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Thermal pair annihilation of heavy particles, such as dark matter or its co-annihilation partners, can 
be strongly influenced by attractive interactions. We investigate the case that pair annihilation proceeds 
through a velocity-suppressed p-wave operator, in the presence of an SU(3) gauge force. Making use of 
a non-relativistic effective theory, the thermal average of the pair-annihilation rate is estimated both 
through a resummed perturbative computation and through lattice simulation, in the range M/T ∼
10...30. Bound states contribute to the annihilation process and enhancement factors of up to ∼ 100
can be found.
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1. Introduction

Inelastic processes between a dilute ensemble of heavy parti-
cles moving slowly in a thermal environment are encountered in 
many physical situations. A classic example is given by nuclear re-
actions taking place within the electromagnetic plasma of stars [1]. 
In particle physics, we may consider heavy dark matter particles 
pair-annihilating into Standard Model particles in the early uni-
verse, or a heavy quark and anti-quark pair-annihilating into light 
quarks and gluons in a quark-gluon plasma generated in heavy ion 
collision experiments.

The theoretical treatment of slow annihilation processes is facil-
itated by noting that the average kinetic energy of the annihilating 
particles is small compared with their rest mass, M v2 ∼ T � M . 
Such a scale separation permits for a factorized description of an-
nihilation processes in terms of a series of long-distance matrix 
elements times short-distance Wilson coefficients [2]. In particu-
lar, the thermal average of an annihilation rate can be expanded as 
〈σ v〉 = a + b 〈v2〉 + · · · , where v denotes the relative velocity. The 
term a is said to originate from “s-wave” matrix elements, whereas 
b may be associated with “p-wave” ones.

In the presence of long-range interactions, the coefficients a and 
b may get large corrections compared with a tree-level treatment. 
For scattering states, this is known as the “Sommerfeld (-Gamow-
Sakharov) effect” [3–6]. Sommerfeld factors are nowadays routinely 
included in Boltzmann equations for dark matter pair annihilation 
(cf., e.g., refs. [7–11]).
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Long-range interactions may also lead to the appearance of 
bound states in the dark sector, which opens up a fast pair-
annihilation channel (cf., e.g., refs. [12,13]). Bound states are par-
ticularly important if the dark sector contains particles charged 
under QCD, as is the case for instance in a prototypical model in 
which dark matter is a singlet Majorana fermion and the media-
tor is a slightly heavier strongly coupled scalar (cf. refs. [14,15] for 
reviews).

Recently, we have developed a framework which permits to 
estimate the thermally averaged pair annihilation rate, including 
bound-state effects, beyond perturbation theory [16]. The frame-
work can be applied to a number of cosmological models [17], 
particularly the prototypical framework mentioned above [18,19], 
where bound-state effects have been seen to be important from 
other considerations as well [20–23].

The purpose of the present work is to extend ref. [16] from the 
s-wave to the p-wave case. Even if the p-wave contribution is sup-
pressed by 〈v2〉, its “standard” Sommerfeld enhancement is larger 
than for s-wave [24,25]. If the coefficients of the s-wave operators 
happen to vanish at leading order, p-wave may be the dominant 
channel [26]. p-wave annihilation has also been discussed from as-
trophysical motivations (cf., e.g., refs. [27–29]).

This presentation is organized as follows. After outlining the 
basic setup (cf. sec. 2), we review thermally averaged pair annihila-
tion rates within resummed perturbation theory (cf. sec. 3). Having 
introduced the lattice framework (cf. sec. 4), we present and dis-
cuss numerical results (cf. sec. 5), and conclude then with a brief 
summary (cf. sec. 6).
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Basic setup

Denoting by n the dark matter number density, and assuming 
that there is a discrete quantum number which prohibits dark mat-
ter from decaying, its cosmological evolution is normally described 
by the Lee-Weinberg equation [30–32],

ṅ + 3Hn = −〈σ v〉 (
n2 − n2

eq

)
, (2.1)

where H is the Hubble rate, σ is an annihilation cross section, v
is a relative velocity, and 〈...〉 indicates a thermal average over the 
momenta of the annihilating particles.

