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Abstract

Objective

Segmented deep brain stimulation leads in the subthalamic nucleus have shown to increase

therapeutic window using directional stimulation. However, it is not fully understood how

these segmented leads with reduced electrode size modify the volume of tissue activated

(VTA) and how this in turn relates with clinically observed therapeutic and side effect cur-

rents. Here, we investigated the differences between directional and omnidirectional stimu-

lation and associated VTAs with patient-specific therapeutic and side effect currents for the

two stimulation modes.

Approach

Nine patients with Parkinson’s disease underwent DBS implantation in the subthalamic

nucleus. Therapeutic and side effect currents were identified intraoperatively with a seg-

mented lead using directional and omnidirectional stimulation (these current thresholds

were assessed in a blinded fashion). The electric field around the lead was simulated with a

finite-element model for a range of stimulation currents for both stimulation modes. VTAs

were estimated from the electric field by numerical differentiation and thresholding. Then for

each patient, the VTAs for given therapeutic and side effect currents were projected onto

the patient-specific subthalamic nucleus and lead position.

Results

Stimulation with segmented leads with reduced electrode size was associated with a signifi-

cant reduction of VTA and a significant increase of radial distance in the best direction of

stimulation. While beneficial effects were associated with activation volumes confined within

the anatomical boundaries of the subthalamic nucleus at therapeutic currents, side effects

were associated with activation volumes spreading beyond the nucleus’ boundaries.
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Significance

The clinical benefits of segmented leads are likely to be obtained by a VTA confined within

the subthalamic nucleus and a larger radial distance in the best stimulation direction, while

steering the VTA away from unwanted fiber tracts outside the nucleus. Applying the same

concepts at a larger scale and in chronically implanted patients may help to predict the best

stimulation area.

Introduction

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has demonstrated efficacy in

treating motor symptoms of Parkinson’s disease [1,2]. It delivers electrical pulses at high stim-

ulation frequencies to pathogenic brain areas using leads with four (Medtronic Activa, Abbott

St Jude Libra) to eight (Boston Scientific Vercise) ring electrodes. Most implanted DBS systems

provide current delivery in all directions around the electrode. This omnidirectional mode has

shown to significantly improve motor symptoms, but unintended stimulation of surrounding

anatomical structures can induce disabling side effects such as tonic muscular contraction,

dysarthria, conjugate eye deviation, paresthesia, or gait imbalance [3–5]. More specifically,

unintended stimulation of the non-motor parts of the STN may cause behavioral impairments

and limbic side effects such as depression and impulsivity [6–8]. To reduce or avoid these side

effects, one can decrease the stimulation amplitude. However, this typically reduces treatment

efficacy as less stimulation is directed towards the target structure, which is the dorsolateral, or

motor part, of the STN [2].

To optimize DBS therapy, millimeter to sub-millimeter targeting accuracy in the motor

part of the STN may be needed [9–11]. Despite careful stereotactic targeting, targeting errors

may occur due to imaging inaccuracy, imperfect visualization of target structures, mechanical

stereotactic errors, intraoperative brain shift due to leakage of cerebrospinal fluid [12–14] and

patient-specific anatomy placement errors. These errors amount to about 1–2 mm with cur-

rent stereotactic procedures [15,16], and therefore may produce current spread into adjacent

structures and the appearance of side effects [2].

Segmented leads with reduced electrode size are a promising option to improve DBS ther-

apy. Typical ring electrodes are 1.3 mm in diameter and 1.5 mm in height with a surface area

of about 6 mm2. Microfabrication techniques allow for thin-film based segmented DBS leads

providing electrodes of reduced size and surface areas of about 1 mm2 [17–21]. Such seg-

mented leads allow for directional stimulation. They showed to increase therapeutic windows

intraoperatively by requiring smaller current amplitudes to obtain therapeutic effects com-

pared with omnidirectional stimulation [22,23]. These results were confirmed in chronically

implanted patients in additional centers [24,25].

