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1 Introduction

The vacuum structure of N = 2 supergravity theories has been extensively studied. Early

investigations of N = 2 supergravity coupled to abelian vector multiplets [1, 2] showed

already that generating a scalar potential and a breaking pattern requires the gauging of

some symmetries. Early works considered electric gaugings only, later studies included

electric-magnetic gaugings and considered the more complicated theories with hypermul-

tiplets, resulting in a variety of symmetry and supersymmetry breaking patterns.1 In

particular, potentials induced by gauging standard N = 2 supergravity coupled to abelian

vector multiplets arise when Fayet-Iliopoulos (FI) terms [2, 9–11] are switched on. These FI

terms identify the R-symmetries of the theory with the symmetries gauged by the N = 2

vector multiplets, giving charges and masses to gravitini. Moreover, within this setup,

systems that contain only abelian N = 2 vector multiplets do not admit stable de Sitter

vacua.2 For example, with a single physical vector multiplet the masses of its two real

scalars are restricted by a bound [13] of the form

Standard supergravity with single N = 2 vector multiplet: min{m2
i } ≤ −2V , (1.1)

1See for instance [3–8] for reviews.
2Models based on non-Abelian gaugings leading to stable de Sitter vacua are known, see for example [12].
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which excludes stable de Sitter vacua. Similar conditions arise for models with an arbitrary

number of abelian vector multiplets, leading to the conclusion that the only stable vacua are

anti-de Sitter [2]. Alternatively, there can be Minkowski backgrounds with flat directions.

To evade the aforementioned restrictions on the vacuum structure of the N = 2 su-

pergravity one has to drastically deform the theory. For example, once higher-derivative

terms are included in the action, the vacuum structure of a supergravity theory is expected

to change. This direction, for instance, has been pursued in the so-called N = 1 pure

de Sitter supergravity constructions [14–21] where higher-derivative terms appear only in

the fermionic sector in a controlled non-pathological way linked to the non-linear real-

ization of supersymmetry. Indeed, the constraint (1.1) arises in N = 2 supergravity if

one restricts the action to contain at most two-derivative terms for both fermions and

bosons. If this restriction is lifted then new possibilities may arise, as can be readily seen

from the constructions presented for example in [22] that include N = 2 extensions of

de Sitter supergravity.

In this work we will present a new deformation in this direction and illustrate its

properties. In particular, we will investigate the possibility of introducing appropriate

interactions in the N = 2 matter-coupled supergravity such that stable de Sitter vacua

can be constructed with a minimal number of ingredients. We expect our results to have

impact to the construction of new general matter-coupled supergravity but, for simplicity,

in this paper we will focus on models with a single physical vector multiplet and the only

new ingredient in our construction will be a new type of Fayet-Iliopoulos term for the

N = 2 vector multiplet. Such deformation has a minimal impact on the bosonic sector of

the theory and it only affects the scalar potential by introducing an uplifting term. Our

construction can be considered as the generalization of the new Fayet-Iliopoulos term of

N = 1 supergravity [23–26] to an N = 2 setup. The fermionic sector will in principle have

a series of higher order terms, and will also contain higher order derivative interactions,

with a structure similar to the non-linear realizations of supersymmetry. In the unitary

gauge however, where both gravitini are massive, all extra fermionic terms disappear and

the Lagrangian simplifies, as in the case of N = 1 supergravity supplemented with the new

FI term.

An essential assumption that enters our construction is that supersymmetry is always

in a spontaneously broken phase. The low-energy features of such models have been studied

previously in the literature focusing in theories where only the N = 2 goldstini γαi are

included in the spectrum [22, 27–29] irrespective of the source of the breaking (i, j = 1, 2

are the SU(2)R R-symmetry indices). In our setup, once we assume that an N = 2 vector

multiplet sources the complete N = 2 breaking, the degrees of freedom of the goldstini

will be described by the gaugini λiα. Moreover, the auxiliary fields of the vector multiplet

Xij will have a non-vanishing vacuum expectation value. As we will show, we can then

consistently construct composite N = 2 goldstini of the form

γi = −4
λjXij

XpqXpq
+ . . . (1.2)

Using these composite goldstini we can utilize a construction reminiscent of the non-linear
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realization of supersymmetry and introduce explicit N = 2 Fayet-Iliopoulos type of terms

that have the form

Lnew FI ∼ ξ̃ij Xij +O(γγ) . (1.3)

These new Fayet-Iliopoulos terms will in turn justify the initial assumption of spontaneous

supersymmetry breaking and render the construction self-consistent. Indeed, once the

auxiliary fields are solved by their equations of motion, we find that they receive a non-

vanishing vacuum expectation value (vev) given by 〈Xij〉 ∼ ξ̃ij . As a result we will see that

for the new type of N = 2 Fayet-Iliopoulos terms in N = 2 supergravity the condition (1.1)

breaks down and stable de Sitter vacua can be constructed. In contrast however to the

pure non-linear realizations of supersymmetry [22, 27–29], where only the goldstini appear,

the component fields in our construction still reside into standard N = 2 supermultiplets.

This article is organized as follows: In the next section we review the properties of

the goldstini multiplets in global N = 2 supersymmetry, describe the construction of the

new Fayet-Iliopoulos term for a single vector multiplet and contrast its properties with

the standard Fayet-Iliopoulos term. In the third section we review technical aspects of the

superconformal formulation of N = 2 supergravity in superspace, and we elaborate on the

standard FI terms focusing on how they give rise to scalar potentials and gaugings. In

the fourth section we introduce the new type of FI terms that, in contrast to the standard

FI term, do not necessarily require the gauging of the R-symmetry in supergravity, and

we study the vacuum structure for the case of a single physical vector multiplet. Within

this setup we show how the condition (1.1) is eventually alleviated because of the new

Fayet-Iliopoulos terms. We discuss our results, together with comments and outlooks, in

the fifth section while we present some technical details in the appendices.

2 Deformations of N = 2 global supersymmetry

In this section we will present the new Fayet-Iliopoulos terms in an N = 2 supersym-

metric setup. This section serves mostly as a warm-up for the supergravity discussion

which follows.

2.1 N = 2 goldstini in global supersymmetry

When 4D N = 2 supersymmetry is spontaneously broken to N = 0, the effective theory

contains two fermionic goldstone modes, the goldstini, that we call γαi . The SU(2)R indices

i, j take values 1 and 2 and refer to the two supersymmetries. These fermions have the

supersymmetry transformations

δγαi = εαi − 2iγjσ
mεj∂mγ

α
i . (2.1)

The properties of these fermions and their couplings to other fields can be conveniently

described in superspace. The N = 2 superspace is parametrized by the coordinates zM =

(xm, θ
α
i , θ̄

i
α̇) and covariant derivatives DA = (∂a, D

i
α, D

α̇
i ) satisfying the algebra

{Di
α, D

j
β} = 0 , {Dα̇

i , D
β̇
j } = 0 , {Di

α, Dβ̇j} = −2i δij(σ
a)αβ̇∂a . (2.2)
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The goldstini can then be described by the lowest components of the spinor superfields Γiα,

which are defined via the constraints [27] (see also [22, 28, 29] for a detailed description of

N = 2→ N = 0 Goldstini multiplets)

Di
αΓβj = εβα δ

i
j ,

Diα̇Γβj = −2i (σm)ρα̇ Γρi ∂mΓβj .
(2.3)

The N = 2 supersymmetry transformations take the form

δO = εαi Q
i
αO + εjα̇Q

α̇
jO , (2.4)

which means that the lowest component of the Γαi superfield defined as γαi = Γαi | transforms

under supersymmetry as (2.1). Notice that the definition of the Γi in (2.3) means that it

has mass dimension [Γi] = −1/2, but one can always rescale with the supersymmetry

breaking scale and give to the physical goldstino mass dimension 3/2. The Lagrangian for

an N = 2 goldstino that does not interact with other superfields has the form

L = −M4

∫
d8θ |Γ|8 , (2.5)

where the real constant M is identified with the supersymmetry breaking scale and has

mass dimension [M ] = 1. In (2.5) we have made use of the notations

|Γ|8 = Γ4Γ
4
, Γ4 ≡ 1

3
ΓijΓij = −1

3
ΓαβΓαβ , Γ

4 ≡ 1

3
ΓijΓ

ij
= −1

3
Γα̇β̇Γ

α̇β̇
, (2.6)

where we defined Γij ≡ Γαi Γαj = Γji and Γαβ ≡ ΓiαΓβi = Γβα together with their complex

conjugates. Once we evaluate the superspace integral of (2.5) we find the contribution to

the vacuum energy density, the kinetic terms for the two goldstini, and a series of higher

order self-interactions, viz.

L = −M4 − iM4γiσ
m∂mγ

i + iM4∂mγiσ
mγi +O(γ4) . (2.7)

The goldstino superfield Γi can be also coupled to other N = 2 superfields in various

ways keeping manifest the spontaneously broken supersymmetry. We would like however

to focus on a specific coupling that will be relevant to our work later. Assume we have a

scalar N = 2 superfield of the form

U = U + θαj u
j
α + θ

j
α̇u

α̇
j +O(θ2) , (2.8)

where U is now a scalar field and ujα describes fermions appearing at the lowest orders in

θ. Notice that U can be a composite superfield or it can be a descendant of some other

superfield on which we have acted upon with superspace derivatives. We can then consider

the term given by ∫
d8θ |Γ|8 U = U − γαj ujα − γ

j
α̇ u

α̇
j +O(γ2) . (2.9)

In particular, if U is a descendant superfield that describes an auxiliary field in its lowest

component (that is the scalar U transforms as a derivative), then in such case (2.9) will
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provide a linear term in the auxiliary field U followed by terms multiplied by increasing

powers of goldstini. In other words, the combination |Γ|8 of the goldstini can effectively be

considered as a covariantized version of a D-term spurion θ4θ̄4 [30] which once multiplied

by an arbitrary superfield U picks up its lowest component U upon integration over the

full superspace. A spurion-type F-term, that covariantizes θ4, can also be constructed by

simply considering D
4|Γ|8. The difference in using the goldstini instead of the spurions

is clearly given by the extra fermionic terms that turn explicit susy breaking terms into

terms that have the spontenously broken supersymmetry non-linearly realized. As a result,

with the use of the goldstino spinor superfield Γαi one can always introduce in an action

supersymmetric terms linear in the scalar auxiliary fields of any supermultiplet as in (2.9).

This observation is the underlying mechanism utilized in N = 1 supergravity to construct

a new type of Fayet-Iliopoulos term in [23], and we will extend it here to the case of an

N = 2 vector multiplet. To this end, we will follow a procedure that requires two steps:

1. Firstly, we will need to construct a composite goldstino spinor superfield Γαi in terms

of the N = 2 vector multiplet, assuming always that the latter completely breaks

supersymmetry to N = 0.

2. Secondly, we will use the composite Γαi to construct terms of the form (2.9) that

will provide the linear terms for the auxiliary fields of the vector multiplet such that

supersymmetry is indeed spontaneously broken.

We will reproduce this procedure in the following both for global and for local N = 2

supersymmetry.

2.2 N = 2 vector multiplet and new FI terms

In this part we will describe the properties of the N = 2 vector multiplet and introduce

the new N = 2 Fayet-Iliopoulos term. To illustrate the properties of the construction we

will break momentarily the manifest SU(2)R formulation and refer to the anticommuting

coordinates as θ = θ1 and θ̃ = θ2.3 Later we will restore the manifest SU(2)R formulation

but this first analysis might be useful to readers more familiar to N = 1 superspace.

The abelian vector multiplet in global N = 2 supersymmetry is described by a chiral

superfield

Dα̇W = 0 = D̃α̇W , (2.10)

that has a chiral θ̃ expansion4

W = Φ + i θ̃αWα(V ) + θ̃2
(
−1

4
D

2
Φ

)
. (2.11)

In (2.11) Φ is an N = 1 chiral superfield and V is an N = 1 abelian gauge multiplet with

Wα(V ) = −1

4
D

2
DαV , (2.12)

3Here we use the conventions of [31].
4We set the magnetic FI parameter to zero as we are interested in a complete breaking of supersymmetry.
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its N = 1 chiral spinorial field strength (where we use the abbreviations D2 = DαDα,

D
2

= Dα̇D
α̇
, DD̃ = DαD̃α, etc.). The component fields of the N = 1 chiral multiplet are

defined as

Φ = A+ θχ+ θ2F , (2.13)

where A is a complex scalar, χ is a Weyl spinor and F is a complex scalar auxiliary field.

For the chiral field-strength superfield of the vector multiplet we have

Wα(V ) = −iλα +
[
δβαD− i

2
(σmσn) β

α Fmn

]
θβ + θ2(σm)αα̇∂mλ

α̇
, (2.14)

where Fmn = ∂mvn − ∂nvm for the abelian gauge field vm, λ is a Majorana spinor and D a

real scalar auxiliary field. Eqs. (2.11)–(2.14) are written in chiral coordinates. The action

of N = 2 supersymmetry on V implies that Φ = DDṼ , where Ṽ is an N = 2 partner of

V .5 This fact does not have consequences for our analysis here.

The two-derivative model for an N = 2 vector multiplet is given by the superspace

Lagrangian

Lkinetic =
1

2

∫
d2θ d2θ̃F(W ) + c.c.

=

∫
d2θ d2θ̄

[
1

2
F ′(Φ)Φ + c.c.

]
+

1

8

{∫
d2θF ′′(Φ) Wα(V )Wα(V ) + c.c.

}
.

(2.15)

The bosonic sector of (2.15) is

L(bosons)kinetic = ReF ′′FF − ReF ′′∂mA∂mA

+
1

4
ReF ′′D2 − 1

8
ReF ′′FmnFmn +

1

16
ImF ′′FmnFklεmnkl ,

(2.16)

where

ReF ′′ = 1

2

[
F ′′(A) + F ′′(A)

]
, ImF ′′ = 1

2i

[
F ′′(A)−F ′′(A)

]
, (2.17)

and F ′(A) = ∂F(A)
∂A . We are interested in the study of spontaneous supersymmetry breaking

and therefore only the shifts in the supersymmetry transformations of the fermions are

relevant here. The fermion shifts have the form

δλα = iDεα + 2Fηα + . . . , δχα = 2Fεα + iηαD + . . . . (2.18)

From (2.18) we see that in general N = 2 supersymmetry is spontaneously broken to N = 0

if either auxiliary fields F or D acquire a vev. Therefore when supersymmetry is broken by

the vector multiplet it holds

〈F〉 6= 0 , and/or 〈D〉 6= 0 . (2.19)

5Note that in a projective superspace approach [32–34] to off-shell N = 2 supersymmetry, see [35, 36]

for reviews, the unconstrained prepotential for an N = 2 Abelian vector multiplet [34] is described by an

infinite series ofN = 2 superfields Vk(z) organized as Laurent series V(z, ζ) =
∑+∞
k=−∞ ζkVk(z) in terms of an

auxiliary complex coordinate ζ such that (ζD1
α−D2

α)V(z, ζ) = (D
α̇
1 + ζD

α̇
2 )V(z, ζ) = 0 and Vk = (−)kV −k.

