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A B S T R A C T

Knowledge about the cause of differential structural damages following the occurrence of hazardous hydro-
meteorological events can inform more effective risk management and spatial planning solutions. While studies
have been previously conducted to describe relationships between physical vulnerability and features about
building properties, the immediate environment and event intensity proxies, several key challenges remain. In
particular, observations, especially those associated with high magnitude events, and studies designed to eval-
uate a comprehensive range of predictive features are both limited. To build upon previous developments, we
described a workflow to support the continued development and assessment of empirical, multivariate physical
vulnerability functions based on predictive accuracy. Within this workflow, we evaluated several statistical
approaches, namely generalized linear models and their more complex alternatives. A series of models were built
1) to explicitly consider the effects of dimension reduction, 2) to evaluate the inclusion of interaction effects
between and among predictors, 3) to evaluate an ensemble prediction method for applications where data ob-
servations are sparse, 4) to describe how model results can inform about the relative importance of predictors to
explain variance in expected damages and 5) to assess the predictive accuracy of the models based on prescribed
metrics. The utility of the workflow was demonstrated on data with characteristics of what is commonly ac-
quired in ex-post field assessments. The workflow and recommendations from this study aim to provide guidance
to researchers and practitioners in the natural hazards community.

1. Introduction

Hydro-meteorological hazards that occur in mountainous areas can
have devastating consequences on local communities. In Switzerland,
natural hazards that occurred between 1972 and 2016 amounted to
average damages of approximately CHF 305 million per year. A major
proportion of these damages were caused by a limited number of high
magnitude events; for instance, the 2005 floods alone resulted in CHF 3
billion in damages (Bundesamt für Umwelt, 2018). Furthermore, spatial
patterns of risk to natural hazards in mountain regions are expected to
change in the future due to climatic and environmental factors
(Mazzorana et al., 2012; Papathoma-Köhle, 2016). Weather extremes in
Europe are expected to result in increasingly more frequent and higher
magnitude precipitation events, which have been associated with the
onset of hazardous occurrences such as floods and debris flows (Toreti

et al., 2013; Volosciuk et al., 2016). Additionally, developments re-
sulting in changes to land use patterns are expected to alter the vul-
nerability of elements at risk (Thieken et al., 2016). However, there is
still an incomplete understanding of the independent and joint effects of
hazard driving forces and events often engender highly variable con-
sequences to affected elements (Vogel et al., 2014). Given the de-
structive potential of these events, there is justifiable interest in gaining
a better understanding of the drivers and the prediction of expected
damages. Post-event vulnerability and consequence analyses about the
causes and impacts of hazards can support future decisions on in-
tegrated risk management, ranging from the spatial planning of com-
munities at risk, optimized coordination of emergency efforts and re-
sources, to the assessment of how effective protection measures are.

Of the types of potential consequences of hydro-meteorological
hazards on elements at risk, physical vulnerability is defined as the
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predisposition of a building to be susceptible to any degree of damage
as a result of a specific hazard impact (Uzielli et al., 2008) and as a
function of its profile and environment (Ettinger et al., 2016). Hazard
impact is determined by the interaction of two factors - the intensity of
a given hazard and the susceptibility of the elements at risk (Uzielli
et al., 2008). The consequence of hazard impact on buildings may be
expressed as proportional loss, y= d/v, where d is the amount of da-
mage sustained in monetary units and v is the insurance value of a
specific structure (Rheinberger et al., 2013). In other cases, damage
grades have been used to indicate ranked degrees of structural and non-
structural damages with respect to a given hazard intensity (Charvet
et al., 2015; Ettinger et al., 2016; Laudan et al., 2017).

