
Exploring an Interface Model for CKA

Bernhard Möller1 and Tony Hoare2

1 Institut für Informatik, Universität Augsburg, Germany
2 Microsoft Research, Cambridge, UK

Abstract. Concurrent Kleene Algebras (CKAs) serve to describe gen-
eral concurrent systems in a unified way at an abstract algebraic level.
Recently, a graph-based model for CKA has been defined in which the
incoming and outgoing edges of a graph define its input/output interface.
The present paper provides a simplification and a significant extension
of the original model to cover notions of states, predicates and assertions
in the vein of algebraic treatments using modal semirings. Moreover, it
uses the extension to set up a variant of the temporal logic CTL∗ for the
interface model.

Keywords: Concurrency, Temporal Logic, Algebra, Formal Methods

1 Introduction

Concurrent Kleene Algebra (CKAs) is intended to describe general concurrent
systems in a unified way at an abstract algebraic level. It may be used to define
and explore the behaviour of a computer system embedded in its wider environ-
ment, including even human users. Moreover, it provides an algebraic presen-
tation of common-sense (non-metric) spatial and temporal reasoning about the
real world.

Its basic ingredients are events, i.e., occurrences of certain primitive actions,
such as assignments or sending/receiving on channels. The different occurrences
of an action are thought as being distinguished, for instance, by time or space
coordinates. A trace is a set of events, and a program or specification is a set of
traces. Programs and specifications are distinguished by the operators that are
applicable to them. For instance, while set-theoretic intersection or complement
make sense for specifications, they do not for programs. Another essential con-
cept is that of a dependence relation between events which expresses causal or
temporal succession. The events of a trace and their dependence therefore define
a graph. The fundamental connection operators on traces and programs are se-
quential composition ; and concurrent composition | , governed by characteristic
laws.

Various models of these laws have been proposed. In [18] an interface model
for CKA was sketched. It considers graphlets, i.e., subgraphs of an overall trace,
as “events” of their own. The interface of a graphlet consists of the arrows that
connect it to neighbouring ones. In the present paper we simplify and signifi-
cantly extend that model. Moreover, we show how the interface operators can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/224832839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

used to cover notions of states, predicates and assertions in the vein of algebraic
treatments using modal semirings. Finally we set up a variant of the temporal
logic CTL∗ for the interface model.

Temporal logics, even for so-called branching time, were inspired by inter-
leaving semantics and hence linear traces. It has been shown e.g. in [23] that this
can be abstracted to more general algebraic structures such as quantales. We use
this idea to set up a temporal logic for the interface model. The resulting seman-
tics mainly covers sequential aspects. We think, though, that it can be useful
for analysing quasilinear threads of CKA programs, i.e., subgraphs which do not
consider incoming or outgoing arrows from the environment but only their own
“inner flow” of causal or temporal succession.

Besides these main topics, the paper also sets up links to other semantic
notions, in particular, to the traditional assertional interpretation of Hoare Logic
and to the modal operators diamond and box. It is structured as follows.

Sect. 2 repeats the most important notions of CKA and its overall approach
to semantics.

In Sect. 3 the interface model is presented. Using restriction operators, simple
while programs and a counterpart of standard Hoare triples are defined. A variant
of the sequential composition operator allows a connection to the more recent
type of Hoare triples from [30,15]. Finally, restriction operators are used to define
modal box and diamond operators for the interface model.

After that, Sect. 4 deals with the mentioned variant of CTL∗. After some
basic material on temporal logics and their algebraic semantics in general, based
on earlier work in [23], an adaptation for the interface model is achieved and
shown at work in some small examples.

The paper finishes with a short conclusion and outlook; an appendix provides
deferred detailed proofs.

2 Basic Concepts of CKA

To make the paper self-contained, we repeat some basic facts about CKA.

2.1 Traces

Assume a set of events. As mentioned in the Introduction, these might be oc-
currences of basic actions, distinguished by time or space stamps or the like. A
trace is a set of such events. Traces will be denoted by p, q, r and primed versions
of these. CKA assumes a refinement relation ⇒ between traces which is at least
a preorder. p⇒ q means that every event of p is also possible for q where q may
be a specification of all desirable events of p.

The trace skip (also denoted by 1) describes doing nothing, for example be-
cause the task at hand has been accomplished. Bottom (⊥) is an error element
standing for a trace which is physically impossible, for example because it re-
quires an event to occur before an event which caused it. It is the least element
w.r.t.⇒. Top (>) stands for a trace which contains a generic programming error,

2

for example a null dereference, a race condition or a deadlock. It is the greatest
element w.r.t. ⇒.

The two essential binary composition operators ; and | require disjointness
of their argument traces to achieve modularisation in the sense of Separation
Logic [24]. The sequential composition p ;q describes execution of both p and
q, where p can finish before q starts. Concurrent composition p | q describes
execution of both p and q, where p and q can start together and can finish
together. In between, they can interact with each other and with their common
environment.

Both ; and | are assumed to be associative with unit 1 and zero ⊥; in addi-
tion | has to be commutative. Moreover, ; and | have to be covariant3 in both
arguments. For example, p ⇒ q implies p; r ⇒ q; r. This allows refinement in
larger contexts composed using | and ; .

Sequential and concurrent composition need to satisfy the following inequa-
tional analogue of the exchange (or interchange) law of Category Theory, also
known as subsumption or subdistribution:

(p | q) ; (p′ | q′)⇒ (p ; p′) | (q ; q′) . (exchange)

Since 1 is a shared unit of ; and |, specialising q or/and p′ to 1 and use of
commutativity of | yields the frame laws

p ; (p′ | q′)⇒ (p ; p′) | q′ , (frame I)
(p | q) ; q′ ⇒ p | (q ; q′) , (frame II)

p ; q′ ⇒ p | q′ . (frame III)

2.2 Programs and Specifications

A program or a specification is a non-empty set P of traces that is downward
closed w.r.t. ⇒, i.e., satisfies p ∈ P ∧ p′ ⇒ p =⇒ p′ ∈ P . As mentioned
above, specifications and programs are distinguished by the operators that are
admissible for them. Programs will be denoted by P,Q,R and primed versions
of these. By ⊥ we also denote the program/specification consisting just of the
trace ⊥; it corresponds to a contradictory specifying predicate, i.e., to false. The
set of all traces will be denoted by U .

The function dc forms the downward closure of a set S of traces, i.e.,

dc(S) =df {p′ | ∃ p ∈ S : p′ ⇒ p} . (1)

For a single element t ∈ U we abbreviate dc({t}) by dc(t). Hence a program is
a set P of traces with P = dc(P). For instance, skip =df dc(1) = {⊥, 1} lifts 1
to the level of programs.

The choice P dcQ between programs is the union P ∪ Q and describes the
execution of a P -trace or a Q-trace. The choice may be determined or influenced
by the environment, or it may be left wholly indeterminate. The operator is
3 also called monotone or isotone

3

associative, commutative and idempotent, with ⊥ as unit and U as zero. Finally,
it can be used to define the refinement relation between programs/specifications:

P ⇒ Q iff P dcQ = Q .

By downward closure, ⇒ coincides with inclusion on programs. Pointwise one
has

P ⇒ P ′ ⇐⇒df ∀ p ∈ P : ∃ p′ ∈ P ′ : p⇒ p′ . (2)

By this, a program P refines a specification P ′ if each of its traces refines a trace
admitted by the specification. ⊥ and U are the least and greatest elements w.r.t.
⇒.

Occasionally we also use the intersection operator ∩ on specifications; it is
associative, commutative and idempotent with unit U and zero ⊥.

2.3 Lifting and Laws

We now present the important principle of lifting operators and their laws from
the level of traces to that of programs.

Definition 2.1 When ◦ : U ×U → U is a, possibly partial, binary operator on
U , its pointwise lifting to programs P, P ′ is defined as

P ◦ P ′ =df dc({t ◦ t′ | t ∈ P, t′ ∈ P ′ and t ◦ t′ is defined}) .

A sufficient condition for an inequational law p ⇒ p′ to lift from traces to
programs is linearity , viz. that every variable occurs at most once on both sides of
the law and that all variables in the left hand side P also occur in the right hand
side P ′. Examples are the exchange and frame laws. For equations a sufficient
condition is bilinearity , meaning that both constituting inequations are linear.
Examples are associativity, commutativity and neutrality. The main result is as
follows.

