies have introduced different hybrid models. In a hybrid model,
the time series is often decomposed as linear and nonlinear component, i.e.,

yt = Nt + Lt,

where Nt is nonlinear component and Lt linear component.

Zhang (2002) proposed a hybrid model that, first, fits a linear ARIMA model to the
series, and second, fits a neural network model to the nonlinear residuals. Adhikari &
Agrawal (2013) proposed a similar hybrid model, where the linear part was fit with
naïve model. Both studies affirmed the superiority of hybrid model over both linear
and nonlinear model separately.

Several other hybrid models have been proposed. For example, a hybrid of LSTM and
convolutional neural network, that were mentioned in Section 1.3. (Lin, Guo & Aberer,
2017).
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3 Empirical Study for Comparing the Time Series
Forecasting Models

An empirical study was conducted to compare neural network forecasting performance
with classical linear models on different datasets.

The empirical study for comparing time series forecasting models will follow the given
structure. Section 3.1 gives an overview of the packages of programming languages
Python and R used for training the neural networks, Section 3.2 describes in detail how
the models are trained, and how it is determined which model has the best performance,
Section 3.3 introduces briefly the datasets used in comparison, Section 3.4 presents the
chosen models and obtained results for each dataset, and finally, Section 3.5 analyzes
the results across datasets, packages and model architectures.

3.1 Overview of Suitable Packages for Forecasting in R and
Python

The following section covers different possibilities in forecasting with neural networks,
primarily with statistical programming language R. In addition, programming language
Python is used for developing LSTM models. It must be noted, that the following list
of packages is incomplete, and will cover only a handful of possible options. The used
packages were chosen because they offered flexibility for customizing the model struc-
ture, and allowed the neural networks to be compared with rolling window approach
introduced in Section 2.4.2.

The packages introduced below differ by the speed of training process, supported mod-
eling techniques, and the implemented architectures.

3.1.1 Package neuralnet for R

Package neuralnet is general package for training feedforward neural networks in R.
The first version of the package was developed in 2008 by Fritsch, Guenther & Wright
(2019). This package does not have any special functions for forecasting time series,
so the task can be implemented by multilayer perceptron architecture using different
modeling strategies introduced in Section 2.3.2.

However, the duration of training process can limit the choice of possible network
architectures. Firstly, the computations in R are by default single-threaded, and the
package itself has not implemented multi-threaded calculations. Secondly, the function
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for training the network does not offer using faster, currently more popular and more
advanced optimization algorithms, for example, stochastic gradient descent introduced
in Section 1.4.2 (Fritsch et al., 2019, Goodfellow et al., 2016: pp. 307).

3.1.2 Package h2o for R

Package h2o is an interface for program ’H20’ in R, offering diverse selection of imple-
mentations for different machine learning algorithms (LeDell et al., 2019). From neural
network modeling it supports training deep feedforward networks. Similarly to package
neuralnet, this package does not have any special functions for forecasting time se-
ries, so the forecasting networks can be trained according to iterative and multi-neural
network strategy introduced in Section 2.3.2. Currently, package h2o does not offer
possibility to model according to the direct strategy shown in Section 2.3.2.

The function deeplearning, used for fitting deep neural networks, offers wide selection
of hyperparameters that can be tuned to achieve more precise model. Moreover, the
computations made by functions of package h2o can be run on multiple threads on
CPU, or even GPU, and this accelerates the training process remarkably.

The package offers also an automated grid search function for improving the procedure
of hyperparameter tuning.

3.1.3 Keras for Python

Keras is a deep learning library written in Python by F. Chollet in 2015 that allows
developing very flexible and advanced deep learning models (Chollet, 2015). Addition-
ally, it has an interface to R, and can be run by using package keras (Allaire & Chollet,
2019). However, the code for developing models in this thesis were written in Python.

Deep learning has been made very flexible by using Keras, as it offers constructing
networks layer by layer, while specifying the details separately for each layer. It offers
variety of layer types, and the possibility to build a custom layer. The library supports
recurrent neural networks, and therefore it was used to develop long short-term memory
models for time series forecasting.

Keras can be run on both CPU and GPU, enabling to model large-scale tasks.
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3.2 Design of the Comparative Empirical Study

For comparison, there were multiple models fitted for each dataset that will be intro-
duced in Section 3.3. The empirical study was executed for each dataset in following
three steps: fitting baseline models, choosing neural network architectures with the best
performance, and lastly, choosing the neural networks with the best performance for
each dataset and forecasting horizon H.

3.2.1 Generating input and output datasets

First, the time series is split into three subseries for training, validation and testing
processes. The rule for all data sets was following: 15% of the series (most recent ob-
servations) were set apart for testing the performance of chosen models. The remaining
series was split into two – the first 80% of the values were used as training set, and the
last 20% of the observations were used as validation set.

Afterwards, each of the three obtained subseries was transformed into input and output
matrices by using rolling window approach as introduced in Section 2.4.2 and Section
2.4.3.

3.2.2 Linear Models

To demonstrate the success or failure of forecasting with the developed neural networks,
they must be compared against some baseline model. Both naïve and ARIMA, or
seasonal naïve and SARIMA models were fitted for comparison of the neural network
performance.

The ARIMA models used as baseline models were fitted with R function auto.arima.
Therefore, these models can be considered as good candidates for best performing
ARIMA model. The emphasis of this thesis was to discover how to use neural net-
works in time series forecasting, and to see whether applying these approaches can offer
results with some practical value. Thus, as the aim was not to find the overall best
ARIMA models for chosen datasets, the ARIMA models fitted with auto.arima were
considered good enough for baseline models, and no benchmark of ARIMA models was
attempted to find. However, for simplicity, the models that were chosen by auto.arima

are referred to in this thesis as "the best" models, hereby fully acknowledging that this
may not hold in all cases.

The orders for ARIMA model were chosen on training set, and moreover the parameters
were estimated on training set as well. This means that the models were not refitted
before each forecast. By following this approach, the settings for both linear and neural

36



network models were fair, in the sense of equal prior knowledge.

3.2.3 Neural Network Models

After obtaining linear baseline models, a manual grid search was performed for finding
the best neural network architecture for given input and forecast horizon. Grid search
iterated over different combinations of forecasting horizons, number of input variables,
modeling strategies.

As a result of training process, each model had obtained parameter estimates based
on training data. As refitting the more complex neural network models is costly, the
classical approach of machine learning was followed, and thus the model parameters
were not refitted after obtaining new information from validation and test set.

Three packages introduced in Section 3.1 were used for developing neural network mod-
els. The specifications for each package is given in paragraphs below.

The obtained multilayer perceptron networks were partitioned into two groups, small
networks and large networks by the number of hidden neurons. Small MLP networks
had less than 20 hidden neurons in total over all hidden layers. This partition gave
better overview for deciding whether the forecasting performance can be improved by
using more complex models.

All compared models were ensembles of 10 networks with identical structure, producing
a forecast ŷT+h as the median value of individual forecasts, where h = 1, . . . , H. The
ensemble size was chosen based on Kourentzes, et al. (2014), where the empirical
analysis showed that by using ensemble with median forecast obtained the low error
already by small ensemble. Of course, the exact number depends on the dataset used,
but to limit the time spent on training, it was not reasonable to use ensemble sizes
greater than 10 for all datasets and all functions.

Forecasting with Package neuralnet

As package neuralnet does not explicitly allow multi-threaded computations, and
therefore takes long time to train, only small networks were developed using this pack-
age. The time series modeling strategy for neuralnet models was direct approach.

The models were trained with the resilient backpropagation algorithm - the default of
this package, and it minimized the L2 loss function (Fritsch et al., 2019). The activation
function for hidden layers was by default sigmoid function. A million steps were allowed
for the training algorithm to converge into some local minima, and if the threshold was
surpassed, the training process was stopped without obtaining a model.
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Forecasting with Package h2o

With package h2o there were two types of models fitted, first were based on multi-neural
network strategy, and second followed the iterative strategy.

The h2o uses by default the stochastic gradient decent algorithm with additional im-
provements to accelerate the convergence of the algorithm (Candel & LeDell, 2019),
which minimized the L2 loss function. Most of the hyperparameters for the training
function deeplearning were used with the default values, among them also rectified
linear unit activation function. However, to improve model training process and ability
to generalize, two of the hyperparameters were manually tuned. First, early stopping
based on validation set error measure was enabled. Second, L1 regularization was used
with rate α = 0.0001 (as defined in Section 2.5.1), as using this resulted in lower error
measure, when testing it with multiple datasets.