To better understand the mechanisms of DBS, finite-element models of traditional ring

electrodes have greatly contributed to an understanding of the volume of tissue activated [26–

29]. These activation volumes and their positions in the STN have been associated with thera-

peutic and/ or side effects. However, how segmented leads with reduced electrode size modify

these volumes and how this correlates with the clinical observations of changed therapeutic

and side effect thresholds is not fully understood.

In the present study, we investigated the effects of omnidirectional and directional stimula-

tion of the STN through a computational analysis of volume of tissue activated (VTA) and cor-

related these with patient-specific therapeutic and side effects current thresholds.
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Material and methods

Segmented DBS lead

A segmented DBS lead with six directional and two ring electrodes was used in this study

(directSTN Acute, Aleva Neurotherapeutics, Lausanne, Switzerland, Fig 1). The lead’s direc-

tional electrodes were on the two most distant electrode levels and only the most distant level

was used in this study. The two ring electrodes made up the two proximal electrode levels. The

directional electrodes were each 1 mm x 1 mm (surface area of 1 mm2), and the distance

between each level was 0.5 mm. The three directional electrodes were distributed at 0˚, 120˚

and 240˚, respectively. The electrode at 0˚ was marked with an imprinted black line all along

the lead to help the surgeon orient it during insertion.

Patients, stimulation pattern and intraoperative assessments

Nine patients with Parkinson’s disease underwent DBS of the subthalamic nucleus (three

female, age 32–74, median 69 years) and were included in this study at the University Hospital

of Bern. The study conformed to the Good Clinical Practice guidelines and the International

Organization for Standardization 14155 standard. The protocol was approved by the ethics

committee of the Canton of Bern and by the Swiss Competent Authority. All patients provided

written informed consent. The patients are listed in Table 1 and represented a subset of the

cohort of this previous study [23]. The study herein compares omnidirectional and directional

VTAs in general. It further focuses on patient-specific stimulation currents and adds VTA pro-

jections for each patient.

The surgery was performed as described previously [23]. Briefly, preoperative T1 and

T2-weighted magnetic resonance images (3 T, 1 mm x1 mm x 1 mm) were coregistered with

stereotactic computer tomography for planning. The patients were implanted under local

anesthesia under stereotactic conditions (Leksell frame, Elekta). First, microelectrode record-

ing and macrostimulation (FHC, Bowdoin, ME, USA and Leadpoint, Medtronic, Minneapolis,

Fig 1. Design of segmented lead. (A) The segmented lead had a diameter of 1.3 mm. It consisted of eight electrodes in

total: two levels with three directional electrodes each (size 1 x 1 mm2) and two levels of ring electrodes (size 1 x 4.1

mm2). The distance between electrode levels was 0.5 mm. (B) The directional electrodes were facing 0, 120 and 240˚

and 0˚ was facing medial.

https://doi.org/10.1371/journal.pone.0217985.g001
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MN, USA) were performed to localize the STN and to identify the trajectory and depth for per-

manent implantation.

Second, the segmented lead was inserted with the most distal electrode level at the same

depth as intended for the permanent lead (i.e., systematically at 2 mm after electrophysiologi-

cally determined STN entry). The depth for the segmented lead was confirmed intraopera-

tively with fluoroscopy. The segmented lead’s directional electrode at 0˚ was systematically

oriented medially using the marker line on the lead (the surgeon inserted the lead without

rotation). The second directional electrode was therefore oriented antero-laterally (120˚), and

the third directional electrode was oriented postero-laterally (240˚).

Third, the segmented lead was used for intraoperative clinical testing. The lead was connected

to an external neurostimulator (Osiris Stimulators, Model 504196, Inomed GmbH, Emmendin-

gen, Germany). This neurostimulator had multiple independent current-driven sources and was

able to pulse any directional electrode or a combination of directional electrodes through a cus-

tom user interface. Concomitant use of the three directional electrodes on the same level was

defined as omnidirectional stimulation. Monopolar, cathodic monophasic pulses with a phase

width of 90 μs and frequency of 130 Hz were used. A metal plate in the subclavicular area was

used as distant current return (similar to the area for the implantable pulse generator). The stimu-

lation configuration (i.e., directional or omnidirectional stimulation, which directional electrode)

was programmed randomly by a separate operator. Therefore the patient, the neurosurgeon and

the neurologist assessing the clinical effects were blinded to the stimulation configuration.