The field strength of the N = 2 vector multiplet then satisfies W = − i
4
Dα̇1D

α̇
1 V1 = − i

4
Dα̇2D

α̇
2 V−1

which, once reduced to N = 1 superspace, gives Φ = W |θ2 = − i
4
D

2
V1|θ2=0 and Wα = −iD2

αW |θ2=0 =

− 1
4
D

2
DαV0|θ2=0 that identifies Ṽ = − i

4
V1|θ2=0 and theN = 1 vector multiplet prepotential as V = V0|θ2=0.
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The simplest way to achieve a setup where this is realized is by adding to (2.15) Fayet-

Ilioupoulos terms of the form [9–11]

Lstandard FI = −ξD− fF− f̄F , (2.20)

for a real constant ξ and a complex constant f . Once we integrate out the auxiliary fields

we have

〈D〉 =
2ξ

ReF ′′
, 〈F〉 =

f̄

ReF ′′
. (2.21)

Notice that the term (2.20) is invariant under supersymmetry, therefore it can be consis-

tently added to the Lagrangian (2.15) and thus breaks supersymmetry only spontaneously.

The scalar potential of the resulting theory is

V =
|f |2 + ξ2

ReF ′′
. (2.22)

Notice that within this set-up the previous scalar potential generically leads to a run-

away behavior that will restore supersymmetry. The only consistent setup is to have

ReF ′′ =const. that leads to a constant scalar potential, though the Lagrangian will describe

a non-interacting theory. Consistent interacting supersymmetry breaking patterns are

known to arise if both Electric and Magnetic FI terms are turned on [37] or when these

models are coupled to supergravity. We will keep for simplicity the Magnetic FI terms

turned off in this notes and focus on supergravity in the next sections.

Assuming that (2.19) holds we can derive a property for a specific composite superfield

that will be relevant for the rest of our discussion. We have〈(
D4D

4|DW |8
) ∣∣∣

θ=θ̃=0

〉
=
∣∣∣〈 (16FF + 4D2

)2 〉∣∣∣2 6= 0 , (2.23)

where

D4 = D2D̃2 , D
4

= D
2
D̃

2
, |DW |8 = |DαWDαW |2|D̃βWD̃βW |2 . (2.24)

It is important to stress that the previous condition is equivalent to the requirement that

the vacuum breaks completely supersymmetry which, according to eqs. (2.19) and (2.21),

is consistent whenever ξ and/or f are nonvanishing. From (2.23) we then see that

the superfield [
D4D

4 (|DW |8) ]−1 , (2.25)

is always well-defined as long as (2.19) holds, i.e., as long as the vector multiplet contributes

to the complete supersymmetry breaking. We can now introduce the new N = 2 Fayet-

Iliopoulos term, which is given by the expression

Lnew FI =

∫
d8θ

162 |DW |8

D4D
4|DW |8

{
− i

2
ξDD̃W +

1

4
fD2W +

1

4
f̄D

2
W

}
. (2.26)

Note that the pre-factor (162 |DW |8)/(D4D
4|DW |8) in (2.26) is chosen to pick the lowest

component of the Lagrangian in the bracket as the only bosonic part of the component

– 7 –
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action, similarly in spirit to (2.9). The bosonic sector of (2.26) can be seen to match

with (2.20), therefore supersymmetry will be broken by the vector multiplet, thus making

the term (2.26) self-consistent.

As we explained earlier the scalar potential (2.22) however leads to a runaway behavior

that will restore supersymmetry unless the function ReF ′′ is constant. In the setup with

a standard FI-term this leads to a non-interacting theory. However, with the new FI

term (2.26) and with constant ReF ′′, the theory is interacting due to the higher order

fermionic interactions of the type appearing in (2.9). In particular, the theory will contain

the standard kinetic terms given in (2.16), the related kinetic terms for the gaugini, and a

series of higher order non-linear interactions that will always contain fermions and will be

generically suppressed by the supersymmetry breaking scale
√
V.

We can now recast our results in the SU(2)R covariant formulation and underline the

properties of the non-linear structure of (2.26). The N = 2 chiral multiplet constraints

can be written in a covariant SU(2)R description and take the form [38]

Dα̇iW = 0 , (2.27)

and

DijW = D
kl
W = εikεjlDklW . (2.28)

We have used the abbreviations

Dij = DαiDj
α , Dij = Dα̇iD

α̇
j , (2.29)

and we follow conventions where ε12 = −ε12 = 1.6 The auxiliary fields can be recast into

an SU(2)R covariant notation by defining the symmetric and real isotriplet, Xij = Xji,

(Xij) = Xij , as

Xij = DijW | =

(
−4F −2i D

−2i D −4F

)
, Xij =

(
−4F 2i D

2i D −4F

)
, (2.30)

which gives 1
16X

ijXij = 1
16 det[Xij ] = 2|F|2 + 1

2D2. Note that XikXkj = δij X
pqXpq/2 and

that the fermions λiα = (χα, λα) shift under supersymmetry as δλkα = −1
2εjαX

kj+ . . . Once

we define

∆ =
1

48
DijDij =

1

16
D2D̃2 , ∆ =

1

48
D
ij
Dij =

1

16
D

2
D̃

2
, (2.31)

we find7 〈
∆∆|DW |8

∣∣∣
θi=0

〉
=
〈(1

8
XijXij

)4 〉
. (2.32)

6For the covariant SU(2)R notations we follow [39].

7Note that in the SU(2)R covariant notation we have |DW |8 = 1
9

∣∣∣(DαiW )(Dj
αW )(Dβ

iW )(DβjW )
∣∣∣2.
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The complete breaking of supersymmetry is then equivalent to8

〈XijXij〉 6= 0 . (2.33)

We can now recast (2.26) in the form

Lnew FI =

∫
d8θ

|DW |8

∆∆|DW |8

{
1

8
ξijD

ijW + c.c.

}
, (2.34)

which delivers in the bosonic sector

L(bos.)new FI =
1

8
ξijX

ij + c.c. (2.35)

To match (2.34) to (2.26) (or equivalently (2.35) to (2.20)) we can set

ξij =

(
f −i ξ

−i ξ f̄

)
, (2.36)

which is however not a unique choice as there is the freedom of SU(2)R rotations.

Now we are ready to relate the Lagrangian (2.34) to the underlying goldstino structure.

We start by defining the following composite nilpotent chiral superfield

X = ∆
(
|DW |8

)
, (2.37)

which has the properties

X2 = 0 , D
i
α̇X = 0 , 〈∆X〉 6= 0 , (2.38)

with the last one holding only when supersymmetry is completely broken, i.e. when (2.33)

holds. By using the results in the appendix A, besides X2 = 0, the X superfield can be

shown to satisfy by construction a series of nilpotency conditions of the form [22, 29]

XDADBX = 0 , XDADBDCX = 0 , DA = (∂a, D
i
α, D

α̇
i ) . (2.39)

As a result, one can also show that

XX = ∆
(
|DW |8

)
∆
(
|DW |8

)
=
(
|DW |8

)
∆∆

(
|DW |8

)
=
(
|DW |8

)
∆X . (2.40)

As a rapid cross-check, the reader can act on the two sides of (2.40) with ∆ and check that

it gives an identity. From (2.40) we derive

|DW |8

∆∆|DW |8
=

XX

∆X∆X
. (2.41)

8Magnetic Fayet-Iliopoulos terms can be described as deformations of the constraint (2.28) by mean of

a constant real isotriplet M ij = (Mij) as (DijW −Dij
W ) = 4iM ij ; see [37, 40–46] for the case of N = 2

global supersymmetry and [44, 47, 48] for extensions to curved N = 2 superspaces and local supersymmetry.

In this case Xij = DijW |θ=0 is not real any longer and it is possible to have cases where at last one of the

components of 〈Xij〉 is non-zero but 〈XijXij〉 ≡ 0. In this case supersymmetry is spontaneously broken

from N = 2 to N = 1.
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Notice that the left-hand-side of (2.41) is identical to the factor appearing in (2.34). We can

simplify (2.34) even further by relating to the Γi goldstino superfields. Following [22, 29],

we know that from a nilpotent chiral superfield satisfying (2.38) and (2.39) it is always

possible to define the goldstini superfields Γαi of section 2.1 as composite of X as follows

Γαi = − 1

12

Dj
αDijX

∆X
. (2.42)

By using the composite nilpotent chiral superfield defined in (2.37) we can then define a

Goldstino multiplet as a composite of the vector multiplet W , Γαi = Γαi(W ). Its compo-

nent field proves to be completely determined in terms of the vector multiplet components

γαi = −4
Xij

XpqXpq
λjα + . . . , (2.43)

where we have neglected in the previous equation terms that are function of Fmn and

derivatives of the vector multiplet fields, or higher order than linear in the gaugini. The

composite Γαi goldstino superfields have the property

Γ4 =
X

∆X
, Γ

4
=

X

∆X
, (2.44)

which can be proven by using the nilpotency properties of X given in (2.39). The above

results mean that the new N = 2 Fayet-Iliopoulos term can be recast in the equivalent form

Lnew FI =

∫
d8θ |Γ|8

{
1

8
ξijD

ijW + c.c.

}
, (2.45)

where the Γ superfields are the composite objects that are uniquely defined in terms of W

from the procedure we presented above. The form of the Lagrangian (2.45) is exactly of the

form (2.9) that we analyzed earlier. As a result when we expand (2.45) in components we

will find a bosonic sector given by 1
8ξijD

ijW |+ c.c. and the rest will be terms proportional

to the goldstini. More importantly, the form of the Lagrangian (2.45) is such that its

embedding in N = 2 supergravity can be achieved by following the results of [22].

Let us close this section with an observation on other possible deformations of the

theory. Clearly because of the explicit introduction of non-linear realizations the deforma-

tions are numerous. First of all, it is clear that we could introduce in (2.45) an arbitrary

function H(W,W ) of W and W obtaining other types of FI terms

Lother FIs =

∫
d8θ |Γ|8H(W,W ) ξijD

ijW + c.c. (2.46)

which, for simplicity, we will not investigate further both in the globally and locally super-

symmetric cases. Another simple example is to have a term of the form

LUplift = −
∫

d8θ |Γ|8 U(W,W ) , (2.47)

where the function U(W,W ) of W and W is in general completely unconstrained. This

uplift term can of course only be sustained once supersymmetry is broken by the vector
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multiplet W because it is the non-vanishing vevs of the auxiliary X
(W )
ij that guarantee

the self-consistency of the construction of the composite Γ superfields. This means that

in general an uplift term as (2.47) has to come together with a term, such as the new FI

term, that guarantees 〈Xij(W )X
(W )
ij 〉 6= 0. From (2.9) we see that the term (2.47) leads

to a contribution U(A,A) to the potential of the vector multiplet scalar fields, A and A,

of the N = 2 effective theory. Notice finally that a different type of deformations, that

do not rely on non-linear realizations is possible. We could have also considered a term of

the form ∫
d8θ

W 2W
2

∆W 2∆W
2 ξijD

ijW , (2.48)

which would generate linear terms in Xij . Such term however would also generate all sorts

of higher derivative terms, for example terms including �W 2�W
2
, that would not only

lead to a complicated expression for the bosonic sector, but would possibly lead to ghost

excitations within the effective theory. For this reason we neglect this kind of terms that at

first sight might look as a natural N = 2 generalization of the N = 1 new FI term of [23].

3 N = 2 supergravity coupled to abelian vector multiplets

We will now review some results about N = 2 gauged supergravity constructed by using

an off-shell setting that might not be familiar to all the readers. By following [39, 49],

we will also introduce superspace results that we will use for the rest of this work. We

are going to employ an off-shell superconformal approach; see [7] for a comprehensive

review and also [39, 49] for N = 2 conformal superspace, where Poincaré supergravity is

obtained by coupling the Weyl multiplet of conformal supergravity to two compensators.

We choose to use an off-shell setting where the two compensators are respectively an N = 2

vector multiplet and an N = 2 tensor multiplet. For simplicity in this paper we focus on

studying supergravity-matter couplings comprising only physical vector multiplets without

any physical hypermultiplets. In this section we start by introducing the superconformal

multiplets that will play a role in our discussion, then we describe the action associated

to a generic system of vector multiplets coupled to off-shell N = 2 Poincaré supergravity.

We first consider the case of ungauged supergravity. After that we will explain how the

standard FI term leads to gauged supergravity starting from an off-shell setting. Then

we will start describing some properties of the vacuum structure of gauged supergravity

focusing, in particular, to a model based on a single physical vector multiplet. Though

this section does not contain any original results it sets the stage to understanding the

physical implications in N = 2 supergravity that the new FI terms have compared to the

standard one.

3.1 The off-shell superconformal multiplets

The Weyl multiplet of N = 2 conformal supergravity is associated with the local off-

shell gauging of the superconformal group SU(2, 2|2) [50–52].9 The multiplet contains

9See also [53] for a recent description of the N = 2 Weyl multiplet by using the rheonomic approach.
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24 + 24 off-shell physical components described by a set of independent gauge fields: the

vielbein em
a and a dilatation connection bm; the gravitino ψmi, associated with the gauging

of Q-supersymmetry; and U(1)R × SU(2)R gauge fields Am and φm
ij , respectively. The

other gauge fields associated with the Lorentz (ωm
bc), special conformal (fm

a), and S-

supersymmetry (φm
i) transformations of SU(2, 2|2) are composite fields. In addition to

the independent gauge connections, the Weyl multiplet comprises a set of covariant matter

fields: a real rank two antisymmetric tensor Wab; a real scalar field D; and a fermion

Σi. These fields are necessary to close the algebra of local superconformal transformations

without imposing equations of motion.