Theorem 2.2 If a linear law p ⇒ p′ holds for traces then it also holds when
all variables in p, p′ are replaced by variables for programs and the operators are
interpreted as the liftings of the corresponding trace operators.

We illustrate the gist of the proof for the case of the frame law P ;P ′ ⇒ P |P ′.

r ∈ P ; P ′

⇔ {[by Def. 2.1 and (1)]}
∃ t ∈ P, t′ ∈ P ′ : r ⇒ t ; t′

⇒ {[by t ; t′ ⇒ t | t′ (frame III) and transitivity of ⇒]}
∃ t ∈ P, t′ ∈ P ′ : r ⇒ t | t′

⇒ {[by Def. 2.1 and (1)]}
r ∈ P | P ′ .

The full proof for general preorders can be found in [17].

4

Corollary 2.3 (Laws of Trace Algebra for Programs) The liftings of the
operators ; and | to programs are associative and have 1 as a shared unit. More-
over, | is commutative and the exchange law and therefore also the frame laws
hold.

There are further useful consequences of our definition of programs. The set
P of all programs forms a complete lattice w.r.t. the inclusion ordering; it has
been called the Hoare power domain in the theory of denotational semantics
(e.g. [31,22,4]). The least element is the program {⊥}, again denoted by ⊥,
while the greatest element is the program U consisting of all traces. Infimum
and supremum coincide with intersection and union, since downward closed sets
are also closed under these operations. Also, refinement coincides with inclusion,
i.e., P ⇒ Q ⇐⇒ P ⊆ Q. We will use this latter notation throughout the rest
of the paper.

By completeness of the lattice we can define (unbounded) choice between a
set Q ⊆ P of programs as

dcQ =df ∪Q .

The lifted versions of covariant trace operators are covariant again, but even
distribute through arbitrary choices between programs. This means that the set
of all programs forms a quantale (e.g. [25]) w.r.t. to the lifted versions of both ;
and | . This will be used in Sect. 4 to set up a connection with temporal logics.

Covariance of the lifted operators, together with completeness of the lattice of
programs and the Tarski-Knaster fixed point theorem guarantees that recursion
equations have least and greatest solutions. More precisely, let f : P → P be a
covariant function. Then f has a least fixed point µf and a greatest fixed point
νf , given by the formulas

µf = ∩ {P | f(P) ⊆ P} , νf = ∪ {P |P ⊆ f(P)} . (3)

With the operator ; , this can be used to define the Kleene star (see e.g. [5]), i.e.,
unbounded finite sequential iteration, of a program P as P ∗ =df µfP , where

fP (X) =df skip dc P dc X ;X .

Equivalently, P ∗ = µg = µh, where

gP (X) =df skip dc P ;X , hP (X) =df skip dc X ; P . (4)

Since fP , by the above remark, distributes through arbitrary choices between
programs, it is even continuous and Kleene’s fixed point theorem tells us that
P ∗ = µfP has the iterative representation

P ∗ =∪{f iP (∅) | i ∈ N} , (5)

which transforms into the well known representation of star, viz.

P ∗ =∪{P i | i ∈ N}

with P 0 =df skip and P i+1 =df P ; P i.
We show an example for the interplay of Kleene star and the exchange law.

5

Lemma 2.4 (P |Q)∗ ⊆ P ∗ |Q∗.

Proof. Given the representation of least fixed points in Eq. (3) it suffices to show
that P ∗ | Q∗ is contracted by the generating function gP |Q of (P | Q)∗. By the
fixed point property of star, distributivity of lifted operators, neutrality of skip
and omitting choices, exchange law and covariance, and definition of gP |Q:

P ∗ |Q∗
= (skip dc P ; P ∗) | (skip dc Q ;Q∗)
= (skip | skip) dc (skip | (Q ;Q∗)) dc ((P ; P ∗) | skip) dc ((P ; P ∗) | (Q ;Q∗))
⊇ skip dc ((P ; P ∗) | (Q ;Q∗))
⊇ skip dc ((P |Q) ; (P ∗ |Q∗))
= gP |Q(P

∗ |Q∗) .
ut

Infinite iteration Pω can be defined as the greatest fixed point νgP where

gP (X) =df P ;X .

However, there is no representation of Pω similar to (5) above, because semicolon
does not distribute through intersection and hence is not co-continuous; we only
have the inequation

Pω ⊆ ∩{P i ; U | i ∈ N} .
To achieve equality, in general the iteration and intersection would need to be
transfinite.

Sometimes it is convenient to work with an iteration operator that leaves it
open whether the iteration is finite or infinite; this can be achieved by Back and
von Wright’s operator [1]

P ω̂ =df Pω dcP ∗ ,
which is the greatest fixed point of the function gP above.

Along the same lines, unbounded finite and infinite concurrent iteration of a
program can be defined.

3 An Interface Model for CKA

3.1 Motivation and Basic Notions

This section presents a simplification and substantial extension of a CKA model
given in [15]. It supports the process of developing a system architecture and
design at any desired level of granularity. It abstracts from the plethora of inter-
nal events of a trace, and models only the external interface of each component.
The interface is described as a set of arrows, each of which connects a pair of
events, one of them inside the component, and one of them outside.

The set of all arrows defines a desired minimum level of granularity of the
global dependence relation which is induced as its reflexive-transitive closure.
Events and arrows together define a graph. A part of that graph will be called
a graphlet below.

6

3.2 Graphlets

Assume, as in Sect. 2.1, a set EV of events and additionally a set AR of arrows.
Moreover, assume total functions s, t : AR → EV that yield the source and
target of each arrow. For event sets E,E′ ⊆ EV we define, by a slight abuse of
notation, the set E×E′ of arrows by

a ∈ E×E′ ⇐⇒df s(a) ∈ E ∧ t(a) ∈ E′ .

We choose this notation, since×will play the role of the conventional Cartesian
product of sets of events as used in relationally based models such as the trace
model of [17]. The operator×distributes through disjoint union + and hence is
covariant in both arguments. We let × bind tighter than + and ∩ . This gives
the following properties (with E =df EV−E) which are immediate by Boolean
algebra:

E×E′ = EV×E′ + E×E′ = E×E′ + E×EV
= E×E′ + E×E′ + E×E′ ,

(E ∩ E′)×(E′′ ∩ E′′′) = (E×E′′) ∩ (E′×E′′′) = (E×E′′′) ∩ (E′×E′′) ,
∅×E = ∅ = E×∅ .

(6)

Definition 3.1 A graphlet is a pair G = (E,A) with E ⊆ EV, A ⊆ AR satisfy-
ing the following healthiness condition: there are no “loose” arrows, i.e.,

A ∩ E×E = ∅ , (7)

In words, every arrow in A has at least one event in E.

The healthiness condition is mandatory for validating the associativity and
exchange laws for the trace algebra operators on graphlets, as will become man-
ifest in their proof.

Since arrows have identity (and do not just record whether or not a connec-
tion exists between two events, as is done in relational models), we can associate
values, labels, colours etc. with them without having to include extra functions
for that into the model.

Example 3.2 We specify a graph H that models a thread corresponding to a
single natural-number variable x, already initialised to 0, with increment as the
only operation. Let N be the set of natural numbers and N+ =df N− {0}. We
use EV =df {inci | i ∈ N} and A =df N+ with the source and target maps

s(i) =df inci−1 , t(i) =df inci .

Pictorially,

H : inc0
1 // inc1

2 // · · ·

Some graphlets of H then are the following:

7

inc0
1 //

2 // inc2
3 //

inc0
1 // inc1

2 // inc2
3 //

ut

Definition 3.3 The sets of input, output and internal arrows of graphlet G are

in(G) =df A ∩ E×E ,
out(G) =df A ∩ E×E ,
int(G) =df A ∩ E×E .

These sets are pairwise disjoint, and by the healthiness condition (7) in Def. 3.1
we have A = in(G) ∪ out(G) ∪ int(G). The sets in(G) and out(G) together
constitute the interface of G to its environment. The set of all graphlets is
denoted by G.

We want to compose graphlets G and G′ by connecting output arrows of G
to input arrows of G′. If these arrows carry values of some kind, we view the
composition as transferring these values from the source events of these arrows
in G to their target events in G′. To achieve separation, we require that the event
sets of G and G′ are disjoint. While concurrent composition G |G′ does not place
any further restriction, in sequential composition G ; G′ we forbid “backward”
arrows from G′ to G.

