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Abstract

Background: Many toxicological studies on silica nanoparticles (NPs) have been reported, however, the literature
often shows various conclusions concerning the same material. This is mainly due to a lack of sufficient NPs
characterization as synthesized as well as in operando. Many characteristics of NPs may be affected by the chemistry
of their surroundings and the presence of inorganic and biological moieties. Consequently, understanding the
behavior of NPs at the time of toxicological assay may play a crucial role in the interpretation of its results.
The present study examines changes in properties of differently functionalized fluorescent 50 nm silica NPs in a
variety of environments and assesses their ability to absorb proteins from cell culture medium containing either
bovine or human serum.

Methods: The colloidal stability depending on surface functionalization of NPs, their concentration and time of
exposure was investigated in water, standard biological buffers, and cell culture media by dynamic light scattering
(DLS), zeta potential measurements and transmission electron microscopy (TEM). Interactions of the particles with
biological media were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in bovine
and human serum, and extracted proteins were assessed using matrix-assisted laser desorption/ionization-time of flight
technique (MALDI-TOF).

Results: It was recognized that all of the studied silica NPs tended to agglomerate after relatively short time in buffers
and biological media. The agglomeration depended not only on the NPs functionalization but also on their
concentration and the incubation time. Agglomeration was much diminished in a medium containing serum. The
protein corona formation depended on time and functionalization of NP, and varied significantly in different types of
serum.

Conclusions: Surface charge, ionic strength and biological molecules alter the properties of silica NPs and potentially
affect their biological effects. The NPs surface in bovine serum and in human serum varies significantly, and it changes
with incubation time. Consequently, the human serum, rather than the animal serum, should be used while
conducting in vitro or in vivo studies concerning humans. Moreover, there is a need to pre-incubate NPs in the serum
to control the composition of the bio-nano-composite that would be present in the human body.
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Background
Nanoparticles (NPs) exhibit a variety of unique chemical
and physical properties that have made them central com-
ponents in an array of emerging technologies. Among
various NPs that have found commercial application, silica
NPs (SiO2 NPs) are rapidly becoming a part of our daily
life. They are produced on an industrial scale as additives
to cosmetics, drugs, printer toners and foods. Functio-
nalized SiO2 NPs are being applied in biotechnology and
biomedicine as drug delivery systems, in cancer therapy,
for enzyme immobilization and for DNA transfection
[1-11]. This is in part due to the simplicity of tailoring their
surface reactivity via surface functionalization [12,13]. They
can also be easily co-synthesized with a variety of fluoro-
phores, in order to produce robust, fluorescent NPs [14].
However, the unique physicochemical properties of

SiO2 NPs that have made them attractive for the indus-
try may bring potential hazards to human health. Hence,
toxicological studies on SiO2 NPs have been initiated.
SiO2 NPs which are available on the market are never
pristine particles; they are usually functionalized for their
specific application. They can be positively or negatively
charged, or have ‘neutral surface’. They can be monodis-
persed or aggregated. They may be contaminated, what
can affect results of their toxicity tests. Consequently,
the information about the particles state, in other words,
their proper physicochemical characterization prior to
their toxicological evaluation seems to be crucial. More-
over, many NPs are likely to undergo significant size dis-
tribution or surface chemistry changes while transferred
into different environments used for in vitro and in vivo
biological studies [15,16]. Particles may aggregate due to
ionic strength of physiological buffers or chemical reac-
tions with molecules derived from the cell culture media
[15-20]. Furthermore, the surface properties of the parti-
cles can also differ due to adsorption of proteins and re-
actions of stabilizing groups [21-24]. When NPs enter a
biological fluid, proteins and other biomolecules rapidly
compete for binding to the NP surface, leading to a for-
mation of a dynamic protein layer that critically defines
the biological identity of the particle [25-38]. It is be-
lieved that within the first seconds or minutes after
immersion of NPs into biological fluids a soft protein
corona (PC) is formed and subsequently evolves into a
hard PC within hours [39,40]. That may consequently
change the NPs properties, affecting biological responses
and NPs biodistribution. Thus, the properties of the
nano-system, which finally interacts with cells during
biological tests, may differ from the initially characte-
rized NPs. Consequently, understanding the NPs beha-
vior at the time of the experiments plays a key role in
the interpretation of toxicological results.
In recent years, several studies presenting NPs in dif-