The field content of the N = 2 Weyl multiplet can be embedded in a conformal

superspace geometry as described in [39, 49] (we will closely follow the notation of [39]10);

see also appendix B for a review of the results needed in our discussion. The gauge fields of

the N = 2 Weyl multiplet are provided by the lowest components of the appropriate super

one-forms [39]. The vielbein (em
a) and gravitini (ψmi) appear as the θ = 0 projections of

the coefficients of dxm in the supervielbein EA one-form, that is

ea = dxmem
a = Ea|| , ψαi = dxmψm

α
i = 2Eαi || , ψ̄iα̇ = dxmψ̄m

i
α̇ = 2E

i
α̇|| , (3.1)

where the double bar denotes setting θ = dθ = 0 [39, 55, 56]. The remaining fundamental

and composite one-forms correspond to projections of superspace one-forms,

A := Φ|| , φkl := Φkl|| , b := B|| , ωcd := Ωcd|| , φkγ := 2Fkγ || , φ̄γ̇k := 2Fγ̇k || , fc := Fc|| .
(3.2)

For instance, the spin connection ωm
bc is as usual composite and satisfies

ωabc = ω(e)abc − 2ηa[bbc] + fermions , (3.3)

where ω(e)abc = 1
2(Cabc+Ccab−Cbca) is the torsion-free spin connection given in terms of the

anholonomy coefficient Cmna := 2 ∂[men]
a. In the following we will also use the expression

for the trace of the special conformal connection fm
a, which is also a composite field such

that its trace satisfies

f = e m
a f am = −D − 1

12
R(e, ω) + fermions . (3.4)

Here R = Rab
ab is the Ricci scalar with the Riemann tensor Rab

cd given by

Rab
cd(ω) = ea

meb
n
(

2∂[mωn]
cd + 2ω[m

ceωn]e
d
)
. (3.5)

The covariant auxiliary fields of the Weyl multiplet, Wab, D, and Σi, belong to some

of the components of the primary N = 2 Weyl superfield Wab and its descendants.11 In

particular, the θ = 0 component of Wab, Wab|θ=0,
12 describes the real rank-two matter field

10The definition of the (σab)α
β matrices in [39, 54] has an overal minus sign difference with the defini-

tion in [31].
11A superfield U is said to be primary of dimension ∆ if KaU = Sαi U = S

i
α̇U = 0, and DU = ∆U . The

super-Weyl tensor Wab is a primary dimension 1 covariant superfield.
12We will often drop the |θ=0 projection as it will be clear from the context when we consider a superfield,

such as Wab, or its lowest component, as Wab|θ=0.
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of the Weyl multiplet which is decomposed in its imaginary-(anti)-self-dual components,
i
2εab

cdW±cd = ±W±ab, as

Wab = W+
ab +W−ab , W+

ab := (σab)
αβWαβ , W−ab := −(σab)α̇β̇W

α̇β̇
, (3.6a)

Wαβ =
1

2
(σab)αβWab , W α̇β̇ = −1

2
(σab)α̇β̇Wab = (Wαβ) . (3.6b)

The self-dual and anti-self-dual parts of Wab have different transformations under the chiral

U(1)R symmetry: YWαβ = −2Wαβ and YW α̇β̇ = 2W α̇β̇ . The fermion and the other real

covariant field of the Weyl multiplet (Σi and D) are associated with the projections

Σαi =
1

3
∇iβWαβ | , Σα̇i = −1

3
∇β̇iW α̇β̇ | , D =

1

12
∇αβWαβ | =

1

12
∇α̇β̇W α̇β̇ | , (3.7)

where

∇ij = ∇γ(i∇j)γ , ∇ij = ∇(i
γ̇∇

j)γ̇
, ∇αβ = ∇k(α∇β)k , ∇α̇β̇ = ∇(α̇k∇

k
β̇) . (3.8)

The algebra satisfied by the N = 2 conformal superspace derivatives ∇A = (∇a,∇iα,∇
α̇
i )

can be found in appendix B. For the reader familiar with the superconformal techniques [7]

it might be useful to underline that in the conformal superspace framework the spinor

derivatives ∇iα and ∇α̇i play the role of the Q-supersymmetry generators Qiα and Q
α̇
i while

the vector derivative ∇a is, as usual, associated to the momentum operator Pa of the

soft algebra describing the gauging of the superconformal algebra. More precisely, given a

covariant tensor superfield T , it will transform under local SU(2, 2|2) transformations as13

δGT = KT , K = ξC∇C +
1

2
ΛabMab + ΛijJij + iτY + σD + ΛAK

A . (3.9)

The projected spinor covariant derivatives∇iα| and∇α̇i | correspond to theQ-supersymmetry

generator, and are defined so that, for example, given the component field T = T | = T |θ=0,

then the action of the Q-supercharge is defined as QiαT := ∇iα|T := (∇iαT )|, etc. For the

other generators, the action on the component field T is simply given by the projection

of the superfield analogue as e.g. McdT = (McdT )|. By taking the component projection

of the superform ∇ = EA∇A, the component vector covariant derivative ∇a is defined to

coincide with the projection of the superspace derivative14 ∇a|

em
a∇a| = ∂m −

1

2
ψm

γ
k∇

k
γ | −

1

2
ψ̄m

k
γ̇∇

γ̇
k |+

1

2
ωm

bcMbc + φm
ijJij + iAmY + bmD

+ fm
bKb +

1

2
φm

i
αS

α
i +

1

2
φ̄m

i
α̇S

α̇
i . (3.10)

The component supercovariant curvature tensors, arising from the commutator of two ∇a
derivatives, then coincide with the lowest components of the corresponding superspace cur-

vatures. The component and conformal superspace formalisms then prove to be equivalent

13As also described in appendix B, Jij , Y and D are the SU(2)R, U(1)R and dilatation generators

respectively while Ka is the special conformal generator, and (Sαi , S
i
α̇) are the S-supersymmetry generators

that for convenience are grouped together as KA = (Ka, Sαi , S
i
α̇).

14Similarly to Wab, we will use ∇a to denote both the superspace or the component vector derivatives

since it will be clear from the context which one we are referring to.
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with the difference that in the latter case local supersymmetry is geometrically realized as

the spinor component of superdiffeomorphisms. In the following, when we discuss compo-

nent fields, we will also use the derivative

∇′a = Da(ω) + φ ij
a Jij + iAaY + baD , (3.11)

where

Da(ω) = ema

(
∂m +

1

2
ω ab
m Mab

)
. (3.12)

When we gauge fix the special conformal transformations we choose ba = 0. We refer

to [39, 49] for a detailed discussion about the relation between N = 2 conformal superspace

and the standard superconformal tensor calculus techniques and, in particular, for the

supersymmetry transformations of the components of the Weyl multiplet which are not

needed for the scope of this paper.

Let us now turn to the description of the matter multiplets embedded in a conformal

supergravity setup. For the matter and the compensator sector we will work with N = 2

vector and tensor multiplets. The definition of an abelian vector multiplet in our setup is

∇iα̇W = 0 , ∇ijW = ∇ijW , (3.13)

where W is a chiral primary complex scalar superfield (KAW = 0) with weights

DW = W , Y W = −2W . (3.14)

The component fields of the vector multiplet are the complex scalar φ, the gaugini λiα and

the SU(2)R triplet of auxiliary fields Xij , which are defined as

φ = W | , λiα = ∇iαW | , X ij = ∇ijW | , (3.15)

whereas the field strength of the abelian gauge field resides in the component

− 1

8
(σab)αβ(∇αβW + 4WαβW )

∣∣∣+ 1

8
(σab)α̇β̇(∇α̇β̇W + 4W

α̇β̇
W )
∣∣∣ = Fab + fermions , (3.16)

where Fab = ema e
n
b (∂mvn − ∂nvm).

The off-shell N = 2 tensor [33, 57–60] (or also called linear) multiplet coupled to

conformal supergravity, which will only play the role of a compensator in our paper, is

described by a superfield [39] Gij = Gji which is a primary (KAGij = 0) with the following

dilatation and U(1)R weights

DGij = 2Gij , Y Gij = 0 , (3.17)

and satisfies the conditions

(Gij) = Gij , ∇(i
α̇Gjk) = 0 , ∇(i

αGjk) = 0 . (3.18)

The tensor multiplet constraints can be solved as

Gij =
1

4
∇ijΨ +

1

4
∇ijΨ , (3.19)
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where Ψ is an unconstrained N = 2 chiral primary superfield with weights

DΨ = Ψ , Y Ψ = −2 Ψ . (3.20)

The covariant component fields that reside in the tensor multiplet are given by

Gij = Gij | , χαi =
1

3
∇jαGij | , F =

1

12
∇ijGij | . (3.21)

The real scalars Gij form an SU(2)R triplet whereas F is a complex scalar singlet. We will

use the abbreviations

G =
√
GijGij/2 , G =

√
GijGij/2 . (3.22)

From the prepotential Ψ we also obtain the gauge two-form bmn of the tensor multiplet as

follows [39]

bmne
m
a e n

b = Bab| = −
i

4
(σab)

αβ(∇αβΨ− 4WαβΨ)
∣∣∣− i

4
(σab)α̇β̇(∇α̇β̇Ψ− 4W

α̇β̇
Ψ)
∣∣∣ . (3.23)

The two-form will usually appear through its supercovariant field strength

h̃a =
1

6
εabcdhbcd + fermions , hmnp = 3∂[mbnp] . (3.24)

3.2 Ungauged N = 2 supergravity

We can now describe actions for two-derivative matter-coupled Poincaré supergravity

within an off-shell setting. We first look at ungauged N = 2 supergravity. We consider a

system of Abelian vector multiplets coupled to N = 2 conformal supergravity

W I = (W 0,WA) , (3.25)

where W 0 will serve as compensator and WA are the physical ones. We consider the

following Lagrangian

Lungauged = {−LV + c.c.}+ LL . (3.26)

The LV part describes the coupling of conformal supergravity to the physical and

compensator vector multiplets. It arises from the following chiral superspace action

SV = Sc + c.c. , Sc =

∫
d4x d4θ E F(W I) , (3.27)

where the special-Kähler prepotential F(W I) is holomorphic and homogeneous of de-

gree two
∂F
∂W

I
= 0 , W IFI = W I ∂F

∂W I
= 2F . (3.28)

This guarantees that F(W I) is a chiral primary with conformal dimension two and U(1)R
weight −4, and then the action Sc is locally superconformal invariant [49]. The bosonic

sector of (3.27) appearing in (3.26) in our notation is given by [39]

e−1 {−LV + c.c.} =−FI�φ
I − 1

32
FIJXIijXJ

ij + 2FIJF IαβF Jαβ + FW α̇β̇W
α̇β̇ − 3DFIφ

I

+ 2FIW α̇β̇F
Iα̇β̇ + 2FIJφ

I
WαβF Jαβ +

1

2
FIJφ

I
φ
J
WαβWαβ + c.c. ,

(3.29)
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where the superconformal d’Alembertian is

�φ
I

= ∇′a∇′aφ
I

+ 2fφ
I
. (3.30)

The LL Lagrangian describing the action for the tensor multiplet compensator cou-

pled to conformal supergravity can be obtained from the following conformal superspace

chiral action

SL =

∫
d4x d4θ E ΨW + c.c. , (3.31)

where Ψ is the prepotential for the tensor multiplet and W = W[G] is a composite vector

multiplet field strength constructed in terms of the tensor multiplet Gij . Its form is given

by [39, 61]

W = − 1

24G
∇ijGij +

1

36G3
Gij∇α̇kGki∇

α̇
l Glj . (3.32)

The action (3.31) is a conformal superspace version of the improved tensor multiplet ac-

tion [62–64]. Its bosonic sector is given by the Lagrangian [39]

e−1LL =− 1

2G
|F |2 +

1

4
Gij

1

G

(
−2�Gij − 6GijD

)
− 1

2
εmnpqbmnf

L
pq

+
1

4
Gij

1

G3

(
∇′aGik∇′aGjlGkl + h̃ah̃aG

ij − 2h̃a∇′aGk(iGj)k
)
,

(3.33)

where the bosonic parts of the superconformal d’Alembertian is given by

�Gij = ∇′a∇′aGij + 4fGij , (3.34)

while the composite two-form fLmn is

fLmn = ∂m

[ 1

2G
φn

ijGij +
1

2G
en
ah̃a

]
− ∂n

[ 1

2G
φm

ijGij +
1

2G
em

ah̃a

]
+

1

4G3
∂mG

ik∂nG
j
k Gij .

(3.35)

The dynamical system described by (3.26) includes several auxiliary fields and pure

gauge degrees of freedom that can be eliminated algebraically to obtain on-shell N = 2

Poincaré supergravity. We focus our attention only on the bosonic fields and start our

discussion from the scalar and gravitational sector. First we integrate out the auxiliary

field D which gives

δD =⇒ N = G , (3.36)

where N defines the special-Kähler potential

N = FI φ
I

+ FI φI , NIJ = FIJ + FIJ . (3.37)

The tensor NIJ is generically chosen to have (d, 1) Lorentzian signature, where d is the

number of physical vector multiplets and the single positive signature direction indicates

the presence of a compensator, here chosen to be φ0, among the vector multiplets. By

imposing that the physical fields have canonical kinetic terms, the signature requirements

on NIJ have been discussed for example in [2], and we will see how it is respected by our
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examples. If we demand the Einstein-Hilbert term to be canonically normalized, 1
2eR, then

we also need to impose the dilatation gauge fixing condition

N = G = FI φ
I

+ FI φI = 1 . (3.38)

Part of the SU(2)R symmetry is fixed for convenience by imposing the gauge condition

Gij = δij , (3.39)

which leaves an off-shell residual Û(1)R symmetry gauged by the following connection

φ̂m := φm
ijδij . (3.40)

Next, we integrate out the auxiliary field Am which gives

δAm =⇒ Am =
i

4
NIJX

I∂mX
J − i

4
NIJX

I
∂mX

J , (3.41)

and we fix the compensating scalar φ0 as a function of the other scalar fields by imposing

the condition (3.38). The previous result describes how the gauging of the Kähler trans-

formations is identified with the U(1)R symmetry. At this point, we can recast the kinetic

terms of the scalar and gravitational sector in the standard form

e−1Lungaugedscalar-gravity =
1

2
R−

∑
I,J 6=0

gIJ ∂mz
I∂mzJ , (3.42)

where gIJ is the Kähler metric

gIJ =
∂2

∂zI∂zJ
K , I, J 6= 0 , (3.43)

deriving from the Kähler potential

K = lnφ0φ
0
, (3.44)

which is defined in terms of the independent physical scalars zI that are

zI =
φI

φ0
. (3.45)

For the ungauged N = 2 Poincaré supergravity (3.26) there is no scalar potential

Vno FI = 0 , (3.46)

and the auxiliary fields of the vector and tensor multiplets are dynamically set to zero

XJ
ij ≡ 0 , F ≡ 0 . (3.47)

The SU(2)R symmetry gauge connections φm
ij and the gauge two-form of the tensor mul-

tiplet bmn are also auxiliary fields. To integrate out φm
ij it is more convenient to split it

into the trace and traceless parts

φm
ij = Ψm

ij +
1

2
δijφ̂m , Ψm

ijδij = 0 . (3.48)
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The relevant bosonic part of the total Lagrangian (3.26) then reads

e−1Lφ,h̃ = Ψm
ijΨm

ij −
1

2
h̃ah̃a − h̃aφ̂a . (3.49)

The equations of motion of φm
ij and bmn identically set Ψm

ij ≡ 0 while φ̂m and bmn are

set to be pure gauge, which we then gauge fix to zero. As a result also these auxiliary fields

are all identically set to zero, that is

Ψm
ij = 0 , φ̂m = 0 , h̃m = 0 . (3.50)

Then, on-shell, all the SU(2)R symmetry stops to be gauged and the gravitini are uncharged

under the vector multiplets U(1)s. Finally we integrate out the real rank-two antisymmetric

tensor auxiliary field Wab which gives

δWαβ =⇒ Wαβ = 2
NIJφ

J

NKLφ
K
φ
L
F Iαβ , (3.51)

together with its complex conjugate. The kinetic terms of the vectors then read

e−1LMaxwell =
1

2
ReωIJ F

I
mnF

Jmn − 1

4
ImωIJ F

I
mnF

J
klε

mnkl , I = (0, A) , (3.52)

where

ωIJ = 2FIJ − 2
NIKφ

K
NJLφ

L

NMNφ
N
φ
M

. (3.53)

Here the field-strength of the graviphoton, that belongs to the supergravity multiplet, is

F 0
mn and the field-strengths of the physical vectors are FAmn. This concludes the stan-

dard derivation of ungauged N = 2 Poincaré supergravity from an off-shell setting. Note

that, due to the absence of any scalar potential, the vacuum of the previous ungauged

N = 2 Poincaré supergravity coupled to a system of Abelian vector multiplets is N = 2

supersymmetric Minkowski.