Definition 3.4 Let G,G′ be graphlets with disjoint event sets. We set

G |G′ =df (E + E′, A ∪A′) ,

G ;G′ =df

{
G |G′ if CS(G,G′) ,
undefined otherwise ,

where
CS(G,G′) ⇐⇒df A ∩A′ ∩ E′×E = ∅

⇐⇒ A ∩A′ ⊆ E×E′

formalises the above requirement of no backward arrows from G′ to G.

The “connection” of output and input arrows takes place as follows: if a is an
arrow in out(G)∩in(G′) then it will also be in A∪A′ and both its end points will
be in E+E′, so that it is an internal arrow of G |G′. Clearly, G |G′ is a graphlet
again. Since disjoint union and union are associative, also | is associative and
has the empty graphlet � =df (∅, ∅) as its unit.

Assume that in a term (G | G′) ; (H | H ′) the condition CS is satisfied for
the operands of ; . Then it also holds for the sequential compositions G ;H and
G′ ;G′′ that occur on the right hand side of the corresponding exchange law, so
that then all three sequential compositions are defined.

8

Lemma 3.5

1. in(G |G′) = (in(G) ∩ E′×E) ∪ (in(G′) ∩ E×E′).
2. out(G |G′) = (out(G) ∩ E×E′) ∪ (out(G′) ∩ E′×E).

The somewhat tedious proof is deferred to the Appendix.
As the refinement relation between graphlet terms p, p′ we use what is known

as the flat order in denotational semantics:

p⇒ p′ ⇐⇒df p is undefined or
p, p′ are both defined and have equal values.

Theorem 3.6 The operators ; and | are associative and obey the exchange and
frame laws. Moreover, | is commutative and � is a shared unit of ; and | .

See again the Appendix for details of the proof. We note, however, that
absence of “loose” arrows from graphlets is essential for it.

Definition 3.7 We now use graphlets as traces. Hence in the interface model a
program is a set of graphlets. The program that does nothing is skip =df {�},
while U is the program consisting of all graphlets.

Since we use the flat refinement order between graphlets, the set of programs
is isomorphic to the power set of the program U that consists of all graphlets.
By the general lifting result quoted in Th. 2.2, the above Thm. 3.6 extends to
graphlet programs as well.

Example 3.8 Consider again the graph H from Ex. 3.2 and the program P
consisting of all singleton graphlets of H:

P =df { inc0
1 // } ∪ { i // inci

i+1 // | i ∈ N+} .

It represents the single-step transition relation associated with the statement
x := x + 1. Then P 2 = P ; P = P | P contains

i // inci
i+1 // inci+1

i+2 //

for all i ∈ N, but also non-contiguous graphlets such as

i // inci
i+1 // j // inci+1

j+1 //

for j + 1 6= i 6= j 6= i + 1. We will later define a variant of ; that excludes
non-contiguous graphlets. ut

9

3.3 Restriction and while Programs

As mentioned in the motivation in Sect. 3.1, a set of arrows can be viewed as
a description of a set of variable/value associations. We can use such a set to
characterise “admissible” or “desired” associations. Usually one will require such
a set to be coherent in some sense, like not having contradictory associations. We
give no precise definition of coherence, but leave it a parameter to our treatment.
A minimum healthiness requirement is that the empty arrow set ∅ and each of
the interface sets in(G) and out(G) of every graphlet G should be coherent.
The set int(G) of internal arrows of G will usually not be coherent, since the
variable/value associations may change during the internal flow of control. For
brevity we refer to coherent arrow sets as states in the sequel.

First we introduce restriction operators and, based on these, while programs.

Definition 3.9 The input restriction of graphlet G to set C ⊆ AR is

C �G =df

{
G if in(G) = C ,
undefined otherwise.

Output restriction G�C is defined symmetrically.

Definition 3.10 A predicate is a set of arrow sets that satisfy the coherence
requirement. Restriction is lifted pointwise to predicates and programs.

Hence the input restriction S �Q of program Q to a predicate S retains only
those graphlets G ∈ Q for which in(G) ∈ S. An analogous remark holds for
output restriction.

Predicates will mimic the role of tests, i.e., of elements below the multiplica-
tive unit, in semirings. In the standard model of CKA and also the interface
model there are, however, only the tests ⊥ and skip. So internalising restriction
as pre- or post-multiplication by tests is not possible there in a reasonable way,
which is why we resort to the above separate restriction operators. In the recent
model of [19] non-trivial test elements exist, but the model is restricted in a
number of ways.

Restriction obeys useful laws, quite analogous to the case of semirings with
tests; for the proofs see the corresponding ones for the mono modules introduced
in [7] (Lm. 7.1 and 7.2 there).

Lemma 3.11 For predicate S and programs P,Q,

S �(P ∩Q) = (S �P) ∩Q = P ∩ (S �Q) = (S �P) ∩ (S �Q) ,
(P ∩Q)�S = (P �S) ∩Q = P ∩ (Q�S) = (P �S) ∩ (Q�S) .

In particular, for Q = U with U being the program consisting of all graphlets,
S �P = P ∩ S �U and P �S = P ∩ U �S.

Now we can define an if then else and a while do construct.

10

Definition 3.12 Given a predicate S and programs P,Q we set

if S then P else Q =df (S �P) dc (S �Q) ,
while S do P =df (S �P)∗ �S ,

where S is the complement of S in the set of predicates.

Since this definition is analogous to the one for semirings with tests, all the
usual algebraic rules for while programs carry over to the present setting.

If one wants to include the possibility of loops with infinite iteration one can
use the program (while S do P) dc (S �P)ω.

3.4 Hoare Triples

We show now how predicates can be used to define Hoare triples for graphlet
programs.

Definition 3.13 The standard Hoare triple {S}P {S′} with predicates S, S′
and program P is defined by

{S}P {S′} ⇐⇒df S �P ⊆ P �S′ .

This means that, starting with a variable/value association in S, execution
of P is guaranteed to “produce” a variable/value association in S′. See [2] for a
closely related early relational definition. We give two equivalent formulations of
the standard Hoare triple.

Lemma 3.14 Let U , as in Def. 3.7, be the program consisting of all graphlets.

{S}P {S′} ⇐⇒ S �P ⊆ U �S′ ⇐⇒ S �P = (S �P)�S′ .

The formula S �P ⊆ U �S′ expresses more directly that the “outputs” of S �P
satisfy the predicate S′ and is calculationally advantageous, since the variable P
is not repeated. The formula S � P = (S � P) � S′ says that post-restriction of
S �P to S′ is no proper restriction, since its “outputs” already satisfy S′.

Proof. For the first equivalence let Q = S � P . By Boolean algebra, Lm. 3.11,
definition of intersection, and since Q ⊆ P is true by the definition of restriction:

Q ⊆ P �S′ ⇐⇒ Q ⊆ U ∩ (P �S′) ⇐⇒ Q ⊆ (U �S′) ∩ P
⇐⇒ Q ⊆ U �S′ ∧ Q ⊆ P ⇐⇒ Q ⊆ U �S′ .

For the second one we have by Lm. 3.11, and by the just shown first equivalence:

(S �P)�S′=(S �P) ∩ (U �S′)=S �P .
ut

Def. 3.13 entails the well known Hoare calculus with all its inference rules,
in particular the if then else and while rules.

Let us connect this to another, more recent view of Hoare triples [15].

11

Definition 3.15 For programs P, P ′ and Q one sets

P {{{Q}}} P ′ ⇐⇒df P ;Q ⊆ P ′ .

This expresses that, after any graphlet in “pre-history” P , execution of Q is
guaranteed to yield an overall graphlet in P ′. For the case where programs are
relations between states this definition appears already in [29]. These new triples
enjoy many pleasant properties; see again [15] for details. We show two samples
which will be taken up again in the next section.

Lemma 3.16 Let program P be an invariant of program Q, i.e., assume P {{{Q}}} P .

1. P is also an invariant of program Q∗, i.e., P {{{Q∗}}} P .
2. (P ;Q)ω ⊆ Pω and P {{{(Q ; P)ω}}} Pω.

Proof.