ferent environments with influence on cell viability have
been published. It has been shown that different me-
thods of sample preparation had an impact on NPs sta-
bility and consequently on the results of toxicity tests
[41,42]. In 2004, Rejman et al. have shown that NPs
aggregation before uptake altered uptake probability and
uptake mechanism and thereby affected biological res-
ponse [43]. Similarly, it has also been reported that the
presence of proteins in a medium affected the entry and
intracellular localization of NPs within cells, and thus
modulated their potential toxicity [44,45]. Nevertheless,
while there is a great deal of studies into biological res-
ponses to pristine NPs, for differently functionalized
SiO2 NPs, there is little information in the literature on
their stability in physiological environments and on their
interaction with proteins. Indeed, surface functionalized
particles are most widely used in the applications of
SiO2 NPs and are the base of future nanotechnological
developments.
The ability of NPs to adsorb proteins has already been

shown to depend on the surface coating [34,46]. How-
ever, none of the studies until now has presented PC for-
mation for so long time frames, especially on extensively
characterized 50 nm SiO2 NPs which were varied only in
surface chemistry. Even more significant, none of the
studies has shown differences in PC formation by com-
paring serum derived from animal and human.
For the purpose of this study, 50 nm monodispersed

fluorescent core/shell SiO2 NPs were functionalized
with -NH2, -SH groups and coated with polyvinylpyrroli-
done (PVP), and characterized using a variety of physico-
chemical methods including zeta potential measurements,
dynamic light scattering (DLS), transmission electron mi-
croscopy (TEM), scanning electron microscopy (SEM),
X-ray photoelectron spectroscopy (XPS), secondary ion
mass spectroscopy-time of flight (SIMS-TOF) and X-ray
diffraction (XRD). The colloidal stability depending on
their surface functionalization, concentration and time
was investigated in water, standard biological buffers, and
cell culture media. Interactions of the particles with bio-
logical media was investigated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) in FBS
and human serum, and extracted proteins were assessed
using matrix-assisted laser desorption/ionization-time of
flight technique (MALDI-TOF).

Results and discussion
Amorphous 50 nm SiO2 NPs encapsulating fluorescein-
isothiocyanate (FITC) and functionalized with amino
groups (SiO2_NH2), mercapto groups (SiO2_SH) and
polyvinylpyrrolidone (SiO2_PVP) were synthesized as
described previously [47]. The presence of different
functional groups immobilized onto the NPs surface
was monitored by zeta potential measurements, XPS
and SIMS analysis. Full information about the NPs
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characterization as synthesized is shown elsewhere and
the results are summarized in Table 1 [47].
All of the SiO2 NPs used in this study were well

dispersed in ethanol without any agglomeration. Since
many NPs characteristics, especially the state of agglo-
meration, can be affected by chemistry of the surround-
ings and the presence of both inorganic and biological
moieties, understanding of NP behavior in specific envi-
ronments is crucial. It has been previously shown that
many NPs agglomerate in media with a high electrolyte
content due to electrostatic screening effects [48], how-
ever, the presence of proteins in colloidal suspension
stabilize NPs against agglomeration, even in physio-
logical electrolyte concentrations [37,39,49].
According to DLS results, properties of all studied SiO2

NPs got slightly altered when transferred from ethanol
into Milli-Q (MQ) water (Figure 1-A). However, all of the
examined NPs, besides the SiO2_NH2, were stable in MQ
water for at least 48 h. Strong aggregation was observed
only in case of the amino functionalized NPs already after
10 min. The zeta potential dropped significantly from
42.2 mV to 2.1 mV (see Additional file 1). After 30 min,
the agglomerates were big enough to sediment, and their
size was more than 1 μm.
In buffers and biological media the NPs are expected to

behave differently than in MQ water. In these environ-
ments, the ionic strength is usually around 150 mM NaCl,
so the electrostatic forces are most likely screened within
few nanometers of the surface. For the investigation of
such an effect on the SiO2 NPs the most common buffer
(PBS), and a standard cell culture medium (DMEM), with
and without serum, were used. In PBS all of the particles
were completely agglomerated/aggregated after 1 h
(Figure 1-B). The SiO2_SH NPs aggregated already after
10 min. In case of the SiO2_NH2 NPs the aggregation
Table 1 Physico-chemical characterization of nanoparticles