Forecasting with Keras

Long short-term memory models were developed with package Keras. These models
were trained with direct strategy, i.e., the output layer contained H neurons. The used
optimization algorithm is called Adam which is a further development of stochastic
gradient decent algorithm, where the learning rate is changed adaptively. Like with
h2o models, the loss function was MSE, and early stopping was enabled. Additionally,
input layer dropout was tried, but no good rate of dropout were detected manually,
and therefore not used.

Developed long short-term memory models had 10, 20 and 100 nodes for each H and p
combination.

3.2.4 Choosing the best neural network models

When using the best linear models time series forecasting, the best models are often
chosen based on residual diagnostics, and Ljung-Box test results (Hyndman & Athana-
sopoulos, 2018). However, it is possible to evaluate the goodness of a model based and
testing the model on some new data. In this thesis the latter approach is used.

For each linear and neural network model the error measure was computed as follows.

Let N denote the length of time series. Let Ŷ denote obtained matrix of forecasts, and
ŷh denote the h-th column vector of Ŷ.

As shown in Section 2.4.3, the time series with length of N can be transformed into
input and output matrices with n = N − H − p + 1 rows. The length of input and
output matrix of test subseries is therefore nt = b0.15Nc − H − p + 1, and length of
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obtained matrix for validation subseries is nv = b0.2
(
d0.85Ne

)
c −H − p+ 1.

The obtained forecasts for validation and test set were following:

Ŷ
val

=


ŷval11 ŷval12 ŷval13 . . . ŷval1H

ŷval21 ŷval22 ŷval23 . . . ŷval2H
...

...
... . . . ...

ŷvalnv1 ŷvalnv2 ŷvalnv3 . . . ŷvalnvH

 ,

Ŷ
test

=


ŷtest11 ŷtest12 ŷtest13 . . . ŷtest1H

ŷtest21 ŷtest22 ŷtest23 . . . ŷtest2H
...

...
... . . . ...

ŷtestnt1 ŷtestnt2 ŷtestnt3 . . . ŷtestntH

 .
As the next step, error measure RMSE was calculated for each h-th column, h =

1, . . . , H, to measure the error of h-steps ahead forecasts, i.e, RMSE(ŷh).

If the forecasting horizon H was longer than one step, then the comparable error mea-
sure was obtained by averaging error measures over all horizon steps h. For example,
average RMSE for test set forecasts was calculated as

RMSE(Ŷ
test

) =
1

H

H∑
h=1

RMSE(ŷtest
h ).

The neural networks were compared with baseline models based on the error measures
calculated from validation set.

It must be noted that both linear and nonlinear models that were compared by abso-
lute number, had to be evaluated on the same time interval. This avoids the possible
unfair effect by extreme values or irregular stability, for example. Therefore, the rel-
ative measures, introduced in Section 2.4.4, could only be calculated for each H and
p combinations separately. This approach gave more reliable results when the series
contained extreme changes in the behavior, which will be discussed in more detail in
Section 3.4.5.

Based on the relative measures on the validation set, the best neural networks were
chosen for each combination of forecasting horizon, used package and modeling strategy.
The best neural network demonstrated the highest improvement over linear methods.
The final evaluation of chosen models was done by comparing the results on test set.

3.3 Datasets

All chosen datasets vary in the frequency of the observations, appearance of seasonal
component and nonlinear components.
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The datasets were divided into training, validation and test sets, and the splits for each
dataset are depicted on figures below. All the datasets were standardized before training
and using trained models for forecasting. When the data contained trend component,
the series was differenced. As the neural networks try to fit the observable patterns, no
seasonal diffencing was performed that would to remove the seasonal patterns.

3.3.1 Euro - US Dollar Exchange Rate

The first analyzed dataset contained EUR-USD exchange rates. The exchange rates
are collected by Macrotrends LLC, and were retrieved for analysis from their website
(Macrotrends LLC, 2019). They have published daily closing prices starting from Jan-
uary 4, 1999. The exchange rates were given on market days, so weekends and holidays
were mostly not present in the dataset. Until 2018 both Saturdays, and Sundays were
excluded, afterwards Saturdays were included, and additionally Sundays were observed
from February 25, 2018 to September 9, 2018. The analyzed data contained 5194 values
from January 4, 1999 to February 28, 2019 (see Figure 10).

Figure 10. Daily exchange rate of 1 EUR in US dollars.

From the Figure 10(a) it can be seen that the data has no long term trend, however
it contains multiple local trend direction changes. Additionally, it can be seen from
Figure 10(b) that the series does not have a regular seasonality component. The series
was not differenced for developing neural network models.
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3.3.2 OMX Baltic Benchmark Index

The second analyzed dataset contained the OMX Baltic Benchmark index, that is
calculated over large stocks with high trading activity on Nasdaq Baltic Market. The
index is owned and calculated by Nasdaq, and is published on Nasdaq Baltic website
(Nasdaq Baltic, n.d.-a). The index is calculated in euros, with the base value of 100€
on December 31, 1999. The methodology of calculations has been published by Nasdaq
Baltic (Nasdaq Baltic, 2016). The index prices are given only on market days, i.e, from
Monday to Friday.

The data was retrieved from Nasdaq Baltic website (Nasdaq Baltic, n.d.-b) and con-
tained observations from January 1, 2009 to March 22, 2019, in total of 2587 observa-
tions (see Figure 11).

Figure 11. Daily price of OMX Baltic Benchmark index in euros.

It can be seen from Figure 11(a) that the data has long term trend, and additionally, it
can be seen from Figure 11(b) that the series does not contain a seasonality component.
The series was differenced for developing neural network models.

3.3.3 River Flow of the Great Emajõgi

The third analyzed dataset describes the river flow in m3/s of the river Great Emajõgi
measured in Tartu, South Estonia. The data is collected by Estonian Weather Service,
and was retrieved from their website (Estonian Weather Service, 2019). The data has
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been collected daily starting from the beginning of January 1922. The data used in
analysis contained 6575 values from January 1, 2000 to December 31, 2017 (see Figure
12).

From the Figure 12 it can be seen that the data has irregular behavior, no trend and no
weekly or monthly seasonality can be observed. However, some years have high peaks
caused by floods at spring time. As the series did not have trend, the series was left as
original, no differencing was done for modeling purposes.

Figure 12. Daily river flow of river the Great Emajõgi, measured in m3/s.

3.3.4 Electricity prices in Estonian power market

The next analyzed dataset contained electricity prices at Nord Pool power market for
Estonia. The data is collected by Nord Pool AS, and was retrieved for analysis from
their website (Nord Pool AS, 2019). They have published historical data in various
frequencies starting from the beginning of January 2013.

The analyzed prices are based on the Elspot day-ahead trades in Nord Pool power
market for region Estonia. Only daily prices were chosen for further analysis. The used
data contained 2191 values from January 1, 2013 to December 31, 2018 (see Figure 13).
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Figure 13. Daily electricity prices in Estonia, measured in euros.

From the Figure 13(a) it can be seen that the data has no trend, and from Figure 13(b)
that there is weekly seasonality in some extent. This is confirmed by autocorrelations
and partial autocorrelations given in Appendix C. The series was differenced for de-
veloping neural network models, but the calculated errors were based on the original
data.

3.3.5 New Orders in the Manufacturing Sector in the U.S.

The last analyzed dataset described the sum of new orders (in millions of dollars)
received, net of cancellations, in the manufacturing sector in the United States. The
establishments considered to be in manufacturing sector transform materials, substances
or components into new products.

The data is collected from domestic manufacturing companies by the U.S. Census Bu-
reau, and data for analysis was retrieved from their website (U.S. Census Bureau, 2018).
The data is collected monthly from February 1958. The data used in analysis contained
468 values from January 1980 to December 2018 (see Figure 14).
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Figure 14. Monthly total of new orders in manufacturing sector in the U.S., measured
in millions of dollars.

From the Figure 14 it can be seen that the data has increasing trend. Figure 14 and
figure in Appendix C indicate seasonal component, thus, the series was differenced
for modeling purposes. However, the calculated errors were based on the original,
undifferenced data.

As the chosen series describes economic data, it has been greatly affected by recessions.
The 2008 financial crisis had strong impact on the manufacturing sector, and as one of
the consequences was a sudden drop in new orders in this sector (Figure 14). Although
the impact was strong, and affected forecasting models in a great extent, it was not taken
into consideration to change the data in some way, e.g., by leaving out the financial
crisis period, or scaling down the effect. In this way it can be an example of how the
neural networks are affected by these extreme changes with high impact on upcoming
time points.

3.4 Results

The best models obtained by every method (different package, small vs large network,
modeling strategy) are given in appendices, the overall best neural network models are
highlighted within sections.