Charvet et al. (2017) identified types of physical vulnerability
functions based on the data collection source. Empirical functions use
data from post-hazard assessments; judgement-based functions derive
damage estimates from expert elicitation; analytical functions are based
on the results of numerical simulations of structural damage and hybrid
functions employ a combination of the aforementioned approaches
(Charvet et al., 2017). In most literature found in the natural hazards
domain, physical vulnerability functions (or curves) are defined as
quantitative, investigative approaches used to evaluate the physical
vulnerability of buildings to natural hazard events (Papathoma-Köhle
et al., 2017). More specifically, empirical physical vulnerability func-
tions mathematically relate hazard intensity to the damage response of
a building (Tarbotton et al., 2015) and consist of two main types. Da-
mage functions typically represent the response in terms of absolute
damage (i.e. the cost to completely restore an affected building) or
relative loss (i.e. a percentage that represents the damaged proportion
of a building). Fragility curves describe the conditional probability that
a damage state will be reached or exceeded with respect to a given
hazard intensity level (Choi et al., 2004). Empirical vulnerability
functions have been developed to assess damage responses of buildings
to different types of hazards, including but not limited to tsunamis (e.g.
Charvet et al., 2017), floods (e.g. Büchele et al., 2006), fluvial sediment
transport (e.g. Totschnig et al., 2011a, b) and debris flows (e.g.
Papathoma-Köhle et al., 2012). Empirical-based analyses that relate
damages from hazard processes to intensity and susceptibility features
are considered to be more limited to the use of other investigative
methods (Rheinberger et al., 2013). Consequently, this study focuses on
the further development and continued assessment of empirical vul-
nerability functions based on building damages sustained from the
occurrence of hydro-meteorological hazards.

Inferences and a better understanding of damages require the col-
lection of relevant data following the occurrence of hazard events and
the continued development and application of empirical vulnerability
functions; this is not without its challenges. Firstly, empirically-based
analyses require large quantities of accurate and complete ex-post data
records at building level to be considered reliable (Ciurean et al., 2017;
Papathoma-Köhle et al., 2017). Ex-post data is defined in this context as
data collected about a given event following its occurrence. From an
analytical standpoint, this type of assessment is difficult to conduct for
certain types of hazards such as debris flows, where the number of
directly affected buildings is notably less than those typically affected
by the wider spatial extent of hazards such as floods and earthquakes.
Furthermore, object-specific observations are often sparse (Vogel et al.,
2014; Laudan et al., 2017). This is partially attributed to the rapid post-
event intervention of authorities to restore the functionality of affected
communities, which effectively reduces the amount of time field-based
damage assessments can be conducted (Ettinger et al., 2016). An al-
ternative to using observed damage data involves numerically modelled
hazard intensities (e.g. Quan Luna et al., 2011). However, the outputs
are associated with model and parameter uncertainties that warrant
further investigation (e.g. Chow et al., 2018).

Secondly, data collected on object-specific damages have high di-
mensionality due to a large number of contributing factors to the pre-
conditions and consequences of a given hazard event. In this context,

pre-conditions refer to the combined status and characteristics of the
object and its surrounding environment prior to the occurrence of an
event. Examples can include, but are not limited to, the number of
surrounding buildings (i.e. sheltering effect), the proximity of a
building to the main channel or preferential pathways, the im-
plementation of local protection measures and building construction
type. As a general rule of thumb, at least ten records should be available
per feature variable (factor), also referred to as events per predictor or
EPV (Concato et al., 1995; Peduzzi et al., 1995, 1996). The studies upon
which the basis of this rule was founded were designed to evaluate the
effects of varying the numbers of events with respect to a constant
number of predictor variables. Results from these studies highlighted a
range of concerns as EPV was reduced below 10 events. In particular,
any conclusions drawn from results with<10 EPV could be challenged
on the basis of increased bias and variability, unreliable confidence
interval coverage and problems with model convergence. Vittinghoff
and McCulloch, 2007 also demonstrated that between 5 and 10 ob-
servation records per feature variable is enough, especially if results are
statistically significant. In cases where there are less than five records
per factor, dimension reduction prior to conducting multivariate ana-
lysis is requisite. The resultant dataset should contain sufficient in-
stances of all unique combinations of feature variable values so that any
findings that result would be subject to less contention associated with
the use of low EPV.