Name SiO2 SiO2_NH2

Shape TEM: spherical

Concentration 2.0% (wt/wt); 1.5x1014 NPs mL-1

Crystal structure XRD: amorphous

Size/size distribution DLS: 58.2±2.6 nm; DLS: 66.0±3.3 nm;

PDI[a] = 0.055 PDI = 0.082

TEM: d50 = 50 nm TEM: d50 = 54 nm

d90 = 55 nm d90 = 61 nm

Surface chemistry XPS: Atom%: XPS: Atom%:

O 62.8, Si 25.6, O 57.8, Si 24.3,

C 11.6 C 16.1, N 1.8

SIMS: SixOy,C6H15O3Si SIMS: SixOy,F, (H2N(CH

Surface charge (Z-potential) - 41.71 mV±0.82 + 42.24 mV±1.49

IEP[b]: ~ pH 3.1 IEP: ~ pH 6.4

[a] polydispersive index; [b] isoelectric point.
was slightly slower, nevertheless after 30 min the size of
aggregates was more than 2 μm. The aggregates were
generally smaller in case of the non-functionalized SiO2

NPs, however, even in this case the aggregation was
already detected after 10 min. For the SiO2_PVP NPs
the rate of aggregation was much lower, showing some
size increase only after 1 h. Surface charge measure-
ments for all of the SiO2 NPs in different environments
can be found in Additional file 1.
In DMEM the results were comparable to the ones ob-

tained for PBS (Figure 1-C). The observed similarity was
caused by similar ionic strength of these solutions [50].
In DMEM supplemented with 10% FBS serum the
aggregation was much diminished (Figure 1-D). How-
ever, at the studied concentration of 1×1013 NPs mL-1 all
of the NPs were aggregated after 48 h. In the same time,
DLS measurements indicated that decreasing concentra-
tion of the NPs decreased the rate of their aggregation
(Figure 2). Kretzschmar et al. have also shown that
increasing particle concentration of kaolinite resulted in
faster growth of aggregates [51]. Burns et al. have found
that colloidal polystyrene latex particle aggregation in-
creased with particle concentrations at a fixed level of
electrolyte [52]. However, in PBS and DMEM, even at
the lowest detectable concentration (1×1010 NPs mL-1),
the NPs aggregated after 1 h of incubation.
In case of DMEM supplemented with 10% FBS, the

particles remained stable at a concentration of 1×1012

NPs mL-1. Measurements at lower NPs concentrations
could not be performed due to the higher free proteins
content in the samples in comparison to the concentra-
tion of the NPs. DLS analysis detected sizes of 5–10 nm,
which is the average size of the proteins in FBS. The free
proteins could be removed via a centrifugation/washing/
sonication procedure. However, it was recognized that in
SiO2_SH SiO2_PVP

DLS: 61.3±3.5 nm; DLS: 67.6±2.6 nm;

PDI = 0.067 PDI = 0.079

TEM: d50 = 56 nm TEM: d50 = 53 nm

d90 = 63 nm d90 = 57 nm

XPS: Atom%: XPS: Atom%:

O 61.8, Si 25.6, O 44.5, Si 33.5,

C 12.6, S < 1 C 18.0, N 3.9

2)3Si(OC2H5)3) SIMS: SixOy, Cl, ((CH3O)3Si(CH2)3SH) SIMS: SixOy, F,C6H9NO

- 47.73 mV±0.91 - 40.87 mV±1.31

IEP: ~ pH 1.3 IEP: ~ pH 4.6



Figure 1 Time dependent silica nanoparticles stability in different environments. NPs size was measured by DLS in (a) H2O, (b) PBS,
(c) DMEM, (d) DMEM + 10% FBS; NPs concentration of 1x1013 NPs mL-1.
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this case the particles size was different than in the case
when these procedures were not applied. Too long/fast
particles centrifugation, too many washing steps or too
long sonication caused the aggregation of the particles.
The accurate conditions for silica NPs were found at
15 min centrifugation at 8000 × g, one washing step with
PBS and gentle NPs pipetting or 5 min in a sonication
bath. However, when the sonication procedure was
applied, in some cases the size of NPs was lower than
the NPs size measured directly in DMEM supplemented
with 10% FBS, or even the same like bare particles
(without proteins), suggesting that this procedure would
partially/totally destroy the formed protein corona.
Based on the results/concerns presented above, the