Clinical effects were assessed intraoperatively through the rigidity of the patient’s hand by

the same neurologist (M Schupbach). Before stimulation onset, baseline rigidity was evaluated

on a five-point rating scale (0 –no rigidity, 4 –highest rigidity). The stimulation current was

Table 1. Patient information. Patient information with therapeutic and side effect currents. All patients with Parkinson’s disease and rigidity symptoms.

Patient

number/

hemi-

sphere

Gender Age 1st best direction Omnidirectional

Direction Therapeutic current

(mA)

Side effect current

(mA)

Side effect Therapeutic current

(mA)

Side effect current

(mA)

Side effect

1

Right

Male 72 PL 0.4 3.3 Dysarthria 0.9 4� �No side

effect

2

Left

Male 52 M 0.9 3.5� �No side

effect

1.2 2.7 Lip

contraction

3

Left

Male 74 AL 0.5 3.5� �No side

effect

1.2 3.9 Parasthesia

4

Left

Male 42 AL 1.0 2.7 Dysarthria 1.8 2.5 Dysarthria

5

Right

Female 69 AL 0.5 3.5� �No side

effect

1.1 3.0 Paresthesia

6

Left

Female 70 AL 0.6 2.0 Dysarthria 0.8 1.1 Dysarthria

7

Left

Male 55 AL 0.4 2.5 Dysarthria 1.2 2.5 Dysarthria

8

Left

Female 70 M 1.0 3.3 Dysarthria 1.5 3.3 Dysarthria

9

Right

Male 32 M 0.6 3.3 Lip

contraction

0.8 2.7 Lip

contraction

Directions: M–medial; AL–antero-lateral; PL–postero-lateral.

An asterisk � denotes cases where no sustained side effect was evoked at the maximum current amplitude listed in the Table.

https://doi.org/10.1371/journal.pone.0217985.t001
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increased in 0.2 mA steps and the patient was tested until the current threshold with full effect
on rigidity was reached (value 0 on the described rating scale). This was defined as therapeutic

current. The stimulation current was then further increased until a sustained side effect was

observed. This was defined as side effect current. Side effects included sustained paresthesia,

dysarthria, or focal muscular contraction. The maximally allowed current amplitude was 3.3

mA per directional electrode to ensure safe stimulation below the charge density limit of

30 μC/cm2[30,31].

Finally, the segmented lead was removed and replaced with the permanent lead (Medtronic,

Minneapolis, MN, USA, model 3389) using the same guide tube. All clinical assessments per-

formed with the segmented lead were performed only in the first hemisphere operated on. The

hemispheres are listed with the patients in Table 1.

Computation of volume of tissue activated and radial distance

A finite-element model was used to simulate the electrical field and to estimate the volume of

tissue activated (VTA). The 3D geometry of the segmented lead was imported from Dassault

Systems Solidworks 2016 into COMSOL Multiphysics v4.0. The perielectrode domain sur-

rounding the lead was modeled with a thickness of 0.2 mm. The grey matter beyond was repre-

sented by a cylinder with a 10 mm radius to mimic placement in the STN and assumed a

homogenous isotropic medium (grey matter). The electrical conductivity of the perielectrode

space was set to 0.125 S/m, and to 0.3 S/m for the outer grey matter [11,26]. All boundary con-

ditions for the electrical currents physics module were set to insulation, except for the stimulat-

ing electrodes, that were configured as current source terminals, and the outer brain region

cylinders, that were configured as electrical ground. The electric field was computed from solv-

ing the Laplace equation in COMSOL Multiphysics [11].

The volume of tissue activated was then estimated from the electric field with the method

presented by Buhlmann et al. [32], who used a segmented lead for their simulation study with

similar characteristics as the lead herein. The potential values around the electrode were

arranged into a 3D matrix with a spatial resolution of 0.025 mm and were exported to Matlab

2016b (The MathWorks, Natick, MA, USA). This matrix was then numerically differentiated

twice by spatial difference calculation in the x, y, and z directions to define one Hessian matrix

for each point in space. To specify the maximal second derivative in any direction, the eigen-

vectors of each Hessian matrix and the corresponding eigenvalues were calculated. The great-

est eigenvalue with the corresponding eigenvector gave the magnitude and the direction of the

maximum curvature of the electric field. Activation of neural tissue was considered when the

maximal eigenvalue exceeded the activation threshold of 26.66 V/cm2 as used in [32]. The use

of the Hessian matrix as approximation of the neural activating function was described more

comprehensively by [21,33].