3.3 Gauged N = 2 supergravity

In this subsection we review the standard Fayet-Iliopoulos term and show how it arises from

the off-shell coupling between the vector multiplets and the tensor multiplet compensator.

The addition of this coupling to the ungauged supergravity (3.26) leads to gauged N = 2

supergravity where, on-shell, part of the SU(2)R symmetry group remains gauged by a

combination of U(1)s of the vector multiplets under which the gravitini will be charged.

The Lstandard FI Lagrangian describing the standard N = 2 Fayet-Iliopoulos term can

be obtained from the following conformal superspace chiral action

Sstandard FI = −
∫

d4x d4θ E Ψ ξIW
I + c.c. (3.54)

This describes a locally superconformal extension of a b2 ∧ ξIF
I
2 ' h3 ∧ ξIv

I
1 topological

action, where b2 = 1
2dxn ∧ dxmbmn is the gauge two-form of the tensor multiplet compen-

sator described by the chiral prepotential Ψ and possessing the component 3-form field
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strength h3 = db2, while F I2 = 1
2dxn ∧ dxmF Imn = dvI1 is the two-form field strength of

the vector multiplet W I possessing component gauge one-form vI1 = dxmvIm. The bosonic

sector of (3.54), which is enough for the purpose of our discussion, is given by

e−1Lstandard FI = −1

8
ξIG

ijXI
ij − ξIFφI +

1

4
ξIε

mnpqbmnF
I
pq + c.c. (3.55a)

= −1

8
ξIG

ijXI
ij − ξIFφI + ξI h̃

avIa + c.c. (3.55b)

The first terms are the analogue of the flat FI terms where ξij is now given by ξ̃Gij while

the other terms arise necessarily due to the presence of the hypermultiplet compensator

Gij . As we will see shortly, the last term describing the bosonic BF coupling between the

gauge two-form b2 and the specific combination of two-form field strength F̂2 = ξIF
I
2 is the

source of the gauging. The off-shell Lagrangian of N = 2 gauged supergravity is given by

Lgauged = {−LV + c.c.}+ LL + Lstandard FI , (3.56)

where LV and LL were given in the previous subsection. Let us now reconsider the gauge-

fixing conditions and integration of the auxiliary fields described in the previous subsection

once the standard Fayet-Iliopoulos terms are turned on in (3.56).

It is clear that, since (3.55) does not depend on the D, Wab, Am, and φm
ij fields

of the Weyl multiplet of conformal supergravity, their equations of motion will be identi-

cal to the ones described in the previous subsection, more specifically eqs. (3.36), (3.41),

and (3.51). Moreover, the variation with respect to φm
ij will set Ψm

ij ≡ 0 and h̃m ≡ 0. We

will also impose the same gauge conditions of the previous subsection, eqs. (3.38)–(3.39),

that fix dilatation and R-symmetry together with bmn ≡ 0, which can be imposed once

hmnp = 0 on-shell.

The standard FI term, however, modifies the variation with respect to auxiliary fields

within the vector and tensor multiplets. As a result the auxiliary fields that will have

different equations of motion are the gauge field φ̂m of the Û(1)R group, the auxiliary fields

XI
ij of the vector multiplets, and the auxiliary field F of the tensor multiplet compensator.

These are no longer set to zero on-shell, and instead acquire a nontrivial dependence upon

the physical fields of the vector multiplets

F = −2 ξIφ
I
, (3.57a)

XI
ij = −4N IJξJ δij , (3.57b)

φ̂m = 2ξIv
I
m , (3.57c)

where equation (3.57c) arises from the last term of (3.49) and (3.55), while N IJNJK = δIK .

The addition of the standard FI term then leads to the following important differences

compared to the ungauged N = 2 supergravity of the previous section:

i) The standard FI term introduces a nontrivial potential for the scalar sector of the

theory whose bosonic Lagrangian becomes

e−1Lgauged =
1

2
R−

∑
I,J 6=0

gIJ ∂mz
I∂mzJ − V

+
1

2
ReωIJ F

I
mnF

Jmn − 1

4
ImωIJ F

I
mnF

J
klε

mnkl , (3.58)

– 19 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
1

with

V = Vstandard FI = −N IJξIξJ − 2|ξIφI |2 . (3.59)

Remember that NIJ , and then N IJ , have Lorentzian type signature and then

−N IJξIξJ can be both positive and negative depending on the choice of ξI .

ii) Equation (3.57) identifies on-shell the abelian vectors of the physical multiplets vAm to-

gether with the graviphoton v0m, weighted by the Fayet-Iliopoulos coupling constants

ξI , with the auxiliary gauge field φ̂m that gauges the Û(1)R subgroup of SU(2)R. As

a result the gravitini become charged under the Abelian U(1)s of the propagating

vectors signalling that the Û(1)R subgroup of the SU(2)R is gauged. Equation (3.57)

describes the precise embedding of the U(1)s in the residual R-symmetry.

It is important to stress again that the term responsible for the gauging of the R-

symmetry is the b ∧ f ' h ∧ v term in eq. (3.55). Without such term in the action

on-shell we would still have φ̂m ≡ 0 instead of (3.57). This fact will play a distinctive

role when we look at the new FI term.

iii) Even though we have not mentioned many details about the fermionic sector of

the theory, let us discuss here only the gravitini, as the third important impact of

the gauging concerns the generation of non-vanishing gravitini masses. Indeed, the

standard FI contains also a term of the form ξIφ
Iδij ψ

i
cσ
cdψ

j
d + c.c. that introduces a

gravitino mass (see e.g. [2, 39]). The terms that contribute to the kinetic and mass

terms of the gravitini are given by

LGravitini =
1

2
εmnpqψ

j
mσn∇′pψqj −

1

2
εmnpqψmjσn∇′pψ

j
q

+ ξIφ
Iδij ψ

i
cσ
cdψ

j
d + ξIφ

I
δij ψciσ

cdψdj ,

(3.60)

where because of the gauging we have

∇′aψnj = Da(ω)ψnj −
1

2
e m
a φ̂mεjkδ

kiψni − iAaψnj , (3.61)

and the gauge fields are given by (3.41) and (3.57). There are of course various other

terms quadratic in the gravitini, however in (3.60) we have included only the ones

that contribute to the kinetic terms and to the mass.15 Notice, in particular, that

the value of the gravitino mass is

m2
3/2 = |ξIφI |2 , (3.62)

where we stress that we are considering only models of N = 2 → N = 0 breaking

with both local supersymmetries broken at the same scale. Under the Û(1)R gauged

subgroup of SU(2)R the two gravitini rotate to each other, that is

Û(1)R : δψm1 = −αψm2 , δψm2 = αψm1 , (3.63)

which is indeed a symmetry of the gravitini mass terms, and α is a Û(1)R parameter.

15The complete action can be found in [2].
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iv) Clearly, because the gauging generates a scalar potential, it should also contribute to

the supersymmetry transformations of the gaugini. In particular, since the gaugini

transformations have the form (we neglect terms that will be zero on a Lorentz

invariant vacuum)

δλIiα = −1

2

(
XIij − 2δijFφI

)
εiα(x) + . . . (3.64)

any vev for XIij and FφI will generate a shift that will signal a supersymmetry break-

ing.16 This observation allows us to introduce a consistency check for supersymmetry

breaking. We will illustrate this here for the gauged supergravity but it can be also

used in the ungauged case, and it will be very helpful for the check of self-consistency

of the new FI terms that we will introduce later. Because in our analysis the scalar

potential is generated only by auxiliary fields (even when we include new FI terms),

it means that it will have the form

VOn-shell = −1

2

(
1

16
NIJX

I
ijX

Jij + |F |2
) ∣∣∣

Xij ,F are evaluated on-shell
. (3.65)

Once more, notice that, due to the Lorentzian type of signature of NIJ , the first

term in VOn-shell is not negative definite and allows in principle for both positive

and negative dynamically generated cosmological constants, whereas the F auxiliary

superfield in (3.65) always leads to a universally negative contribution to the poten-

tial. For gauged supergravity, the values of the auxiliary fields (3.57) are inserted

in (3.65). From the gaugini supersymmetry transformations we see that supersym-

metry restoration means that we have

〈δλIi〉 = 0 =⇒ XIij = 2δijFφI . (3.66)

Therefore when supersymmetry is restored the condition (3.66) will hold for the

vacuum and the scalar potential (3.65) will have the vacuum value

〈VSUSY〉 = −3

4
|〈F 〉|2 = −3m2

3/2 . (3.67)

This expression is the standard expression that relates the gravitino mass to the vac-

uum energy for supersymmetric anti-de Sitter supergravity. As a result, when we

have a vacuum that satisfies (3.67) we will know that supersymmetry may be pre-

served. More importantly, however, when we have a vacuum that violates (3.67) we

will know that supersymmetry is definitely broken. This happens because supersym-

metric vacua always satisfy (3.67). On the contrary, de Sitter vacua, that will be the

main focus of our analysis here, will always violate (3.67) and therefore guarantee

the spontaneous breaking of supersymmetry.

16It is convenient in our discussion here to include also the compensator gaugini λ0j , even though after

gauge fixing they are subject to the condition NIJφ
I
λJj = 0, which is imposed by integrating out the

auxiliary fermions Σiα.
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The presence of the standard FI term leads to a very rich dynamics and structure of

vacua, including AdS and dS, see e.g. [2–8, 13]. However, the standard FI term is incompat-

ible with supergravity-matter systems that include also physical charged hypermultiplets

(see for example [3–8, 11] and [65] for an off-shell superspace derivation of this no-go theo-

rem). We expect that the latter limitation can naturally be overcome when new FI terms

are added to ungauged N = 2 supergravity, but we will not study such extension in this

article, rather we will only work with physical vector multiplets.

Before closing this section let us return to the formula (1.1) that we presented in the

introduction and study it within a model with a single physical vector multiplet W 1. To

contrast the standard FI to the new one that we will introduce later, we will switch-on only

the FI term parameter for the W 1. For clarity we will study explicitly the CP 1 model with

F =
1

4
(φ0)2 − 1

4
(φ1)2 , (3.68)

which gives

NIJ =

(
1 0

0 −1

)
. (3.69)

We define z = φ1/φ0, and we find from (3.38)

φ0φ
0

=
1

1− |z|2
, (3.70)

therefore the Kähler potential and the Kähler metric take the form

K = − ln
(
1− |z|2

)
, gzz =

1

(1− |z|2)2
. (3.71)

Notice that the moduli space is bounded by |z|2 < 1. Now we switch on only the FI term

for the physical vector mutiplet therefore we fix the ξI to have the form

ξI = (0, ξ) , ξ ∈ R , (3.72)

which brings the scalar potential to the form

V(z, z) = ξ2
(

1− 2
|z|2

1− |z|2

)
. (3.73)

An inspection of the scalar potential (3.73) shows that there is no critical point (de Sitter

or anti-de Sitter) except for the z = 0 which is de Sitter and unstable, thus verifying (1.1).

The situation changes when we switch on also the FI term for the compensator vector

multiplet setting ξ0 6= 0. An anti-de Sitter supersymmetric (thus stable) critical point

arises, but the de Sitter critical point is still unstable, in agreement with (1.1).

4 New deformations of N = 2 supergravity

In this section we introduce the new FI terms and the uplift terms of the N = 2 su-

pergravity utilizing a composite goldstino built from physical vector multiplets. Besides
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making some of the analysis technically easier, the composite goldstino clearly indicates

how supersymmetry breaking is sourced by the mediating vector multiplet. Finally we also

study the new scalar potentials and focus on the construction of models admitting stable

de Sitter vacua.

4.1 A composite goldstino

In the flat case we have shown how given a vector multiplet that mediates N = 2→ N = 0

supersymmetry breaking the goldstino fields are related to the gaugini according to (2.43).

The aim of this subsection is to lift the same result to supergravity. Before entering into

the details of the construction, which is technically more involved and richer than the one

of section 2, it is worth anticipating the results that ultimately closely resemble the flat

case. We will show that in the curved case the component goldstini fields satisfy

γαi = −4
Xij
X klXkl

λjα + . . . , (4.1)

where X ij are a curved extension of the vector multiplet auxiliary fields in (2.30) and,

as we will discuss soon in more detail, include contributions depending on the supergrav-

ity compensators. Importantly, X ij is the field appearing in the Poincaré supergravity

supersymmetry transformations of the gaugini

δλiα = −1

2
X ijεαj(x) + . . . (4.2)

where the goldstini (4.1) transform as a shift

δγi = εi(x) + . . . (4.3)

Then, as in the flat case, supersymmetry is completely broken when

〈X ijXij〉 6= 0 . (4.4)

Let us now dig into the technical derivation and analysis of the previous results.

We consider an N = 2 Abelian vector multiplet coupled to conformal supergravity

which is described by the superfield strength W satisfying the constraints (3.13) and (3.14).