Thirdly, vulnerability functions developed in the past did not con-
sider the full range of hazard process characteristics (i.e. focusing pri-
marily on flow or sediment deposition depths as intensity proxies) and
did not consider the influence of building properties (e.g. construction
type). In Papathoma-Köhle et al. (2011), these are referred to as func-
tional relationships, which are limited to relating hazard intensity to
the proportional loss of elements at risk. In recent studies (e.g. Table 1),
additional building and surrounding area characteristics, in addition to
multiple hazard intensity proxies and their interactions, have been
considered. Certain features have already been identified as important
or advantageous to consider. Specific examples are cited under three
categories as:

• building resistance features (e.g. exposition in the flow direction,
Laudan et al., 2017; susceptibility of building elements to intrusion,
Laudan et al., 2017; building characteristics or structural adaptation
to the local environment as a means to minimize hazard impacts,
Charvet et al., 2015; Margreth and Romang, 2010; Ettinger et al.,
2016);

• surrounding area features (e.g. shadowing effects of neighbouring
buildings that retain process materials from the building in question,
Laudan et al., 2017; distance to channels or bridges, Ettinger et al.,
2016); and

• damage pattern features (e.g. process intensity proxies, Charvet
et al., 2015; Rheinberger et al., 2013; pairwise interactions between
intensity proxies, Rheinberger et al., 2013).

In this study, we refer to the products of these developments as
multivariate vulnerability functions. Table 1 summarizes four recently
conducted, empirically-based studies with the objective of predicting
building damages from the occurrence of natural hazards with multi-
variate data. These studies include but are not limited to floods, tsu-
namis and debris flow events. In general, these four studies considered a
lower number of feature variables (p) compared to a relatively higher
number of observations (n). Of the feature variables included in the
statistical models, there is a differentiation between building resistance
and surrounding area profile attributes (pre) and hazard intensity
proxies or damage patterns (post). In three of the studies, the expected
value of y-response was ordinal damage grades, whereas, in one of the
studies, the y-response was expressed as bounded proportional loss
values.

Despite conducting evaluations with available databases and more
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advanced statistical estimation methods in previous studies, existing
models have not been able to explain all systematic variability in the
data, especially at higher levels of damage (Charvet et al., 2014). The
unexplained residual variability in the observed damages may be re-
solved by considering additional or different explanatory variables
describing hazard intensities, building resistance, environmental fea-
tures and/or their interactions. The aggregated effects of the afore-
mentioned factors and challenges render hydro-meteorological hazard
assessments inherently complex. While it is possible to perform analyses
and develop vulnerability functions with currently available data and
models, the amount of confidence assigned to the results and their
transferability to other locations and future scenarios must be critically
reviewed. Vulnerability functions are developed with damage data
caused by a hazard event with certain intensities, spatial and temporal
distributions (Totschnig et al., 2011a, b) and affected buildings with
specific characteristics. The specificity, with which these functions are
developed, has implications for transferability. Consequently,
Papathoma-Köhle (2016) recommended that vulnerability assessments
be revised and constantly adjusted and Ettinger et al. (2016) cautioned
that vulnerability indicators are too site-specific to be applied oper-
ationally to other locations. The authors of the latter study highlighted
differential, site-specific building structures and channel settings as
reasons for exercising discretion. Additionally, site-specific triggering
processes and upstream-downstream evolution of hazard processes over
time and space should be taken into consideration (Di Baldassarre and
Montanari, 2009). Given this context, what can we learn from past
hazard events and how can this insight be used to inform decisions in
the future?

In light of the aforementioned challenges and research gaps, an
updatable workflow is described to support further development and
evaluation of empirically-based, multivariate vulnerability functions.
Moreover, the multi-step procedure considers the option of updating
methods at each of the steps and with respect to the nature of available
data. The study is conducted on an empirical dataset that consists of
hazard, building and surrounding area characteristics of three debris
flow and sediment-laden flood events that resulted in heavy building
damages. These events occurred in 2005 in the Swiss Alps.
Furthermore, the study describes a procedure to pre-process ex-post
damage data, which is often subject to the challenges of data sparsity
and high dimensionality. High dimensionality occurs when there are a
greater number of feature variables to observation records, where each
feature represents a dimension. Data sparsity refers to the treatment of
missing data entries. While the explicit exploration of missing data in
natural hazards studies is limited, very high proportions of missing data
have been observed in other fields and treatment methods have been
evaluated (e.g. Albrecht et al., 2010 and Nguyen et al., 2017). Different
methods, also referred to as matrix completion approaches can be
considered, however, there is currently no consensus on the best ap-
proach to handle missing data. Often, domain and/or data specific best
practices are prescribed after experiment-based trials are validated to
determine whether resultant solutions are realistic. In the field of nat-
ural hazards, only one known study, conducted by Macabuag et al.
(2016), demonstrated the use of multiple imputation (MI) techniques
on a dataset with missing entries.