We compared VTAs of the segmented lead for two stimulation modes: omnidirectional
stimulation, in which current was applied to all three directional electrodes on the same level

simultaneously, and directional stimulation, in which current was applied to one directional

electrode only. The VTA was computed for each stimulation mode and for a range of current

amplitudes between 0 and 5 mA. To additionally describe the VTA, we calculated the radial

distance and defined it as the distance between the surface of the electrode and the limit of the

VTA in the axial plane (Fig 2).

Correlation stimulation current, VTA and observed clinical effects

Several steps were performed to investigate relations between stimulation current, VTA and

observed clinical effects. First, the position of the permanent lead was determined from

Segmented leads in the subthalamic nucleus
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postoperative computer tomography images coregistered to preoperative magnetic resonance

images (Brainlab iPlan 3.0 Stereotaxy, Brainlab, Munich, Germany). With the stereotactic

frame used for implantation, we assume that the tip of the segmented lead was at the same

depth as the tip of the permanent lead since the same guide tube was used. Second, for each

patient the STN was manually segmented in the T2-weighted magnetic resonance images.

Then the axial slice at the depth of the directional electrode level was taken. Third, the VTA

estimations for therapeutic and side effect currents were projected onto that axial slice to illus-

trate the outlines of the STN and VTAs.

Finally, the changes in therapeutic current from omnidirectional to best directional stimu-

lation were related to changes in therapeutic window and analyzed for each patient. Similarly,

the changes in side effect currents from omnidirectional to best directional stimulation were

analyzed.

Statistical analysis

Therapeutic currents for best directional and omnidirectional stimulation were statistically

assessed with a non-parametric paired Wilcoxon signed-rank test, since these current thresh-

olds were not normally distributed (Shapiro-Wilk test). Similarly, the VTAs and radial distances

at these therapeutic currents were statistically assessed with a paired Wilcoxon signed-rank test.

A p-value of less than 0.05 was considered statistically significant. Side effect currents, the corre-

sponding VTAs and radial distances for the two stimulation modes were also statistically

assessed with the same Wilcoxon signed-rank test. Data was analyzed with Matlab 2016b.

Results

Nine patients were tested intraoperatively with a segmented lead. From the three directional

electrodes tested, only the best directional electrode was considered for further analysis to bet-

ter understand the potential benefits of directional stimulation. This best directional electrode

was determined by the largest therapeutic window, i.e., the difference between side effect and

therapeutic currents (note that all directional electrodes yielded full effect on rigidity). Thera-

peutic and side effect currents for directional and omnidirectional stimulation are listed in

Table 1.

Fig 2. Radial distance illustration. Radial distance shown as black vertical bar in directional (A) and omnidirectional

(B) stimulation mode for 1 mA total current. The volume of tissue activated projected onto the axial plane is in red; the

lead in orange, and the peri-electrode domain in grey.

https://doi.org/10.1371/journal.pone.0217985.g002
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Stimulation currents, VTA and radial distance

Therapeutic currents for best directional stimulation were significantly smaller than therapeu-

tic currents for omnidirectional stimulation (median values 0.6 vs 1.2 mA, p = 0.04). In con-

trast, the side effect currents for both stimulation modes were not significantly different

(median values 3.3 vs. 2.7 mA for best directional and omnidirectional stimulation, respec-

tively, p = 0.41).

The volume of VTAs increased linearly with stimulation current for both stimulation

modes (Fig 3A). At therapeutic currents, the VTAs with best directional stimulation were

about half the VTAs with omnidirectional stimulation (median volumes 4.5 mm3 vs. 8.2 mm3,

p = 0.02). At side effect currents, the VTAs for both stimulation modes were not significantly

different, with the VTA in best directional mode slightly larger (median volumes 30.3 mm3 vs.