The construction of a composite goldstino does not require a priori to impose W to be a

restricted N = 2 chiral multiplet, as we have done in (3.13). In a generalization one can

indeed relax the second condition in (3.13) and W might be replaced by a function of other

multiplets. In fact, it is simple to realize that the construction below only relies on the

existence of some multiplet that mediates supersymmetry breaking with a fermionic field

working as a goldstino. In any case, for simplicity and clarity, in our paper we will only

focus on the case of a single vector multiplet mediating supersymmetry breaking.

We remind that the component fields of the vector multiplet φ, λiα, and Xij , were

defined in (3.15). To construct a composite goldstino, we will assume that both super-

symmetries are broken spontaneously by the auxiliary fields Xij of W and therefore the

gaugini λiα, will serve as the goldstini. It is important to stress a difference between the
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N = 1 and N = 2 case. For an N = 1 vector multiplet coupled to conformal super-

gravity the gaugino is a primary field. In the N = 2 case this is not the case, in fact,

under S-supersymmetry, it holds Sαi λ
j
β ∝ φ. This makes the construction of a composite

goldstino multiplet more involved and, in particular, it implies that we need to introduce

compensators in the N = 2 analysis.

We will now lift formula (2.37) to supergravity and construct a primary nilpotent chiral

superfield X which will be a composite of the N = 2 vector multiplet W . To do so, we

first need to assume the existence of a real conformal compensator superfield C defined to

be a primary (KAC = 0) such that

DC = 2C , Y C = 0 , C 6= 0 . (4.5)

We will also assume the existence of a complex compensator for U(1)R, that we will denote

Z (not necessarily related to C nor W ), such that

DZ = Z , Y Z = −2Z , Z 6= 0 . (4.6)

Note that in general C and Z might be non-trivial composite superfields of other com-

pensators (e.g. W 0 and Gij), as we will indeed set later. However, for the scope of this

subsection we only need their existence. Their main use is to turn ∇iαW and X into

primary superfields.

It was shown in [39] that by using a real conformal primary compensator of dimen-

sion 2, as C, it is possible to construct operators DA which are completely inert under

dilatation, conformal, and S-supersymmetry transformations. The new covariant deriva-

tives are given by

Diα = e−U/4
(
∇iα −∇βiUMβα +

1

4
∇iαUY −∇jαUJj i

)
, (4.7a)

Dα̇i = e−U/4
(
∇α̇i +∇β̇iUM

β̇α̇ − 1

4
∇α̇i UY +∇α̇j UJ j i

)
, (4.7b)

where U := logC. These derivatives, whose algebra is given in appendix B in eq. (B.10),

are such that if T is some conformally primary tensor superfield of vanishing dilatation

weight, then DiαT and Dα̇i T are as well.

Given a vector multiplet W coupled to conformal supergravity, it is then useful to

introduce the dimension zero primary superfield

W := C−1/2W , DW = 0 , YW = −2W . (4.8)

This is chiral with respect to the DA covariant derivatives

Dα̇iW = 0 = DiαW , (4.9)

and satisfies the Bianchi identity

(Dij + 4Sij)W = (Dij + 4S
ij

)W , Dij := Dα(iDj)α , Dij := Dα̇(iD
α
j) , (4.10)
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with Sij and S
ij

being some of the torsion components appearing in the algebra of covariant

derivatives DA; see appendix B and in particular (B.12). The results (4.9) and (4.10) are

direct consequence of (3.13). By using the DA derivatives we define the descendant spinor

Λiα and its complex conjugate Λ
α̇
i as

Λiα ≡ DiαW| = C−3/4
[
∇iαW − (∇iα logC)W

]
| , (4.11a)

Λ
α̇
i ≡ D

α̇
iW| = C−3/4

[
∇αiW − (∇α̇i logC)W

]
| , (4.11b)

which is such that

KAΛiα = DΛiα = 0 , Y Λiα = −Λiα . (4.12)

The field Λiα is a primary extension of the gaugino λiα. Below we will indicate with Λi
α the

superfield DiαW and it will be clear from the context if we refer to the superfield or its

lowest component.

Now that we have introduced the previous technical ingredients, we can define

X = Z−2∆|DW|8 , (4.13)

where ∆ = 1
48∇

ij∇ij is the chiral projector17 in conformal superspace [49] and we have de-

fined

(DW)ij := DαiWDjαW , (DW)ij := Dα̇iWD
α̇
jW , (4.14a)

(DW)4 :=
1

3
(DW)ij(DW)ij , (DW)4 :=

1

3
(DW)ij(DW)ij , (4.14b)

|DW|8 := (DW)4(DW)4 . (4.14c)

The scalar superfield X is by construction chiral (∇α̇i X = 0) and primary (KAX = 0), it

reduces to (2.37) in the global limit, and its weights are

DX = 0 , Y X = 0 . (4.15)

By construction it also satisfies Dα̇i X = 0. Moreover, by using arguments similar to the

ones used in appendix A, that easily extend to the supergravity case, one can show that

the superfield |DW|8 satisfies the following nilpotency conditions

∇A1∇A2 · · · ∇Am |DW|8∇B1∇B2 · · · ∇Bn |DW|8 = 0 , ∀ m,n = 0, 1, · · · , 7 , m+n ≤ 7 ,

(4.16)

together with the following expressions containing eight covariant derivatives

∇C∇A1 · · · ∇Am |DW|8∇Am+1 · · · ∇A7 |DW|8 =

= −(−)ε(C)
(∑m

k=1 ε(Ak)
)
∇A1 · · · ∇Am |DW|8∇C∇Am+1 · · · ∇A7 |DW|8 , (4.17)

17The nomenclature “projector” is misleading, since ∆∆ = 0 6= ∆ which follows from ∇α̇i ∆ ≡ 0, but it

is conventionally used, and we will follow this convention here. Note that, given an arbitrary superfield

U(z), the superfield Φ(z) := ∆U(z) is by construction chiral, ∇α̇i Φ = 0. For the construction of the chiral

projector in N = 2 curved superspaces, besides [49], see [66] and the more recent normal coordinates

analysis of [67].
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that holds ∀ m = 0, 1, · · · , 7. In particular, it holds

∆|DW|8∆|DW|8 = |DW|8∆∆|DW|8 = |DW|8∆∆|DW|8 , (4.18)

which will be useful later. All these conditions hold also when using DA derivatives instead

of the ∇A ones and, exactly as in appendix A, simply derive from the fact that the product

of more than four DiαW is identically zero (the same holds for a product of more than

four Dα̇iW).

Due to the aforementioned results, the composite superfield X of eq. (4.13) satisfies a

series of covariant nilpotency conditions that have been presented in [22], which are

X2 = 0 , X∇A∇BX = 0 , X∇A∇B∇CX = 0 . (4.19)

As described in details in [22], if

〈∆X〉 6= 0 (4.20)

is satisfied then supersymmetry is completely broken and the N = 2 → N = 0 goldstino

multiplet is described by

Γαi = − 1

12

∇jα∇ijX
∆X

, (4.21)

which generalizes (2.42). The way the superspace derivatives act on Γαi is presented in

formulas (4.8a) and (4.8b) of [22], which is essentially the curved superspace generalization

of (2.3). For convenience we can repeat here the main properties of Γαi. It holds

∇jβΓαi = δαβ δ
j
i , (4.22a)

∇β̇j Γαi = 2iΓγj∇γβ̇Γαi − iεij(∇αγ̇W
β̇γ̇

)Γ4 − iεijW
β̇γ̇∇αγ̇Γ4

−2iεijW
β̇γ̇

ΓklΓ
αk∇γγ̇Γγl − 4i

3
W

β̇γ̇
Γk(iΓ

αk∇γγ̇Γγj)

−1

3
εij(∇

k
γ̇W

β̇γ̇
)ΓklΓ

αl − 2

3
(∇γ̇(iW

β̇γ̇
)Γj)kΓ

αk , (4.22b)

Sβj Γαi = 2εαβΓij + 2εijΓ
αβ , S

j

β̇
Γαi = 0 , KaΓαi = 0 . (4.22c)

Note that Γαi is not a primary18 but remarkably, thanks to (4.22c), the superfield Γ4 =
1
3 ΓijΓij = −1

3 ΓαβΓαβ turn out to be a primary such that

KAΓ4 = 0 , DΓ4 = −2Γ4 , Y Γ4 = −4Γ4 . (4.23)

An important property of Γ4 is

∇α̇i Γ4 = −2iΓ4∇γα̇Γγi . (4.24)

This relation can be used to check that

X = Γ4∆X , (4.25)

18Though not necessary for our analysis, a primary extension of Γαi can be straightforwardly constructed

by using the compensator Z along the same line of the results presented in [22].
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is chiral. In fact, the equation (4.25) solves the constraints (4.19). Another useful relation

that derives from (4.16)–(4.18), that extends the flat relation (2.40), is

XX =
1

Z2Z
2∆|DW|8 ∆|DW|8 =

1

Z2Z
2 |DW|

8∆∆|DW|8 = Z−2|DW|8∆X . (4.26)

By dividing the previous expression by ∆X∆X, and using again the nilpotency rela-

tions (4.16)–(4.18), one gets

|Γ|8 := Γ4Γ
4

=
XX

∆X∆X
=
Z−2|DW|8

∆X
=

Z−2|DW|8

∆Z−2∆|DW|8
=
|DW|8

∆∆|DW|8
, (4.27)

which extends (2.41) to the supergravity case and shows explicitly how |Γ|8 is expressed in

terms of the primary gaugini. Thanks to nilpotency, one can also derive another equivalent

form of |Γ|8 that will be useful soon, that is

|Γ|8 =
C−2|DW|8

D4D4|DW|8
, D4 :=

1

48
DijDij , D4

:=
1

48
DijDij . (4.28)

Let us turn back to the self consistency of the previous construction. It is clear that for

the existence of the composite goldstino Γαi, and hence N = 2 → N = 0 local supersym-

metry breaking, a necessary condition to be satisfied is eq. (4.20) which is equivalent to the

condition that the bosonic part of the denominators of (4.27) and (4.28) have nonzero vev

〈∆∆|DW|8〉 6= 0 , ⇐⇒ 〈D4D4|DW|8〉 6= 0 . (4.29)

In the flat case these are identically satisfied once 〈XijXij〉 6= 0. In the supergravity case,

as already mentioned, due to the presence of the compensators, the situation is more sub-

tle. To investigate this issue one can compute the purely bosonic part of ∆∆|DW|8 and

equivalently of D4D4|DW|8. By purely dimensional grounds, and by the requirement that

all eight fermions DiαW and Dα̇iW of eq. (4.11) in |DW|8 are saturated by the eight spinor

derivatives in ∆∆, it is clear that the bosonic part of ∆∆|DW|8 is given by an eighth

order product of terms such as ∇ijW = ∇ijW , ∇aW and ∇aW , the vector field strengths

Fαβ ∝ ∇k(α∇β)kW and F
α̇β̇ ∝ ∇(α̇

k ∇
β̇)k
W , but will also depend on the supergravity com-

pensator C in combinations given by the superfields Sij , S
ij

, Gαα̇, Gαα̇
ij , Xαβ , X α̇β̇ defined

in (B.12).19 Actually, it is simpler to understand the dependence of the bosonic part of

D4D4|DW|8. This clearly depends only on eighth order combinations of DijW, DijW,

Dk(αDβ)kW, D(α̇
k D

β̇)kW, and Dα̇i D
j
βW =

(
− 2iδjiDβα̇W + 4δjiGβ

α̇W + 4iGβ
α̇j
iW
)

and its

complex conjugate. Assuming that the vacua preserve 4D Lorentz invariance the vev of

〈D4D4|DW|8〉 can only be a function of 〈Xij〉 and 〈X ij〉 where

Xij := DijW| =
[
(C−1|)Xij − 4(C−1/2Sij |)φ

]
, (4.30a)

X ij := DijW| =
[
(C−1|)Xij − 4(C−1/2Sij |)φ

]
. (4.30b)

19The dependence upon the super-Weyl tensor, Wαβ and W α̇β̇ , appears only at higher orders in fermions.

– 27 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
1

Up to fermion terms, and neglecting terms other than Xij and X ij (the full expression will

be given elsewhere), a simple calculation shows that it holds

D4(DW)4 =
1

64
[(DijW)(DijW)]2 + . . . ,

D4
(DW)4 =

1

64
[(DijW)(DijW)]2 + . . . ,

(4.31a)

D4D4|DW|8 = D4(DW)4D4
(DW)4 + · · · = 1

642
|(DijW)(DijW)|4 + . . . , (4.31b)

which implies

〈D4D4|DW|8〉| = 1

642
〈|X ijXij |4〉+ . . . . (4.32)

As already mentioned, in this paper we will always assume for simplicity that

〈XijXij〉 6= 0 implies 〈X ijXij〉 6= 0 so that supersymmetry is completely broken, and

we will a posteriori cross-check that this assumption is valid as we have explained in the

previous section. In our examples in the next sections we will focus on the cases where W

is a physical vector multiplet, because it will be utilized for the new FI terms.

The situation is more subtle if W is chosen to be a compensator used to describe

Poincaré supergravity. In this case ∆X is a function of purely geometric tensors and on a

background whose vacuum preserves some supersymmetry we should have 〈∆X〉 ≡ 0, in

accordance with our earlier discussions. Although a complete analysis of this problem is

beyond the scope of our paper, we can check this property for the simplest nontrivial N = 2

supersymmetric background — 4D anti-de Sitter (AdS) — which is the vacuum, e.g., of pure

gauged supergravity without physical vector multiplets and with a cosmological constant

term given by a standard FI term for the vector multiplet compensator W = Z = W 0.

Assuming that the dilatation compensator is C = G, a straightforward calculation, along

the line given for the gauged CP 1 model of the previous section, shows that on-shell it

holds identically X (W0)
ij = (X

(W0)
ij − 4Sij |θ=0) ≡ 0, as expected.20 The same statement

can be derived directly in superspace by looking at the superspace equations of motion

given in [68] where it was shown that N = 2 AdS4 superspace is a solution of pure N = 2

AdS supergravity. The fact that for this model we find X (W 0)
ij = 0 is actually also quite

intuitive. As described in detail in [69], N = 2 AdS4 superspace is characterized by the

presence of a so-called intrinsic vector multiplet described by a field strength superfield

W̃ that is covariantly constant, that is DAW̃ = 0, where the derivatives DA are the DA
derivatives evaluated on the AdS4 solution. In an appropriate gauge, the intrinsic vector

multiplet arises as the on-shell value of the vector multiplet compensator of the off-shell

pure AdS supergravity of [68]. By construction then it is clear that 〈X (W 0)
ij 〉 = DijW̃ = 0.

