
Foundations of Coloring Algebra with
Consequences for Feature-Oriented

Programming

Peter Höfner13, Bernhard Möller2, Andreas Zelend2

1 NICTA, Australia
2 Universität Augsburg, Germany

3 University of New South Wales, Australia

Abstract. In 2011, simple and concise axioms for feature compositions,
interactions and products have been proposed by Batory et al. They were
mainly inspired by Kästner’s Colored IDE (CIDE) as well as by experi-
ence in feature oriented programming over the last decades. However,
so far only axioms were proposed; consequences of these axioms such as
variability in models have not been studied. In this paper we discuss the
proposed axioms from a theoretical point of view, which yields a much
better understanding of the proposed algebra and therefore of feature
oriented programming. For example, we show that the axioms charac-
terising feature composition are isomorphic to set-theoretic models.

1 Introduction

Over the last years Feature Oriented Programming and Feature Oriented Soft-
ware Development (e.g. [7,8]) have been established in computer science as a
general programming paradigm that provides formalisms, methods, languages,
and tools for building maintainable, customisable, and extensible software. In
particular, Feature Orientation (FO) has widespread applications from network
protocols [7] and data structures [9] to software product lines [21]. It arose from
the idea of level-based designs, i.e., the idea that each program (design) can
be successively built up by adding more and more levels (features). Later, this
idea was generalised to the abstract concept of features. A feature reflects an
increment in functionality or in the software development.

Over the years, FO was more and more supported by software tools. Exam-
ples are FeatureHouse [2], the AHEAD Tool Suite [5], GenVoca [11] and Colored
IDE (CIDE) [20]. As shown in several case studies, these tools can be used for
large-scale program synthesis (e.g. [2,21,19,20]).

Although the progress over the recent past in the area of FO was quite impres-
sive, the mathematical structure and the mathematical foundations were studied
less intensively. Steps towards a structural description and analysis are done with
the help of feature models. A feature model is a (compact and) structural repre-
sentation for use in FO. With respect to (software) product lines it describes all
possible products in terms of features. Feature models were first introduced in

the Feature-Oriented Domain Analysis method (FODA) [17]. Since then, feature
modelling has been widely adopted by the software product line community and
a number of extensions have been proposed. A further step towards an abstract
description of FO was AHEAD [8]. It expresses hierarchical structures as nested
sets of equations. Recently, several purely algebraic approaches were developed:

(a) Feature algebra [3] captures many of the common ideas of FO, such as in-
troductions, refinements, or quantification, in an abstract way. It serves as
a formal foundation of architectural metaprogramming [6] and automatic
feature-based program synthesis [14]. The central notion is that of a feature
structure forest that captures the hierarchical dependence in large products
or product lines. Features may be added using the operation of forest super-
imposition, which allows a stepwise structured buildup.

(b) Coloring algebra [10] (CA) captures common ideas such as feature compo-
sition, interaction and products. It does not use an explicit tree or forest
structure. Rather, the connection between product parts is made through
variation points at which features or their parts may be inserted or deleted.
Next to composition, the algebra also takes feature interaction into account
by defining operators for determining conflicts and their repairs.

(c) Delta modeling [13] is not centred around a program and its structure.
Rather it describes the building history of a product as a sequence of mod-
ifications, called deltas, that are incrementally applied to an initial product
(e.g., the empty one). Conflict resolution is performed using special deltas.

The present paper builds on the second algebraic structure and combines CA
with ring theory. Although most of the presented mathematics is well known,
the relationship to FO is new and leads to new insights into the mathematical
and structural understanding of FO. Starting with a brief recapitulation of the
axioms of CA and their motivation in Section 2, we derive some basic properties
for CA in Section 3, where we also discuss their relationship to FO. In Section 4,
we present one of the main contributions of the paper, namely that in finite
models feature composition as axiomatised in the algebra is always isomorphic
to symmetric difference on sets of so called base colors. These base colors are
studied more closely in Section 5; we show that many properties are already
determined by them. In the following Section 6, we analyse small models of CAs,
give a generic set-theoretic model and discuss a possible representation theorem
for CA. Before summarising the paper in Section 8, we present another model
of CA, which is useful for feature oriented software development (Section 7).

2 The Coloring Algebra

CA was introduced by Batory et al. [10], inspired by Kästner’s CIDE [20]. In
CIDE, a source document is painted in different colors, one color per feature.
Insertion (Composition) of feature f into feature g yields a piece of code with
fragments in various colors. Therefore the terms “feature” and “ color” become
synonymous and we will switch freely between the two in the sequel.

2

CA offers operations for feature composition (+), feature interaction (·) as
well as full interaction (cross-product) (×)1. To illustrate the main ideas behind
these operations we give an example named fire-and-flood control [10]. Assume
a library building that is equipped with a fire control (fire). When a sensor of
the control detects a fire, the sprinkling system gets activated. Later the library
owner wants to retrofit a flood control system (flood) to protect the books and
documents from water damage. When the system detects water on the floor,
it shuts off the water main valve. If installed separately, both features operate
as intended. However, when both are installed, they interact in a harmful way.
fire activates the sprinklers, after a few moments the flood control shuts off the
water and the building burns down. Algebraically the described system can be
expressed by flood + fire. When using both systems, the interaction flood · fire of
both features has to be considered: for example flood · fire could prioritise fire
over flood. The entire system is then established by the cross-product

flood× fire = flood · fire + flood + fire .