1. By standard Kleene algebra, in generalisation of Eq. (4) one has P ; Q∗ =
µkPQ, where kPQ(X) =df P dcX ;Q. Thus the claim is shown if we can prove
that also P is a fixed point of kPQ. Indeed, by the assumption P ;Q ⊆ P ,

kPQ(P) = P dcP ;Q = P .

2. The first claim is immediate from the assumption and covariance of the ω

operator. The second claim follows from the first one by the so-called rolling
rule for the omega operator: (P ;Q)ω = P ; (Q ; P)ω.

ut

A relationship between standard Hoare triples and a variant of the new ones
will be set up in Lm. 3.19 of the next section.

3.5 Quasilinear Sequential Composition

We define a strengthened form of sequential composition.

Definition 3.17 For graphlets G,G′ the quasilinear sequential composition is
defined by

G ;;G′ =df


G′ if G = � ,
G if G′ = � ,
G ;G′ if G,G′ 6= � and out(G) = in(G′) ,
undefined otherwise .

We call it quasilinear, since it does not allow “in-branching” or “out-branching”
at the border between the composed graphlets and therefore leads to quasi linear
thread-like graphlets when iterated finitely or infinitely. Note, however, that in
the overall graph there may still be arrows to or from the environment which have
been disregarded in selecting the arrows belonging to the graphlets in question.

The definition could be simplified if graphlets were allowed to have “loose”
arrows; however, as remarked after Th. 3.6, this would destroy associativity of |
and ; .

12

Lemma 3.18 Quasilinear sequential composition is associative and satisfies the
following laws (that do not hold for ;), assuming definedness of the terms in-
volved.

in(G ;;G′) = in(G) = in(G� in(G′)) ⇐ G 6= � ,
out(G ;;G′) = out(G′) = out(out(G)�G′) ⇐ G′ 6= � ,

(G�C) ;;G′ = G ;; (C �G|) ⇐ G,G′ 6= � ,
C �(G ;;G′) = (C �G) ;;G′ ⇐ G 6= � ,
(G ;;G′)�C = G ;; (G′ �C) ⇐ G′ 6= � .

The proof is again somewhat tedious and hence deferred to the Appendix.
We lift ;; to programs as usual. The lifted operator has skip as its unit.
Let again U denote the universal program consisting of all graphlets. Then

we have the following connection between standard Hoare triples and a variant
of the new ones.

Lemma 3.19 Assume that � ∈ P ⇐⇒ in(�) = ∅ ∈ S ⇐⇒ ∅ ∈ S′. Then

{S}P {S′} ⇐⇒ U �S {{{P}}} U �S′ .

The right hand side means that an arbitrary “pre-history” with a result that
satisfies S, followed by P , makes an overall history with a result satisfying S′.

Proof. According to the definitions, U � S {{{P}}} U � S′ spells out to (U � S) ;;
P ⊆ U �S′. By the assumption, the laws of Lm. 3.18 lift to the programs and
predicates involved.
(⇒) By Lm. 3.14, isotony of lifted operators, Lm. 3.18, and U ;; U ⊆ U with
isotony of restriction:

{S}P {S′} ⇐⇒ S �P ⊆ U �S′ =⇒ U ;; (S �P) ⊆ U ;; (U �S′)
⇐⇒ (U �S) ;; P ⊆ (U ;; U)�S′ =⇒ (U �S) ;; P ⊆ U �S′ .

(⇐) By neutrality of skip, isotony of lifted operators, Lm. 3.18, and the assump-
tion:

S �P = skip ;; (S �P)⊆U ;; (S �P)= (U �S) ;; P ⊆U �S′ .
ut

A dual construction using input restriction gives a connection between stan-
dard Hoare triples and the analogous variant of Milner triples, see [16]. These
take the form P →Q R and are defined by

P →Q R ⇐⇒df P ⊇ Q;R .

Although the Milner triple modulo renaming has the same definition as the new
Hoare triple, its informal interpretation is more that of operational semantics: it
says that one way of executing P is to first execute Q (or to do a Q-transition),
leading to the residual program R.

13

Example 3.20 Using ;; in place of ; in forming powers and star of a program
eliminates non-contiguous graphlets like the one shown in Ex. 3.8. Considering
again the program P from Ex. 3.2 we can write a loop that increments the
variable x until it becomes 10:

while [0, 9] do P ,

where [0, 9] is the interval from 0 to 9.
It consists of the graphlets

i // inci
i+1 // · · · 9 // inc9

10 //

for i ∈ [1, 9] and

inc0
1 // inc1

2 // · · · 9 // inc9
10 //

ut

We conclude this section with an invariance property, related to that of
Lm. 3.16.2.

Lemma 3.21 If � 6∈ P and S is an invariant of P , i.e., if {S}P {S}, then it
is also preserved throughout the infinite iteration of P , i.e.,

S �Pω = (S �P)ω ,

where ω is taken w.r.t. ;;.

Proof. (⊇) We do not even need the assumption: by the fixed point definition of
(S �P)ω, the definition of restriction, Lm. 3.18, the fixed point definition again,
S �P ⊆ S and isotony of ω,

(S �P)ω =(S �P) ;; (S �P)ω =(S �(S �P)) ;; (S �P)ω =S �((S �P) ;; (S �P)ω)
=S �(S �P)ω ⊆S �Pω .

(⊆) By the fixed point definition, Lm. 3.18, the assumption with Lm. 3.14, and
Lm. 3.18:

S �Pω =S �(P ;; Pω)= (S �P) ;; Pω =((S �P)�S) ;; Pω =(S �P) ;; (S �Pω) ,
which means that S �Pω is a fixed point of λx . (S �P) ;; x and hence below the
greatest fixed point (S �P)ω of that function. ut

Example 3.22 Consider again the program P from Ex. 3.8. If the powers of P
as well as P ∗ and Pω are taken w.r.t ;; rather than ; then the non-contiguous
subsequences of the overall graph are ruled out from them. Moreover, letting
again N+ be the predicate consisting of all positive natural numbers, we have
{N+}P {N+} and hence

N+ �P
ω = (N+ �P)

ω .

This example will be taken up later in connection with the temporal logic CTL∗.
ut

14

3.6 Disjoint Concurrent Composition

We now briefly deal with interaction-free or disjoint concurrent composition |||,
a special variant of concurrent composition | that does not admit any arrows
between its operands and hence does not prescribe any particular interleavings
of their events.

Definition 3.23

G |||G′ =df

{
G |G′ if CD(G,G′) ,
undefined otherwise ,

where
CD(G,G′) ⇐⇒df A ∩ E′×E = ∅ = A′ ∩ E×E′

excludes any arrow between G and G′.

Lemma 3.24 Recall that + means disjoint union.

in(G |||G′) = in(G) + in(G′) ,
out(G |||G′) = out(G) + out(G′) .

The proof can be found in the Appendix.

Lemma 3.25 The operators ;; and ||| satisfy the reverse exchange law

(G ;;G′) ||| (G′′ ;;G′′′)⇒ (G |||G′′) ;; (G′ |||G′′′) ,

in which the order of refinement is the reverse of that in (exchange).

Proof. Straightforward from Lm. 3.24 and the definition of ;; . ut

The operator ||| is closely related to the disjoint concurrent composition op-
erator ∗ in [6], for which also a reverse exchange law holds.

We conclude this section by an inference rule for Hoare triples involving |||:
for graphlets G,G′ and states C,C ′, D,D′ we have

{C}G {D} {C ′}G′ {D′}

{C +D}G |||G′ {D +D′}
,

where we have identified graphlets and singleton programs. The proof is again
straightforward from Lm. 3.24 and the definitions.

3.7 Modal Operators

We continue with another interesting connection, namely to the theory of modal
semirings (e.g. [9]), which will be useful for the variant of CTL presented in
Sect. 4.4.

15

Input restriction obeys the following laws, where false is the empty predicate
and true is the predicate containing all states:

false�P = ⊥ ,
true�P = P
(S ∪ S′)�P = (S �P) dc (S′ �P) ,
(S ∩ S′)�P = S �(S′ �P) ,
P = S �P ⇐⇒ in(P) ⊆ S .

The first four of these say that restriction acts as a kind of module operator
between states and graphlets. Symmetric laws hold for output restriction.

The last law means that in satisfies the characteristic property of an abstract
domain operator as known from modal semirings [9], namely that in(G) is the
least preserver of G under input restriction. The law is equivalent to the following
pair of laws:

in(G)�G = G , in(S �G) ⊆ S .