concentration of 1×1012 NPs mL-1 was found to be the
Figure 2 Concentration dependent silica nanoparticles stability
in different environments. DLS measurements indicated that
decreasing concentration of the NPs decreased the rate of
their agglomeration.
most suitable to study time dependent stability and
changes in PC formation on the differently functiona-
lized SiO2 NPs. DLS data showed that all of the exa-
mined NPs were stable at concentration of 1×1012 NPs
mL-1 in DMEM supplemented with 10% FBS for at least
2 weeks (Figure 3). After 48 h of incubation in the pro-
tein solution the particle sizes seemed to slightly rise.
The zeta potential values also became more negative. In
this case, it would suggest a higher stability of the nano-
system. TEM images of plain SiO2 NPs after different
incubation times are shown in Figure 4. A protein layer
surrounded the NPs was observed after 10 min. After
48 h the NPs size increased to 60 nm, and after 2 weeks
to 80 nm. Since no NPs aggregation/sedimentation was
detected during this time, this suggested that more than
a single layer of proteins was immobilized onto the NPs
surface, providing an effective protection against NP-NP
interactions leading to aggregation. It is worth noting,
that a multilayer of proteins implies protein dena-
turation [53]. This kind of denaturation is rarely ob-
served and is related to a specific surface charge and
hydrophobicity.
It has already been shown by Vroman, in 1962, that

adsorption of blood serum proteins onto an inorganic
surface was time dependent [54]. Vroman assumed that
the proteins with the highest mobility attached firstly,
and later were replaced by less mobile biomolecules that
had a higher affinity to the surface, in a process that
took several hours. Thus, the kinetics of serum protein
adsorption onto differently functionalized SiO2 NPs were
additionally investigated in our work. The majority of
in vitro and in vivo tests concerning NPs are performed



Figure 3 Time dependent silica nanoparticles stability in biological medium.DMEM + 10% FBS; NPs concentration of 1x1012 NPs mL-1;
DLS (left panel), zeta potential (right panel).
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using bovine serum, mainly because of its availability
and traditional use in many assays, as well as for eco-
nomic reasons. Since the proteins of bovine serum differ
from human proteins, the PC formation and its compo-
sition may differ as well. To study differences in proteins
associations in different serum, FBS and human serum
were applied.
SDS-PAGE results indicated that formation of the hard

PC took much longer than it was described in the litera-
ture before (Figure 5). Previous publications [34,40] have
shown that the hard PC was formed after 1 h after NPs
incubation in biological medium. In our case, there were
still some changes in the hard PC observed even after
24 h. Some slight changes in the proteins adsorption/
desorption were even visible after one week. Based on a
visual evaluation of the SDS-PAGE gels, the total amounts
of adsorbed protein changed not only with time but the
Figure 4 Time depended silica nanoparticles stability and protein cor
NPs mL-1, incubation time: (a) 0 min, (b) 10 min, (c) 6 h, (d) 48 h, (e) 1 we
extent of protein adsorption/desorption was also functio-
nalization dependent. This might be one of the factors
leading to diverse intracellular responses and toxicological
outcomes [55]. The amount of proteins was additionally
estimated by ImageJ software (Figure 6).
Figure 5 and Figure 6 show that the NPs which at-

tracted the highest amount of FBS proteins were the
plain SiO2 and the SiO2_NH2. In the case of the plain
SiO2 NPs, after 72 h incubation time and onwards, there
were no significant changes in the PC composition. It
is worth noting that, in this case, the amount of the
adsorbed proteins increased after 24 h and stayed almost
stable for one week, what is in agreement with our TEM
results presented in Figure 4. However, some slight
changes in the proteins adsorption/desorption were still
visible after one week. In the case of the SiO2_NH2 there
were small differences observed in the PC between 24 h
ona formation in biological medium. NPs concentration of 1x1012

ek, (f) 2 weeks in DMEM + 10% FBS.