If the dark sector experiences strong interactions, the thermal 
average 〈σ v〉 may receive large radiative corrections. In order to 
address these beyond perturbation theory, it was noted in ref. [33]
that by linearizing eq. (2.1) close to equilibrium, we may interpret 
the averaged cross section as being related to a chemical equilibra-
tion rate (≡ �chem),

〈σ v〉 = �chem

2neq
. (2.2)

Subsequently we can make use of linear response theory in or-
der to relate �chem to an equilibrium correlator. Furthermore, if we 
find ourselves in the non-relativistic regime, i.e. with dark matter 
masses M � π T , then the annihilations can be described by lo-
cal operators [1], similar to those found in the NRQCD context [2]. 
Then the equilibrium correlators can be reduced to thermal expec-
tation values of the annihilation operators [16],

〈σ v〉 = 4
∑

i

ci
〈Oi〉
n2

eq
. (2.3)

Here the Wilson coefficients ci and the operators Oi can be taken 
over from a vacuum computation, capturing the contribution of 
“hard scales” to the annihilation process, whereas the influence of 
the “soft scales” resides within the thermal expectation value 〈...〉.

As is usual for effective field theories, the operators Oi can 
be organized as an expansion in 1/M2. The leading terms, called 
s-wave operators, do not contain derivatives and are suppressed 
by 1/M2. At the next order, operators appear which contain two 
spatial derivatives and which are correspondingly suppressed by 
1/M4. Given that 〈∇2〉/M2 ∼ π T /M � 1, the p-wave operators 
are normally strongly suppressed compared with the s-wave oper-
ators. However, p-wave operators may experience relatively speak-
ing larger enhancements from interactions [24,25] and also display 
bound states, and they thus merit a detailed look.1

The way that interactions modify the annihilation process can 
be parametrized through “Sommerfeld factors”. In vacuum, the 
Sommerfeld factor for an annihilation from unbound states is de-
fined by writing

σ v = σtree v × S(v) , (2.4)

after which thermal averaging is often implemented as

〈σ v〉 	
∫

v σ v e−Mkin v2/T∫
v e−Mkin v2/T

. (2.5)

1 It has been suggested that, apart from influencing the value of 〈σ v〉, bound 
states also lead to a modification of the functional form of the part n2 − n2

eq in 
eq. (2.1) at late times when n − neq � neq so that we leave the linear response 
regime [34]. Furthermore, when π T � �E , where �E is a binding energy, bound 
states fall out of chemical equilibrium, and should be added as separate variables in 
the set of rate equations.
In reality, vacuum and thermal effects cannot be factorized in this 
way. Indeed thermal corrections can also modify masses like Mrest
and Mkin, and open up new channels not present in vacuum, like 
scatterings off light plasma particles.

A proper definition of a thermally averaged Sommerfeld factor 
can be given for the combination appearing in eq. (2.3) and for 
each operator separately, viz.

S̄ i ≡ 〈Oi〉/〈Oi〉tree

n2
eq/(n

2
eq)tree

. (2.6)

Here we define 〈Oi〉tree and (n2
eq)tree as tree-level quantities. The 

rationale of the double ratio in eq. (2.6) is that it removes effects 
not only from the tree-level scattering process but also from “triv-
ial” corrections to the rest mass, which affect n2

eq and 〈Oi〉 by a 
large amount [1]. As a consequence of this definition, eq. (2.3) can 
now be re-expressed as

〈σ v〉 = 4
∑

i

ci S̄ i
〈Oi〉tree

(n2
eq)tree

, (2.7)

where the tree-level ratio 〈Oi〉tree/(n2
eq)tree is dimensionless and 

has a simple expression, for instance as given in eq. (3.4) for the 
operator in eq. (3.1).

To be concrete, we consider a theory with heavy particles 
charged under the fundamental and antifundamental representa-
tion of SU(3). Following the original inspiration from QCD [16], 
these fields are taken to be a spin- 1

2 particle and antiparticle (that 
is, heavy quark and antiquark), each with N ≡ 2Nc degrees of free-
dom. However, spin-dependent effects are highly suppressed, so 
we believe our results to be valid also for spin-0 particles, such as 
stops, with the replacement N → Nc. The particle and antiparticle 
fields are denoted by θ and χ , respectively, and the annihilation 
operator considered is defined in eq. (3.1).