22.0 mm3, p = 0.07).

The radial distances of VTAs increased non-linearly with stimulation current for both stim-

ulation modes with larger radial distances for best directional stimulation (Fig 3B). At thera-

peutic currents, the median radial distance was 1.7 mm for best directional and 1.6 mm for

omnidirectional stimulation (p = 0.01). At side effect currents, median radial distances for best

directional stimulation were significantly larger than for omnidirectional stimulation (2.8 mm

vs. 2.0 mm, p = 0.004).

Correlation stimulation current, VTA and patient-specific clinical effects

At therapeutic currents, VTAs for both stimulation modes were generally confined inside the

subthalamic nucleus or maximally 1 mm outside the nucleus (Fig 4). Only patient 4 had the

VTA outside the nucleus for omnidirectional stimulation.

At side effect currents, onset and type of side effects were related with VTAs spreading

beyond the nucleus’ anatomical border (red fields in Fig 4). Capsular side effects such as

Fig 3. Volume of tissue activated and radial distance. (A) Volume of tissue activated (VTA), (B) radial distance for current amplitudes

between 0 and 5 mA.

https://doi.org/10.1371/journal.pone.0217985.g003
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dysarthria or muscular contraction appeared in several patients and were associated with acti-

vation volumes spreading beyond the nucleus into the area of the internal capsule. Interest-

ingly, patients 2, 3 and 5 did not show side effects for best directional stimulation, though the

VTAs spread about 1 mm beyond the nucleus’ boundaries (grey fields in Fig 4).

Therapeutic and side effect currents were different for best directional and omnidirectional

stimulation. These changes affected the therapeutic window (Fig 5). We observed that reduced

therapeutic currents contributed to an increased therapeutic window in the best directional

stimulation in all patients. On the other hand, we observed that only small increases in side

effect currents in five patients contributed to the increased therapeutic window (no increase or

decrease in four patients). Due to the limited number of patients, we were not able to perform

a correlation test.

Fig 4. Patient-specific analysis. Projection of the volume of tissue active at the observed therapeutic currents (green) and side effect

currents (red) in the nine patients. The volume of tissue activated was projected onto the axially segmented subthalamic nucleus. (The

figure is a radiological representation of left and right. The letters ‘M’ and ‘L’ denote medial and lateral for each patient).

https://doi.org/10.1371/journal.pone.0217985.g004
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Discussion

The present study investigated changes in VTA with segmented DBS leads that have smaller

sized, but directional electrodes. These changes were related to intraoperative clinical testing

in Parkinson’s disease patients that received DBS in the subthalamic nucleus.

At therapeutic currents, our results show that stimulation in the best direction required sig-

nificantly smaller VTAs than omnidirectional stimulation (three directional electrodes acti-

vated simultaneously). Moreover, best directional stimulation generated a significant increase

of the radial distance. Taken together, this indicates that best directional stimulation achieved

therapeutic effect through deeper tissue penetration in the best direction with smaller VTAs

than omnidirectional stimulation.

At side effect currents, VTAs were not significantly different for best directional and omni-

directional stimulation, while radial distance remained significantly different for the two stim-

ulation modes.

VTA and radial distance

Previous computational DBS studies reported that electrode size may influence the shape and

size of the VTA and therefore the occurrence of therapeutic and side effects. These studies also

suggested that high precision of lead placement was required to confine VTAs to the target

stimulation area [28,29].

Here, we systematically analyzed VTA and stimulation currents for directional and omnidi-

rectional stimulation modes. At therapeutic currents, we obtained a significantly reduced VTA

using directional stimulation in the best direction. Reducing the VTA may facilitate targeting

areas of the STN that induce therapeutic effects, while avoiding side effects. This hypothesis is

sustained by one study that targeted a specific volume to improve motor performance. This

volume included the dorsal part of the STN and also white matter dorsal to the nucleus [34]. It

was also demonstrated in another study that targeting the dorsal STN can reverse stimulation-

Fig 5. Therapeutic and side effect currents versus therapeutic window. Change of therapeutic (A) and side effect currents (B) over

therapeutic window. No correlation analysis was performed given the small patient number.

https://doi.org/10.1371/journal.pone.0217985.g005
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induced cognitive impairments in patients [35]. In contrast, stimulation of the ventral STN

was associated with postoperative hypomania [7].