Feature Composition Every program offers a set of features, which (hopefully)
satisfy the specified requirements. A feature can be nearly everything: a piece of
code, part of some documentation, or even an entire program itself. Such “basic”
features may be composed to form a program. In CA the order of composition
does not matter2. Moreover, CA assumes an “empty feature” 0 . Let F be an
abstract set of features. Then feature composition + : F × F → F is a binary
operator which is associative and commutative.

A crucial point for algebras covering FO is how multiple instances of features
are handled. There are three possible solutions:

(a) multiple occurrences are allowed, but do not add more information;
(b) duplicates are removed, so that each feature occurs at most once; or
(c) a feature is removed if it is already present, i.e., composition is involutory :

∀f : f + f = 0 . (1)

The latter is the design decision taken in CA.3 In a monoid satisfying Equa-
tion (1) every element is its own inverse; therefore such a monoid is also known
as Boolean group (e.g., [12]). In particular we have f = g ⇔ f + g = 0 and + is
cancellative, i.e., f + g = f + h ⇔ g = h. Every Boolean group is commutative:

0 = f + f = f + 0 + f = f + g + g + f ,

which implies f + g = g+ f . Hence the axiom of commutativity can be skipped.

Feature Interaction is a commutative and associative operator · : F×F → F .
On the one hand it might introduce additional features to yield a “consistent”

1 The original notation in [10] for + and · and the element 0 below was ·, # and 1,
respectively; we have changed that for a more direct connection with ring theory.

2 This is a design decision and in contradiction to some other approaches such as [4],
but follows approaches such as CIDE.

3 A discussion on the usefulness of this axiom is given in [10]; the aim of the present
paper is to discuss consequences of the axioms and not the axioms themselves.

3

and “executable” program. On the other hand, it might also list features of f and
g that have to be removed. This is, for example, the case if f and g contradict
each other. We follow the usual notational convention that · binds tighter than +.

CA assumes that, next to commutativity and associativity, feature interac-
tion satisfies the following two axioms:

f · 0 = 0 , (2) f · f = 0 . (3)

Equation (2) expresses that no feature is in contradiction with the empty one;
Equation (3) states that every feature is consistent with itself.

Moreover, CA assumes that feature interaction distributes over composition:

f · (g + h) = f · g + f · h . (4)

Full Interaction is the “real” composition of two features, i.e., two features
are composed under simultaneous repair of conflicts. In sum, full interaction is
defined as f × g =df f · g + f + g .

As mentioned, in CA features are abstractly viewed as colors. Therefore we
now combine the above requirments into an abstract algebraic definition of CAs.

Coloring Algebra A CA is a structure (F,+, ·, 0) such that (F,+, 0) is a
(commutative) involutive group and (F, ·) is a commutative semigroup satisfying
Equations (3) and (4). Equation (2) follows from the other axioms, in particular
distributivity. Elements of such an algebra are called colors. Following the above
motivational discussion, an element h is called a repair iff ∃ f, g : h = f · g.

Mathematically, the definition means that a CA is an involutive and commu-
tative ring without multiplicative unit. We list a few straightforward properties
of full interaction.

Lemma 2.1 Assume a CA (F,+, ·, 0) and f, g, h ∈ F , then the following equa-
tions hold: (g + h) × f = (g × f) + (h × f) , f × 0 = f , f × g = g × f ,
(f × g)× h = f × (g × h) and (g + h)× f = (g × f) + (h× f).

3 First Consequences

We list a couple of interesting further properties and explain their interpretation
in FO. All proofs can be found automatically by Prover9 [22]. Hence, we only
present those that help understanding the structure of CA.

3.1 Basic Properties of Interaction

For the following lemmas, we assume a CA (F,+, ·, 0) and f, g, h ∈ F .

Lemma 3.1 A repair cannot introduce new conflicts, i.e., f · g = h⇒ f ·h = 0.

Lemma 3.2 The repair of three elements f, g, h satisfies an exchange law:

(f + g) · (f + h) = (f + g) · (g + h) = (f + h) · (g + h) = f · g + f · h+ g · h .

4

It is easy to see that 0 is the unique fixpoint of f · x = x. From this we get

Lemma 3.3 A repair does not delete one of its components entirely, i.e., if
f 6= 0 then f · g 6= f and if f + g 6= 0 then f · g 6= f + g.

Note that the precondition of the second statement is equivalent to f 6= g.

Lemma 3.4 Colors cannot repair each other in “cycles”, i.e.,

(a) No non-trivial color is its own repair: f · g = f ⇒ f = 0.
(b) Repairs are mutually exclusive: f · h1 = g ∧ g · h2 = f ⇒ f = 0.
(c) Part (b) can be extended to finite chains:

f · h1 = h2 ∧
(∧n

i=1 h3i−1 · h3i = h3i+1

)
∧ h3n+1 · h3n+2 = f ⇒ f = 0 .