The domain operator can also be viewed as an “enabledness” predicate (cf. [28]).
Lifting the in function to programs P and predicates S we can now define

modal operators.

Definition 3.26 The forward diamond operator |P 〉 and box operator |P] are
given by

|P 〉S =df in(P �S) ,
|P]S =df ¬|P 〉¬S .

The backward operators 〈P | and [P | are defined symmetrically using the lifted
out function.

The forward diamond |P 〉S calculates all immediate predecessor states of S-
states under program P , i.e., all states from which an S state can be reached
by one P -step. The forward box operator |P]S calculates all states from which
every P -transition is guaranteed to satisfy S; it corresponds to Dijkstra’s wlp
operator, all of whose laws can be derived algebraically from these definitions.
For the relational case analogous definitions appear already in [3,26]. Diamond
distributes through union and is strict and covariant in both arguments. Box
anti-distributes through union and hence is contravariant in its first argument,
while distributes through intersection and hence is covariant in its second argu-
ment.

4 CKA and Temporal Logics

The temporal logic CTL∗ and its sublogics CTL and LTL are prominent tools
in the analysis of concurrent and reactive systems. First algebraic treatments
of these logics were obtained by von Karger and Berghammer [20,21]. A partial
treatment in the framework of fork algebras was also given by Frías and Lopez
Pombo [13]. For LTL compact closed expressions could be obtained by Deshar-
nais, Möller and Struth in [8]. This was extended in [23] to a semantics for full

16

CTL∗ and its sublogics in the framework of quantales. Since, as mentioned in
Sect. 2.2, CKA has a quantale semantics, that approach can be applied to the
interface model as well.

In this, sets of states and hence the semantics of state formulas can be rep-
resented as predicates, while general programs represent the semantics of path
formulas.

4.1 An Algebraic Semantics of CTL∗

To make the paper self-contained, we repeat some basic facts about CTL∗ and
its algebraic semantics.

The language Ψ of CTL∗ formulas (see e.g. [12]) over a set Φ of atomic
propositions is defined by the grammar

Ψ ::= ⊥ | Φ | Ψ → Ψ | XΨ | Ψ UΨ | EΨ,

where ⊥ denotes falsity,→ is logical implication, X and U are the next-time and
until operators and E is the existential quantifier on paths.

The use of the next-time operator X means that implicitly a small-step se-
mantics for the specified or analysed transition system is used. Informally, the
formula Xϕ is true for a trace p if ϕ is true for the remainder of p after one
such step. We will briefly discuss below which algebraic properties the semantic
element, a program, corresponding to X should have.

The formula ϕUψ is true for a trace p if

– after zero or more X steps within p the formula ψ holds for the remaining
trace and

– for all intermediate trace pieces for which ψ does not yet hold the formula
ϕ is true.

The logical connectives ¬, ∧ , ∨ ,A are defined, as usual, by ¬ϕ =df ϕ→ ⊥,
> =df ¬⊥, ϕ ∧ ψ =df ¬(ϕ→ ¬ψ), ϕ ∨ ψ =df ¬ϕ→ ψ and Aϕ =df ¬E¬ϕ.
Moreover, the “finally” operator F and the “globally” operator G are defined by

Fψ =df >Uψ and Gψ =df ¬F¬ψ .

Informally, Fψ holds if after a finite number of steps the remainder of the trace
satisfies ψ, while Gψ holds if after every finite number of steps ψ still holds.

The sublanguages Σ of state formulas that denote sets of states and Π of
path formulas that denote sets of traces are given by

Σ ::= ⊥ | Φ | Σ → Σ | EΠ,
Π ::= Σ | Π → Π | XΠ | Π UΠ.

To motivate our algebraic semantics, we briefly recapitulate the standard
CTL∗ semantics formulas. Its basic objects are traces σ from T+ or Tω, the sets
of finite non-empty or infinite words over some set T of states. The i-th element

17

of σ (indices starting with 0) is denoted σi, and σi is the trace that results from
σ by removing its first i elements.

Each atomic proposition π ∈ Φ is associated with the set Tπ ⊆ T of states
for which π is true. The relation σ |= ϕ of satisfaction of a formula ϕ by a trace
is defined inductively (see e.g. [12]) by

σ 6|= ⊥,
σ |= π iff σ0 ∈ Tπ,
σ |= ϕ→ ψ iff σ |= ϕ implies σ |= ψ,
σ |= Xϕ iff σ1 |= ϕ,
σ |= ϕUψ iff ∃ j ≥ 0 . σj |= ψ and ∀ k < j . σk |= ϕ,
σ |= Eϕ iff ∃ τ . τ0 = σ0 and τ |= ϕ.

In particular, σ |= ¬ϕ iff σ 6|= ϕ.
From this semantics one can extract a set-based one by assigning to each

formula ϕ the set [[ϕ]] =df {σ | σ |= ϕ} of paths that satisfy it. This is the basis
of the algebraic semantics in terms of quantales.

We now repeat the algebraic interpretation of CTL∗ over a Boolean left quan-
tale B from [23]. To save some notation we set Φ equal to the set of tests, i.e.,
elements below the multiplicative unit 1, of that quantale. These abstractly
represent sets of states of the modelled transition system. Moreover, we fix an
element X that represents the transition system underlying the logic. The precise
requirements for X are discussed in Sect. 4.3. Then the concrete semantics above
generalises to a function [[]] : Ψ → B, where [[ϕ]] abstractly represents the set of
paths satisfying formula ϕ and + and · are now the general quantale operators
of choice and sequential composition. We note that in quantales with non-trivial
test sets, left multiplication t · a for test t and general element a corresponds to
input restriction: it leaves only those transitions of a that start with a state in
t. With this, we can transform the above concrete semantics into the abstract
algebraic one.

Definition 4.1 The general quantale semantics of CTL∗ formula ϕ is defined
inductively over the structure of ϕ, where ⊥ and > are the least and greatest
elements, resp., and is the complement operator:

[[⊥]] = ⊥ ,
[[t]] = t · > ,

[[ϕ→ ψ]] = [[ϕ]] + [[ψ]] ,
[[Xϕ]] = X · [[ϕ]] ,

[[ϕUψ]] =
⊔
j≥0

(Xj · [[ψ]]u
d

k<j
Xk · [[ϕ]]) ,

[[Eϕ]] = p[[ϕ]] · > .

Here the domain operator p is the algebraic abstraction of the operator that
yields the set of starting states τ0 of a set of CTL∗ traces τ .

18

4.2 CTL∗ for the Interface Model

We now concretise this semantics for the CKA interface model. In fact, we can
do so in two ways, namely by interpreting quantale multiplication · by sequential
composition ; or quasilinear composition ;; . Choice + is in both cases interpreted
as dc . Since we have used the flat refinement order on graphlets, the set of
programs, i.e., of downward closed sets of graphlets, is isomorphic to the power
set of the set U of all graphlets, so that the complement operator is well defined.

To model the next-step operator X of CTL∗ we assume a fixed graphlet pro-
gram, denoted again by X, that reflects the small-step semantics of the system
to be analysed. An example for such a program would be P from Ex. 3.8. The
other operators of CTL∗ deal with the iteration (both finite and infinite) of the
single-step semantics, i.e., with the large-step semantics. To make CTL∗ work
in the sense that the standard properties are obtained, the small-step program
X needs to satisfy a number of assumptions that are reflected by certain CTL∗

axioms. This is discussed in detail in Sect. 4.3.
To give a CTL∗ semantics based on the interface model, we want to assign

to every CTL∗ formula ϕ a program, i.e., a set of graphlets, [[ϕ]] that describes
admissible iterations of the single-step program X. In adapting the general quan-
tale semantics of Def. 4.1, we replace tests by predicates, left multiplication by
tests by restriction, > by the universal program U and the operator p by in.

Definition 4.2 The semantics of CTL∗ in the interface model is given as follows,
where · ∈ {;, ;;} and the powers of X are taken w.r.t. · .

[[⊥]] = ⊥,
[[S]] = S �U,

[[ϕ→ ψ]] = [[ϕ]] dc [[ψ]],
[[Xϕ]] = X · [[ϕ]],

[[ϕUψ]] =
⋃
j≥0

(Xj · [[ψ]] ∩
⋂
k<j

Xk · [[ϕ]]),

[[Eϕ]] = in([[ϕ]])�U.