Common remarks and conclusions for all datasets are given as follows.
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• The error measures calculated for each h-step ahead, RMSE(ŷh), generally in-
creased with h.

• For most of datasets only one hidden layer was enough, additional layers decreased
performance.

• LSTM models had very long training time. However, this is affected by overall
low CPU utilization by Keras.

• Despite the fact that the networks trained with package neuralnet were not very
deep, the training time was very long. First, it was in great extent due to single-
threaded calculations. Furthermore, the optimization algorithm had problems
with converging within million iteration steps. For many models the algorithm
did not converge at all, and corresponding model was not achieved.

• As the training time of models with iterative method increased faster than the
multi-neural network models, and did not obtain the same level of improvement
over baseline, the iterative models were not trained in case of long horizon H or
large number of inputs p.

• One-step-ahead forecasts obtained with h2o by iterative and multi-neural network
strategy, are calculated in the same manner, and therefore had similar results.
When the difference between strategies is compared, the conclusions are made on
basis of forecasts for longer horizon H, as these statements do not hold in case of
H = 1.

• When comparing h2o models by iterative and multi-neural network strategies, the
results indicated the superiority of multi-neural network method.

1. Although the results on validation set were in same size for both strategies,
the results on test set indicated strongly that the iterative method overfitted
to validation set. Therefore, this strategy will perform worse on unseen
future data when compared to multi-neural network method.

2. The elapsed time for training the model increases remarkably faster for mod-
eling more and more complex networks with the iterative strategy.

The best models based on validation set are highlighted in comparison tables below
for each analyzed dataset. All the tables have similar structure: they demonstrate
how long input was chosen and how many neurons were used by the best models for
specific package, modeling strategy and forecasting horizon H. For each best model the
error measure on validation set RMSE

(
Ŷ

val)
or MAE

(
Ŷ

val)
and corresponding value

on test set RMSE
(
Ŷ

test)
or MAE

(
Ŷ

test)
are given. Percentages show the relative error

when compared with baseline model. Negative percent demonstrates by how many
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percentages lower error was obtained by the neural network. Positive percent shows
how much larger the error was when compared to baseline model. Training time is
given in seconds. Additionally, a rank within the group of similar models was given
based on the result on the test set. All the models highlighted in tables have the lowest
validation error, thus always the rank of 1 on validation set, and hence the validation
rank was discarded.

The test rank gives information about the consistency of chosen models. An ideal model
would rank as first on both validation and test set. In this way, the comparison results
are more reliable, as the model could be considered as a model that is consistently
better when forecasting new unseen data. However, as the hyperparameters tuned did
not significantly change the behavior of neural networks, the differences in error measure
were mostly not remarkable, and highly ranked models could all be considered as good
models, not just the model with rank 1.

It must be noted that the given training times are only rough estimates. The conditions
at measuring were not fair and equal for all models, as many models were training at
the same time by R and Python.

3.4.1 Forecasting Euro - US Dollar Exchange Rate

As EUR-USD exchange rate dataset had daily frequency with no seasonal component,
the forecasting horizon H was chosen to be equal to 1, 3, 5, 10, 15. The values for p,
number of previous observations, were calculated as multiple of H with factors 2, 5 and
10.

First, linear baseline models were fitted. The best ARIMA model for all H and p

combinations was ARIMA(0,1,0), and therefore, ARIMA model is equal to naïve model.
Afterwards, manual grid search was performed to find neural network models that could
offer an improvement over naïve model.

The best results among all neural network models, regardless of the package used, were
obtained by networks that used p = 2 ·H inputs.

The best performing neural network models for all forecasting horizons for EUR-USD
exchange rate are given below in Table 2. A comprehensive overview with the best
models for every package is given in Appendix D.
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Table 2. Comparison of the best performing neural network models with naïve forecasts
for EUR-USD exchange rate. All models had the lowest error on both validation and
test set.

Model Hidden Train RMSE
(
Ŷ

val)
RMSE

(
Ŷ

test)
type H p neurons time (s) Neural network Naïve Neural network

LSTM

1 2 20 604 0.00548 (-17.90%) 0.00485 0.00417 (-14.00%)
3 6 20 603 0.00842 (-6.88%) 0.00652 0.00640 (-1.74%)
5 10 10 878 0.01025 (-5.64%) 0.00783 0.00776 (-0.92%)
10 50 10 7512 0.01361 (-6.81%) 0.01040 0.01010 (-2.92%)
15 30 10 1623 0.01539 (-11.41%) 0.01238 0.01194 (-3.57%)

Multilayer Perceptrons with Package neuralnet

The models developed on package neuralnet were chosen to be one-layer networks,
and had 3, 4, . . . , 9, 10 neurons in the hidden layer. Additional layers demonstrated
poor performance, and were excluded from further analysis.

Not many models were obtained, none of the could remarkably improve over the naïve
model. The developed models were mostly for one-step-ahead forecasts. The networks
for longer horizon H did not converge in limited iteration steps or reasonable time.

Neither the number of hidden neurons nor the number of preceding observations used
as input had distinctive affect. Therefore, it would be enough to use very simple archi-
tectures, e.g. with 3 or 4 hidden neurons.

Multilayer Perceptrons with Package h2o

For every horizon H and number of input values p, the chosen hidden layers and hidden
neurons were the following: one-layer networks with 3, 4, . . . , 9, 10, 20, 50, 100 neurons,
and a two-layer network with 10 neurons on both layers.

Both iterative and multi-neural network strategies were tried. But as mentioned in the
overview of common conclusions at the beginning of Section 3.4, the training time of
iterative models increased rapidly, and moreover, these models had very poor perfor-
mance on test data (see Appendix D).

Small multilayer perceptron networks demonstrated lower error when compared to large
networks. This may indicate that the data did not contain recurring patterns to a
greater extent, and less neurons were needed to describe these. Nevertheless, even the
best small networks could not improve over baseline model. The longer the horizon H,
the higher error rate when compared with naïve model, as it can be seen from Appendix
D. The results of small networks trained with multi-neural network strategy were on
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the same level with the direct strategy models obtained with package neuralnet.

Long Short-Term Memory Models with Package Keras

LSTM models performed the best with 10 or 20 cells, the larger network with 100 nodes
mostly did not perform as well as smaller networks, and none of the times remarkably
better than smaller models. When the forecasting horizon was short, i.e., 1 or 3 days,
then models with 20 nodes obtained better results, on the contrary when the forecasting
task was more complex with longer horizon H, the smallest networks with 10 neurons
had better performance.

The LSTM models produced the overall lowest errors both on test and validation set,
however, with the cost of high computing time. For example, to train a h2o MLP with
10 neurons it took 19 seconds, and to train a MLP model with 100 neurons it took 21
seconds, whereas LSTM models trained roughly 9 and 21 minutes correspondingly, i.e.
about 26 and 60 times longer.

As LSTM models were the only models that showed improvement over linear methods,
these models were chosen to be the best neural network models for EUR-USD exchange
rate forecasting.

3.4.2 Forecasting OMX Baltic Benchmark Index

Similarly to EUR-USD exchange rate dataset, OMX Baltic Benchmark index data has
daily frequency with no seasonal component. Therefore, the forecasting horizon H was
chosen to be equal to 1, 3, 5, 10, 15. As there is no visible seasonal component, the
values for p were calculated as multiple of H with factors 2, 5 and 10.

First, ARIMA and naive models were fitted. Obtained model by function auto.arima
was ARIMA(1,1,0). This model had better performance on validation set than naïve
forecast, and therefore chosen as baseline model.

Afterwards, manual grid search was performed to find neural network models that could
offer an improvement over ARIMA model. The networks were trained on differenced
series. Overall, the performance of the most trained neural networks was worse than
the performance of the ARIMA method. As the differenced series in financial domain
follow random walk (Hyndman & Athanasopoulos, 2018), this can be the reason for
poor performance of multilayer perceptrons when there are no patters to detect.

The training process of models with different H and p combinations did not converge
when modeled with neuralnet. Therefore, this package will not be covered in following
analysis. Additionally, more complex LSTM models had the same issue, and no models
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were obtained for those.

Interestingly, more complex models performed better on validation set, but the models
were not consistent. The models that had great performance on validation set, had much
worse error measure on test set. In addition, in all cases, forecasting short horizon, e.g.
1, 3 steps ahead, produced smaller loss (or even in some cases higher improvement)
when compared to baseline model.

Despite the fact that some LSTM models did not converge, other LSTM models had
the best and most consistent models overall. These models are highlighted below in
Table 3, a comprehensive overview of the best models for every package on OMX Baltic
Benchmark index data is given in Appendix E.

Table 3. Comparison of the best performing neural network models with ARIMA
forecasts for OMX Baltic Benchmark index.