Proof.

(a) From f · g = f we infer f · g · g = f · g. By absorption and strictness the left
hand side reduces to 0, so that we have 0 = f · g = f . The claim also follows
from Lemma 3.3.

(b) The assumptions yield f = g · h2 = f · h1 · h2 and Part (a) shows the claim.
(c) Straightforward induction on n. ut

Moreover, inserting the consequence f = 0 into the antecedents of Parts (b)
and (c), strictness implies that all colors occurring at the right hand side of an
equation of (b) and (c), namely f , g and h3i+1, are equal to 0.

The absence of cycles makes the divisibility relation w.r.t. · into a strict
partial order on non-empty colors: we define, with F+ =df F −{0},

f < g ⇔df f, g ∈ F+ ∧ ∃h ∈ F : f · h = g .

Lemma 3.5 Composition + and interaction · are not isotone w.r.t. <.

Proof. The smallest counterexample has 8 elements.

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 2 2 2
2 0 0 0 0 0 0 0 0
3 0 0 0 0 2 2 2 2
4 0 2 0 2 0 2 0 2
5 0 2 0 2 2 0 2 0
6 0 2 0 2 0 2 0 2
7 0 2 0 2 2 0 2 0

Assume a CA with F = {0, . . . , 7} and
operations defined in the tables given on
the left. Then, 1 < 2, but 1 + 1 = 0 6<
3 = 1 + 2 and 1 · 2 = 0 6< 0 = 2 · 2. ut

3.2 Interaction Equivalence and Ideals

It is useful to group colors according to their behaviour under interaction. To
achieve this we define an equivalence relation ∼ by

f ∼ g ⇔df ∀h : f · h = g · h .

The equivalence class of f under ∼ is denoted by [f] =df {g | f ∼ g}. Elements
f ∈ [0] are (as usual) called annihilators, since ∀ g ∈ F : f · g = 0.

We will show that annihilators play a central rôle for the construction of
models for the · operator. First, we set up a connection with the strict order <.

5

Lemma 3.6 An element of F+ is an annihilator iff it is maximal w.r.t. <.

Proof. By contraposition of Equation (2), we get f · g 6= 0 ⇒ f 6= 0 ∧ g 6= 0.
(⇒) Assume f 6= 0 to be maximal but not an annihilator. Then there is an
element g with f · g 6= 0. The above remark yields g 6= 0 and therefore f < f · g,
which is a contradiction to the maximality of f .
(⇐) Assume f 6= 0 to be non-maximal but an annihilator. Then there is an
element g 6= 0 with f < g, and by definition ∃h : f · h = g. Since f is an
annihilator, we get g = 0, which yields a contradiction. ut

For finite F 6= {0} there exists at least one maximal element in F+ and hence
a non-zero annihilator. It is well known that the set [0] of annihilators is a ring
ideal, i.e., is closed under + and under · with arbitrary elements of F . It even
forms a subtractive ideal (e.g. [1]), i.e., f ∈ [0] ∧ f + g ∈ [0] ⇒ g ∈ [0].

Lemma 3.7 If f + g is an annihilator then f · g = 0 and f ·h = g ·h for h ∈ F .

Proof. The first claim can be shown by 0 = (f + g) · g = (f · g) + (g · g) = f · g.
The second one by 0 = (f + g) · h = (f · h) + (g · h) ⇔ (f · h) = (g · h). ut

Next we link annihilators with the equivalence relation ∼.

Lemma 3.8

(a) Composition is cancellative w.r.t. ∼, i.e., f + g ∼ f + h ⇔ g ∼ h.
In particular, f ∼ f + g ⇔ g ∼ 0.

(b) f ∼ g + h ⇔ f + g ∼ h. In particular, f ∼ g ⇔ f + g ∼ 0.
(c) ∼ is a congruence w.r.t. + and ·.
(d) [f] = {f · g | g ∈ [0]}.

4 Models—Feature Composition

So far we have only looked at some basic foundations and properties for FO,
most of them well known in mathematics, but unknown for FO. Let us now
turn to some concrete models. Looking at the literature, we note that a concrete
model has only been sketched [10].

Let us first look at feature composition (F,+, 0). Involution (Equation (3))
expresses that every element has an inverse, namely itself. Therefore every ele-
ment has order 2. By the classification of finitely generated Abelian groups, any
finite 2-group is a power of ZZ 2 (the two element group); hence there is exactly
one finite model satisfying these axioms for each of the cardinalities 2, 4, 8,
This immediately follows from the Kronecker Basis Theorem (e.g. [18]).

Theorem 4.1 Every finite algebra satisfying the axioms for feature composition
is isomorphic to a model that can be obtained by using symmetric difference on
a power set of a finite set.