3. Perturbative considerations

Assuming that the overall scaling of the annihilation operators 
as 1/M2 has been incorporated into the coefficients ci in eq. (2.3), 
the p-wave operator that we consider is defined as

Op ≡ 1

M2
kin

[
θ †

(
− i

2
←→
D

)
χ

] [
χ †

(
− i

2
←→
D

)
θ
]

. (3.1)

Here θ and χ † are annihilation operators for particles and antipar-
ticles, respectively. As the annihilation operators appear on the 
right, the vacuum state does not contribute to 〈Op〉.

It is straightforward to evaluate the thermal expectation value 
of eq. (3.1) in tree-level perturbation theory. We obtain

〈
Op

〉
tree = N

∫
p,q

(p − q)2

4M2
kin

e−(E p+Eq)/T

= N × 3T

2Mkin
×

(
MkinT

2π

)3

e−2Mrest/T , (3.2)

where E p ≡ Mrest + p2/(2Mkin) is a non-relativistic energy.2 Simi-
larly,

2 At T > 0, Mrest and Mkin do not coincide because of the so-called Salpeter 
correction to Mrest , cf., e.g., refs. [1,35]. Even in vacuum the two can differ if UV 
regularization does not respect Lorentz invariance, as is the case for instance within 
the lattice NRQCD setup.
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(
neq

)
tree ≡ 2N

∫
p

e−E p/T = 2N

(
MkinT

2π

) 3
2

e−Mrest/T , (3.3)

and correspondingly

〈Op〉tree

(n2
eq)tree

= 3T

8N Mkin
. (3.4)

This displays a characteristic p-wave velocity suppression by 
T /Mkin � 1.

In order to determine the perturbative value of the averaged 
Sommerfeld factor of eq. (2.6), it is helpful to go over into center-
of-mass coordinates, defined as

E p + Eq = 2Mrest + k2

4Mkin
+ E ′ , k ≡ p + q . (3.5)

Moreover, it is useful to resolve 〈Op〉 into a spectral representa-
tion, so that contributions from soft energy scales can be inspected 
more carefully. A thermal potential V T (r) (cf. eq. (3.16)) is assumed 
normalized so that limr→∞ V T (r) = 0, i.e. r-independent thermal 
corrections, known as the Salpeter correction, have been included 
in the definition of Mrest. A vector-like Green’s function is solved 
for from{
− ∇2

r

Mkin
+ V T (r) − i�T (r) − E ′

}
G(E ′; r, r′)

= N ∇r′δ(3)(r − r′)
M2

kin

, (3.6)

lim
r,r′→0

Im
[∇r · G(E ′; r, r′)

] ≡ ρp(E ′) , (3.7)

where ρp(E ′) is a spectral function. Following refs. [16,17] and car-
rying out the integral over the center-of-mass momentum k (cf. 
eq. (3.5)), we then get

〈Op〉 =
(

MkinT

π

)3/2

e−2Mrest/T

∞∫
−


dE ′

π
e−E ′/T ρp(E ′) , (3.8)

S̄ p = 2Mkin

3NT

(
4π

MkinT

)3/2 ∞∫
−


dE ′

π
e−E ′/T ρp(E ′) . (3.9)

Here α2Mkin � 
 � Mrest is a cutoff restricting the average to the 
non-relativistic regime. As our masses Mrest , Mkin already include 
thermal corrections, neq = (neq)tree within our approximation, so 
that eq. (3.9) is obtained by dividing eq. (3.8) through (3.2).

Let us crosscheck that eqs. (3.6)–(3.9) are correct at tree-level. 
Setting V T (r) → 0 and �T (r) → 0+ , eq. (3.6) is easily solved in 
momentum space, yielding (p ≡ |p|)

ρp,tree(E ′) ≡ N

M2
kin

∫
p

p2π δ
(

E ′ − p2

Mkin

)

= N M1/2
kin θ(E ′)(E ′)3/2

4π
. (3.10)

Inserting into eq. (3.9) and carrying out the integral over E ′ indeed 
gives unity.