Model Hidden Train RMSE
(
Ŷ

val)
RMSE

(
Ŷ

test)
type H p neurons time (s) Neural network ARIMA Neural network

LSTM

1 10 10 1189 3.188 (-2.11%) 4.494 4.414 (-1.76%)
3 15 20 1417 4.405 (-5.17%) 6.233 6.147 (-1.37%)
5 25 10 1977 5.426 (-7.65%) 7.738 7.728 (-0.12%)
10 20 10 643 7.739 (-11.27%) 10.640 10.779 (1.30%)
15 30 20 1050 9.990 (-13.16%) 13.001 13.191 (1.46%)

Multilayer Perceptrons with Package h2o

For every horizon H and number of input values p, the chosen hidden layers and hidden
neurons were following: one-layer networks with 3, 4, . . . , 9, 10, 15, 50, 100 neurons.

The performance of iterative strategy models was similar to all other datasets - the
results on validation set were promising, but unfortunately the models were not stable
enough to reach the same level on new unseen data. In case of multi-neural network
strategy models, both small and large networks had similar error measures, but none
of these could improve over baseline on the test set.

Long Short-Term Memory Models with Package Keras

LSTM models performed the best with 10 or 20 cells, but in most cases also models
with 100 nodes were on same level, with some exceptions.

When the forecasting horizon was short, i.e., 1, 3 or 5 days, most of the models offered
improvement over baseline. Furthermore, these were the only models to reach this level.
Therefore, the LSTM models are highlighted for having the best performance on both
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validation and test set for forecasting OMX Baltic Benchmark index (Table 3).

3.4.3 Forecasting River Flow of the Great Emajõgi

The chosen horizons H for forecasting the river flow of the Great Emajõgi were 1, 3, 7,
14 days ahead. The input p was chosen to be 7, 14, 28, 35, 42.

The dataset has irregular behavior and great variance in the values. Thus, in order
not to punish the models too much for making large errors, the error measure for this
dataset was chosen to be mean absolute value instead of sum of squares metric. This
was used as a cost function (Section 1.4.3) in the neural network training process, and
likewise as error measure (Section 2.4.4, Section 3.2.4) for comparing developed models.

First, ARIMA and naïve models were forecast. As expected, the naïve method did
not suit for this dataset that demonstrated high fluctuations. The best ARIMA model
obtained was ARIMA(1,1,2), and therefore, it was the model chosen as the baseline
model for neural networks.

From Figure 12 it can be seen that validation set has higher peaks indicating intense
river flow when compared to test set. Therefore, it would be natural to assume that the
error measure on validation set is higher. Instead, most of the models produced lower
error on validation set. With neural networks it is possibly due to using validation
set as feedback for terminating the training process to avoid overfitting. However, for
ARIMA model it still remains intriguing, furthermore as the error rates are lower when
using RMSE for comparison.

Unsuccessfully, the training process of neuralnet models terminated without converg-
ing to a minima, and no models were obtained.

Overall, neural networks had difficulties in improving over the ARIMA model. Most of
the errors by neural networks were on the same level or much higher than the results
by baseline model. The only models that produced lower errors were LSTM models,
and the results were consistent on both validation and test set, and furthermore did
not depend as much of the parameters chosen.

The LSTM models with the lowest error measures for all horizons H are given below in
Table 4, a comprehensive overview with the best models for every package and strategy
is given in Appendix F.

Multilayer Perceptrons with Package h2o

For every horizon H and number of input values p, the chosen hidden layers and hidden
neurons were following: one-layer networks with 2, 3, . . . , 9, 10, 100, 200 neurons, and a
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Table 4. Comparison of the best performing neural network models with ARIMA
forecasts of river flow of the Great Emajõgi.

Model Hidden Train MAE
(
Ŷ

val)
MAE

(
Ŷ

test)
type H p neurons time (s) Neural network ARIMA Neural network

1 35 100 1077 0.750 (-1.04%) 0.881 0.880 (-0.08%)
3 35 100 907 1.588 (-3.85%) 1.889 1.869 (-1.07%)
7 28 10 2002 3.221 (-5.97%) 3.785 3.719 (-1.74%)

LSTM

14 28 10 2786 5.561 (-10.12%) 6.420 6.073 (-5.42%)

two-layer network with 10 neurons on both layers.

Forecasting river flow turned out to be challenging for iterative method. The obtained
results were much worse than baseline model, and worse than on networks developed
by multi-neural networks. However, the error measures were consistent on validation
and test sets.

Models developed by multi-neural network strategy had poor performance, as none of
the models could improve over baseline model. The closest results to ARIMA model
were obtained by small networks with a few neurons on the hidden layer. In addition,
the relative error was lower in the case of longer forecasting horizon. Most of the models
chosen as the best MLP models had good performance on both validation and test set.

Long Short-Term Memory Models with Package Keras

Overall, LSTM models had great performance, as it can be seen from Table 4. The
improvement over baseline was succeeded with all models for forecasting horizon H = 7

or H = 14 having in best cases 6-7% lower error when compared to baseline model.
The short forecasts produced errors close to ARIMA but were sometimes up to 10%
worse than ARIMA. In all cases, the models that used more observations from the past
had greater performance.

In case of short forecasting horizon, the networks with 100 LSTM cells had better fore-
casts, but in comparison, for forecasting long horizon, smaller LSTM networks produced
lower error. All in all, differences were minimal, and therefore may not be significant.

On Figure 18 in Appendix F it can be seen the forecasts of best LSTM model for
H = 14. The model obtained 5% lower error than chosen ARIMA model. From the
figure it can be seen, that the model forecasts similar behavior of the true values. The
great errors seem to occur when there is sudden increase of the river flow volume per
second, but seems to capture the downfall movements.
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3.4.4 Forecasting Electricity Prices in Estonian Power Market

This dataset has daily frequency, and it can contain seasonality, as discussed in Section
3.3.4. Taking this into account, the forecasting horizon H was chosen to be equal to 1,
3, 7, 14. Values for p, the number of previous observations, that were used for every
horizon H were taken equal to 7, 14, 28, 42.

The analyzed dataset contained couple of extremely high values, that may strongly
dictate the comparable error metrics. Thus, error measure for this dataset was chosen
to be mean absolute value instead of sum of squares metric, similarly to Section 3.4.3.
Error measure MAE was used for comparing developed models, but it was not used as
cost functions when training the model. Lower errors were obtained overall by models
trained with sum of squares cost function.

Additionally, a modified series was modeled. As the high peaks are outliars in the
dataset, the corresponding values were modified. When the value was greater than
150% of preceding 7 days average price then the exceeding part was cut. However, the
models trained with the modified data had similar behavior when compared to original
data, and therefore, the results were not included in the analysis.

Both seasonal and regular naïve models were fitted and compared and in all cases
seasonal naïve with seasonal period of 7 days gave better results. However, chosen
ARIMA model outperformed seasonal naïve method.

The ARIMAmodel was not chosen with function auto.arima, instead a manual analysis
was performed. As a result, a SARIMA(3,0,0)×(4,0,0)7 model was obtained. The model
was chosen based on diagnostics which is given in Appendix B.

Overall, neural networks had good performance and many models improved over the
SARIMA model. However, when SARIMA model needed longer history of past obser-
vations, neural networks had better performance with shorter input horizon.

The models developed with neuralnet package had problems of converging to a minima,
and no models were obtained.

The best neural network models were developed with multi-neural network strategy.
However, the best models of multi-neural network strategy did not obtain consistent
level of error on both validation and test set. The LSTM models chosen based on
validation set were consistently good on test set as well, and therefore are given below
in Table 5. A comprehensive overview with the best models for used packages and
modeling strategies is given in Appendix G.
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Table 5. Comparison of the best neural network models and SARIMA forecasts for
electricity prices.

Model Hidden Train MAE
(
Ŷ

val)
MAE

(
Ŷ

test)
type H p neurons time (s) Neural network SARIMA Neural network

1 28 100 7089 3.610 (-1.96%) 4.642 4.450 (-4.15%)
3 14 100 4657 4.265 (-0.46%) 6.029 5.810 (-3.63%)
7 14 20 2133 4.368 (-1.57%) 6.716 6.136 (-8.64%)

LSTM

14 14 10 699 4.489 (-1.51%) 7.370 7.753 (5.20%)

Multilayer Perceptrons with Package h2o

For every horizon H and number of input values p, the chosen hidden layers and hidden
neurons were following: one-layer networks with 2, 3, . . . , 9, 10, 20, 100 neurons, and a
two-layer network with 10 neurons on both layers.