6

Due to the nature of software engineering, the set F of colors, i.e., the set of
all possible combinations of features is always finite, so that the assumption of
Theorem 4.1 is satisfied in that context. Moreover, by this theorem there is no
need to distinguish between the abstract CA and the set model any longer. Hence
we can freely use more operators and relations, such as set union ∪, intersection ∩
or subset ⊆ in every finite model of CA. Both, the neutral element of CA (0) and
the empty set (∅) will be denoted by 0 in the remainder. In particular, we have
0 ⊆ f for all f ∈F . The theorem states that there are generic models: assume a
set B of base colors. Then (2B , ∆ , 0) satisfies the axioms for feature composition,
where ∆ is the symmetric difference of sets, defined, for M,N ∈ 2B , as

M ∆N =df (M ∪N)− (M ∩N) .

The greatest element B of 2B is denoted by >.

Lemma 4.2 In general, neither + nor · is isotone w.r.t. ⊆. Therefore, none of
these operations distributes over ∪ or ∩ .

Proof. To show the first claim we give a counterexample in (2B , ∆ , 0). Let a =
{1} and b = {1, 2}. Then a ⊆ b holds, but a∆ b = {2} is not a subset of b∆ b = 0.
To prove that · is not isotone, we use contraposition and calculate again in the
set model (2B , ∆ , 0). Consider a finite model of CA. Assume that the above
implication holds and that · is not trivial, i.e., there are base colors a, b with
a · b 6= 0. Then, since a, b ⊆ a + b (as a and b are base colors), by isotony we
would have a · b ⊆ (a + b) · (a + b) = 0. Since 0 is the least element w.r.t. ⊆ ,
we get a · b = 0 i.e., a contradiction. ut

We can enrich the set algebra to a first (albeit not very interesting) model
for CA by assuming that there are no interactions at all between sets, i.e., for
sets M,N ∈ 2B , we define M · N =df 0. Then (2B , ∆ , ·, 0) forms a CA. In a
later section we will discuss more sophisticated models and will show how these
could be constructed systematically.

5 Base Colors

By Theorem 4.1, we can use set-theoretical knowledge for FO. In particular we
can assume that every element of a finite CA is finitely generated, i.e., there is
a set B of base colors (base features) from which all other colors are built. In
general we call a color f of a CA F base iff it is isomorphic to a singleton set4;
the set of all base colors is again denoted by B. If F is finitely generated, every
element is a sum of base colors, i.e., for all f ∈ F

f =
∑
i∈I

ai

for an index set I and base colors ai ∈ B.

4 In set theory singleton sets of base colors are also called atoms.

7

In the remainder of the paper we use a, b, c, . . . to denote base colors and
f, g, h, . . . for arbitrary colors. Moreover, we assume that sums (of base colors)
are reduced , i.e., if f =

∑
i∈I bi then bi 6= bj for all i, j ∈ I with i 6= j.

Due to distributivity of · over + it is possible to reduce general interaction to
the one between base colors only. More precisely, assume two finitely-generated
colors f =

∑
i∈I ai and g =

∑
j∈J bj , then

f · g = (
∑
i∈I

ai) · (
∑
j∈J

bj) =
∑
i∈I

∑
j∈J

(ai · bj) . (5)

Hence only the interaction (conflicts) of base colors has to be considered. This
reduces the number of possible models.

6 Models for Coloring Algebra

6.1 Small Models

Let us now look at some possible models; we will construct them systematically.
The most trivial one was already given at the end of Section 4; it had no interac-
tion at all. The next example has exactly one non-trivial repair h. Formally, we
calculate in a CA (F,+, ·, 0) with distinguished base colors a, b ∈ B and h ∈ F
satisfying a · b = h and c · d = 0 for all other base colors c, d ∈ B − {a, b}.

By Lemma 3.4, a, b and h must be different. By Lemma 3.3, h differs from
a + b, hence this example has at least three base colors. Vice versa this means
that all models with at most two base colors can only have the trivial interaction.

By Equation (5), we can determine all interactions:

f · g =

{
h if C
0 otherwise ,

where C ⇔df

(a ⊆ f ∧ b 6⊆ f ∧ b ⊆ g)∨
(a 6⊆ f ∧ b ⊆ f ∧ a ⊆ g)∨
(a ⊆ g ∧ b 6⊆ g ∧ b ⊆ f)∨
(a 6⊆ g ∧ b ⊆ g ∧ a ⊆ f) .

The first case in the definition of f · g describes all situations where either a
occurs in f and b in g, or vice versa. Therefore the repair has to be introduced.
However, it forbids the case, where a and b occur in both f and g: in this setting
the repair is “introduced twice” and therefore does not show up.

Let us now assume that we have two repairs for base colors in our model,
i.e., there are base colors a, b, c, d ∈ B with a · b = h1 + h2, c · d = h1 + h3,
and a1 · a2 = 0 otherwise (a1 ∈ B − {a, b}, a2 ∈ B − {c, d}). Note that we do
not require c, d to be different from a, b. Moreover, we assume that the repairs
contain a common part; the case of disjoint repairs is just a special case (h1 = 0).
Using again Equation (5), we can determine all interactions:

f · g =

h1 + h2 if (c 6⊆ f ∧ d 6⊆ f) ∨ (c 6⊆ g ∧ d 6⊆ g) ∧ C
h1 + h3 if (a 6⊆ f ∧ b 6⊆ f) ∨ (a 6⊆ g ∧ b 6⊆ g) ∧ C[a/c, b/d]
h2 + h3 if C ∧ C[a/c, b/d]
0 otherwise .