Using these definitions, it is straightforward to check that

[[ϕ ∨ ψ]] = [[ϕ]] dc [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], [[¬ϕ]] = [[ϕ]]. (8)

We have the following important property.

Theorem 4.3 Assume that multiplication with X from the left distributes through
arbitrary joins and binary meets, i.e., X · (P ∩Q) = X ·P ∩X ·Q for all programs
P,Q.

1. [[ϕUψ]] is the least fixed point µf of the function f(Y) =df [[ψ]] dc ([[ϕ]]∩X·Y).
2. [[Fψ]] = X∗ · [[ψ]]. In particular, [[F>]] = U .

The proof is a direct translation of the one for general quantales given in [23].

Example 4.4 Our program P from Ex. 3.8 satisfies the assumption of that
theorem. ut

19

4.3 Requirements for Small-Step Programs

We now want to find suitable requirements on X. A fundamental requirement in
standard CTL∗ is validity of the axiom

¬Xϕ ↔ X¬ϕ . (9)

To satisfy it in the algebraic setting, we need to have for all formulas ϕ and their
semantic values Q =df [[ϕ]],

X ·Q = [[¬Xϕ]] = [[X¬ϕ]] = X ·Q. (10)

This semantic property can equivalently be characterised as follows (see again [23]).

Lemma 4.5 Assume the same properties of X as in Th. 4.3.

1. ∀Q : X ·Q ⊆ X ·Q ⇐⇒ ∀Q,R : X · (Q ∩R) = X ·Q ∩ X ·R.
2. ∀Q : X ·Q ⊆ X ·Q ⇐⇒ X · U = U ⇐⇒ Xω = U .

Let us explain the meaning of these formulas. In relation algebra, the special
case X ·skip ⊆ X of the property in Lm. 4.5.1 characterises X as a partial function
and is equivalent to the full property (10) (see [27]). But in general quantales the
special and the full case are not equivalent [10]. Moreover, again from [10], we
know that in quantales such as that of formal languages under concatenation,
left composition with an element X distributes over meet iff X is prefix-free, i.e.
if no member of X is a prefix of another member. This holds in particular if all
words in X have equal length, which is the case if X models a transition relation
and hence consists only of words of length 2. The program P from Ex. 3.8 has
analogous character.

The equivalent condition ∀ b : X ·Q ∩ X ·Q = 0 was used in the computation
calculus of R.M. Dijkstra [11].

But what about the property in Lm. 4.5.2? Only rarely will the set of all
graphlets be “generated” by an element X in the sense that Xω = U . The solution
is to choose a left-distributive and right-strict element X and restrict the set of
semantic values to the subset SEM(X) =df {Q : Q ⊆ Xω}, taking complements
relative to Xω. This set is clearly closed under dc and ∩ and under prefixing by
X, since by isotony

X ·Q ⊆ X · Xω = Xω .

Finally, it also contains all elements S �Xω for predicates S, since S �Q ⊆ Q for
all Q. Hence the above semantics is well-defined in SEM(X) if we replace U by
Xω. This entails

[[Gψ]] =
⋂
i∈N

Xi · [[ψ]] ,

in pleasant symmetry to the property [[Fψ]] = X∗ · [[ψ]] =
⋃
i∈N

Xi · [[ψ]].

We conclude this section by showing that one can transform the semantics
of Gψ into closed form.

20

Theorem 4.6 Assume Eq. (10), i.e., ∀Q : X ·Q = X ·Q.

1. Left multiplication by X distributes through arbitrary intersections.
2. If · is interpreted as ;; , for a state formula ψ with [[ψ]] = S � U for some

predicate S we have
[[Gψ]] = (S �X)ω .

The lengthy proof is presented in the Appendix.

Example 4.7 For the program P from Ex. 3.8 we obtain, using Ex. 3.22,

1�Pω ⊆ N+ �P
ω ⊆ (N+ �P)

ω = [[GN+]] .

This means that if the variable x starts with value 1 then its contents will always
remain positive under infinite iteration of the increment program P . ut

A more elaborate example is presented in Sect. 4.6.

4.4 From CTL∗ to CTL

For a number of applications the sublogic CTL of CTL∗ suffices. Syntactically, it
consists of those CTL∗ state formulas that only use path formulas of the restricted
form Π ::= XΣ | Σ UΣ.

It can be shown (in analogy to [23]) that the semantics of every CTL formula
has the form S �U for some predicate S; moreover, S can be retrieved as S =
in(S �U). This is reflected by the simplified semantics

[[ϕ]]s =df in([[ϕ]]) ,

which enables us to calculate solely with predicates in the case of CTL.
First, for the Boolean connectives we obtain

[[ϕ ∨ ψ]]s = [[ϕ]]s ∪ [[ψ]]s, [[ϕ ∧ ψ]]s = [[ϕ]]s ∩ [[ψ]]s, [[¬ϕ]]s = [[ϕ]]s.

To make this simplified semantics work well, we need strong properties of re-
striction and the in operator. Therefore, to use Lm. 3.18, we now choose the
interpretation · = ;;. Then the inductive behaviour of [[_]]s for all CTL formulas
is as follows; it involves now the modal operators from Sect. 3.7.

Theorem 4.8
1. [[⊥]]s = ∅ ,
2. [[S]]s = S ,

3. [[ϕ→ ψ]]s = [[ϕ]]s ∪ [[ψ]]s ,
4. [[EXϕ]]s = |X〉[[ϕ]]s ,
5. [[AXϕ]]s = |X][[ϕ]]s ,
6. [[E(ϕUψ)]]s = |([[ϕ]]s ;; X)∗〉[[ψ]]s ,
7. [[A(ϕUψ)]]s = [[Fψ]]s ∩ |([[ψ]]s ;; X)∗]([[ϕ]]s + [[ψ]]s) .

21

Parts 4 and 5 mean that the existential and universal quantifiers of CTL are
semantically reflected as the existential and universal modal operators diamond
and box. Part 6 means that the starting states of the traces in [[E(ϕUψ)]]s are
precisely those from which after finitely many X steps through ϕ states a ψ state
can be reached. Part 7 characterises [[A(ϕUψ)]]s as the set of those states from
which eventually a ψ state must be reached and for which iteration through non-
ψ states must lead to a ϕ or a ψ state. The proofs are again direct translations
of the corresponding ones in [23].

This theorem entails the following pleasant characterisations.

Corollary 4.9

[[EFψ]]s = |X∗〉[[ψ]]s , [[EGψ]]s = in(([[ψ]]s ;; X)ω) ,

[[AGψ]]s = |X∗][[ψ]]s , [[AFψ]]s = in(([[ψ]]s ;; X)ω) .

4.5 CTL∗ and LTL

The logic LTL is the fragment of CTL∗ in which only A may occur, once and
outermost only, as path quantifier. More precisely, the LTL path formulas are
given by

Π ::= Φ | ⊥ | Π → Π | XΠ | Π UΠ.

The LTL semantics is embedded into the CTL∗ one by assigning to ϕ ∈ Π the
semantic value [[Aϕ]].

In so far, LTL for the interface model is covered by the semantics in Sect. 4.2.
If instead of the graphlet quantale the quantale of finite and infinite sequences is
used, by a slight twist of the general semantics one can obtain a simplified version
using only finite iteration and the modal operators [23]. However, that twist is
possible only, since the generating element X in that algebra is left cancellative
w.r.t. sequential composition. Since this in general will not hold in the interface
model, we just stay with the LTL semantics given above.

4.6 A Somewhat Larger Example

We consider a program that works on two variables x and y that are allocated
and initialised to 0 by the actions allocx and allocy . Then the program uses two
actions stepy and addxy given by y := y+2 and x := x+y, respectively. These
actions are performed repeatedly. For x only 8 such actions take place, after
which x is deallocated; the action on y is repeated forever.

We use arrows of the form z−→
v

, where z is a variable and v a value. To avoid

excessive indexing we assume that arrows are, in addition to their labelling,
distinguished by their position within the diagram. A set of arrows is considered

coherent, i.e., a state, if for every variable z it contains at most one arrow z−→
v

.

The overall graph H of the program looks as follows.