The iterative strategy models performed well on this dataset when compared to other
datasets. Although the obtained errors were higher than errors produced by multi-
neural network models, the relative errors were not very high - never more than 38%
higher error than baseline. Interestingly, many iterative models had better relative
performance on test set when compared to validation set. This may be due to test
period that had more irregular behavior when compared to validation set, causing
SARIMA model to have high error measure on test set.

Models developed by multi-neural network strategy performed well, as many models
were able to obtain lower error measure than SARIMA model. If the task was to
obtain one-step-ahead forecast, it was enough to have 7 or 14 previous observations,
but the models based on long history (p=42) worked well too. Also, in case of short
forecasting horizon the models with few neurons performed better on test set, and large
networks on validation set. However, both errors were lower than baseline, and the
improvement was up to 10% lower MAE than SARIMA model.

When forecasting longer horizons, the larger networks had better performance on vali-
dation than small networks. However, the results may indicate slight overfitting, as the
results on test set changed in the opposite direction - smaller networks had lower error
when compared to large networks.

Long Short-Term Memory Models with Package Keras

The LSTM models for forecasting electricity prices did not obtain much better results
when comparing with multi-neural network models. However, the models chosen on
validation data proved to be consistently good on test set as well.
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There were LSTM models that obtained results on validation set on the same level
with the baseline model (relative error measures ranged from -2% to 3%), and models
with slightly worse results, but no more than 10% of higher error when compared to
baseline models. No distinctive patterns of chosen length of input and number of hidden
neurons were discovered. In contrary, the results on test data were more extreme. Good
performance was obtained for short forecasting horizon (H=1, or H=3), and the results
were even better by favoring short input over long history, and small networks over
large networks (7-10% lower error than with baseline model). In comparison, large
networks for forecasting long horizon based on long history had 20-25% higher error
than SARIMA model.

3.4.5 Forecasting New Orders in the Manufacturing Sector in the U.S.

As the dataset has monthly frequency, the forecasting horizon H for new orders dataset
was chosen to be equal to 1, 3, 6, 12 to reflect forecasts for a month, whole quarter,
half-year, or year. The series implies a seasonal component, and therefore, the value
for p, the number of previous observations given as input, was chosen to be a multiple
of s = 12, i.e., 12, 24, 36.

As explained in Section 3.3.5, the dataset is affected by the 2008 financial crisis, but
values were left as they were, and no additional transformations were considered. This
made it possible to demonstrate whether neural network models have consistent per-
formance on the datasets with and without sudden changes in the behavior.

The extreme drop in new orders fell into period of validation set, and therefore it would
be natural to assume that the validation errors are greater than errors on the test set.
Depending on the number of preceding observations, it was the case. When the input
forecast was shorter, i.e., 12 or 24 months, then the sudden drop was to be forecast,
and therefore produced high errors. In contrary, when the input was longer, p = 36,

then the sudden drop was already given as input, and it did not affect the errors in
such scale.

The above mentioned behavior draw the attention how to compare different methods.
This was great example for showing that when the methods are compared, the values
that must be calculated exactly on the same data, and this includes also the linear
models. In this way, the changes in behavior affect comparable results in the same
magnitude.

Furthermore, this dataset demonstrated how inconsistent are the models chosen on basis
of validation set results when validation set does not follow the same structure of the
overall time series. To affirm the statement, there are four models given in Appendix H
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that had the best results on test set, and had great performance on validation set as well.
This demonstrates that the neural network have potential to have great improvement
over baseline model, if the model is not chosen based on the results on structurally
different data.

For comparison of the methods, two linear baseline models were fitted. The SARIMA
model obtained was SARIMA(0,1,1)×(0,1,1)12, where parameters were estimated based
on preceding 36 observations. A naïve method was also used with seasonality, but lower
errors on both validation and test set were obtained by the SARIMA model. Therefore,
this was used as baseline for neural network method comparisons.

The best performing neural network models for all horizons H forecasting the sum
of new orders in manufacturing sector are given below in Table 6, a comprehensive
overview with the best models for every package and strategy is given in Appendix H.

Table 6. Comparison of the best performing multi-neural network strategy models with
SARIMA forecasts for the new orders in manufacturing sector of the U.S.

Model Hidden Train RMSE
(
Ŷ

val)
RMSE

(
Ŷ

test)
type H p neurons time (s) Neural network SARIMA Neural network

1 36 10,10 8 10856 (-27.24%) 14199 14416 (1.52%)
3 36 200 59 12375 (-33.99%) 14873 16026 (7.76%)
6 36 200 117 15814 (-36.57%) 17591 20830 (18.41%)

h2o: large

12 36 300 231 19980 (-37.32%) 22748 24876 (9.35%)

Multilayer Perceptrons with Package neuralnet

The models developed with package neuralnet were one-layer networks with 3, 5, 8, 10,15,20

neurons in the hidden layer, and two-layer networks with 10 neurons on both layers.
The results implied that there were no clear outlines as to which number of hidden
neurons would help to describe the data in the best way.

Most of the obtained models performed better than SARIMA model on validation set,
with few exceptions. The best NN models had up to 22% lower error when compared
with baseline model. The highest improvements over baseline models were achieved by
the models with longer forecasting horizon, e.g. 6 or 12 steps ahead.

Models chosen to be the best based on validation set did not persistently improve over
baseline models when comparing the results on test set. In most of the cases, SARIMA
model had better performance on test set, and some neural networks had even up to
50% higher error when compared to baseline.
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Multilayer Perceptrons with Package h2o

For every horizon H and number of input values p, the chosen hidden layers and hidden
neurons were following: one-layer networks with 3, 5, 10, 100, 200, 300 neurons, and a
two-layer network with 10 or 20 neurons on both layers.

Models developed by iterative strategy obtained results very poor performance on both
validation and test set. This holds for both small and large networks. The relative error
measures were up to two time higher on validation set and up to three times higher on
test set when compared to baseline models. As a result of extremely poor performance
compared to baseline, iterative models were not included for choosing the overall best
model.

Models developed by multi-neural network strategy performed well by offering decent
improvement over baseline models on validation set. Large networks obtained slightly
lower error than smaller networks. This concurs with the fact that large networks
are more flexible, and by that it may describe more behavioral patterns which could
possibly indicate potential sudden changes, or help to smoothen the effect.

However, on test set the only improvement offered by neural networks was obtained
when forecast horizon H was equal to 1. For longer horizons, the network models
could not result in a lower error measure than SARIMA. Furthermore, none of the best
models on validation set were had the lower error on the test set. As mentioned, there
are four models that had the lowest error on test data shown in Appendix 3.3.5. These
models serve the objective that there are models, that could have high improvement
rate on both validation and test set. However, these models are often overlooked when
the best model is chosen based on validation set that does not follow the structure of
overall time series.

Long Short-Term Memory Models with Package Keras

Overall, LSTM models had inconsistent performance. Roughly half of the trained
LSTM models did not show improvement over SARIMA model on the validation set,
and all of the models had greater error measure on the test data.

More detailed analysis of the results revealed that the networks with 10 cells had similar
performance behavior as SARIMA model. When the combination of forecast horizon
H and number of inputs p was unfavorable, both of the models failed, and in case of
favorable conditions, both models exceeded greatly the larger network models. The
large networks had consistently second-rate performance throughout all combinations
of H and p on both validation and test sets. Small LSTM model and SARIMA model
performed remarkably better than larger networks on validation set when the number
of past observations used was 12 or 36. In case of using 24 past observations, the
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results were on the same level with larger networks. This, again, can be considered as
an example how comparing the models over a period with extreme events is affected
greatly by the choice of parameters, and may result in inconsistent conclusions. It must
be noted that on the test set which did not contain sudden changes in the behavior,
small LSTM networks performed remarkably better.

As LSTMmodels demonstrated lack of consistency when the validation and test datasets
were very different, the models were not included in the comparison for determining
overall best neural network model. However, the results are still given in Appendix H.

3.5 Discussion

The analyzed datasets were chosen to contain at least some nonlinearities, demonstrate
different structural behavior, and to show the potential of using neural networks for
forecasting time series generated in different domains. As the datasets had different
nature, the results exhibited many different behavioral patterns of the performance of
neural network models. Furthermore, the packages used in the empirical study exposed
how different data may affect the model training process and the performance of the
models.

It must be noted that as all models trained were affected by random initialization of
parameters, presence of multiple local minimas of the cost function, and therefore the
results may vary in some extent when the networks are fitted with exactly the same
attributes. However, the ensemble models were used specifically for the objective of
lowering the variance of these models.