8

Here the formula C[a/c, b/d] is C with a replaced by c and b by d. These two
examples show how the interaction operation can be derived from interaction on
base colors. Of course one has to keep in mind when defining the interaction on
base colors that some equations such as f ·g = f are not possible (see Section 3).

#base colors/ #interact. # CA
#colors (up to iso.) (up to iso.)

1/2 1 1
2/4 2 1
3/8 557 2

4/16 2

Table 1. Number of Models for CA

However, the examples give rise to
the conjecture that there cannot be
many different models for CA, since
everything can be reduced to base
colors and the variety there is lim-
ited. To underpin this conjecture, we
generated all models of a particular
size using Mace4, a counterexample
generator [22]. The results are pre-

sented in Table 1. Of course generation of algebras with Mace4 requires isomor-
phism checking; although this is offered by the tool suite, it is resource intensive.
Hence we could also determine numbers up to algebras of size 16. The table
shows (a) the number of possible algebras (up to isomorphism) when only the
axioms for interaction (·) are used, and (b) the number of CAs.

6.2 A General Model for Coloring Algebra

In this chapter we show how to construct a general model for CA. The presented
model is based on sets only and can already be applied straight away to FO when
assuming that a color (feature) is a set of base colors. Later we will present a
model that is even more practicable for FO, based on variation points.

As before we assume a set B of base colors and set F as 2B . As we have seen,
the only possibility for composition is f + g = f ∆ g. (cf. Theorem 4.1).

Furthermore, Equation 5 shows that interaction needs only be considered
at the level of base colors. Next to that, we assume that the interaction of base
colors is again a base color. In sum, we assume an associative interaction operator
◦ on B, i.e., (B, ◦) is a semigroup, and a special element e ∈ B that satisfies the
annihilation properties e ◦ a = e = a ◦ a for all a ∈ B. A structure (B, ◦, e) with
these properties is called a base color semigroup.

Based on that, feature interaction (·) can be defined as

f · g =df ∆
a∈f

∆
b∈g

ι(a ◦ b) ,

where the injection ι : B → F is given by ι(e) = 0 and ι(a) = {a} for a ∈ B−{e}.
By associativity and commutativity of ∆ this is well defined. Within ·, multiple
occurrences of the same ◦-product cancel out so that at most one of them is left.

By this remark we immediately obtain f ·f = 0, since every product a◦a = e
and hence ι(a ◦ a) = 0, while for any two different colors a, b ∈ f we have both
products ι(a ◦ b) and ι(b ◦ a) in the ∆ -aggregation, which by commutativity of
◦ are equal and hence cancel out. Another straightforward consequence of the
definition is f · 0 = 0.

9

Lengthy but straightforward calculations show that interaction, as defined
earlier in this section, is associative commutative and distributes over + (∆) [15].

Thus we have defined a concrete model of a CA, solely based on a set of base
colors and an abstract interaction operation ◦ on them. In the remainder of this
section, we will give a possible concrete definition of this abstract operation.

For that, we assume a finite set P of pigments. The idea is to define base
colors as certain sets of pigments. As before, sets of base colors will be used to
define colors. Formally, a set of base colors is a non-empty subset B ⊆ 2P that
is downward closed: a ∈ B ∧ b ⊆ a ⇒ b ∈ B. Hence every set of base colors
contains ∅. The set B is called full iff B = 2P .

For two base colors (sets of pigments) a, b∈B we define a non-conflict pred-
icate noconf by

noconf (a, b) ⇔df a 6= ∅ ∧ b 6= ∅ ∧ a ∩ b = ∅ .

Intuitively, two base colors do not show any conflict, if they do not share a
common resource (pigment). The condition a 6= ∅ ∧ b 6= ∅ is needed to exclude
the empty base color, which by definition has no conflict with any other base
color, but should also not interact with any. As we will see in the next definition,
we have to distinguish these two behaviours.

The interaction ◦ : B ×B → B of base colors is defined by

a ◦ b =df

{
a ∪ b if noconf (a, b) ∧ a ∪ b ∈ B ,
∅ otherwise.

This definition entails a ◦ a = ∅ = ∅ ◦ a for all a ∈ B. Hence ∅ (as element of B)
plays the rôle of the annihilating element e above. Moreover, ◦ is commutative
and associative. A proof can be found in [15]. Hence (B, ◦, ∅) is a base color
semigroup that can be used to create a CA, according to the definitions for
composition and interaction given earlier in this section.

The definitions given above immediately entail the following property.

Lemma 6.1 If a ∈ B is ⊆-maximal in B then a is an annihilator.

Let us illustrate the construction with an example.

Example 6.2 Assume three pigments r, g, b and the full set of base colors, i.e.,
B = 2{r,g,b}. Using the interaction operation ◦ on base colors, we get for example

{r} ◦ {g, b} = {r, g, b} and {r} ◦ {r, g} = ∅ = {r, g} ◦ {g, b} .