Another limit in which ρp(E ′) can be determined is a Coulom-
bic potential, namely V T (r) → −α/r and �T (r) → 0+ . Parametriz-
ing E ′ = Mkin v2, the above-threshold solution reads

ρp(E ′) = ρp,tree(E ′) S p(v) , (3.11)
where S p is a vacuum p-wave Sommerfeld factor, given by (cf., 
e.g., refs. [24,25])

S p(v) = Ss(v)

(
1 + α2

4v2

)
, Ss(v) ≡ πα/v

1 − e−πα/v
. (3.12)

A large enhancement is observed for v � α, in particular
limE ′→0 ρp(E ′) = Nα3M2

kin/16. This enhancement originates from 
an overlap with an s-wave radial function (this is explained in 
footnote 3), and gives the dominant above-threshold contribution 
to S̄ p if T �α2Mkin.

A general numerical method to find the solution of the s-wave 
analogues of eqs. (3.6) and (3.7) was presented in ref. [36], and an 
implementation for the p-wave was worked out in ref. [37]. The 
solutions can be written as3

ρs(E ′)
M2

kin

= Nα

4π

∞∫
0

dρ Im

(
1

u2
0

)
,

ρp(E ′)
M2

kin

= Nα3

16π

∞∫
0

dρ Im

(
1

u2
0

+ 36

u2
1

)
, (3.13)

where α ≡ g2
s CF/(4π), ρ ≡ rαMkin, and u� is a regular solution of 

the homogeneous equation{
∂2

∂ρ2
− �(� + 1)

ρ2
+ E ′ + i�T (r) − V T (r)

Mkinα2

}
u�(ρ) = 0 , (3.14)

assumed normalized as u� = ρ�+1 + · · · at short distances. It is 
sufficient to solve the equation up to some finite ρ � 1 and attach 
this to the known asymptotics.4

As far as the potential goes, at large separations we make use 
of a Hard Thermal Loop resummed thermal expression which in-
cludes the effects of Debye screening and Landau damping [38–40],

V T (r) = − g2
s CF exp(−mDr)

4πr
,

�T (r) = g2
s CFT

2π

∞∫
0

dz z

(z2 + 1)2

[
1 − sin(zmDr)

zmDr

]
, (3.16)

where mD ∼ gs T is a Debye mass. For numerical estimates we in-
sert 2-loop values of mD and g2

s from ref. [41] (the 3-loop level has 

3 Let us elaborate on the origin of the two parts in ρp . In terms of eigenstates 
of the operator in eq. (3.6), the p-wave solution contains ∇ψ(0). In spherical co-
ordinates, writing ψ = Rnl(r)Ylm(�), we thus need R ′

nl(0). In a Coulomb potential, 
Rn0 has a linear term at small r, Rn0(r) = c0 + c1r + · · · , which leads to an s-wave 
contribution to ∇ψ(0), denoted in eq. (3.13) by u0 ∼ rRn0. This is responsible for 
the dominant term ∼ α2/(4v2) in eq. (3.12). The second term in ρp of eq. (3.13) is 
the “genuine” p-wave contribution, originating from the short-distance asymptotics 
Rn1(r) = d0r + · · · . .

4 For ρ � 1, V T vanishes and �T goes over to a constant, whereby the equa-

tion satisfied by the p-wave wave function reads (∂2
ρ − 2

ρ2 + Ê ′ + i�̂)u1 = 0, where 
Ê ′ ≡ E ′/(Mkinα

2) and �̂ ≡ �T (∞)/(Mkinα
2). Let us denote k ≡

√
Ê ′ + i�̂. Then the 

general solution reads u1 = C[sin(kρ + δ)/(kρ) − cos(kρ + δ)], where C, δ ∈C. The 
function 1/u2

1 is integrable, and subsequently C sin(kρ + δ) and C cos(kρ + δ) can 
be expressed in terms of u1(ρ) and u′

1(ρ). We thus obtain

∞∫
ρ0

dρ Im

(
1

u2
1

)
= Im

{
1

u1(ρ0)
[
u′

1(ρ0) + u1(ρ0)
1−ik3ρ3

0
ρ0(1+k2ρ2

0 )