Figure 5 Bovine proteins immobilized onto nanoparticles surface. (1) SiO2, (2) SiO2_NH2, (3) SiO2_SH, (4) SiO2_PVP NPs after (a) 5 min,
(b) 1 h, (c) 24 h, (d) 72 h and (e) 1 week of incubation in DMEM supplemented with 10% FBS.
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and 72 h, while after one week the amount of bound
proteins was slightly lower. On the SiO2_SH after 24 h
the amount and number of proteins increased and after
72 h decreased again. After one week only slight changes
were detectable. The rate of protein adsorption was re-
duced in the case of the PVP-coated NPs, presumably
due to steric repulsion.
In the case of human serum, the stabilization of the

PC was much faster (Figure 7 and Figure 8). After 1 h
the PC did not significantly differ from the 5 min incu-
bation. The NPs which attracted the highest number of
human proteins were the SiO2_NH2. However, after 24 h
the PC still evolved and differences between the different
NPs were very small. After 72 h, the same number and
amount of proteins were identified on each NP.
Figure 6 Amount of bovine proteins immobilized onto nanoparticles
(3) SiO2_SH, (4) SiO2_PVP NPs after (a) 5 min, (b) 1 h, (c) 24 h, (d) 72 h and
In Table 2 we show all of the proteins identified with
MALDI-TOF analysis, depending on incubation time
and NP functionalization. The analysis indicated that, in
the case of FBS, the most abundant protein, irrespective
of time or functionalization, was bovine serum albumin
(BSA), which is the most prevalent protein in FBS [56].
The other protein detected on every NP regardless of
time was apolipoprotein A-I. Apolipoprotein E was de-
tected on the plain SiO2 NPs (after 1 h incubation time)
and on the SiO2_NH2 (after 24 h). On the plain SiO2

alpha 2-macroglobulin precursor was found after 72 h,
while it was also adsorbed onto the SiO2_SH NPs after
24 h. Plasminogen precursor (anticoagulant factor) was
also adsorbed on the plain SiO2 NPs regardless of time,
while on the SiO2_NH2 it disappeared after 1 week, and
surface analyzed with ImageJ software. (1) SiO2, (2) SiO2_NH2,
(e) 1 week of incubation in DMEM supplemented with 10% FBS.



Figure 7 Human proteins immobilized onto nanoparticles surface. (1) SiO2, (2) SiO2_NH2, (3) SiO2_SH, (4) SiO2_PVP NPs after (a) 5 min,
(b) 1 h, (c) 24 h, (d) 72 h and (e) 1 week of incubation in DMEM supplemented with 10% human serum.
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in the case of the SiO2_SH it was only detectable after
24 h. Gelsolin isoform b was also detected on the plain
SiO2 NPs at any time. On the SiO2_NH2 it disappeared
after 1 week, and in case of the SiO2_SH it was detected
only after 5 min, 24 h and 1 week. Kelch like protein 9
was adsorbed on the plain SiO2 and SiO2_NH2 irrespect-
ive of time. It was also present on the surface of the
SiO2_SH after 1 week. Complement C4A was detected
on the plain SiO2 NPs, the SiO2_NH2 and SiO2_SH until
24 h of the incubation.
In the case of human serum, the most abundant

protein, irrespective of time or functionalization, was
human serum albumin (HSA). Other proteins detected
Figure 8 Amount of human proteins immobilized onto nanoparticles
(3) SiO2_SH, (4) SiO2_PVP NPs after (a) 5 min, (b) 1 h, (c) 24 h, (d) 72 h and
human serum.
on every NP independent of time were apolipoprotein
B-100 precursor, and an autoimmune complex between
a human IgM rheumatoid factor and IgG 1. Lipid free
human apolipoprotein-1 and alpha-1-antitrypsin were
detected on every NP irrespective of time, on SiO2_PVP
they appeared after 24 h. Complement C4-B-like prepro-
protein, antithrombin III and inter-alpha (globulin) in-
hibitor H2i were adsorbed only on SiO2_NH2 and just at
5 min and 1 h. Human complement component C3c
and coagulation factor II (thrombin) were adsorbed on
every kind of NP after 24 h. In the case of SiO2_NH2

they were already detectable after 5 min. Apolipoprotein
A-IV precursor was only adsorbed at 5 min (SiO2,
surface analyzed with ImageJ software. (1) SiO2, (2) SiO2_NH2,
(e) 1 week of incubation in DMEM supplemented with 10%



Table 2 Bovine and human proteins immobilized onto nanoparticles surface analyzed with MALDI-TOF