We also illustrate the CA over (B, ◦, ∅). For convenience and readability we
leave out set braces for colors (elements of F= 2B), that consist of only one base
color. For example rgb is used instead of {{r, b, g}}. We can now define a color
that consists of all base colors containing the pigment r as

red =df {{r}, {r, g}, {r, b}, {r, g, b}} = r + rg + rb+ rgb .

As an example how interaction · on colors works, consider

10

(r + rg + rb+ rgb) · (b+ rb+ g)
= rb+ ∅+ rg + rgb+ ∅+ ∅+ ∅+ ∅+ rbg + ∅+ ∅+ ∅
= rb+ rg .

To conclude the example we briefly resume the discussion on the relationship
to CIDE [20]. As mentioned, in that tool code can be colored. Singly colored
code comprises the features that a customer can choose. But code can also be
endowed with more than one color. If a code fragment is, for example, marked
with the colors red and blue, that fragment is the repair of the two singly colored
fragments with colors red and blue. Similarly, code fragments marked with three
colors are repairs of three features, etc. By the full interaction operator, a repair
is then composed with the two conflicting features into a new one, where by
cancellativity of composition the conflicting parts are removed and supplemented
by new ones if necessary.

Let us assume that a customer chooses the pigments r and g from the above
set P . The one can automatically compute their repair: r · g = rg. To create
and deliver the final product full interaction (×) can be used:
r × g = rg + r + g. It can be seen that the repair rg has indeed been added.
If now a customer wants have the additional feature b, the model of CA can
determine all the bits needed for the final product;

r × g × b = (rg + r + g)× b
= (rg + r + g) · b+ rg + r + g + b

= rgb+ rb+ gb+ rg + r + g + b .

We see that now not only the singly colored fragments are used, but also all
repairs. ut

6.3 Towards a General Representation Theorem

We have presented a representation theorem for composition, and defined and
discussed a number of possible interaction operations. So far, we have not found
a complete representation theorem for CA; in this section we present a couple
of useful properties that are hopefully steps towards one.

We investigate generating systems w.r.t. interaction ·, i.e., subsets G ⊆ F
such that every element in the image set of · equals a combination g1 · . . . · gn
for some n ∈ IN and gi ∈ G. A generating system is minimal if no proper subset
of it is a generating system. In a finite algebra such systems always exist.

Lemma 6.3 Let G be a minimal generating system for ·. Then no two distinct
elements of G can be related by ∼ .

Proof. A relation g1 ∼ g2 would mean that in every · -product of the above form
g1 could be replaced by g2 without changing its value. Hence one of g1, g2 could
be omitted from G while still yielding a generating system, in contradiction to
the choice of G. ut

11

Theorem 6.4 Let G be a minimal generating system for ·. Then the elements
of G form a system of representatives for the equivalence classes of ∼. Since ∼
is a congruence, the set of these classes can be made into a quotient semiring by
defining [f] + [g] =df [f + g] and [f] · [g] =df [f · g].

Proof. Every element lies in its own equivalence class, while, by the previous
lemma, different generators lie in different classes. This shows the first claim.
The second one is standard semiring theory. ut

When analysing the constructed and the generated models, we also looked
more closely at the structure of the equivalence classes generated by the rela-
tion ∼. We made the following observations that are underlying the conjectures
below on the representation theorem:

(a) The smallest element (w.r.t. ⊆) of each class is a base color.
(b) All other elements are formed by composition with every possible combina-

tion of the annihilating base colors.

This and some observations presented earlier motivates us to state the following

Conjectures The first conjecture is that the assumption we made at the
beginning of Section 6.2 is always true, namely that the repair of two base
colors is always a base color itself. If this conjecture is correct, the presented
model might be the generic model, i.e., all interaction operations of all models
of CA are always isomorphic to such a model. In particular, the only freedom
to define interaction is given by the underlying semigroup of pigments. That
would also imply that in FO only repairs of really simple fragments have to be
considered and the number of possible CAs could be determined by the number
of semigroups satisfying the additional annihilation requirements. This latter
claim is underpinned by our third conjecture stating that in case of a non-trivial
interaction operation, the elements f ∈ 2N form a system of representatives for
the equivalence classes, where [f] = f + [0] =df {f + g | g ∈ [0]} and N is the
set of all non-annihilating base colors.

The last conjecture is partially substantiated by the following property, which
is immediate from Lemma 3.8(b):

Lemma 6.5 The equivalence classes [f] under ∼ are closed under composition
with annihilators:

[f] + [0] ⊆ [f]

7 A Model Based on Variation Points

Although the set-theoretic model given in Sections 4 and 6 is interesting and
already covers a lot of the aspects of CIDE, it is, of course, not fully adequate for
FO, since it does not take details of the program structure, such as classes and
objects, into account. To get a handle on such aspects, in FO variation points are
used. “A variation point identifies a location at which a variable part may occur.

12

It locates the insertion point for the variants and determines the characteristics
(attributes) of the variability” [23]. Variation points are also called extension
points (e.g., [20]) or hot spots (e.g., [16]).