]
}

. (3.15)

Setting ρ0 → ε ≡ 0+ and recalling u1(ε) ≈ ε2 yields Re(k3/9), which reproduces 
eq. (3.10) from eq. (3.13). The part ∫ ∞

ρ0
dρ Im

(
1/u2

0

)
of eq. (3.13) yields Re(k) when 

ρ0 → ε , which amounts to ∼ α2θ(E ′)(E ′)1/2.
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Fig. 1. Left: the perturbative s-wave spectral function from eq. (3.13). Above the threshold, the result is compared with the prediction from a Coulombic Sommerfeld factor, 
cf. eq. (3.12), where E ′ ≡ Mkin v2. The correct result is below the prediction of the Sommerfeld factor, because the potential gets Debye-screened and because the running of 
the coupling reduces the coefficient of the attraction at short distances. Right: the same for the p-wave.
been reached only for mD [42]). The real part of the potential is in-
terpolated into a vacuum expression at short separations [43,44], 
as discussed in ref. [45]. In order to account for the proper kine-
matics of real processes in a regime beyond which the derivation is 
formally valid, we also follow the arguments presented in ref. [46]
and multiply the imaginary part of the potential by the Boltzmann 
factor e−|E ′ |/T for E ′ < 0. Corresponding numerical solutions of the 
spectral functions ρs and ρp are shown in Fig. 1.

4. Lattice framework

On the lattice the double ratio in eq. (2.6) is replaced through

S̄ p ≡ P p/P cold
p

(P1/P cold
1 )2

, (4.1)

where P1 and P p are expectation values to be specified presently 
(cf. eqs. (4.7) and (4.9)). The superscript “cold” indicates a mea-
surement with all link matrices set to unity; this is an implemen-
tation of the “tree-level” prescription of perturbation theory. The 
division by the respective cold measurement implies that S̄ p devi-
ates from unity only through the effect of gauge interactions. The 
normalization by P 2

1 furthermore implies that modifications of the 
rest mass by gauge interactions are cancelled, an effect which is 
linearly divergent in lattice regularization and strongly influences 
neq (cf. eq. (3.3)).

For a lattice measurement, we choose a simple first-order dis-
cretization of the covariant derivatives in eq. (3.1). We denote by 
Ui a link in the ith direction with origin at 0, by i ≡ asei a dis-
placement in the ith direction by a lattice spacing as , and by Gθ , 
Gχ the propagators

Gθ
αγ ;kl(τ2,x;τ1,y) ≡ 〈

θαk(τ2,x) θ
†
γ l(τ1,y)

〉
, (4.2)

Gχ
αγ ;kl(τ2,x;τ1,y) ≡ 〈

χαk(τ2,x)χ
†
γ l(τ1,y)

〉
, (4.3)

where α, γ ∈ {1, ..., Nc} are colour indices and k, l ∈ {1, 2} are spin 
indices. Given that χ represents an antiparticle to θ , the two prop-
agators are related by

Gχ (τ2,x;τ1,y) = −[
Gθ (τ1,y;τ2,x)

]†
. (4.4)
Because non-relativistic particles move in the positive time di-
rection only, a non-zero contraction may necessitate propagating 
across the imaginary time interval, whose extent is β ≡ 1/T . For 
taking derivatives of a propagator with respect to the position of a 
sink or source we introduce a shorthand notation,

Di G
θ
αγ ;kl ≡ 〈

(Diθ)αk(β,x) θ
†
γ l(0,x)

〉
,

Gθ
αγ ;kl;i ≡ 〈

θαk(β,x) (Diθ)
†
γ l(0,x)

〉
. (4.5)

With these propagators, the lattice analogue of neq reads [16](
neq

)
latt = 2 Re Tr

〈
Gθ (β,0;0,0)

〉
. (4.6)

Given that overall normalization cancels out in eq. (4.1), we in 
practice define P1 by dividing (neq)latt by the number of degrees 
of freedom, viz. 2N , i.e.