We observed an increased radial distance with directional stimulation through the small

directional electrode compared to omnidirectional stimulation. A plausible explanation for

this observation comes from the finite-element model. The reduction in electrode size with

directional electrodes resulted in an increased charge density at the surface of the electrode

(charge density is the ratio of injected charge over electrode surface area). Therefore, an

increased charge density led to an increased radial distance (tissue penetration) in the best

direction of stimulation. For instance, at a total current of 0.5 mA the radial distance for best

directional stimulation was 33% larger than for omnidirectional stimulation (1.6 vs. 1.2 mm).

At 3 mA total current, the difference in radial distance was 29% (2.7 vs. 2.1 mm). At a clinical

level, this phenomenon may correlate with the decreased therapeutic current with directional

stimulation as observed in this study.

In another computational study, Wei and Grill suggested that larger electrode size required

higher current intensities to obtain the same activation volume [36]. They assumed that reduc-

ing electrode size with segmented electrodes would result in better stimulation efficiency. Sim-

ilarly, Alonso et al. showed in a computational study that electrodes with larger areas had a

smaller VTA than electrodes with reduced area [37].

At side effect currents, VTAs for best directional and omnidirectional stimulation were

similar. One reason is that median side effect currents were similar for the two stimulation

modes (3 vs. 2.7 mA for best directional and omnidirectional stimulation, respectively). Inter-

estingly, the radial distances were different (2.8 mm vs. 2.0 mm), which indicated that best

directional stimulation had deeper tissue penetration also at side effect thresholds.

Correlation stimulation current, VTA and patient-specific clinical effects

We found therapeutic currents to be consistently associated with a VTA confined within the

anatomical boundaries of the STN. It seemed that VTAs were partially covering the dorsolat-

eral, motor portion of the STN given that clinical testing was performed at 2 mm after electro-

physiologically determined STN entry. This is in agreement with other studies that mapped

VTA using omnidirectional stimulation mode with clinical outcomes [34,38]. However, it was

not possible to infer from our two-dimensional projections that VTAs were strictly confined

to the motor part of the nucleus without spill-over stimulation to non-motor portions.

Another study reported that most patients with the largest improvements in the Unified

Parkinsons’s Disease Rating Scale had VTAs outside the border of the STN, principally in the

Zona Incerta [39]. This apparent discrepancy with our findings might be due to the different

metrics and time points of testing. In our study, we exclusively assessed rigidity with an intrao-

perative rigidity score compared to a postoperative score with the unified rating scale a few

months after implantation, which takes other motor symptoms into account. In addition, we

used a two-dimensional axial projection compared to the three-dimensional model used by

Maks et al. [39].

Our finding that VTAs at side effect current spread beyond the anatomical boundaries of

the STN for both stimulation modes seemed plausible and is in agreement with other studies

[34,38]. For instance, we observed capsular side effects when VTAs extended into the internal

capsule. We assumed that side effects such as muscular contractions or dysarthria were

induced by the stimulation of the surrounding cortico-spinal tract (motor dysarthria, muscular

contraction), or the dento-rubrothalamic tract (ataxic dysarthria). These tracts are located

(antero-)laterally and (postero-)medially to the STN, respectively, when seen on an axial

projection.

Segmented leads in the subthalamic nucleus

PLOS ONE | https://doi.org/10.1371/journal.pone.0217985 June 19, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0217985


The enlarged therapeutic windows for best directional stimulation in our study were mostly

related with decreased therapeutic currents and to a limited extend with increased side effect

currents. In our small cohort, we were not able to find a statistical correlation due to the

restricted patient number. Recent chronic studies reported that directional stimulation pri-

marily increased side effect currents [24,25]. On the other hand, DBS of the thalamus for

tremor reported decreased therapeutic currents [40]. Considering these different results, there

seems so far no clear evidence in STN DBS. Why directional stimulation had smaller therapeu-

tic currents is not fully understood. As discussed above, a deeper penetration of the VTA in

the best direction of stimulation (increased VTA radial distance) may be the mechanism

underlying this observation. On the other hand increased radial distance may have likewise

resulted in lower side effect thresholds for directional stimulation, considering that an

increased radial distance in the direction of stimulation may induce side effects at lower cur-

rents than omnidirectional stimulation. Here, we believe that avoiding undesirable fiber tracts

by steering VTA in a specific direction away from these tracts may have played a more impor-

tant role.