Empirical vulnerability functions are derived by applying statistical
model fitting techniques on building damage data. The type of model
that is applied is dependent on the expected outcome (i.e. nature of the
y-response variable). When choosing models to investigate a particular
problem, several aspects should be considered, including the objective,
underlying assumptions, model structure and how parameters are es-
timated. Linear regression models and generalized linear models
(GLMs) have been applied in previous studies. Table A (Supplementary
material) compares the key differences between the two types of models
under the aforementioned considerations. Kawano et al. (2016) re-
cognized the importance of being able to detect and represent non-
linear and non-monotonic dependencies in data describing complexTa
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phenomena, especially with regards to damage modelling and asso-
ciated uncertainties. Compared with linear models, GLMs relax as-
sumptions of normality for both the y-response variable and errors
(McCullagh and Nelder, 1989) and assumed linearity between response
and feature variables (Charvet et al., 2017). Additionally, Rheinberger
et al. (2013) highlighted an additional advantage to applying double
generalized linear models (DGLM; Smyth, 1989), a type of GLM that
adjusts for overdispersion, which is commonly associated with pro-
portional loss data.

While some models predict single outcomes, others have been fur-
ther developed to predict an ensemble or range of outcomes. The ap-
plication of an ensemble predictor, random generalized linear model
(RGLM; Song et al., 2013), was first evaluated by (Laudan et al., 2017)
for damage modelling. The RGLM is comprised of a set of models (i.e.
bags), each containing a sufficiently different subset of the original
feature variables, so that variability is maximized. RGLM incorporates
elements of randomness and instability, feature independency and
forward variable selection based on the evaluation of a model fit metric
(i.e. AIC; Akaike, 1974). Consequently, the RGLM performs both di-
mension reduction and model fitting simultaneously.

The study brings together these multiple lines of investigation on
statistical models to building damage data in an end-to-end workflow.
Furthermore, the effect of input data on the predictive accuracy of
vulnerability functions that are developed are evaluated. In particular,
the study considers original input data, datasets with reduced dimen-
sions and the inclusion of interaction terms, with the aforementioned
model structures.

2. Data and methodology

2.1. Data

Data acquisition of both structural and non-structural features about
buildings affected by hazards supports a better understanding of the
contributing factors to specific damage processes. However, there are
recognized challenges associated with data availability, quality and
existing collection methods. Firstly, direct, real-time observations at
appropriate temporal and spatial resolutions that are required for vul-
nerability assessments are difficult, if not impossible to obtain (Gaume
et al., 2009). Furthermore, data to support the accurate characteriza-
tion of structural failures is often unavailable or incomplete
(Papathoma-Köhle et al., 2011). In light of these challenges, supple-
mentary data about object-specific damages, building resilience and
properties of the immediate environment were collected for this study,
based on findings and recommendations of comparable studies (e.g.
Ettinger et al., 2016; Laudan et al., 2017; Rheinberger et al., 2013).

2.1.1. Data acquisition in swiss communities
In the summer of 2005, torrential rains across extensive areas of the

Swiss Alps caused large-scale floods and numerous landslides. The
highest losses were recorded in the Canton of Bern, at 805 million CHF
(DETEC, 2008), mainly caused by three local events: a debris flow oc-
curred in Brienz and sediment-laden floods affected both Diemtigen and
Reichenbach (Bezzolo and Hegg, 2008; Scheidl et al., 2008). Feature
variables describing the pre-conditions and consequences of these
events were organized under three categories of interest: building
profile and resistance, surrounding area profile and damage patterns. In
some studies, vulnerability is defined as the set of features describing
pre-existing conditions (i.e. building design and site-specific environ-
mental characteristics) that increase their susceptibility to the impacts
of hazard processes (Ettinger et al., 2016; Papathoma-Köhle et al.,
2011). This corresponds to the building resistance and surrounding area
profile categories. Collectively, the pre-condition features are re-
presented in a “pre” dataset, while a “post” dataset includes the pre-
condition and damage pattern features. Data was compiled from three
sources: the cantonal insurance provider (Gebäudeversicherung Bern;