P1 ≡ 1

N
Re

〈
Gθ

αα;ii(β,0;0,0)
〉
. (4.7)

For the operator in eq. (3.1), Wick contractions yield

〈Op〉 = 1

2M2
kin

3∑
i=1

Re Tr
〈
Di G

θ
;i G

θ† − Di G
θ Gθ†

;i
〉
. (4.8)

Replacing covariant derivatives by discrete lattice derivatives, and 
choosing again a convenient normalization, whose effects cancel 
out in eq. (4.1), we are led to define

P p ≡ 1

2N

3∑
i=1

Re Tr
〈
Gθ (β, i;0, i) U †

i Gθ†(β,0;0,0) Ui

− Gθ (β, i;0,0) Ui Gθ†(β,0;0, i) Ui

〉
. (4.9)

The diagrams illustrate the topology of the contractions.
The lattice framework and the gauge ensemble are as in 

ref. [16]. The light sector consists of SU(3) gauge theory and 
Nf = 2 + 1 flavours of vectorlike fermions transforming in the 
fundamental representation. The parameters of the action were 
tuned in refs. [47,48]. Denoting by 
 a scale parameter [49], the 
lightest pseudoscalar mesons have masses 1.2
 and 1.5
, respec-
tively, the latter for the mesons involving one quark of the third 
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Fig. 2. Left: thermally averaged Sommerfeld factors for the s-wave [16]. Right: the same for the p-wave. Grey bands represent scale uncertainties of resummed perturbation 
theory, cf. sec. 3, whereas the error bars show statistical errors of lattice simulations, cf. sec. 4. As discussed in sec. 5, the true systematic uncertainties are much larger on 
both sides. The vertical dashed line indicates the crossover at which the systems goes into a confined phase.
flavour. The lattice is anisotropic, with as/aτ ≈ 3.5, where the spa-
tial lattice spacing is as ≈ 0.21
−1. The spatial extent of the box 
is L = 24as . The system is put at a finite temperature by tuning 
Nτ , i.e. the number of temporal lattice sites, so that T = 1

Nτ aτ
. 

The system has a (pseudo)critical temperature at Tc ≈ 0.54
 [50]. 
Thermal properties of the system were studied in ref. [51]. We 
vary T = (0.95...1.9)Tc and, setting Mkin = 14
, can hence access 
values Mkin/T ∼ 14...28, a reasonable range in view of dark matter 
freeze-out computations.

5. Numerical results and their uncertainties

Perturbative results for thermally averaged Sommerfeld factors 
from sec. 3 and lattice results from sec. 4 are compared with each 
other in Fig. 2 (the errors shown for the lattice results are sta-
tistical only). For the p-wave, shown in Fig. 2(right), we find sur-
prisingly good qualitative agreement, indicating an enhancement 
factor ∼ 100 at the lowest temperature. We note that the system 
is in a confined phase for M/T � 26.

For the s-wave, shown in Fig. 2(left), the discrepancy between 
the perturbative and lattice results is rather substantial.5 In fact, 
naively S̄ p > S̄ s (cf. eq. (3.12)), whereas on the lattice S̄ s clearly 
exceeds S̄ p . In this context we note that physically, the thermally 
averaged Sommerfeld factors are sensitive both to energy levels 
and to the corresponding “overlaps”, or wave functions at origin 
(|ψ(0)|2, |∇ψ(0)|2). For another observable in a similar tempera-
ture range, it has been found that while for energy levels there is 
fair agreement, lattice and perturbative overlaps show substantial 
discrepancies (cf. fig. 6 in ref. [52]).

Let us discuss possible reasons for the discrepancy. Starting 
with the perturbative side, we are quite close to the confined 
phase and correspondingly our effective coupling is large, varying 
in the range αs 	 0.3...0.6 for Mkin/T 	 10...30. The grey bands 
in Fig. 2 originate from the variation of a thermal αs [41] as 