Also, it must be taken into account that the analysis was limited by time, and com-
putational power, and it should be acknowledged that all of the results obtained could
be improved by further actions. For example, by tuning further the hyperparameters,
developing ensemble models with higher number of individual models, or by adding
some additional information, e.g., day of the week, or some additional time series that
has related behavior. These additional steps should be considered when the task is to
find the best model for certain time series.

The conclusions of the work done in this thesis will be presented together with reasoning
in the following sections. Additionally, two suggestions are given in Section 3.5.5 how
the performance could be improved.
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3.5.1 Domain and Structure of the Time Series

The EUR-USD exchange rate and Baltic Benchmark index datasets are from financial
domain, and therefore are considered to follow random walk (Hyndman & Athana-
sopoulos, 2018). The best suitable models in these datasets had rather small number
of neurons. When the number of neurons is small the network does not capture many
patterns from the data. Thus, as small networks were mostly better than large net-
works, it may indicate that there are not many patterns in the observed data, and may
contain strong random component.

The datasets with seasonality component, e.g. the electricity market prices and the
new orders in manufacturing sector in US, offered many models that improved over
SARIMA models. These datasets contained regular patterns that were great input for
both LSTM and multi-neural networks models. However, in case of new orders dataset
the selection of best models was greatly affected by the choice of validation set, and did
not reflect the full potential of neural network models.

The river flow time series was challenging for multilayer perceptron models as the
patterns were irregular and had high variance. However, LSTM models could benefit
also from irregular patterns, and this may be the reason why these models had better
results than MLP models, and furthermore offered improvement over baseline models.

3.5.2 Model Specifications

Model Architecture
The architecture with the overall best performance was long short-term memory model.
The essence of LSTM models is to model sequential data. This is a desirable property
when forecasting time series. In case of four datasets out of five, LSTMs were almost
the only models that could offer improvement over chosen baseline models. This implies
superiority of LSTM models.

However, long short-term memory models did not have great performance on the new
orders dataset. The dataset was overall challenging for neural network models, as the
validation set contained structural anomaly. Bad results on test set can be due to over-
fitting to the validation set. However, as the error was very high even on validation set
in case of forecasting 1 and 3 steps ahead, there must be another source for unsatisfac-
tory results. It is very possible that the observed dataset had too few observations, and
the LSTM just could not find good solutions based on given data.

The multilayer perceptrons can be used for forecasting time series, as the results indicate
that the forecasts have some predictive power. However, the models obtained in this
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thesis were mostly not able to improve over baseline models. As the linear models are
easily interpretable, and can be expressed analytically, these models are preferred for
time series analysis, unless the performance of using multilayer perceptrons is improved.

The Modeling Strategy
When comparing the modeling strategies, multi-neural networks developed with h2o

and models with direct approach using neuralnet had competitive performance when
compared to baseline models (when the optimization algorithm converged).

The iterative method had the worst performance on each of the dataset. However, as
further analysis revealed, MAPE error measure was less than 10% in all cases, indicating
presence of predictive power for this method also. Furthermore, it is natural that if
the obtained forecasts are used as input for obtaining new forecasts, the errors are
magnified with each reiteration. One possibility to overcome this shortcoming is to
use much bigger ensemble model. As the variance of iterative models is assumed to be
higher, this could be lowered when aggregating over high number of individual models.

The Size of Networks
Networks used in time series forecasting do not need to have necessarily high number
of neurons and hidden layers. It depends on the nature of the dataset. If the dataset
contains strong patterns, as in dataset of new orders in manufacturing sector, it is
logical that the networks should need higher number of neurons to capture as much
patterns as possible. When the data is considered to have strong random component,
then it may be enough to use only small NNs, as for the EUR-USD exchange rate series.

3.5.3 Combinations of input and forecasting horizon

Different datasets had different patterns for the forecasting horizon. For example, the
one-step-ahead forecasts of electricity market prices offered improvement over baseline
models in case of all types of models. However, the errors were relatively much higher
when comparing with the baseline.

In case of electricity prices, the best neural networks required a small number of inputs.
SARIMA implied based on order P = 4, however, that the input should be higher
number. The disagreement could be caused by the inconsistency of neural network
models, and may be result of inconsistent conclusion over needed input. Also, it would
be reasonable to include only the previous observations determined as informative by
SARIMA model. However, ideally the a large enough neural network with proper
regularization terms should be able to detect the informative previous variables itself,
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and therefore this approach was not tested in this empirical study.

With the Baltic Benchmark index and EUR-USD exchange rate data the shorter fore-
cast has much better relative errors. In comparison, it can not be concluded for river
flow and new orders forecasting.

Interestingly, in case of river flow forecasting, the small networks preferred less input,
and large network preferred more input. This resulted in consistent models when com-
paring validation and test set. However, the performance overall was not great, and
therefore the models were not highlighted.

3.5.4 Different Packages for Modeling

Both Keras and h2o package offered advanced optimization algorithms, effective multi-
threaded calculations with high flexibility in hyperparameter tuning. Additionally, with
Keras, it is possible to develop networks with very flexible and customized structure.
Despite the great performance, results for LSTM models come with the cost of com-
puting power and time spent. However, when using the models for future forecasts, the
model is already trained and the time spent on prediction is much lower. The trade-off
between performance and cost should be chosen for each specific task for given risk
tolerance.

The package neuralnet seems to be outdated. It can be useful in simple neural network
training, but does not offer flexibility and effective algorithms for more complex tasks.
The method tkas long time to converge. In case of three analyzed datasets the training
algorithm did not converge within allowed iteration steps. The possibilities could be
difficult patterns, or strong random component.

3.5.5 Future Work

The neural network models will always benefit from larger training set. However, in case
of time series the length of data is limited by the frequency of observations. The neural
network models fitted in the empirical study had mostly daily frequency. As there were
not very many good performing models, it may indicate that the random component is
difficult to forecast. By this reasoning, a possible solution could be predicting smoothed
series. By using smoothed data, it still has high frequency, but now the model could
focus more on the behavioral changes instead of random changes.

The hybrid models introduced in Section 2.5.3 could offer the remedy by combining
reliable linear models with neural networks to obtain a hybrid forecast.
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Conclusion

The first objective of this thesis was to give theoretical guidance on applying neural
network models on time series forecasting task. In addition, an empirical study was
conducted in order to give practical guidance to develop neural network models for
forecasting univariate time series with packages neuralnet and h2o for R, and Keras for
Python. The performance of the models was compared based on different forecasting
horizons, the number of preceding observations, different modeling strategies, neural
network architectures and network structure. To assess whether the obtained models
have predictive power, they were compared to chosen baseline models.

In the empirical study multilayer perceptron and long short-term memory models were
fitted on five datasets containing different nonlinear behavior. The models were con-
structed with different modeling approaches – iterative, direct and multi-neural network
strategy. For each dataset there were multiple different forecasting horizons modeled,
to show if the performance is affected by the horizon H. Additionally, for developing
models, grid search was used to iterate over different number of input observations and
number of hidden neurons and layers.

In four datasets out of five the LSTM models demonstrated the lowest errors when com-
pared to baseline models and as well to multilayer perceptron models. Unfortunately,
the performance of MLP models mostly did not show improvement over linear baseline
models. The reasons for underperformance can be strong random component, irregular
patterns, or structural changes in data.

Financial time series that can be considered to follow random walk, the neural network
models that had better performance contained small number of neurons. This could be
due to lack of patterns present in the training data that could be captured by neural
networks.

Forecasting river flow of Great Emajõgi was too complex task for multilayer perceptrons,
at least for chosen hyperparameter space. In comparison, the series of electricity market
prices was suitable for multilayer perceptrons, as many models achieved improvement
over baseline models. However, the models often did not have consistent performance,
and the models chosen as the best based on validation set performed poorly on test set.

Time series consisting of new orders in manufacturing sector in US that suffered from
2008 financial crisis was analyzed as an example to highlight the importance of using
proper validation set. It demonstrated that when the validation set does not have
the same behavioral structure as the overall time series, the models chose based on
validation set results will not give consistent results.
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When comparing the different modeling strategies, the models developed by iterative
approach resulted in much higher error measures. This indicates the superiority of
direct and multi-neural network strategies.

All in all, the thesis served the purpose of giving both theoretical and practical guidelines
for using neural networks in time series forecasting. Hereafter, when it is needed to find
neural network model for a specific time series, this thesis can be used as a starting
point.
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Appendixes

A Appendix - Algorithms

Algorithm 1: The back-propagation algorithm for fully connected MLP. Based
on Algorithm 6.3 and Algorithm 6.4 presented by Goodfellow et al. in their book
(2016). The operator� implies element-wise multiplication. The output is fed into
optimization algorithm, such as stochastic gradient decent introduced in Section
1.4.2.
1. Forward propagation
Inputs:

• l, the depth of the network
• W(i), i ∈ {1,2, . . . , l}, the weight matrices for each layer;
• b(i), i ∈ {1,2, . . . , l}, the bias parameters for each layer;
• x, the input variables of the observation;
• y, the true output values.