SiO2 SiO2_NH2 SiO2_SH SiO2_PVP

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FBS

Chain A, bovine serum albumin x x x x x x x x x x x x x x x x x x x x

Serum albumin precursor x x x x x x x x

Apolipoprotein A-I x x x x x x x x x x x x x x x x x x x x

Apolipoprotein E x x x x x x x x

Alpha-2-macroglobulin precursor x x x x x

Plasminogen precursor x x x x x x x x x x

Gelsolin isoform b x x x x x x x x x x x x

Kelch-like protein 9 x x x x x x x x x x x

complement C4-A [a] x x x x x x x x x

Human serum

Chain A, human serum albumin x x x x x x x x x x x x x x x x x x x x

Chain A, lipid-free human apolipoprotein A-I x x x x x x x x x x x x x x x x x x

Apolipoprotein A-IV precursor x x x x

Apolipoprotein B-100 precursor x x x x x x x x x x x x x x x x x x x x

Apolipoprotein E x x x x

Complement C4-A preproprotein x x x x x x x x x

Complement C4-B-like preproprotein x x

Chain C, human complement component C3c x x x x x x x x x x x x x x

Alpha-1-antitrypsin x x x x x x x x x x x x x x x x x x

Chain A [b] x x x x x x x x x x x x x x x x x x x x

Coagulation factor II (thrombin) x x x x x x x x x x x x x x

Antithrombin III x x

Inter-alpha (globulin) inhibitor H2i x x

(1) 5 min, (2) 1 h, (3) 24 h, (4) 72 h, (5) 1 week of NPs incubation in DMEM supplemented with 10% serum.
[a] predicted; [b] an autoimmune complex between a human IgM rheumatoid factor and IgG1 factor reveals a novel factor epitope and evidence for affinity maturation.
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SiO2_NH2, SiO2_SH) and 1 h (SiO2). Complement C4-A
preproprotein was detected on SiO2_NH2 (at each time
point) and SiO2_SH (after 1 h). Apolipoprotein E was
attached onto the plain SiO2 NPs (only at 1 h) and onto
the SiO2_NH2 (at 1 h and 24 h).
BSA and HSA are very similar globular proteins that per-

form the same functions. However, BSA is composed of
582 amino acid residues while HSA of 585. They also differ
in the amino acid composition and charge (BSA: -17,
HSA: -15) [57-59]. These differences may affect the con-
formation, and subsequently regulate proteins adsorption
on the NP surface. Consequently the NP interactions with
biological surfaces could differ, which may affect biological
responses and NPs fate. Besides HSA, the most dominated
proteins of human serum immobilized on the NPs surfaces
were apolipoproteins. The apolipoproteins participate in
lipids transportation in the bloodstream and, as such, are
expected to affect the intracellular trafficking and transport
of NPs. Apo B-100, present in the case of human serum
but not in FBS, functions as a recognition signal for the
cellular binding and internalization of low-density lipopro-
teins (LDL). Other proteins found only in the case of hu-
man serum are described below. Alpha 1-antitrypsin is a
serum trypsin inhibitor; it protects tissues from enzymes of
inflammatory cells. Human complement component C3c
is a protein of the immune system; it plays a central role in
the activation of the complement system and contributes
to innate immunity. Complement C4A and C4B are com-
ponents of the classical activation pathway of the comple-
ment system; they provide a surface for interaction
between the antigen-antibody complex and other comple-
ment components. Coagulation factor II (thrombin) acts as
a serine protease that converts soluble fibrinogen into in-
soluble strands of fibrin, as well as catalyzes many other
coagulation-related reactions. Bearing in mind the well
known cases of biological nanoparticles as the LDL and
HDL, where single surface-expressed proteins dominate
the biological impacts, we believe that the presence of the
above described proteins could also have significant
biological effect.
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The results of our study also indicated that there was a
clear dependence of SiO2 NPs surface functionalization on
protein identity and the NP surface characteristics.
Changes in the PCs of the differently functionalized SiO2

NPs occurred with time, suggesting that the NP properties
could be different at different times of biological expe-
riment. This is an important point that should be taken
under consideration for in vitro and in vivo studies
in nanomedicine and nanosafety. The resulting corona
created a new NP surface, which may play an important
role in its interactions with cell surfaces.
It is interesting to note that a complete stripping of the