5 In ref. [16], the perturbative values were noticeably larger, and the agreement 
looked better. There are two reasons for this: in ref. [16] we used the larger 1-loop 
thermal coupling, and most importantly the Salpeter correction (thermal shift of 
the threshold location to smaller energies) was included in the Sommerfeld factor 
on the perturbative side. The latter has now been excluded from the definition of 
the Sommerfeld factor through eq. (2.6) on both the perturbative and lattice side, 
so we believe the comparison to be fairer.
we change the renormalization scale within a factor 1
2 ...2. In the 

s-wave case, the corresponding error band looks quite narrow. The 
reason is that in this parameter range the value of S̄ s is influenced 
by above-threshold scattering states, i.e. tree-level processes, which 
are insensitive to αs . If we artificially increase αs by a factor two, 
into the range 0.6...1.2, then S̄ s increases by a factor 3...20, im-
proving the agreement, however S̄ p increases simultaneously by a 
factor 4...70, spoiling the agreement on that side. In principle a 
possible way to reduce these uncertainties would be a systematic 
higher-order computation, however it represents a daunting task, 
including the need for a careful power counting concerning which 
resummations are necessary in the various temperature and mass 
ranges of interest.

On the lattice side, no infinite-volume or continuum extrapola-
tion was carried out. A box of a finite size influences the spectrum 
of scattering states, and given that scattering states contribute to 
the pair annihilation process, this might imply the presence of 
finite-volume effects. If the system has tightly bound states, whose 
Bohr radius is not much larger than the lattice spacing, there may 
also be large discretization effects. In order to check whether the 
lattice results are plagued by finite-volume or discretization arti-
facts, additional sets of simulations are needed, requiring a major 
computational effort beyond our resources.

6. Conclusions

Building upon a framework developed in ref. [16], we have 
estimated the thermally averaged p-wave Sommerfeld factor as-
sociated with a particular annihilation channel (cf. eq. (3.1)), both 
through a resummed perturbative (cf. sec. 3) and through a lattice 
computation (cf. sec. 4). Both methods suggest that large enhance-
ment factors ∼ 100 are possible (cf. Fig. 2).

Within naive perturbation theory, S̄ p > S̄ s (cf. eq. (3.12)), but 
on the lattice we find S̄ s > S̄ p (cf. Fig. 2). We may speculate that 
the large non-perturbative increase of S̄ s is due to more prominent 
bound-state effects in the s-wave, however systematic uncertain-
ties may also play a role (cf. sec. 5), an effect which can hopefully 
be clarified through future work.

In cosmological applications, with M �1 TeV, we normally find 
ourselves in the regime T � 
, which implies that α is smaller 
than in our study. However, as indicated by eq. (3.12), the mag-
nitude of the averaged Sommerfeld factors depends on the ratio 
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∼ 〈α/v〉 ∼ √
α2Mkin/T . Therefore large averaged Sommerfeld fac-

tors are found at least in the regime Mkin/T � 100, relevant for 
late-time pair annihilations. Because of the smaller α, higher or-
der corrections should be smaller than in our study. The fact that 
we find qualitative resemblances even in our Fig. 2, then suggests 
that resummed perturbative estimates should be conservative in 
that case. For Mkin/T ∈ (10, 1000), resummed perturbative val-
ues of S̄ s from ref. [18] can be found on the web site http://
www.laine .itp .unibe .ch /sommerfeld, and we have now added cor-
responding results for S̄ p there.
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[42] I. Ghişoiu, J. Möller, Y. Schröder, Debye screening mass of hot Yang-Mills theory 
to three-loop order, J. High Energy Phys. 11 (2015) 121, arXiv:1509 .08727.

[43] Y. Schröder, The Static potential in QCD to two loops, Phys. Lett. B 447 (1999) 
321, arXiv:hep -ph /9812205.

[44] R.N. Lee, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Analytic three-loop static 
potential, Phys. Rev. D 94 (2016) 054029, arXiv:1608 .02603.

[45] Y. Burnier, H.-T. Ding, O. Kaczmarek, A.-L. Kruse, M. Laine, H. Ohno, H. Sand-
meyer, Thermal quarkonium physics in the pseudoscalar channel, J. High En-
ergy Phys. 11 (2017) 206, arXiv:1709 .07612.

[46] S. Biondini, M. Laine, Re-derived overclosure bound for the inert doublet 
model, J. High Energy Phys. 08 (2017) 047, arXiv:1706 .01894.