22

H : allocx x

0
// addxy1

x

0
// addxy2

x

2
// . . .

x

16
// deallocx

allocy
y

0
//

y

0

::

stepy1

y

2
//

y

2

99

stepy2

y

4
//

y

4

::

. . .
y

18
// stepy10

y

20
// . . .

This example exhibits the following phenomena.

– The graph contains special subgraphs the arrows of which have the shape
of the letter N rotated clockwise by 90◦. Each of these is induced by events
addxy i, addxy i+1, stepy i, stepy i+1 (1 ≤ i ≤ 7) or by allocx , addxy1, allocy ,
stepy1. According to a result by Gischer [14], a graph containing such N-
shaped subgraphs, hence in particular the graph H, cannot be expressed as
a composition of singleton graphlets using only the ; and | operators.

– The graph can, however, be decomposed into a sequential composition of
the slices {allocx , allocy}, {addxy i, stepy i} (1 ≤ i ≤ 9), {deallocx , stepy10}
and {stepyj} (j ≥ 11). These slices can be taken as the elements of a small-
step program X that corresponds to the CTL∗ next-time operator. Then
the overall graph is the “longest” element of Xω, selected from Xω by the
restriction {∅} �Xω, i.e., by taking the only trace in Xω that has an empty
input interface.

– We can express in CTL∗ and show that y remains available forever, whereas x
does not. A possible cause for this may be that deallocation of y has just been
forgotten, since it is not discovered that y never is actually used any more.
Such an analysis can be used to prevent possible memory leaks. To formalise
that we say that a state A satisfies the predicate has(z) for a variable z iff

for some value v there is an arrow z−→
v

in A. Then we can express the above

properties as
F(has(z)) , XG(has(y)) ,

which indeed hold for our program.
– We can also describe and show the joint behaviour of x and y, notably their

coupling by an invariant: our program satisfies G(y > 0 =⇒ y = x + 2),
with the obvious semantics for the predicate following the G operator.

– If we choose a different small-step program consisting only of the elementary
stepy events we can specify and analyse the y subthread by itself in an
analogous fashion: for instance, we have G(even(y)).

5 Conclusion and Outlook

We have presented an interface model for CKA and have shown how its opera-
tors can be used to formalise variants of the temporal logics CTL∗ and CTL that
are suitable for specifying and reasoning about temporal subthreads of CKA
programs. This was done using the fact that CKA induces a quantale w.r.t. to

23

each of its composition operators. We have, however, only exploited the quan-
tales dealing with sequential compositions ; and ;; . The quantale induced by the
concurrent composition operator | could be used in a similar manner to set up
analogous “spatial” logics, again based on finite or infinite iteration. Also, links
between CTL,CTL∗, LTL, the algebraic temporal logics of von Karger [20] and
the Duration Calculus of Zhou [32] need to be established. The details of that as
well as a combination of temporal and spatial logic constructs to deal properly
with truly concurrent aspects will be the subject of further research.

Acknowledgments We are grateful to Jules Desharnais, Peter Höfner, Martin
E. Müller, Patrick Roocks, Stephan van Staden and the anonymous referees for
thorough proofreading and valuable comments.

References

1. Back, R., von Wright, J.: Refinement Calculus - A Systematic Introduction. Grad-
uate Texts in Computer Science, Springer (1998)

2. de Bakker, J., Meertens, L.: On the completeness of the inductive assertion method.
J. Comput. Syst. Sci. 11(3), 323–357 (1975)

3. Blikle, A.: A comparative review of some program verification methods. In: Gruska,
J. (ed.) Mathematical Foundations of Computer Science 1977, 6th Symposium,
Tatranska Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings. Lecture
Notes in Computer Science, vol. 53, pp. 17–33. Springer (1977)

4. Brink, C., Rewitzky, I.: A Paradigm for Program Semantics: Power Structures and
Duality. CSLI Publications (2001)

5. Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
6. Dang, H.H., Möller, B.: Concurrency and local reasoning under reverse exchange.

Sci. Comput. Prog. 85, Part B, 204–223 (2013)
7. Dang, H., Glück, R., Möller, B., Roocks, P., Zelend, A.: Exploring modal worlds.

J. Log. Algebr. Meth. Program. 83(2), 135–153 (2014)
8. Desharnais, J., Möller, B., Struth, G.: Modal Kleene algebra and applications - a

survey. J. Relational Methods in Computer Science 1, 93–131 (2004)
9. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.

Comput. Log. 7(4), 798–833 (2006)
10. Desharnais, J., Möller, B.: Characterizing determinacy in Kleene algebras. Inf. Sci.

139(3-4), 253–273 (2001)
11. Dijkstra, R.M.: Computation calculus bridging a formalization gap. Sci. Comput.

Program. pp. 3–36 (2000)
12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics (B), pp. 995–1072. Elsevier
(1990)

13. Frias, M.F., Pombo, C.L.: Interpretability of first-order linear temporal logics in
fork algebras. J. Log. Algebr. Program. 66(2), 161–184 (2006)

14. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science
61(2–3), 199–224 (1988)

15. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011)

16. Hoare, T., van Staden, S.: The laws of programming unify process calculi. Sci.
Comput. Program. 85, 102–114 (2014)

24

17. Hoare, T., van Staden, S., Möller, B., Struth, G., Zhu, H.: Developments in con-
current Kleene algebra. J. Log. Algebr. Program. (2015 (to appear))

18. Hoare, T., van Staden, S., Möller, B., Struth, G., Villard, J., Zhu, H., O’Hearn,
P.W.: Developments in concurrent Kleene algebra. In: Höfner, P., Jipsen, P., Kahl,
W., Müller, M.E. (eds.) Relational and Algebraic Methods in Computer Science
- 14th International Conference RAMiCS 2014, Marienstatt, Germany, April 28-
May 1, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8428, pp. 1–18.
Springer (2014)

19. Jipsen, P.: Concurrent Kleene algebra with tests. In: Höfner, P., Jipsen, P., Kahl,
W., Müller, M. (eds.) Relational and Algebraic Methods in Computer Science
- 14th International Conference, RAMiCS 2014, Marienstatt, Germany, April 28-
May 1, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8428, pp. 37–48.
Springer (2014)

20. von Karger, B.: Temporal algebra. Mathematical Structures in Computer Science
8(3), 277–320 (1998)

21. von Karger, B., Berghammer, R.: A relational model for temporal logic. Logic
Journal of the IGPL 6(2), 157–173 (1998)

22. Main, M.: A powerdomain primer — a tutorial for the Bulletin of the EATCS
33. Tech. Rep. CU-CS-375-87 (1987). Paper 360, Univ. Colorado at Boulder, Dept
of Computer Science (1987), http://scholar.colorado.edu/csci_techreports/
360

23. Möller, B., Höfner, P., Struth, G.: Quantales and temporal logics. In: Johnson, M.,
Vene, V. (eds.) Algebraic Methodology and Software Technology, 11th Interna-
tional Conference, AMAST 2006, Kuressaare, Estonia, July 5-8, 2006, Proceedings.
Lecture Notes in Computer Science, vol. 4019, pp. 263–277. Springer (2006)

24. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Separation and information hiding. ACM
Trans. Program. Lang. Syst. 31(3), 1–50 (2009)

25. Rosenthal, K.: Quantales and their applications, Pitman Research Notes in Math-
ematics Series, vol. 234. Longman Scientific & Technical (1990)

26. Schmidt, G.: Programme als partielle Graphen. TU Munich, FB Mathematik. Ha-
bilitation Thesis (1977)

27. Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. Springer (1993)

28. Solin, K., von Wright, J.: Enabledness and termination in refinement algebra. Sci.
Comput. Program. 74(8), 654–668 (2009)

29. Tarlecki, A.: A language of specified programs. Sci. Comput. Program. 5(1), 59–81
(1985)

30. Wehrman, I., Hoare, C.A.R., O’Hearn, P.W.: Graphical models of separation logic.
Inf. Process. Lett. 109(17), 1001–1004 (2009)

31. Winskel, G.: On powerdomains and modality. Theor. Comput. Sci. 36, 127–137
(1985)

32. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991)

25

http://scholar.colorado.edu/csci_techreports/360
http://scholar.colorado.edu/csci_techreports/360

Appendix: Deferred Proofs

Proof of Lm. 3.5.
We only show Part 1, since Part 2 is analogous. First,

in(G |G′)
= {[by Def. 3.3]}

(A ∪A′) ∩ E + E′×(E + E′)

= {[distributivity]}
(A ∪A′) ∩ (E + E′×E + E + E′×E′)

= {[distributivity]}
((A ∩ E + E′×E) + (A ∩ E + E′×E′)) ∪
((A′ ∩ E + E′×E) + (A′ ∩ E + E′×E′)) .