Let us turn back to the general case and consider again (4.21) to see how the goldstini

are related to the gaugini. If we focus only on contributions linear in fermions, by using

arguments similar to the ones used above, the following factorization holds

Γαi = −C
−1/4

12

DjαDij(DW)4D4
(DW)4

D4(DW)4D4
(DW)4

+ · · · = −C
−1/4

12

DjαDij(DW)4

D4(DW)4
+ . . . . (4.33)

20Note that choosing C = G one can show that Sij | = 1
2
G−5/2Gij

(
F − 1

2
G−2Gklχ

kl
)

which we will

use later.
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If again we restrict only to terms depending on X ij and X ij , it is simple to prove the

following result

DjαDij(DW)4 =
3

4
(DklW)(DklW)(DijW)DjαW + . . . , (4.34)

leading to

Γαi = −4C−1/4
(DijW)

(DklW)(DklW)
DjαW + . . . . (4.35)

Once more, note that, compared to the flat case, due to (4.11), there is also a dependence

on ∇iαC and ∇α̇i C which will eventually simplify upon taking an appropriate conformal

gauge fixing C = 1. Indeed, in our examples we will have C = G and in this case the

gauge fixing is G = 1, therefore, as already anticipated, the component goldstini fields

satisfy eq. (4.1). Despite the complicated form of the precise expression, it is important to

stress that, in this setup, in general (4.1) can be inverted to express the λj in terms of the

goldstini thanks to the non-vanishing vevs of XklXkl and X klXkl. Then, the supersymmetry

transformations of the gaugini (4.2) imply that the γi, given by (4.1), transform as a

shift, that is eq. (4.3). Finally in agreement with our earlier discussion supersymmetry is

completely broken when 〈X ijXij〉 6= 0 (4.4). In the next subsection where we study the

Γαi with explicit compensators we will see how exactly (4.2) is related to (3.64).

To recap, we have seen that it is always possible to construct a composite N = 2

goldstino of the type studied in [22] within supergravity, by employing a reduced chiral

N = 2 (vector multiplet field strength) superfield. The self-consistency of such construction

requires however that the auxiliary field components of W acquire a vev. We will see now

how a new type of Fayet-Iliopoulos term can be introduced with the use of the composite

goldstini, in such a way that it will also guarantee the self-consistency of the construction.

4.2 New Fayet-Iliopoulos terms in ungauged supergravity

We are now in position to present the new N = 2 Fayet-Iliopoulos term in supergravity. We

will construct such a term for a vector multiplet superfield W defined in (3.13) and (3.14)

assuming a priori that the conditions (4.4), (4.20), and (4.29) for the complete breaking of

N = 2 supersymmetry are satisfied. At this point there are however two subtleties that do

not arise in supersymmetry but also do not arise in N = 1 supergravity. These two new

elements are related to the compensators:

• In N = 2 we have two compensating multiplets: W 0 and Gij . As a result the form

of the new Fayet-Iliopoulos is not uniquely fixed by the superconformal invariance.

• The W 0 compensator is a reduced chiral multiplet and can be chosen to be the W

multiplet that enters the new FI term. We already commented how in this case the

construction of the composite goldstino multiplet might be subtle. Moreover, the

new type of FI term for W 0 will give rise to gravitino higher-derivative terms that

should be treated with care. Therefore we will not consider this possibility further

in this work. From here on, we will assume

W = W 1 , (4.36)

and focus for simplicity on a model for a single physical vector multiplet.

– 29 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
1

Let us then proceed to introduce the new FI term in supergravity that we will consider

in this paper. A rather natural generalization of (2.45) in curved superspace is21

Lnew FI = −ξ̃
∫

d8θ E |Γ|8H
(
|W 0|2/G

)
Gij ∇ijW + c.c. , (4.37)

with ξ̃ is a complex constant, and the function H is primary of dimension and U(1)R charge

zero, which is identically satisfied by the requirement of having the combination |W 0|2/G
of the compensators as its argument. For simplicity, in the following we will consider the

simple choice for H(|W 0|2/G):

H(|W 0|2/G) =

[
W 0W

0

G

]n
, (4.38)

with n being a constant integer. Moreover, for the composite compensator superfields that

enter the construction of Γαi via (4.11), (4.13), and (4.21) we set

C = G , Z = W 0 . (4.39)

Notice that as the fermion component field of Gij (χαi = 1
3∇

j
αGij |) is eventually set to vanish

by gauge fixing,22 then the primary gaugini defined in (4.11) will directly be proportional

to the gaugini of W . We can also relate the supersymmetry transformation (4.2) to (3.64)

once we use the compensators G and W 0. Indeed, we have

Xij =
[
G−1Xij − 4G−1/2(Sij |)φ

]
, Sij | = 1

4G3/2
(∇ijG|) =

Gij

2G5/2

(
F− Gkl

2G2
χkl
)
, (4.40)

which after gauge fixing G = 1 and χi = 0 gives

X ij = Xij − 2δijFφ . (4.41)

As we will see the vacuum structure of the theory depends significantly on the way the

compensators are introduced and in particular the integer n. Then, for this choice, it

is simple to check that, in component form, (4.37) is (we leave here the compensator G

manifest for clarity)

Lnew FI = −eGij
{
ξ̃ Xij + c.c.

} (φ0φ
0
)n

Gn
+ fermions , (4.42)

which leads to linear terms for the auxiliary fields Xij of the multiplet W . Such linear

terms in Xij will lead to a non-vanishing value for Xij once it is integrated out and in turn

will guarantee the self-consistency of the construction by giving 〈Xij〉 6= 0. As we have ex-

plained, the latter condition will hold when the vacuum breaks completely supersymmetry

21Similarly to the flat FI terms of (2.46), the function H might also depend on the physical vector

multiplet W and W̄ . For simplicity we will not investigate this option in this paper.
22We have not explicitly studied the fermionic sector here, but when the auxiliary fields are integrated out,

the fermions χi can be always consistently gauge fixed to vanish by performing an S-susy transformation,

see, e.g., [7].
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and a verification for this will be provided by simply inspecting if the condition (3.67) is

violated. Otherwise, the new FI term we introduce in (4.37) will typically become singular

if the vevs of the fields X ij and X ijXij vanish.

Because of the existence of more than a single type of new FI term one can have a

scenario where not only a single type of FI term is switched on. For example, we could have

Lmulti FI = −
∑
n

ξ̃(n)
∫

d8θ E |Γ|8
[
W 0W

0

G

]n
Gij ∇ijW + c.c. , (4.43)

leading to all sorts of effective potentials once the auxiliary fields are integrated out. The

term (4.43) can be also considered as an expansion of the term with H(|W 0|2/G) in powers

of |W 0|2/G. We will however mostly focus on only one term as in (4.38) for the rest of

our discussion.

We can now introduce the new FI terms into the models studied in the previous section

with the aim to decipher whether de Sitter vacua generically arise in this setup. Let us

consider the Lagrangian (3.26) where we also add the new FI term for a single vector

multiplet. For the vector multiplet that enters the composite Γ we will set W = W 1 and

we will consider the Lagrangian

L = {−LV + c.c.}+ LL + L(W
1)

new FI . (4.44)

Notice that there is no standard Fayet-Iliopoulos term introduced, so the theory here is

ungauged. In a standard supergravity setup this theory would have a vanishing scalar

potential as we have explained, however, we will see now that a scalar potential will be

introduced because of the new FI term. All our discussion on the bosonic sector of ungauged

N = 2 supergravity will be the same giving rise to (3.42) and (3.52), except of the part that

contributes to the scalar potential. In particular, by integrating out the scalar auxiliary

fields we will find23

XI
ij = −4N IJζJ δij , F = 0 , (4.45)

where N IJNJK = δIK and

ζI = 8ξ̃δ1I enK . (4.46)

Here K is the Kähler potential defined in (3.44). For the R-symmetry auxiliary fields

we find

Ψm
ij = 0 , φ̂a = 0 , h̃m = 0 , (4.47)

and therefore, on-shell, all the SU(2)R symmetry stops to be gauged. Eventually we find

the bosonic sector of (4.44) to be given by

L = Lungaugedscalar-gravity + LMaxwell − eVnew FI . (4.48)

The scalar potential V that enters (4.48) takes the form

Vnew FI = −N IJζIζJ . (4.49)

23In the ungauged case with new FI term considered, on-shell it always hold F = 0 which implies that

〈Xij〉 = 〈Xij〉.
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We see that the theory has a non-trivial scalar potential without introducing any gaugings.

This novel potential generated by the new FI terms in ungauged N = 2 supergravity

will potentially play an important role if one adds also physical hypermultiplets to the

supergravity-matter system. Notice that in (4.44) the gravitini will have no Lagrangian

mass terms because there is no gauging.

Before we study a specific example let us comment on the properties of the scalar

potential (4.49): First, we point out that if in addition we include new FI terms for more

than one physical multiplets, say W i, we will find that ζI = ξI + 8ξ̃iδiI eniK where the ξ̃i

are the real FI constants for the new FI terms of each physical vector multiplet and ni the

integers that determine how the compensators enter. Secondly, notice that the way the

new FI parameters enter into the scalar potential is simply by shifting the parameters of

the would-be standard FI terms. However, due to the specific form of the new FI terms

that we have chosen, this shift does not appear in all the terms induced by the standard

FI terms. In particular, from (4.45) and (4.46) we see that the shift happens only for

the auxiliary fields of the physical vector multiplets but not for the compensating vector,

neither for the tensor multiplet compensator auxiliary field F . Finally, when ξ̃i ≡ 0 we get

the standard N = 2 ungauged supergravity.

We now turn to an explicit model for the construction of stable dS vacua with a single

physical vector multiplet. As discussed in the previous section, such vacua will always have

spontaneously broken supersymmetry therefore the self-consistency of our constructions

here is guaranteed. We will have CP 1 target space and we will allow n to take generic

values such that the impact of n on the vacuum structure is clarified. We choose the F
of (3.68) therefore the Kähler potential and the Kähler metric take the form (3.71). The

kinetic terms for the vectors in this example are consistent in any background because

ωIJ = −δIJ . The scalar potential then takes the form

Vnew FI−CP 1 =
64 ξ̃2

(1− |z|2)2n
. (4.50)

We would like to study the vacuum structure of the scalar potential (4.50). There are 3

possibilities:

• For n > 0 the scalar potential will have the form V = 64 ξ̃2 + 128 ξ̃2 n |z|2 +O(|z|4).
As a result the theory generically has a stable de Sitter critical point at z = 0.

• For n = 0 the scalar potential is a constant

V(z, z) = 64 ξ̃2 , (4.51)

and the theory has a positive vacuum energy with a complex modulus z. This setup

provides the simplest model as it contains only gravitation with a positive cosmolog-

ical constant, two gravitini with vanishing Lagrangian mass (see [16] for a discussion

on the gravitino mass in de Sitter), a massless complex scalar, and two massless

abelian vectors.
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• For n < 0 the scalar potential has no critical points within the moduli space (|z| < 1)

and it will essentially describe backgrounds with runaway behavior, which drives the

scalar towards the boundary of the moduli space.

Constructing stable de Sitter vacua is not always as straightforward as it is for the

CP 1 model, if we restrict ourselves to a single new FI term. For example, another class of

models that we can consider are the so called t3 models [2]. For these models we have

F = −i
(φ1)3

φ0
, (4.52)

which for z = s+ it gives

N11 =
t2 − 3s2

12t3
, eK =

1

8t3
. (4.53)

A known feature of the t3 model is that the standard FI term does not lead to any scalar

potential despite the gauging. On the other hand, the presence of a new FI term induces

a scalar potential for the t3 model of the form

Vnew FI−t3 =
16 ξ̃2(3s2 − t2)

3t3(8t3)2n
. (4.54)

Even though this term evades the no-potential restriction of the t3 model, due to its

destabilising runaway behaviour, it clearly does not have stable de Sitter vacua for any

value of n.

Let us also note that once the auxiliary fields Xij have acquired a non-vanishing vev the

construction of the composite Γ goldstino is straightforward and therefore there is always

the possibility to include in the effective theory a pure uplift term of the form

LUplift = −
∫

d8θ E |Γ|8

[
W 0W

0
]n+2

Gn
= −e (φ0φ

0
)n+2 + fermions . (4.55)

The uplift term (4.55) is independent of the gauged/ungauged version of the theory, and it

can be introduced as long as the Xij have acquired a non-vanishing vev, namely 〈XijXij〉 6=
0. In the case n = 0, this is the same structure of Volkov-Akulov type of the positive

cosmological constant uplift term that was used to construct in [22] the off-shell N = 2

extension of pure de Sitter supergravity [15, 16] (see [70, 71] for seminal papers on theN = 1

case). It is also possible to have an uplift term which is a function of the scalar primaries

LUplift = −
∫

d8θ E |Γ|8 U(G,W I ,W
I
) = −eU(G,AI , A

I
) + fermions , (4.56)

and extend (2.47). The only constraint on U(G,W I ,W
I
) is to have dilatation weight 4

and to be uncharged under U(1)R. It is clear that this uplift term, which we stress is

self-consistent only when 〈XijXij〉 6= 0, can lead to any sort of vacua. More in general,

the assumption 〈XijXij〉 6= 0 and 〈∆X〉 6= 0 allows to write terms in the effective action

where the uplift function U(G,W I ,W
I
) is modified to any function which is a primary
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of weight 4 also dependent on DijW, DaW, Dk(αDβ)kW, and Sij , Xαβ , Gβ
α̇, Gβ

α̇j
i , W

αβ

together with their complex conjugate and derivatives DA. Assuming the effective ac-

tion consistently preserves the condition 〈Xij〉 6= 0, 〈∆X〉 6= 0, the dependence upon the

composite superfileds might in general also be non analytic in XijXij leading to a very

large freedom.24

4.3 New Fayet-Iliopoulos terms in gauged supergravity

In this section we include the new FI term in the gauged theory and we study the vacuum

structure. We consider a theory of the form

L = {−LV + c.c.}+ LL + Lstandard FI + L(W
1)

new FI . (4.57)

The discussion will follow the one we presented for the standard gauged supergravity,

however, by integrating out the scalar auxiliary fields we will find

F = −2 ξIφ
I
, XJ

ij = −4N IJζI δij , φ̂m = −2ξIv
I
m , (4.58)

where now

ζI = ξI + 8ξ̃δ1I enK . (4.59)

The full bosonic sector of the theory has the form (3.58) with scalar potential given by

V = −N IJζIζJ − 2|ξIφI |2 . (4.60)

For the gravitini masses we have

m2
3/2 = |ξIφI |2 . (4.61)

Let us now focus on the CP 1 model,25 and note that if we switch on all the FI param-

eters with ξI = (µ, ξ) and ξ̃, ξ, µ ∈ R, then the scalar potential reads

V =

(
8ξ̃

(1− |z|2)n
+ ξ

)2

− µ2 − 2
|µ+ ξz|2

1− |z|2
. (4.62)

Note that the gravitini kinetic and mass terms have exactly the same form as in standard

gauged supergravity, that is they are given by (3.60). In fact if the full action (4.57) is

evaluated in the unitary gauge it will match exactly with the action presented in [2] for

a single physical vector multiplet, the only difference being that the scalar potential will

have the form (4.62).