[47] R.G. Edwards, B. Joo, H.W. Lin, Tuning for three-flavors of anisotropic clover 
fermions with stout-link smearing, Phys. Rev. D 78 (2008) 054501, arXiv:0803 .
3960.

[48] H.W. Lin, et al., Hadron Spectrum Collaboration, First results from 2 +1 dynam-
ical quark flavors on an anisotropic lattice: light-hadron spectroscopy and set-
ting the strange-quark mass, Phys. Rev. D 79 (2009) 034502, arXiv:0810 .3588.

[49] M. Bruno, et al., ALPHA Collaboration, QCD coupling from a nonperturbative 
determination of the three-flavor 
 parameter, Phys. Rev. Lett. 119 (2017) 
102001, arXiv:1706 .03821.

[50] C. Allton, et al., 2 + 1 flavour thermal studies on an anisotropic lattice, PoS 
LATTICE 2013 (2014) 151, arXiv:1401.2116.

[51] G. Aarts, et al., The bottomonium spectrum at finite temperature from N f =
2 + 1 lattice QCD, J. High Energy Phys. 07 (2014) 097, arXiv:1402 .6210.

[52] B.B. Brandt, A. Francis, M. Laine, H.B. Meyer, A relation between screening 
masses and real-time rates, J. High Energy Phys. 05 (2014) 117, arXiv:1404 .
2404.

http://www.laine.itp.unibe.ch/sommerfeld
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C7362s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C7362s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib626F6477696Es1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib626F6477696Es1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib626F6477696Es1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib626F6477696Es2
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib61736F6D6D657266656C64s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib61736F6D6D657266656C64s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C616E64617533s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C616E64617533s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib67616D6F77s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73616B6861726F76s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73616B6861726F76s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib686973616E6Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib686973616E6Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib686973616E6Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7366656C6478s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7366656C6478s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib66656E67s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib66656E67s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D62s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D62s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D62s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib657463s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib657463s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F6C643332s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F6C643332s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F6C6434s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F6C6434s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib676976s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib676976s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D6733s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D6733s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib34717561726B5F6C617474696365s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib34717561726B5F6C617474696365s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7468726573686F6C64s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7468726573686F6C64s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73746F70s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73746F70s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7362s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7362s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7362s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C6Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C6Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D727373s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D727373s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D727373s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6B6C7As1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6B6C7As1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6870s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6870s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6870s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib69656E676Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib69656E676Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib63617373656Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib63617373656Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6867s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6867s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6867s2
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib5A68616F3A32303136786965s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib5A68616F3A32303136786965s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib5A68616F3A32303136786965s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib43686F7175657474653A32303136787377s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib43686F7175657474653A32303136787377s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib43686F7175657474653A32303136787377s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib416E3A323031366B6965s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib416E3A323031366B6965s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636C617331s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636C617331s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636C617332s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636C617332s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F6C6431s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F6C6431s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6368656D6963616Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6368656D6963616Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib62696E646572s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib62696E646572s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib62696E646572s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636865736C6572s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636865736C6572s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib636865736C6572s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F726967696E616Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6F726967696E616Cs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7065736B696Es1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib7065736B696Es1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib62696256544558s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib62696256544558s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib626272s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib626272s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6A61636F706Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6A61636F706Fs1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib674532s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib674532s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D4532s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6D4532s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib706F7431s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib706F7431s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib706F7434s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib706F7434s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib4750746175s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib4750746175s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib4750746175s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib69646Ds1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib69646Ds1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743061s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743061s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743061s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743062s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743062s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743062s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib4C616D626461s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib4C616D626461s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib4C616D626461s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743161s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743161s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743162s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib6C61743162s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73637265656E696E67s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73637265656E696E67s1
http://refhub.elsevier.com/S0370-2693(19)30436-8/bib73637265656E696E67s1
http://www.laine.itp.unibe.ch/sommerfeld

	Studies of a thermally averaged p-wave Sommerfeld factor
	1 Introduction
	2 Basic setup
	3 Perturbative considerations
	4 Lattice framework
	5 Numerical results and their uncertainties
	6 Conclusions
	Acknowledgements
	References