We simplify the first two summands; the other two are analogous. For summand
number one we have

A ∩ E + E′×E
= {[De Morgan]}

A ∩ (E ∩ E′)×E
= {[∩/×-exchange using E = E ∩ E]}

A ∩ E×E ∩ E′×E
= {[by Def. 3.3]}

in(G) ∩ E′×E .

For summand number two we have

A ∩ E + E′×E′

= {[De Morgan, distributivity]}
A ∩ E×E′ ∩ E′×E′

⊆ {[by E ∩ E′ = ∅, hence E′ ⊆ E and covariance of×]}
A ∩ E×E ∩ E′×E′

= {[by Def. 3.1.7]}
∅ ∩ E′×E′

= {[set algebra]}
∅ .

Altogether, the claim is shown. ut

Proof of Th. 3.6.
First we observe that (G, |) is an aggregation algebra in the sense of [15] and
CS and CC(G,G′) =df TRUE can be viewed as independence relations with
CS ⊆ CC. With this, the claim follows from Lms. 3.4 and 3.5 and Prop. 3.6
of [15] if we can show that the restricting predicates CS and CC are bilinear,
i.e., satisfy.

CS(G |G′, G′′) ⇐⇒ CS(G,G′′)∧CS(G′, G′′) ,
CS(G,G′ |G′′) ⇐⇒ CS(G,G′) ∧CS(G,G′′) (11)

26

and the analogous property for CC, and CC is symmetric. For CC both claims
are trivial. To show (11), we exploit that the definition of CS is symmetric in
both arguments, so that it suffices to consider the first argument.

CS(G |G′, G′′)
⇔ {[by Def. 3.4]}

(A ∪A′) ∩A′′ ∩ E′′×(E + E′) = ∅
⇔ {[distributivity, set algebra]}

A ∩A′′ ∩ E′′×E = ∅ ∧
A ∩A′′ ∩ E′′×E′ = ∅ ∧
A′ ∩A′′ ∩ E′′×E = ∅ ∧
A′ ∩A′′ ∩ E′′×E′ = ∅

⇔ {[by Def. 3.4, and since E′ ∩ E = E ∩ E′′ = E′ ∩ E′′ = ∅,
hence E′′, E′ ⊆ E and E′′, E ⊆ E′, therefore
A ∩ E′′×E′ = A′ ∩ E′′×E = ∅ by condition (7) of Def. 3.1]}

CS(G,G′′) ∧ TRUE ∧ TRUE ∧ CS(G′, G′′) .

Proof of Lm. 3.18.
By the definitions of ; and ;; their result, and its interfaces, coincides with that
of parallel composition whenever it is defined.

We start by showing the first equation. By the above remark and Lm. 3.5,

in(G ;;G′) = (in(G) ∩ E′×E) ∪ (in(G′) ∩ E×E′) .

For the second summand we calculate by in(G′) = out(G) and the definition of
out , Eq. (6), and disjointness of E,E′ with (6) and Boolean algebra:

in(G′) ∩ E×E′=A ∩ E×E ∩ E×E′=A ∩ E×(E ∩ E′)= ∅ .

Concerning the first summand we have by by in(G′) = out(G) and the definition
of in, out , definition of CS in Def. 3.4 and shunting, Eq. (6), distributivity, second
summand = ∅ by Eq. (6), definition of ∩,

in(G)⊆A ∩A′ ∩ E×E⊆E′×E ∩ E×E=(E′×E + EV×E) ∩ E×E=
(E′×E ∩ E×E) + (EV×E ∩ E×E)=E′×E ∩ E×E⊆E′×E .

Therefore the first summand reduces to in(G), as required.
The equation in(G) = in(G � in(G′)) is immediate, since the definition of �

and in(G′) = out(G) entail G� in(G′) = G.
The equations for out are proved completely symmetrically.
Now we can show associativity of ;; . Assume graphlets G,G,G′′. If any of

them is � then the associativity equation is immediate from the definition of ;; .
Otherwise we only need to check the case where in(G′) = out(G) and in(G′′) =
out(G′) so that both G ;;G′ and G′ ;;G′′ are defined. By the just proved equations
for in and out then also in(G′′) = out(G ;;G′) and in(G′ ;;G′′) = out(G), so that
also (G ;;G′) ;;G′′ and G ;; (G′ ;;G′′) are defined; by definition of ;; and associativity
of ; they coincide.

27

Next, by the definition of the restriction operators, G � C and C � G′ are
defined iff out(G) ⊆ C and in(G′) ⊆ C. In that case G�C = G and C �G′ = G′

and therefore
(G�C) ;;G′ = G ;;G′ = G ;; (C �G′) .

Finally, the last two claims are immediate from the definition of restriction
and the first two claims. ut

Proof of Lm. 3.24.
We only show the first equation, since the second is analogous. By the definition
of ||| and Lm. 3.5 we have

in(G |G′) = (in(G) ∩ E′×E) ∪ (in(G′) ∩ E×E′) .

The first summand reduces to in(G) if we can show in(G) ⊆ E′×E, equiva-
lently, in(G) ∩ E′×E = ∅. We calculate, by the definition of in with Eq. (6),
distributivity with Eq. (6), and the definition of |||:

in(G) ∩ E′×E=A ∩ E×E ∩ (EV×E + E′×E)=A ∩ E×E ∩ E′×E= ∅ .

Symmetrically, the second summand reduces to in(G′). ut

Proof of Th. 4.6.

1. X ·
⋂
i

Qi

= {[De Morgan]}
X ·
⋃
i

Qi

= {[Eq. (10)]}
X ·
⋃
i

Qi

= {[quantale distributivity]}⋃
i

X ·Qi

= {[Eq. (10)]}⋃
i

X ·Qi

= {[De Morgan]}⋂
i

X ·Qi .

2. We show by induction on i that
⋂
j≤i

Xj · [[ψ]] = (S �X)i · [[ψ]]. The base case

i = 0 is trivial. The induction step proceeds as follows:⋂
j≤i+1

Xj · [[ψ]]

= {[set theory]}⋂
0<j≤i+1

Xj · [[ψ]] ∩ [[ψ]]

28

= {[left distributivity of X]}
X · (

⋂
0<j≤i+1

Xj−1 · [[ψ]]) ∩ [[ψ]]

= {[index transformation k = j − 1]}
X · (

⋂
k≤i

Xk · [[ψ]]) ∩ [[ψ]]

= {[induction hypothesis]}
X · (S �X)i · [[ψ]] ∩ [[ψ]]

= {[Lm. 3.11]}
S �(X · (S �X)i · [[ψ]])

= {[Lm. 3.18]}
(S �X) · (S �X)i · [[ψ]])

= {[definition of powers]}
(S �X)i+1 · [[ψ]] .

By this,

[[Gψ]] =
⋂
i∈N

Xi · [[ψ]] =
⋂
i∈N

⋂
j≤i

Xj · [[ψ]] =
⋂
i∈N

⋂
j≤i

(S �X)i · [[ψ]] .

An easy induction shows (S �X)ω ⊆ (S �X)i ·[[ψ]] for all i and hence (S �X)ω ⊆
[[Gψ]]. For the reverse inclusion it suffices to show that [[Gψ]] = (S �X) · [[Gψ]].
Indeed,

(S �X) · [[Gψ]]
= {[Lm. 3.18 and Lm. 3.11]}

X · [[Gψ]] ∩ (S �U)

= {[above representation]}
X · (

⋂
i∈N

Xi · [[ψ]]) ∩ [[ψ]]

= {[Part 1]}
(
⋂
i∈N

X · Xi · [[ψ]]) ∩ [[ψ]]

= {[definition of powers]}
(
⋂
i∈N

Xi+1 · [[ψ]]) ∩ [[ψ]]

= {[combining cases]}⋂
j∈N

Xj · [[ψ]]

= {[above representation]}
[[Gψ]] .

ut

29

	Exploring an Interface Model for CKA