To illustrate the properties of the scalar potential (4.62) we will study two limiting

cases depending on the values of the FI constants of the standard FI terms.

The first limiting case is to set for the FI constants to be

ξI = (µ, 0) , ξ̃, µ ∈ R , (4.63)

24See [72] for extensions along these lines of the N = 1 new FI terms.
25One can also study a gauged t3 model with both the old and new FI terms, but the gauging does not

change significantly the discussion we had for the ungauged t3 model in the previous subsection.
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such that the scalar potential takes the form

V =

(
8ξ̃

(1− |z|2)n

)2

− µ2 − 2µ2

1− |z|2
. (4.64)

If we are interested in de Sitter vacua there are 3 possibilities:

• For n > 0 the scalar is stabilized at z = 0 while the vacuum energy can be tuned and

it is given by

V = 64ξ̃2 − 3µ2 . (4.65)

Therefore the cosmological constant is not identified with the supersymmetry break-

ing scale. Indeed, the supersymmetry breaking scale is

FSUSY =
√
V + 3m2

3/2 =

√
64ξ̃2 − 3µ2 + 3µ2 = 8ξ̃ , (4.66)

and the gravitino mass is

m3/2 = µ . (4.67)

The mass of the scalar z is

m2
z = 128n ξ̃2 − 2µ2 , (4.68)

and it can be easily tuned to be positive. In particular, for a positive vacuum energy

we will require

64ξ̃2 > 3µ2 , (4.69)

which gives for any positive integer n

m2
z > (6n− 2)µ2 > 0 . (4.70)

• For n = 0 (and ξ̃ 6= 0) the scalar potential has again a critical point at z = 0. If the

space is de Sitter then the critical point at z = 0 is unstable and the theory develops a

runaway behavior that drives the scalar towards the boundaries of the moduli space.

• When n < 0 the critical point at z = 0 is unstable for a de Sitter background and

there is no other critical point within the moduli space.

The second limiting case is to set for the FI constants to be

ξI = (0, ξ) , ξ̃, ξ ∈ R , (4.71)

which brings the scalar potential to the form

V =

(
8ξ̃

(1− |z|2)n
+ ξ

)2

− 2ξ2
|z|2

1− |z|2
. (4.72)

We are interested again in de Sitter vacua, therefore there are 3 possibilities:
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• For n > 0 the scalar potential has a critical point at

z0 = 0 , (4.73)

delivering a positive vacuum energy given by

V
∣∣∣
z0

= (8ξ̃ + ξ)2 , (4.74)

while the gravitino mass vanishes. Notice that setting 8ξ̃ = −ξ is not allowed, because

it would lead to a vanishing vev for X
(1)
ij as can be seen from (4.59), thus rendering

the whole construction inconsistent due to the 1/(Xij(1)X
(1)
ij ) terms appearing in the

fermionic sector of the new FI term. The mass of the scalar z is

m2
z

∣∣∣
z0

= 128nξ̃2 + 16nξ̃ξ − 2ξ2 , (4.75)

and it can be easily tuned to be positive, thus providing a stable de Sitter.

The critical point z0 = 0 is however not the only possibility for stable de Sitter vacua.

For example, if we set n = 1 and ξ̃ = αξ, then the scalar potential has a consistent

critical point (∂V/∂z = 0) at zα with

1− |zα|2 =
64α2

1− 8α
. (4.76)

Clearly there is a bound on the values of α given by 1 > 8α such that zα lies within

the moduli space. The condition that the vacuum energy is positive gives

V
∣∣∣
zα

= ξ2
(

2 +
16α− 1

64α2

)
> 0 =⇒ α >

√
3− 1

16
, (4.77)

which is compatible with 1 > 8α. The mass of the complex scalar is positive only for

m2
z

∣∣∣
zα
> 0 =⇒ α <

√
5− 1

16
. (4.78)

We conclude that there is a stable de Sitter critical point for n = 1 for any choice of

the FI parameters within the bound
√

3− 1

16
<
ξ̃

ξ
<

√
5− 1

16
<

1

8
, (4.79)

delivering again a positive cosmological constant that can be tuned.

Notice that for the parameter values that the critical point zα is stable the critical

point z0 is unstable. Indeed, for n = 1 and for α given by (4.79) we see that the

mass (4.75) is always tachyonic.

• For n = 0 the scalar potential has no stable de Sitter critical points.

• When n < 0 there are still de Sitter critical points at z0 = 0. The mass of the scalar

at z0 is given by (4.75) which can be positive even when n < 0, for large |n|, by

tuning the values of ξ̃ and ξ.
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As already mentioned above, in our analysis we focused on constructing simple models

possessing stable de Sitter vacua. Of course, once both the old and new FI terms are turned

on there are also new possibilities for anti-de Sitter vacua, which we have not investigated

here. Though generically new anti-de Sitter vacua will arise, one has to be always careful

that the propagating states satisfy the appropriate unitarity bounds. A more detailed

analysis of anti-de Sitter vacua will be considered elsewhere.

5 Summary and outlook

New Fayet-Iliopoulos terms have been recently introduced for N = 1 supergravity theories

that do not require the gauging of the R-symmetry [23–26], and have been studied and

developed in a series of publications [72–79]. To highlight some interesting aspects of these

constructions let us mention that new type of scalar potentials can be introduced that

lead to new possibilities for inflation in supergravity [25, 73], but also to new possibilities

regarding the vacuum structure [23, 26], while the matter content of the theory is still

described by standard N = 1 supermultiplets, including the FI gauge multiplet.

In this work we have presented new types of Fayet-Iliopoulos terms in N = 2 global

and local supersymmetry, generalising the N = 1 constructions. For the construction

and study of the new FI term, we used the formalism of non-linear supersymmetry and

conformal supergravity. The main properties of the new FI term are:

(A) Its existence requires N = 2 supersymmetry to be spontaneously broken completely

to N = 0 by the auxiliary fields of an abelian vector multiplet;

(B) Its bosonic part is linear in the auxiliary fields of the vector multiplet, justifying the

name FI term and the requirement (A);

(C) Its coupling to supergravity does not require gauging of the R-symmetry, contrary

to the standard FI term;

(D) In the unitary gauge of N = 2 supergravity, the fermionic part of the new FI term can

be put to zero if supersymmetry breaking occurs only by a vev of the corresponding

vector multiplet auxiliary component, defining the goldstino direction;

(E) The coupling to supergravity allows for a non-trivial dependence of the coefficient

of the linear term in the vector multiplet auxiliary fields on the compensating scalar

fields of the supergravity multiplet, therefore giving rise to a non-trivial potential for

the scalar component of the vector multiplet.

We analysed in detail the particular case of one vector multiplet coupled to N = 2

supergravity and found in a simple example that the scalar potential can have a de Sitter

minimum with the scalar field fixed dynamically, evading past no-go theorems based on

standard N = 2 gauged supergravity [13]. One striking property of our construction is

that we can have stable de Sitter vacua with a gravitino mass and a cosmological constant

that can be tuned, and this can be achieved solely with the use of a single N = 2 abelian
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vector multiplet. Such construction was not possible until now in N = 2 supergravity (as

has been explained for example in [13]), therefore our construction is expected to lead to

new model building directions both for late time and for inflationary N = 2 supergravity

cosmology [80].

It is worthwhile to note that in the case of N = 1 supergravity coupled to a vector

multiplet, the new FI term is unique, under the requirement that its bosonic part is linear

in the D-auxiliary field, and amounts to a constant uplift of the vacuum energy [23].

The presence of matter however brings an ambiguity that manifests in the induced scalar

potential, allowing in particular to break or not Kähler invariance, or even to introduce

a new function of the matter superfields [23, 25]. In the case of N = 2 supergravity the

ambiguity appears already at the level of coupling with one vector multiplet which contains

a scalar field component. Technically, it appears through an arbitrary dependence on the

ratio of the two compensators in the superconformal formalism (vector and tensor or hyper),

as mentioned in the point (E) above.

More in general, once one adopts the assumption that N = 2 supersymmetry is spon-

taneously broken, as already commented in section 4.2, a vast freedom of new manifestly

supersymmetric terms can be consistently added to general N = 2 supergravity-matter

systems. A way to underline the new options available is to look at what are probably the

two simplest differences between the standard and the new FI terms:

i) Recall that in the off-shell N = 2 supergravity formulation with a vector and tensor

compensators the bosonic sector of the standard FI term (3.55) for a physical vector

multiplet is governed by a single coupling constant ξ and includes three different

terms

e−1Lstandard FI = ξ
{
− 1

8
GijXij − Fφ+

1

4
εmnpqbmnFpq

}
+ c.c.

= ξ
{
− 1

8
GijXij − Fφ+ h̃ava

}
+ c.c.

(5.1)

As we have reviewed in details in section 3, the b2 ∧ F2 coupling is responsible for

the gauging of the Û(1)R ⊂ SU(2)R R-symmetry, while the second term is the one

responsible to introducing the universally negative contribution −2|ξφ|2 to the scalar

potential, see eq. (3.59). Once we assume that local N = 2 supersymmetry is spon-

taneously broken by the vector multiplet, and then the composite goldstino multiplet

defined by X and Γαi in section 4.1 is well defined, one has the freedom to take

apart each of the three terms in (5.1) and introduce a supersymmetric Lagrangian of

the form (we neglect for simplicity the possible dependence on extra functions of the

compensators)

e
{
ξ̃ GijXij + ζ̃ Fφ+ ρ̃ εmnpqbmnFpq

}
+ c.c.+ fermions . (5.2)

This is parametrized by three arbitrary constants ξ̃, ζ̃, and ρ̃ and, by playing with this

new freedom, one can tune the different physical consequences that each bosonic term

has. The first term is typically necessary to be there since it is the one dominating
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the condition 〈∆X〉 6= 0. For this reason and for simplicity in the paper we focused

on the new FI term where ξ̃ 6= 0 and ζ̃ = ρ̃ = 0 and considered as an extension a

linear combination of standard and new FI terms.

ii) Another simple difference that spontaneously broken N = 2 supersymmetry allows

(by using non-linear realization techniques) is the possibility to have uplift terms of

the form (4.56) governed by an a priori arbitrary function of the primary scalar fields

in the theory, analogously to the liberated N = 1 supergravity of [74].

In this paper we have focused on the case where supersymmetry is broken by a single vector

multiplet, but similar analysis can straightforwardly be performed when supersymmetry

breaking is mediated by more than one physical vector multiplet and/or other multiplets, as

for instance systems of hypermultiplets. These constructions will naturally overcome known

no-go theorems as, for instance, the impossibility to introduce standard FI terms whenever

physical charged hypermultiplets are coupled to N = 2 supergravity [3–8, 11, 65]. New

FI terms are a natural option to overcome the constraints on the couplings with charged

hypermultiplets that come with the gauging of isometries in the quaternionic-Kähler geom-

etry. Here we have only scratched the surface of the effective N = 2 supergravity theories

that can be constructed using the ideas in our paper.

Another aspect that will deserve further studies is the choice of off-shell Poincaré su-

pergravity one starts from. In our paper we have chosen a description given by N = 2

conformal supergravity coupled to a vector and a tensor multiplet compensators [52, 62]

which can be considered as an N = 2 analogue of the new-minimal formulation of 4D N = 1

off-shell supergravity (see [7, 31, 54, 81] for reviews of the different off-shell formulations

of N = 1 Poincaré supergravity). While the vector multiplet represents a standard choice

of compensator for N = 2 off-shell supergravity since it fixes U(1)R ⊂ U(2)R, the choice

of the tensor multiplet cannot fix the SU(2)R factor leaving a residual Û(1)R symmetry

off-shell (that, depending on the model, is eventually broken on-shell). This restrict the

classes of matter theories that can be coupled to the off-shell Poincaré supergravity that

we have employed in our work. Variant choices of the hypermultiplet compensator, such as

the scalar multiplet or the non-linear multiplet originally used in [52], allow to completely

fix the SU(2)R. Alternatively, one could use an off-shell hypermultiplet compensator that,

without central charges, is known to lead in general to an infinite set of auxiliary fields

that can efficiently be handled by using harmonic [82–85] or projective superspace tech-

niques [32–34]. General 4D N = 2 off-shell supergravity-matter couplings can be described

in a covariant way by using the superspace techniques of [86, 87].26 By using these ap-

proaches, it would be natural to extend the analysis of our work and study new FI terms

in general systems of off-shell hypermultiplets.

Among the most important questions left open is how to constrain the plethora of

models with spontaneously broken N = 2 supersymmetry that can be constructed by us-

ing the ideas of our paper. In fact, it would very interesting to see whether there is a

26See also [39, 49, 88, 89] for further extensions of the formalism and [90–96] for curved projective

superspace techniques in D = 2, 3, 5, 6 dimensions.
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possible microscopic origin of a new FI term, for instance in string theory. This would

be particularly important in view of the recent swampland conjectures (see e.g. [97] for a

review) related to the existence or not of de Sitter vacua in quantum (super) gravity the-

ories. Consistency arguments constraining the low energy effective field and supergravity

theories will hopefully give clear criteria on the allowed new terms.

Another natural question is whether there exist possible variations of the new FI

terms in the case of N = 2 → N = 1 partial supersymmetry breaking [37] (for the local

supersymmetric case see, for example, [98] and more recently [99]) or N = 2 → N = 0 at

two different scales [100]. For supersymmetry breaking mediated by a vector multiplet, both

cases require most likely to introduce deformations of its supersymmetry transformations

corresponding to magnetic-type FI terms [37] whose superspace description relevant to

extending our analysis can be found in [40–48] both for the global and local cases.
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A Nilpotent chirals from generic N = 2 supersymmetry breaking

In this section we show that when N = 2 supersymmetry is broken one can always construct

an N = 2 nilpotent chiral multiplet that will describe the goldstini. We will use the results

of this appendix in the main bulk of the article focusing on the vector multiplet. Let

us assume that N = 2 supersymmetry is broken spontaneously and the goldstini of this

N = 2→ N = 0 breaking are the lowest components of the N = 2 superfields Ψα and Ξα,

that, in SU(2)R notations, can be collected in an SU(2)R doublet complex spinor superfield

Ψi
α = (Ψα,Ξα). These two superfields may be constrained, as it happens in the vector

multiplet, but our analysis here holds for a generic setup where it is not necessary to specify

the conditions satisfied by Ψi
α. First we observe a series of nilpotency conditions that hold

even for superfields that do not include the goldstino. These nilpotency conditions are only

satisfied because of the large number of fermions. We define the β that is the maximum

product of goldstini to be (Ψij := ΨαiΨj
α, Ψ4 := 1

3ΨijΨij , |Ψ|8 = Ψ4Ψ
4
)

β = Ψ2Ξ2Ψ
2
Ξ
2

= |Ψ|8 . (A.1)

Clearly we can see that

β2 = 0 , (A.2)
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but it also satisfies a series of nilpotency conditions of the form

(DA1DA2 · · ·DAmβ)DB1DB2 · · ·DBnβ = 0 , ∀ m,n = 0, 1, · · · , 7 , m+n ≤ 7 , (A.3)

where DA refers collectively to (∂a, Dα, D
α̇
, D̃α, D̃

α̇
) or (∂a, D

i
α, D

α̇
i ) in SU(2)R notations.