The model we present here can be used directly for FO, as it is based on
variation points and code fragments. We assume disjoint sets VP of variation
points and C of code fragments. Variation points might, e.g., be given as line
numbers before or after which further elements can be inserted.

class Stack {
‹ int ctr = 0;

int size() {
return ctr;

}
‹ String s = new String();

void empty() {
‹ ctr = 0;

s = " ";

}
void push(char a) {

‹ ctr++;

s = String.valueOf(a)

.concat(s);

}
void pop() {

‹ ctr--;

s = s.substring(1);

}
char top() {
return s.charAt(0);

}
}

vp1

vp2

vp3

vp4

vp5

Fig. 1. The Counted Stack With
Variation Points [10]

An illustrative example with a “Counted
Stack” is presented in Figure 1; it was taken
from [10]. Due to lack of space we skip an
explanation of the details; the figure should
just give an impression how things look like.

Our model will be based on the set model
presented before. Therefore we only consider
code fragments that commute with each other.
For example, we could look at entire methods,
i.e., code fragments that start with something
like “void empty(){” and end with “}” and
may contain variation points from VP as well
as code fragments from C. Note that a code
fragment can contain variation points again.

A program is now a (total) function p :
VP → 2VP∪C .5 Its semantics is as follows: if,
for a variation point vp the value p(vp) is not
the empty set then p(vp) is installed at vp;
otherwise vp remains empty. This construc-
tion is well defined, since by the standard iso-
morphism (AB)C ' AC×B for function spaces
we have (2VP∪C)VP ' 2VP×(VP∪C), where a

program p is represented by the relation {(vp, vqc) | vqc ∈ p(vp)}.
The empty program e is the empty function, i.e., e(vp) = ∅ for all vp ∈ VP .

A program white with a method body at variation point start is given as

white(vp) =

{{
class Stack{ vp1 vp2 }

}
if vp = start

∅ otherwise .

This coincides with the “white” part of Fig. 1, while the “darkgray” fragment is

darkgray(vp) =

{
int ctr = 0; . . . ctr;}

}
if vp = vp1{

ctr = 0;
}

if vp = vp3{
ctr++;

}
if vp = vp4{

ctr--;
}

if vp = vp5
∅ otherwise .

To build a program from a given function p, we just replace all occurrences
of each vp by its value p(vp). This yields a function with no variation points in

5 An isomorphic model uses partial functions which are undefined for empty variation
points.

13

its values. Of course, this is only possible if the values of p do not depend on
each other cyclically. If we now choose one variation point as the start point, a
program (with filled variation points) has been derived.

By this simple algorithm for program derivation, the presented model is
particularly interesting for FO. The remaining question is how to define feature
composition and feature interaction.

Similar to the set-theoretic model, feature composition can be defined via
the symmetric difference:

(p+ q)(vp) =df p(vp) ∆ q(vp) .

This definition satisfies the laws for feature composition and behaves naturally.
Identical parts of the values p(vp) and q(vp) are deleted, differing parts are
collected in the result set.

Let us explain this with a simple example. Assume two programs p and q:

p(vp) =df

{v2} if vp = vp1
{v3} if vp = vp2
{v2, v4} if vp = vp3
∅ otherwise ,

q(vp) =df

{v3} if vp = vp1
{v3} if vp = vp2
{v1, v4} if vp = vp3
∅ otherwise .

Both programs assign non-trivial information only to the variation points vp1,
vp2 and vp3. The values at vp1 are disjoint; the composition unites the values.
The values at vp2 are identical; the composition removes them and leaves vp2
“unset”. The values at vp3 are neither disjoint nor identical—they have a non-
empty intersection; the composition deletes all values occurring in both parts
and retains the rest. Formally this means

(p + q)(vp) =df

{v2, v3} if vp = vp1
∅ if vp = vp2
{v1, v2} if vp = vp3
∅ otherwise .

The same construction can be applied to implement feature interaction:

(p · q)(vp) =df p(vp) · q(vp) .

In the concrete model this turns into (p · q)(vp) =df ∆a∈p(vp)∆b∈q(vp)ι(a◦ b). To
complete this definition we need to specify the underlying base color semigroup.
We choose the pigment set P =df VP ∪C and the full base color set B =df 2P .

In this paper we have shown that, for a given size, each definition of + is
isomorphic to that of symmetric difference in the set-model; by this we do not
have much freedom to define composition and the presented definition seems to
be canonical. In contrast to that, the interaction operation · offers much more
flexibility. Of course, we cannot give a compact definition, since interaction really
depends on implementation details and therefore on the source code. However,
as we have shown in Section 5, only the interaction between base colors has to
be defined, interaction for arbitrary elements then lifts by Equation (5). We can
even do better and give the programmer some guidelines on how repairs should
be defined by the lemmas given in Section 3. The most important of these is

14

Lemma 3.4 which can easily be implemented and offers a quick consistency
check on interactions.

8 Conclusion and Outlook

We have carried out a careful analysis of coloring algebra (CA) [10]. The study
has yielded several interesting and sometimes surprising results.

First, we have presented a series of properties for FO. Most of them could be
proven fully automatically using an automated theorem prover such as Prover9.