PC may occur in certain environments (such as a cell pha-
golysosome as previously suggested [60]) causing resto-
ration of an undecorated surface. Therefore, while NPs
pass through the body, there may be serial ‘refreshing’ of
the PC after cellular uptake by phagocytic cells. However,
in neutral protein rich environment of the cytosol, at long
time periods, as the hard corona is quite stable, a sub-
sequent exposure of NPs to a new protein environment
may lead to only partial displacement of the original hard
corona by new molecules [61,62]. The relative stability of
a hard corona, once formed, may suggest pre-incubating
NPs intended for human use to allow at least some degree
of control over the composition of the bio-nano-com-
posite that will be present in the body. Overall, the final
composition of the PC potentially depends on the envi-
ronments that NP has moved through, rather than only
on its current environment [62,63]. In these cases, cells
‘see’ a different object, thus the NP interactions with bio-
logical surfaces and receptors could be different which
may affect biological responses, NP biodistribution and
generally NP fate. The surface of the NP immersed in a
medium containing FBS differed from the surface of the
NPs in a medium of human serum. Therefore, it seems
advisable to verify in vitro or in vivo studies concerning
humans using human serum, rather than relying exclu-
sively on animal serum.

Conclusions
Surface properties were found to play a significant role
in determining NP behavior in different environments.
Ionic strength, pH and biological macromolecules com-
pletely transformed the NP surface properties and po-
tentially its biological effects. It was recognized that all
of the studied SiO2 NPs tended to agglomerate/aggre-
gate after relatively short time periods in all buffers and
biological media. The aggregation depended not only on
the NPs functionalization but also on their concen-
tration and the incubation time. Aggregation was much
diminished in a medium containing serum. The PC for-
mation depended on time and NP functionalization, and
varied significantly in different types of serum. The re-
sulting corona created a new NP surface, which plays an
important role in NP interactions with cell surfaces.
Since the PC formation was observed to depend upon
which kind of serum was applied, the human serum,
rather than the animal serum, should be used while con-
ducting in vitro or in vivo studies concerning humans.
We suspect that conflicting results of toxicity tests

concerning the same nanomaterial (such as SiO2 NPs),
may to some extent be due to insufficient charac-
terization of the studied materials as well as to varied
conditions used during their toxicological evaluation.
Different procedures of samples preparation (different
buffers/media/serum, different NPs concentration and
their incubation time in certain environment) are likely
to change the properties of the NPs, as shown above,
and give rise to different test results. Hence, researchers
must pay closer attention not only to the proper nano-
material characterization as synthesized, but also to its
characteristics under the toxicity tests conditions.

Methods
Nanoparticles preparation
Highly concentrated, spherical core/shell 50 nm SiO2 NPs
encapsulating fluorescein-isothiocyanate (FITC, ≥90%,
Fluka, Germany) were synthesized with a modified Stöber
method as described previously [47,64]. The NPs surface
was additionally coated with polyvinypyrrolidone (PVP,
K-15, Sigma-Aldrich, Germany) and modified to generate
amino and mercapto functionalities by the addition
of organosilanes, such as 3-aminopropyltriethoxysilane
(APTES, 98%, Alfa Aesar, Germany) and 3-mercaptopro-
pyltrimethoxysilane (MPTMS, Sigma-Aldrich, Germany)
respectively [47,65-67].

Physicochemical characterization
The particles hydrodynamic size/size distribution and
zeta potential were measured by a Zetasizer 3000 HSa,
Malvern Instruments. The NPs size was determined by
dynamic light scattering (DLS) technique using a He-Ne
laser (633 nm) as light source. The stock suspension was
diluted to result in a count rate of 100–500 kcps. Par-
ticle sizing measurements were performed in 10 mm
quartz cuvettes at 25°C. The results were expressed as
average values of number, volume or intensity size dis-
tribution. The zeta potential was determined by laser
Doppler electrophoresis (LDE) using a quartz capillary
electrophoresis cell. All of the measurements were per-
formed in triplicate for a single batch of NPs, and the re-
sults shown are the average of the three measurements.
The primary NPs size and shape were determined

using a Phillips CM20 transmission electron microscope
(TEM) working at 200 keV. For TEM analysis, stock NP
suspensions were diluted 1:100 and 3 μL were pipetted
onto cobalt grids covered with polyvinyl formal/carbon
(S162, Plano GmbH) and subsequently left to evaporate.
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A series of images were selected to estimate particle
size/size distribution using the analySiS pro software
(Olympus).
The primary NPs size and shape were additionally mea-