GVB), responses to the field-based survey conducted with local re-
sidents and data derived from remotely sensed products (i.e. ortho-
photographs, photographs, digital elevation model; Swisstopo, 2005).

Ground-survey based data acquisition was conducted at the three
affected sites in 2018 to collect supplementary data about pre-condition
attributes, in addition to responses about damages, beyond the con-
ventional consideration of flow or sediment deposition depths.
Engaging residents involves care in survey design and careful choice of
questions that can be answered with confidence by non-experts while
providing representative data for further analyses. Generally, data on a
relatively limited and partially representative sample of affected
buildings can be obtained through surveys. The selection of buildings
for sampling was largely a function of the residents’ willingness to grant
access. Considering the time since the event occurred and when the
survey was conducted, questions about damages were mainly limited to
binary (yes or no) or categorical responses to minimize uncertainty
attributed to memory and acknowledging that respondents may not
necessarily have the expertise to provide more detailed responses. Data
collection was conducted through three means to maximize response
rate: in-person interviews, if residents were immediately available for
consultation, delivery of a hard copy of the survey with return postage
paid and an online version of the survey coded on the third party Ona
platform (Ona, 2018). Details about the types of features that were
collected are presented in 2.1.3.

2.1.2. Proportional loss
The GVB shared data on proportional loss (relative damages), for

buildings located in the three affected communities. Proportional loss
values are continuous, bounded fractional response values [0,1]. The
values describe the consequence of a specific hazard process on site-
specific buildings, where 0 represents no loss or damage sustained and
1 represents a total loss or complete structural failure.

Exploratory assessments of the y-response variable are important to
determine which model structure is suitable for subsequent analyses of
the expected value. In the case of proportional loss, since it is defined
on a bounded interval that is not concentrated within the interval, the
values follow a non-normal distribution. A logit-transformation is ap-
plied to proportional loss values with the logit function from the R
package car (Fox et al., 2011). Logits are real numbers, which range
from minus infinity to infinity. The transformation effectively increases
the resolution of values distributed towards both bounded ends. A
correction was applied to remap the boundary values to 0.025 and
0.975, respectively, which resulted in logit-transformed proportional
loss values between −3.66 and 3.66 (Fig. 1). The nature of the pro-
portional loss data informs the types of models that are built later on to
support further analyses; details are provided in 2.2. Both proportional
loss and logit-transformed proportional loss are distributed in a
bounded domain and their empirical probability density functions are
bimodal (Fig. 1). Therefore, normality cannot be assumed.

2.1.3. Feature variables
Immediately following the occurrence of the events, photographs

depicting object-specific damages from hazard processes were compiled
from local residents (Bezzolo and Hegg, 2008). Flow conditions at each
affected building are required to derive physical vulnerability func-
tions. In this study, the average sediment deposition height represents
the main hazard intensity proxy of both types of hazard events. The
values were estimated from the object-specific photographs by ex-
amining where visible debris or water marks were left on the facades of
affected buildings. Additional data that indicate certain degrees of
impact of the specific hazard processes on buildings was collected as
binary responses through the field surveys.

Exploratory assessments of the feature variables to the y-response
were conducted to gain insight into the strength of pairwise relation-
ships. Three types of statistical tests were conducted to detect the
strength of association between the continuous y-response and the type
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of feature variable. Spearman's correlation coefficients were computed
for continuous variables, the Wilcoxon test was conducted on binary
variables (i.e. with 2 levels) and Kruskal-Wallis test was conducted on
categorical variables (i.e. with> 2 levels). A correlation coefficient
ρ≥ 0.50 and p-values< 0.05 from the tests indicate that the feature
variable has a significant correlation with proportional loss. A summary
of the feature variables considered in this study are presented in Table B
(Supplementary material); the bivariate significance detected with the
original data set is indicted in light blue.