By introducing the chiral projector operator ∆ := 1
48D

4
with D

4
:= D

k
α̇D

α̇l
Dβ̇kD

β̇
l as in

eq. (2.31), we can construct an N = 2 chiral nilpotent superfield

X = ∆
4
β , (A.4)

that satisfies

X2 = 0 , XDAX = 0 , XDADBX = 0 , XDADBDCX = 0 . (A.5)

To prove the first property in (A.5) we observe that

X2 = (∆
4
β)(∆

4
β) = ∆

4
(
β ∆

4
β
)

= 0 . (A.6)

The rest of the properties in (A.5) are derived in a similar manner, and they reduce to iden-

tities of the form D
4
(
βDAD

4
β
)

= 0, D
4
(
βDADBD

4
β
)

= 0, andD
4
(
βDADBDCD

4
β
)

=

0 that are identically satisfied due to (A.3). To conclude, we stress that the above construc-

tion of a composite nilpotent chiral multiplet works for a completely arbitrary spinor super-

field Ψi
α and could be used in principle starting with multiplets other than the vector one.

The only extra necessary condition required to construct a composite goldstino multiplet for

N = 2→ N = 0 supersymmetry breaking mediated by Ψi
α is that 〈D4X〉 = 〈D4D

4
β〉 6= 0.

B N = 2 conformal superspace

This appendix contains a summary of the formulation for N = 2 conformal supergravity in

conformal superspace27 [49] employed in sections 3 and 4. We use the notations of [39] and

review the results necessary for deriving results in sections 3 and 4. The structure group

of N = 2 conformal superspace is chosen to be SU(2, 2|2) and the covariant derivatives

∇A = (∇a,∇iα,∇
α̇
i ) have the form

∇A = EA +
1

2
ΩA

abMab + ΦA
ijJij + iΦAY +BAD + FA

BKB

= EA + ΩA
βγMβγ + ΩA

β̇γ̇M β̇γ̇ + ΦA
ijJij + iΦAY +BAD + FA

BKB . (B.1)

Here, EA = EA
M∂M is the inverse of the supervielbein super one-form EA = dzMEM

A,

Mcd and Jkl are the generators of the Lorentz and SU(2)R R-symmetry groups respectively,

and ΩA
bc and ΦA

kl the corresponding connections. The remaining generators and corre-

sponding connections are: Y and ΦA for the U(1)R R-symmetry group; D and BA for the

dilatations; KA = (Ka, Sαi , S
i
α̇) and FA

B for the special superconformal generators.

27Conformal superspace was first introduced by D. Butter for 4D N = 1 [101] and N = 2 [49] supergravity

(see also the seminal work by Kugo and Uehara [102] and the recent paper [103]) and it was developed

and extended to 3D N−extended supergravity [104], 5D N = 1 supergravity [105], and recently to 6D

N = (1, 0) supergravity [106], see also [107].
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The Lorentz and SU(2)R generators act on ∇A as

[Mαβ ,∇iγ ] = εγ(α∇iβ) ,
[
Jkl,∇iα

]
= −δi(k∇αl) , (B.2)

together with their complex conjugates. The U(1)R and dilatation generators obey

[Y,∇iα] = ∇iα , [Y,∇α̇i ] = −∇α̇i , (B.3a)

[D,∇a] = ∇a , [D,∇iα] =
1

2
∇iα , [D,∇α̇i ] =

1

2
∇α̇i . (B.3b)

The special superconformal generators KA transform under Lorentz and SU(2)R as

[Mab,Kc] = 2ηc[aKb] , [Mαβ , S
γ
i ] = δγ(αSβ)i , [Jij , S

γ
k ] = −εk(iS

γ
j) , (B.4)

together with their complex conjugates, while their transformation under U(1)R and di-

latations is given by:

[Y, Sαi ] = −Sαi , [Y, S
i
α̇] = S

i
α̇ ,

[D,Ka] = −Ka , [D, Sαi ] = −1

2
Sαi , [D, Siα̇] = −1

2
S
i
α̇ . (B.5a)

The generators KA obey

{Sαi , S
j
α̇} = 2iδji (σ

a)αα̇Ka , (B.6)

while the nontrivial (anti-)commutators of the algebra of KA with ∇B are given by

[Ka,∇b] = 2δabD + 2Ma
b ,

{Sαi ,∇
j
β} = 2δji δ

α
βD− 4δjiM

α
β − δji δ

α
βY + 4δαβJi

j ,

[Ka,∇jβ ] = −i(σa)β
β̇S

j

β̇
, [Sαi ,∇b] = i(σb)

α
β̇∇

β̇
i , (B.7a)

together with complex conjugates.

The (anti-)commutation relations of the covariant derivatives ∇A [39, 49] relevant for

calculations in this paper are

{∇iα,∇
j
β} = 2εijεαβW γ̇δ̇M

γ̇δ̇
+

1

2
εijεαβ∇γ̇kW

γ̇δ̇
S
k
δ̇ −

1

2
εijεαβ∇γδ̇W

δ̇
γ̇K

γγ̇ , (B.8a)

{∇iα,∇
β̇
j } = −2iδij∇αβ̇ , (B.8b)

[∇αα̇,∇iβ ] = −iεαβW α̇β̇∇
β̇i − i

2
εαβ∇

β̇i
W α̇β̇D−

i

4
εαβ∇

β̇i
W α̇β̇Y + iεαβ∇

β̇
jW α̇β̇J

ij

− iεαβ∇
i
β̇W γ̇α̇M

β̇γ̇ − i

4
εαβ∇

i
α̇∇

β̇
kW β̇γ̇S

γ̇k
+

1

2
εαβ∇γβ̇W α̇β̇S

i
γ

+
i

4
εαβ∇

i
α̇∇γγ̇W

γ̇β̇
Kγβ̇ , (B.8c)

together with complex conjugates. The superfield Wαβ = Wβα, and its complex conjugate

W α̇β̇ := Wαβ , are dimension one conformal primaries, that is KAWαβ = 0, and obey the

additional constraints

YWαβ = −2Wαβ , Y W α̇β̇ = 2W α̇β̇ , (B.9a)

∇α̇iWβγ = 0 , ∇kα∇βkWαβ = ∇α̇k∇
β̇k
W α̇β̇ . (B.9b)
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The superfield Wαβ is the N = 2 super-Weyl tensor. It can be proven that the previous

construction describes a superfield embedding of the standard Weyl multiplet of N = 2

conformal supergravity. See [39, 49] for details.

In section 4 we also used the covariant superspace derivatives Diα and Dα̇i defined in

eq. (4.7) that are useful to construct primary extensions of multiplets [49]. When acting on

a conformally primary dimensionless tensor, the algebra of these covariant derivatives be-

comes

{Diα,D
j
β} = 4SijMαβ + 2εijεαβX

γδMγδ + 2εijεαβW
′
γ̇δ̇M

γ̇δ̇

+ 2εijεαβS
klJkl + 4XαβJ

ij , (B.10a)

{Dα̇i ,D
β̇
j } = −4SijM

α̇β̇ − 2εijε
α̇β̇X γ̇δ̇M

γ̇δ̇ − 2εijε
α̇β̇W ′γδMγδ

− 2εijε
α̇β̇S

kl
Jkl − 4X

α̇β̇
Jij , (B.10b)

{Diα,D
α̇
j } = −2iδijDαα̇ − 2(Gα

α̇δij + iGα
α̇i
j)Y

+ 4(Gαβ̇δ
i
j + iGαβ̇

i
j)M

β̇α̇
+ 4(Gα̇βδij + iGα̇βij)Mβα

+ 8Gα
α̇J ij + 4iδijGα

α̇k
lJ
l
k , (B.10c)

with the vector covariant derivative operator Dαα̇ = (σa)αα̇Da given by

Dαα̇ := C−1/2∇αα̇ −
i

2
C−1/4∇kαUD

α̇
k −

i

2
C−1/4∇α̇kUDkα

−
(

i

4
C−1/2∇α̇k∇βkU + 2iGα̇β

)
Mβα +

(
i

4
C−1/2∇kα∇β̇kU − 2iGαβ̇

)
M

β̇α̇

− i

(
1

16
C−1/2[∇kα,∇

α̇
k ]U −Gαα̇

)
Y +

i

2
C−1/2∇kαU∇

α̇
j UJ

j
k , (B.11)

and the primary dimension zero (they are all invariant under dilatations) curvature super-

fields

Sij :=
1

4C3/2
∇ijC , Sij :=

1

4C3/2
∇ijC , (B.12a)

Xαβ := −C
1/2

4
∇αβC−1 , X α̇β̇ := −C

1/2

4
∇α̇β̇C

−1 , (B.12b)

W ′αβ := C−1/2Wαβ , W
′
α̇β̇ := C−1/2W α̇β̇ , (B.12c)

Gαα̇ := − 1

16
C1/2[∇kα,∇α̇k]C−1 , Gαα̇

ij := − i

8
C−1/2[∇(i

α ,∇
j)
α̇ ]U . (B.12d)

As explained in [39, 49], the geometry described by the previous algebra for the DA =

(Da,Diα,D
α̇
i ) derivatives is equivalent to the one introduced by P. Howe in 1980 [108] to

describe conformal supergravity in a superspace equipped with a Sl(2,C)×UR(2) structure

group (see also [87]).
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[43] M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained

superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232]

[INSPIRE].

[44] S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Nilpotent chiral superfield in N = 2

supergravity and partial rigid supersymmetry breaking, JHEP 03 (2016) 092

[arXiv:1512.01964] [INSPIRE].

[45] I. Antoniadis, J.-P. Derendinger and C. Markou, Nonlinear N = 2 global supersymmetry,

JHEP 06 (2017) 052 [arXiv:1703.08806] [INSPIRE].

[46] N. Cribiori and S. Lanza, On the dynamical origin of parameters in N = 2 supersymmetry,

Eur. Phys. J. C 79 (2019) 32 [arXiv:1810.11425] [INSPIRE].

[47] S.M. Kuzenko, Super-Weyl anomalies in N = 2 supergravity and (non)local effective

actions, JHEP 10 (2013) 151 [arXiv:1307.7586] [INSPIRE].

[48] S.M. Kuzenko and G. Tartaglino-Mazzucchelli, New nilpotent N = 2 superfields, Phys. Rev.

D 97 (2018) 026003 [arXiv:1707.07390] [INSPIRE].

[49] D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030

[arXiv:1103.5914] [INSPIRE].

[50] B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2

Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].

[51] E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B

182 (1981) 173 [INSPIRE].

[52] B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl.

Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].

[53] N. Cribiori and G. Dall’Agata, On the off-shell formulation of N = 2 supergravity with

tensor multiplets, JHEP 08 (2018) 132 [arXiv:1803.08059] [INSPIRE].

[54] I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity,

Or a Walk Through Superspace, IOP, Bristol, U.S.A., (1998).

[55] L. Baulieu, M.P. Bellon and R. Grimm, BRS Symmetry of Supergravity in Superspace and

Its Projection to Component Formalism, Nucl. Phys. B 294 (1987) 279 [INSPIRE].

[56] P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: A geometric formulation,

Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].

[57] J. Wess, Supersymmetry and Internal Symmetry, Acta Phys. Austriaca 41 (1975) 409

[INSPIRE].

[58] W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. 80B (1979) 220

[INSPIRE].

[59] W. Siegel, Off-shell central charges, Nucl. Phys. B 173 (1980) 51 [INSPIRE].

– 46 –

https://arxiv.org/abs/1904.06339
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.06339
https://arxiv.org/abs/hep-th/9710236
https://inspirehep.net/search?p=find+EPRINT+hep-th/9710236
https://arxiv.org/abs/hep-th/9801016
https://inspirehep.net/search?p=find+EPRINT+hep-th/9801016
https://doi.org/10.1103/PhysRevD.59.106001
https://arxiv.org/abs/hep-th/9811232
https://inspirehep.net/search?p=find+EPRINT+hep-th/9811232
https://doi.org/10.1007/JHEP03(2016)092
https://arxiv.org/abs/1512.01964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.01964
https://doi.org/10.1007/JHEP06(2017)052
https://arxiv.org/abs/1703.08806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08806
https://doi.org/10.1140/epjc/s10052-019-6545-6
https://arxiv.org/abs/1810.11425
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.11425
https://doi.org/10.1007/JHEP10(2013)151
https://arxiv.org/abs/1307.7586
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7586
https://doi.org/10.1103/PhysRevD.97.026003
https://doi.org/10.1103/PhysRevD.97.026003
https://arxiv.org/abs/1707.07390
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07390
https://doi.org/10.1007/JHEP10(2011)030
https://arxiv.org/abs/1103.5914
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5914
https://doi.org/10.1016/0550-3213(80)90125-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B167,186%22
https://doi.org/10.1016/0550-3213(81)90465-X
https://doi.org/10.1016/0550-3213(81)90465-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B182,173%22
https://doi.org/10.1016/0550-3213(83)90548-5
https://doi.org/10.1016/0550-3213(83)90548-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B184,77%22
https://doi.org/10.1007/JHEP08(2018)132
https://arxiv.org/abs/1803.08059
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08059
https://doi.org/10.1016/0550-3213(87)90583-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B294,279%22
https://doi.org/10.1016/S0370-1573(00)00085-5
https://arxiv.org/abs/hep-th/0005225
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005225
https://inspirehep.net/search?p=find+J+%22ActaPhys.Austriaca,41,409%22
https://doi.org/10.1016/0370-2693(79)90202-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B80,220%22
https://doi.org/10.1016/0550-3213(80)90442-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B173,51%22


J
H
E
P
0
7
(
2
0
1
9
)
0
6
1

[60] M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in

Superspace and Supergravity, S.W. Hawking and M. Roček eds., Cambridge Unieversity
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