Second, we have used Mace4 not only to falsify conjectures (as we do regu-
larly), but also for the generation of finite models. Doing this, and by creating
and analysing models by hand, it turned out that there exist only very few
models of CA, up to isomorphism. This was a surprise: when the algebra was
designed, it was believed that the operation for feature interaction (·) offers a lot
of freedom, and probably the composition operation does so as well. However,
we have shown that composition is always isomorphic to symmetric difference in
a set model. By this representation theorem more operations, such as set union
and intersection, could be introduced in CA for free. This has allowed us the
definition of base colors, which come into play naturally as the “smallest” fea-
tures available. We also gave a derivation towards a representation theorem for
CA in general. So far we could not entirely prove our conjecture. This is not
surprising, since representation theorems are generally hard to prove. However,
the lemmas presented indicate that our conjecture holds.

As the last contribution of the paper, we have given a concrete model for
FO. It is based on functions over sets and is more useful for FO than the generic
set-theoretical one. To show this, we have given a simple algorithm to describe
how elements of this model can be transformed into executable programs.

In sum, the analysis, even without the missing representation theorem, has
yielded deeper insights for CA and will hopefully lead to a much better un-
derstanding of the basics underlying feature oriented programming and feature
oriented software development.

Acknowledgement We are grateful to Peter Jipsen for pointing out Kronecker’s
base theorem. Part of the work was carried out during a sponsored visit of the sec-
ond author at NICTA. The work of the third author was funded by the German
Research Foundation (DFG), project number MO 690/7-2 FeatureFoundation.

References

1. Allen, P.J.: A fundamental theorem of homomorphisms for semirings. Proceedings
of the American Mathematical Society 21(2), pp. 412–416 (1969)

2. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: Language-independent, auto-
mated software composition. In: 31th International Conerence on Software Engi-
neering(ICSE). pp. 221–231. IEEE Press (2009)

3. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebra for features and feature
composition. In: AMAST 2008: Algebraic Methodology and Software Technology.
LNCS, vol. 5140, pp. 36–50. Springer (2008)

15

4. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebraic foundation for auto-
matic feature-based program synthesis. Sc. Comp. Prog. 75(11), 1022–1047 (2010)

5. Batory, D.: Feature-oriented programming and the AHEAD tool suite. In: ICSE
’04: 26th International Conference on Software Engineering. pp. 702–703. IEEE
Press (2004)

6. Batory, D.: From implementation to theory in product synthesis. ACM SIGPLAN
Notices 42(1), 135–136 (2007)

7. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions Software Engineering and
Methodology 1(4), 355–398 (1992)

8. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: ICSE
’03: 25th International Conference on Software Engineering. pp. 187–197. Proceed-
ings of the IEEE (2003)

9. Batory, D., Singhal, V., Sirkin, M., Thomas, J.: Scalable software libraries. ACM
SIGSOFT Software Engineering Notes 18(5), 191–199 (1993)

10. Batory, D., Höfner, P., Kim, J.: Feature interactions, products, and composition. In:
10th ACM international conference on Generative Programming and Component
Engineering (GPCE’11). pp. 13–22. ACM Press (2011)

11. Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M.: The GenVoca
model of software-system generators. IEEE Software 11(5), 89–94 (1994)

12. Bernstein, B.: Sets of postulates for boolean groups. Annals of Mathematics 40(2),
420–422 (1939)

13. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: Visser, E.,
Järvi, J. (eds.) GPCE. pp. 13–22. ACM (2010)

14. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley (2000)

15. Höfner, P., Möller, B., Zelend, A.: Foundations of coloring algebra with conse-
quences for feature-oriented programming. Tech. Rep. 2012-06, Institut für Infor-
matik der Universität Augsburg (2012)

16. Johnson, R., Foote, B.: Designing reusable classes. Journal of Object Oriented
Programming 1(2), 22–35 (1988)

17. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon University Software Engineering Institute (1990)

18. Kargapolov, M., Merzliakov, I.: Fundamentals of the Theory of Groups. Graduate
texts in mathematics, Springer (1979)

19. Kästner, C., Apel, S., Batory, D.: A case study implementing features using As-
pectJ. In: Software Product Lines, 11th International Conference (SPLC). pp. 223–
232. IEEE Computer Society (2007)

20. Kästner, C.: Virtual Separation of Concerns: Toward Preprocessors 2.0. Ph.D.
thesis, University of Magdeburg (2010)

21. Lopez-Herrejon, R., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Bosch, J. (ed.) GCSE ’01: Generative and Component-Based
Software Engineering. LNCS, vol. 2186, pp. 10–24. Springer (2001)

22. McCune, W.W.: Prover9 and Mace4.
<http://www.cs.unm.edu/∼mccune/prover9>, (accessed July 12, 2012)

23. Reinhartz-Berger, I., Tsoury, A.: Experimenting with the comprehension of feature-
oriented and UML-based core assets. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer,
P., Proper, E., Schmidt, R., Bider, I. (eds.) Enterprise, Business-Process and In-
formation Systems Modeling. Lecture Notes in Business Information Processing,
vol. 81, pp. 468–482. Springer (2011)

16

	Foundations of Coloring Algebra with Consequences for Feature-Oriented Programming