sured using a FEI Sirion 100 T scanning electron micros-
copy (SEM) working at 10 keV. For SEM analysis, 20 μL
stock suspensions were dried directly on the carbon adhe-
sive pad of a SEM sample holder.
The chemical and elemental composition of NPs were

examined with a PHI VersaProbe 5000 scanning X-ray
photoelectron spectroscopy (XPS), using a monochro-
mated Al Kα X-ray beam scanned over 600 μm × 400 μm
area (200 μm diameter/50 W X-ray beam) or 1400 μm ×
100 μm (100 μm diameter/100 W X-ray beam) at a fixed
take-off angle of 45°. For XPS analysis, the stock suspen-
sions were dried on an indium surface. Spectra evaluation
was performed using MultiPack-Version 9.2 software
(Physical Electronics). The results in% were derived from
relative concentrations of elements and their chemical
bonds from line shape analyses.
The surface chemistry measurements were performed

using a time of flight-secondary ion mass spectrometry
IV (ToF-SIMS, ION-TOF). The primary ion species used
was 10 keV Ga+, scanning an area of typically 150x150
μm2. For SIMS analysis, the stock suspensions were
dried on a silicon surface.
Crystallite size and crystalline phase were evaluated by

X-ray diffractometer (XRD) PANalytical EMPYREAN
PIXcel with 3D Counter, operating at a voltage of 40 kV
and a current of 40 mA with Cu Kα and Kβ radiation.
For XRD analysis, the stock suspensions were dried on a
silicon surface.
NPs concentration was additionally analyzed with

halogen moisture analyzer (HR73, Mettler Toledo). One
gram of the stock solution was placed onto an analyzer
plate and left for the solvent evaporation to give the
wt/wt% value.

Nanoparticles stability in aqueous/biological
environments
To determine the NPs stability in different environ-
ments, the NPs dispersions were prepared in sterile
Millipore water (MQ), phosphate buffered saline (PBS;
pH 7.4), Dulbecco’s modified Eagle’s medium (DMEM,
Sigma-Aldrich, USA) and DMEM supplemented with
10% inactivated fetal bovine serum (FBS, Sigma-Aldrich,
USA). The NPs samples were incubated at 37°C in a
CO2 incubator for different periods of time. The NPs
were analyzed with DLS, zeta potential and TEM.

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE)
To investigate the NPs interactions with biomolecules,
the NPs dispersions (1×1012 NPs mL-1) were prepared in
DMEM supplemented with 10% of inactivated FBS or hu-
man serum from human male AB plasma (Sigma-Aldrich,
USA). The NPs were incubated for different periods of
time at 37°C in a CO2 incubator and centrifuged (15 min,
8000 × g). The NPs pellets were washed three times with
PBS, through gentle pipetting, to remove non-bound pro-
teins. Bound proteins were eluted from the NPs and sepa-
rated on 12% SDS-PAGE [68] as described before [40]. A
protein marker (Fisher BioReagents™ EZ-Run™, Fisher Sci-
entific, USA) was run on every SDS-PAGE. All of the gels
were analyzed with ImageJ software [69]. The intensity of
the bands was calculated for whole gels (100%-the stro-
ngest signal/band, 0%- pure gel/no band). All of the gels
were prepared in the same way, making them possible to
direct comparison.

Matrix assisted laser desorption/ionization-time of flight
mass spectrometry (MALDI-TOF)
To analyze the proteins bound to the NPs, the proteins
bands were dissected from the SDS-PAGE and washed
three times with 50 mM ammonium bicarbonate. The
samples were treated for 20 min with 20 mM dithiothrei-
tol at 60°C. Afterwards, the samples were left for 15 min
in 25 mM Iodoacetamide at 37°C and subsequently
digested with 30 ng trypsin/band for 4 h and at 37°C.
The samples were analyzed with MALDI-TOF Ultra-

fleXtreme (Bruker Daltonics) using a positive method
operating in reflectron mode and 25 kV acceleration vol-
tage. The analysis was calibrated using external calibrants
(Bruker Daltonics).

Additional file

Additional file 1: Zeta potential values of differently functionalized
silica nanoparticles after incubation in various environments at
different time.
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