ŷ(0) = x
for k = 1, . . . , l do

v(k) = b(k) + W(k)ŷ(k−1)

ŷ(k) = ϕ(v(k))

end
E = E(ŷ(k),y)

2. Backwards propagation
Compute the gradient on the output layer:
g← ∇ŷ(l)E

for k = l,l − 1, . . . , 1 do
Convert the output gradient into a net input gradient:
g← ∇v(k)E = g� ϕ′(v(k))

Compute gradients for parameters:
∇b(k)E = g
∇W(k)E = gŷ(k−1)T

Compute the gradient on the output of preceding hidden layer:
g← ∇ŷ(k−1)E = W(k)Tg

end
Outputs:

• ∇b(k)E, k ∈ {1,2, . . . , l}, gradient on bias terms for each layer;
• ∇W(k)E, k ∈ {1,2, . . . , l}, gradient matrix on weights for each layer.
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Algorithm 2: The stochastic gradient descent algorithm. Based on Algorithm
8.2 presented by Goodfellow et al. in their book (2016). If α > 0, the algorithm
corresponds to SGD with momentum.
Inputs:

• η, learning rate;
• α, the parameter for momentum term;
• θ, initial values for parameters, biases and weights;
• m, the initial value of weighted average of gradients;

while stopping criterion not met do
Draw a random sample of n observations {x(1), . . . ,x(n)} with target values
y(i) from the entire training set.
Compute the estimate for gradient: g← 1

n
∇θ
∑

i E(ŷ(i),y(i)).

Compute momentum update: m← αm− ηg.
Apply update: θ ← θ + m.

end
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B Appendix - Diagnostics of SARIMA Model For Electricity
Market Prices

SARIMA(3,0,0)×(4,0,0)7 was the model for electricity market prices in Estonia. The
determination of SARIMA orders was based on Figure 15 and Figure 16.

Figure 15. Auto and partial autocorrelations of electricity market price series

Figure 16. Diagnostics of SARIMA(3,0,0)×(4,0,0)7 model residuals.
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C Appendix - Diagnostics of the New Orders in Manufacturing
Sector

The following Figure 17 describes auto- and partial autocorrelations in the series of new
orders in manufacturing sector.

Figure 17. Auto and partial autocorrelations of new orders in manufacturing sector.
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D Appendix - Results of Forecasting EUR-USD Exchange Rate

Comparison of the best performing neural network models with naïve forecasts for
EUR-USD exchange rate.

Model Hidden Train RMSE
(
Ŷ

val)
RMSE

(
Ŷ

test)
Test

type H p neurons time (s) Neural network Naïve Neural network rank

LSTM

1 2 20 604 0.00548 (-17.90%) 0.00485 0.00417 (-14.00%) 1/6
3 6 20 603 0.00842 (-6.88%) 0.00652 0.00640 (-1.74%) 1/6
5 10 10 878 0.01025 (-5.64%) 0.00783 0.00776 (-0.92%) 1/5
10 50 10 7512 0.01361 (-6.81%) 0.01040 0.01010 (-2.92%) 1/6
15 30 10 1623 0.01539 (-11.41%) 0.01238 0.01194 (-3.57%) 2/6

neuralnet
1 5 3 1062 0.00668 (0.10%) 0.00485 0.00484 (-0.16%) 1/24
3 6 6 7433 0.00916 (1.23%) 0.00652 0.00656 (0.70%) 1/2

h2o: small∗

1 2 3 12 0.00672 (0.81%) 0.00485 0.00485 (0.11%) 1/24
3 6 8 61 0.00919 (1.59%) 0.00652 0.00668 (2.49%) 1/24
5 10 3 92 0.01119 (2.99%) 0.00783 0.00804 (2.65%) 1/24
10 20 4 194 0.01526 (4.59%) 0.01039 0.01083 (4.26%) 1/27
15 30 3 307 0.01815 (4.50%) 0.01238 0.01319 (6.57%) 1/11

h2o: big∗

1 2 100 21 0.00676 (1.28%) 0.00485 0.00488 (0.73%) 1/12
3 6 50 66 0.00931 (2.96%) 0.00652 0.00671 (3.02%) 1/12
5 10 20 94 0.01118 (2.91%) 0.00783 0.00830 (6.01%) 3/12
10 20 100 323 0.01604 (10.00%) 0.01039 0.01161 (11.68%) 1/8
15 30 20 313 0.01868 (7.55%) 0.01238 0.01364 (10.13%) 1/4

h2o: small∗∗

1 2 3 20 0.00678 (1.70%) 0.00485 0.00491 (1.31%) 2/24
3 6 7 120 0.00916 (1.31%) 0.00652 0.00775 (18.93%) 1/24
5 10 4 234 0.01092 (0.51%) 0.00783 0.01038 (32.59%) 7/24
10 20 8 504 0.01457 (-0.14%) 0.01039 0.01445 (39.04%) 5/8
15 30 8 904 0.01851 (6.56%) 0.01238 0.01672 (35.03%) 3/11

h2o: big∗∗

1 2 20 24 0.00671 (0.61%) 0.00485 0.00486 (0.33%) 1/12
3 15 20 137 0.00935 (3.24%) 0.00654 0.00974 (49.03%) 9/12
5 10 10,10 232 0.0112 (3.06%) 0.00783 0.01047 (33.78%) 4/12
10 20 20 604 0.01606 (10.11%) 0.01039 0.01479 (42.36%) 1/3
15 30 20 919 0.01791 (3.09%) 0.01238 0.01673 (35.10%) 1/4

∗ The models were developed by multi-neural network strategy.
∗∗ The models were developed by iterative strategy.
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E Appendix - Results of Forecasting OMX Baltic Benchmark
Index

Comparison of the best performing neural network models with ARIMA(1,1,0) forecasts
for OMX Baltic Benchmark index.

Model Hidden Train RMSE
(
Ŷ

val)
RMSE

(
Ŷ

test)
Test

type H p neurons time (s) Neural network ARIMA Neural network rank

LSTM

1 10 10 1189 3.188 (-2.11%) 4.494 4.414 (-1.76%) 1/9
3 15 20 1417 4.405 (-5.17%) 6.233 6.147 (-1.37%) 2/9
5 25 10 1977 5.426 (-7.65%) 7.738 7.728 (-0.12%) 7/9
10 20 10 643 7.739 (-11.27%) 10.640 10.779 (1.30%) 5/6
15 30 20 1050 9.990 (-13.16%) 13.001 13.191 (1.46%) 1/5

h2o: small∗

1 2 5 10 3.181 (-2.32%) 4.463 4.467 (0.10%) 3/27
3 30 3 45 4.417 (-5.23%) 6.301 6.340 (0.61%) 13/27
5 25 4 96 5.415 (-7.84%) 7.738 7.884 (1.89%) 23/27
10 20 7 201 7.574 (-13.16%) 10.640 10.934 (2.76%) 9/25
15 30 9 308 9.595 (-16.59%) 13.001 13.552 (4.24%) 3/27

h2o: large∗

1 2 50 19 3.205 (-1.58%) 4.463 4.491 (0.64%) 4/6
3 6 100 62 4.454 (-3.89%) 6.200 6.258 (0.94%) 1/6
5 10 100 102 5.547 (-5.39%) 7.667 7.759 (1.20%) 2/6
10 20 50 202 7.808 (-10.48%) 10.640 11.155 (4.84%) 3/6
15 30 50 320 9.890 (-14.03%) 13.001 13.570 (4.38%) 1/6

h2o: small∗∗

1 2 6 12 3.203 (-1.66%) 4.463 4.467 (0.09%) 3/27
3 15 4 112 4.380 (-5.71%) 6.233 6.493 (4.17%) 4/26
5 25 7 260 5.361 (-8.77%) 7.738 8.296 (7.21%) 12/27
10 20 5 502 7.521 (-13.77%) 10.640 11.847 (11.34%) 2/10

h2o: large∗∗

1 2 50 23 3.189 (-2.09%) 4.463 4.482 (0.44%) 3/6
3 6 50 129 4.393 (-5.22%) 6.200 7.422 (19.70%) 3/6
5 10 100 288 5.469 (-6.72%) 7.667 8.627 (12.52%) 3/6
10 20 50 745 7.915 (-9.25%) 10.640 12.028 (13.04%) 1/2

∗ The models were developed by multi-neural network strategy.
∗∗ The models were developed by iterative strategy.
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F Appendix - Results of Forecasting River Flow of The Great
Emajõgi

Comparison of the best performing neural network models with ARIMA(1,1,2) forecasts
for the river flow of the Great Emajõgi.