Limitations

First, our computational model has several limitations. We used a two-step approach, calculat-

ing the electric field with finite-element modeling and then estimating the VTA through

numerical differentiation and the Hessian matrix [32]. Since finite-element modeling is com-

putationally expensive, we performed this calculation for one scenario only with the lead

placed in grey matter to mimic implantation in the STN. The resulting VTAs at therapeutic

and side effect currents were then projected onto the patient-specific lead position inside the

STN. These projections were performed in two-dimensional axial slices and assumed the lead

to be perpendicular to that slice.

Other approaches for VTA estimation do not require explicit finite-element modeling or a

computational axon model. These may be comparable with the method herein [38,41,42]. The

accuracy of VTA estimations has been critiqued in detail; therefore more sophisticated three-

dimensional models based on field-cable or driving-force pathway activation models should

be implemented in future studies[43,44].

Second, this study was performed during the acute phase of lead insertion. The induced

microlesional effect and/ or possible surrounding reactive tissue edema may alter the electrical

properties of the surrounding tissue. This in turn may change in a more chronic situation, as a

progressive increase of the impedance at the electrode-tissue interface has been reported [45].

Therefore, observations made in this acute phase may change over time. Nevertheless, we per-

formed this study using a constant current-based pulse generator, measuring currents deliv-

ered to the tissue, therefore independently from impedance. The possible acute modification

of the tissue impedance may modify the VTA over time, as the calculations are dependent on

tissue conductivities [46]. However, we believe that tissue conductivity properties remained at

similar levels during the clinical testing of the segmented lead as this took place after micro-

electrode recording and macrostimulation to localize the STN (approx. thirty minutes).

Third, determination of current thresholds was solely based on rigidity reduction. This

measured only one aspect of PD at a very limited time point and did not take into account

other beneficial stimulation effects. Intraoperatively, rigidity is a clinical sign that can be

assessed reliably and rapidly. In contrast, bradykinesia can only be assessed over a longer time-

frame, while tremor is fluctuating and strongly influenced by emotion and therefore less reli-

able. Thus assessing rigidity reflects the current clinical standard to assess the most effective

clinical contact for long-term stimulation [47].
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Fourth, the orientation of the segmented lead was not controlled through imaging intrao-

peratively. Though we carefully inserted the segmented with its marker line facing medial, var-

ious methods exist to determine the orientation of a segmented lead and will be used in future

studies [48–50].

Finally, our study was conducted on a limited number of patients. Though we were not able

to show statistically significant results regarding the correlation between therapeutic, side

effect currents and therapeutic window, we found it useful to show the correlation between the

VTA and the anatomical boundaries of the STN in patient-specific situations. Further studies

with a high number of chronically implanted patients and more refined computational meth-

ods are therefore warranted to confirm these results. This concept could open the door for

studies to help predict the best stimulation area using algorithms that scan and evaluate the

extended stimulation parameter space for segmented leads [51–53].

Conclusion

Deep brain stimulation of the STN performed with segmented leads and reduced electrode

size resulted in a decreased VTA and increased radial distance at therapeutic currents. More-

over, VTAs were consistently confined inside the anatomical boundaries of the STN at thera-

peutic currents, whereas they predominantly spread beyond the STN at side effect currents in

the direction of undesired fiber tracts. The clinical benefits of directional stimulation are likely

to be obtained through a VTA confined within the STN, while steering VTA away from

unwanted fiber tracts outside the nucleus. Applying the same concepts at a larger scale and in

chronically implanted patients may help to predict the best stimulation area according to spe-

cific symptoms using segmented leads.
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