Table 7. Comparison of the best performing neural network models with ARIMA(1,1,2)
forecasts for the river flow of the Great Emajõgi.

Model Hidden Train MAE
(
Ŷ

val)
MAE

(
Ŷ

test)
Test

type H p neurons time (s) Neural network ARIMA Neural network rank
1 35 100 1077 0.750 (-1.04%) 0.881 0.880 (-0.08%) 2/12
3 35 100 907 1.588 (-3.85%) 1.889 1.869 (-1.07%) 1/12
7 28 10 2002 3.221 (-5.97%) 3.785 3.719 (-1.74%) 5/12

LSTM

14 28 10 2786 5.561 (-10.12%) 6.420 6.073 (-5.42%) 6/12
1 7 2 23 0.808 (5.91%) 0.881 0.942 (7.12%) 2/45
3 7 3 64 1.760 (5.92%) 1.887 1.999 (5.91%) 4/45
7 7 4 156 3.593 (4.22%) 3.793 3.879 (2.28%) 2/10

h2o: small∗

14 28 2 325 6.125 (-1.01%) 6.420 6.601 (2.82%) 15/45
1 14 100 25 0.915 (20.25%) 0.879 0.990 (12.60%) 3/15
3 28 200 132 2.001 (20.96%) 1.883 2.158 (14.64%) 2/15
7 7 100 234 3.784 (9.74%) 3.793 3.959 (4.37%) 2/3

h2o: large∗

14 14 200 488 6.724 (8.44%) 6.448 6.693 (3.81%) 2/14
1 7 7 27 0.797 (4.46%) 0.880 0.913 (3.85%) 1/45
3 7 2 147 2.294 (38.01%) 1.887 3.932 (108.33%) 9/44h2o: small∗∗

7 7 7 434 6.096 (76.79%) 3.793 6.164 (62.52%) 5/9
1 28 100 45 1.027 (35.31%) 0.878 0.996 (13.44%) 1/15
3 14 200 287 2.983 (80.13%) 1.887 4.360 (131.02%) 14/15h2o: large∗∗

7 7 200 934 7.307 (111.91%) 3.793 6.310 (66.37%) 2/3
∗ The models were developed by multi-neural network strategy.
∗∗ The models were developed by iterative strategy.
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(a) LSTM model forecasts in time period May 1, 2015 to July 9, 2017.

(b) LSTM model forecasts in time period July 10, 2017 to December 31, 2017.

Figure 18. LSTM(10) forecasts of river flow of the Great Emajõgi for horizon H = 14

based on 28 preceding observations. The lines show individual forecasts of the ensemble.
Median forecast is marked with bold line. For graphical reasons, only forecasts for every
14 steps are depicted.
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G Appendix - Results of Forecasting Electricity Market Prices

Comparison of the best performing neural network models with SARIMA(3,0,0)×(4,0,0)7
forecasts for electricity market prices in Estonia.

Model Hidden Train MAE
(
Ŷ

val)
MAE

(
Ŷ

test)
Test

type H p neurons time (s) Neural network SARIMA Neural network rank
1 28 100 7089 3.610 (-1.96%) 4.642 4.450 (-4.15%) 5/8
3 14 100 4657 4.265 (-0.46%) 6.029 5.810 (-3.63%) 3/7
7 14 20 2133 4.368 (-1.57%) 6.716 6.136 (-8.64%) 2/7

LSTM

14 14 10 699 4.489 (-1.51%) 7.370 7.753 (5.20%) 2/7
1 7 9 18 3.711 (-8.17%) 5.034 4.794 (-4.76%) 18/45
3 7 10 58 4.108 (-8.55%) 6.262 5.875 (-6.17%) 11/45
7 7 9 127 4.236 (-7.95%) 6.773 7.039 (3.93%) 42/45

h2o: small∗

14 14 9 271 4.209 (-7.64%) 7.370 7.687 (4.31%) 9/13
1 7 9 23 3.692 (-8.62%) 5.034 4.758 (-5.47%) 16/45
3 7 8 119 4.663 (3.79%) 6.262 6.271 (0.15%) 12/45
7 7 5 296 4.358 (-5.30%) 6.773 7.576 (11.86%) 38/44

h2o: small∗∗

14 14 8 787 4.508 (-1.08%) 7.370 7.025 (-4.68%) 3/10
1 7 10,10 20 3.701 (-8.41%) 5.034 4.872 (-3.22%) 4/15
3 14 10,10 59 3.879 (-9.48%) 6.029 6.125 (1.60%) 5/15
7 7 100 154 4.147 (-9.89%) 6.773 8.403 (24.08%) 14/15

h2o: large∗

14 14 10,10 367 4.179 (-8.30%) 7.370 8.348 (13.27%) 2/3
1 7 100 26 3.691 (-8.65%) 5.034 5.195 (3.20%) 8/15
3 7 10,10 130 4.819 (7.27%) 6.262 6.516 (4.06%) 8/15
7 7 10,10 342 4.729 (2.75%) 6.773 7.419 (9.54%) 11/15

h2o: large∗∗

14 14 20 1287 4.693 (2.97%) 7.370 8.471 (14.93%) 1/3

∗ The models were developed by multi-neural network strategy.
∗∗ The models were developed by iterative strategy.
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H Appendix - Results of Forecasting Orders in Manufacturing
Sector

Comparison of the best performing neural network models with SARIMA(0,1,1)×0,1,1)12
forecasts for the sum of new orders in manufacturing sector.

Model Hidden Train RMSE
(
Ŷ

val)
RMSE

(
Ŷ

test)
Test

type H p neurons time (s) Neural network SARIMA Neural network rank
1 36 10,10 8 10856 (-27.24%) 14199 14416 (1.52%) 9/15
3 36 200 59 12375 (-33.99%) 14873 16026 (7.76%) 7/15
6 36 200 117 15814 (-36.57%) 17591 20830 (18.41%) 11/15

h2o: large∗

12 36 300 231 19980 (-37.32%) 22748 24876 (9.35%) 5/15
1 36 10 7 11726 (-21.40%) 14199 13862 (-2.38%) 5/12
3 36 8 24 13145 (-29.88%) 14873 16745 (12.59%) 8/12
6 36 10 51 16826 (-32.51%) 17591 19842 (12.79%) 4/12

h2o: small∗

12 36 10 83 21833 (-31.51%) 22748 25109 (10.38%) 6/12
1 36 15 34 11984 (-19.68%) 14199 21994 (54.89%) 17/18
3 36 10 446 15038 (-19.79%) 14873 19191 (29.03%) 11/13
6 36 20 1601 20827 (-16.47%) 17591 24021 (36.55%) 8/10

neuralnet

12 36 5 873 26715 (-16.20%) 22748 23694 (4.16%) 1/10
1 36 10 2034 22981 (54.03%) 14199 27762 (95.52%) 3/9
3 36 10 2735 18756 (0.05%) 14873 20443 (37.45%) 3/9
6 24 20 1767 31086 (-17.87%) 18765 36730 (95.73%) 6/9

LSTM

12 24 20 2430 27711 (-43.02%) 21810 31756 (45.60%) 6/9
1 36 5 14 11156 (-25.23%) 14199 15662 (10.30%) 11/12
3 24 3 72 32124 (19.93%) 16643 35380 (112.58%) 6/12
6 24 10 174 41630 (9.99%) 18765 35940 (91.53%) 4/12

h2o: small∗∗

12 24 10 357 47577 (-2.17%) 21810 40311 (84.83%) 9/12
1 36 300 21 10570 (-29.15%) 14199 14030 (-1.19%) 6/15
3 24 100 103 33592 (25.41%) 16643 44369 (166.59%) 12/15
6 24 10,10 171 45429 (20.03%) 18765 38225 (103.70%) 1/15

h2o: large∗∗

12 24 300 497 49369 (1.52%) 21810 43456 (99.24%) 15/15
1 24 300 19 17245 (-6.86%) 16419 12829 (-21.87%) 9/15
3 24 100 53 23852 (-10.95%) 16643 13404 (-19.46%) 9/15
6 24 300 118 33560 (-11.33%) 18765 16471 (-12.22%) 9/15

h2o: large∗∗∗

12 24 300 234 41341 (-14.99%) 21810 22790 (4.49%) 8/15

∗ The models were developed by multi-neural network strategy.
∗∗ The models were developed by iterative strategy.
∗∗∗ These large multi-neural network models are given for comparison, as these had great performance on both validation
and test set. The rank in last column shows the rank when comparing validation set results.
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