2.2. Data pre-processing

A dataset, with n-observations and p-feature variables, resulted
from the compilation and coding of collected survey data; this dataset
requires further pre-processing before modelling. This pre-processing
step follows two main objectives: to address data sparsity (2.2.1) and
high dimensionality (2.2.3).

Data were pre-processed and analyzed in RStudio (R Core Team,
2018). The pre-processing workflow is separated into two sections
(Fig. 2). Section A prepared data for models that take original variables
as inputs, while section B prepared data for models built with alter-
native predictors in the form of principal components. Sections
2.2.1–2.2.4 provide further details about each of the pre-processing
steps.

2.2.1. Data sparsity
Firstly, missing data must be addressed before further analysis is

possible. Figure A (Supplementary material) illustrates the extent and
distribution of the missing data (i.e. indicated in red). The figure pro-
vides an impression about the prevalence of missing values, high-
lighting the challenge of collecting data at building level and the im-
portance of this pre-processing step.

The effectiveness of any missing data treatment method is strongly
affected by the ratio between missing data and available observations.
Consequently, the efficacy of treatment methods is expected to decrease
when applied to higher numbers of missing cases (Munguía and
Armando, 2014). As the missing to available data ratio is minimized,
the results are expected to improve, since the availability of actual
observations provides a more precise estimate of the real distribution.
Otherwise, without access to more observations, the choice of im-
putation method should be specific to a given data set and should not be
generalized to other data sets without thorough data exploration. Ide-
ally, the design and application of a missing data treatment plan should
be customized to each feature variable within a dataset to properly
address 1) the nature of the missing data pattern, 2) the percentage of

missing cases and 3) whether the actual range of observations is known
and represented by the available observations (Munguía and Armando,
2014). Table 2 summarizes the three types of missing data and the
prescribed treatment.

While there is some general understanding about the missing data
mechanisms for each of the feature variables, a more precise idea about
whether the ranges of observed values represent reality may be largely
unknown. Based on the aforementioned classifications, all three types
of missing data were observed in the compiled dataset used in this
study. For instance, average sediment deposition height is a feature
variable found in this dataset; its values generally increase with pro-
portional loss, the y-response variable. However, the variance in pro-
portional loss is incompletely explained by this feature. Furthermore,
there is the possibility of interaction effects among variables.
Consequently, deposition heights that correspond with highly or com-
pletely damaged buildings cannot be assumed to be comparable or
higher than the heights observed with low to medium proportional
losses. In other words, if higher damages can be attributed to a com-
bination of factors (e.g. boulder impact and/or large volumes of sedi-
ment intrusion in a given building), it is impossible to determine which
magnitude of sediment deposition height contributes to the overall
damage. Therefore, the use of MNAR-specific imputation methods
would require a better understanding about the missing data values
themselves. However, without additional opportunities to revisit the
data collection process, only techniques that assume MCAR and MAR
missing data patterns can be applied; this is recommended when there
is incomplete knowledge about the nature of missing values (Lazar
et al., 2016).

Imputation methods aim to optimize data retention by assigning a
plausible value to each missing observation. This is accomplished by
preserving the characteristics of each feature variable while simulta-
neously considering the impact of relationships between feature vari-
ables in a given dataset. In this study, we evaluated three missing data
treatment techniques under assumptions of MCAR/MAR, namely,
mean-based imputations (Meyer, 2018), k-nearest neighbour (kNN;
Templ and Alfons, 2009) and multiple imputation based on principle
component analysis (MIPCA; Josse and Husson, 2012). Figure B (Sup-
plementary material) visually compares the data distributions of ori-
ginal and imputed average sediment deposition height values, with
respect to the three treatment techniques. From this example, it is
evident that the baseline approach (mean-based imputations) generates
results with zero variability. Although the other two methods that were
assessed (kNN and MIPCA) did not fully capture the same distribution
as the observed values, the variability and maximum/minimum ranges
of imputed values were in higher agreement than values imputed with

Fig. 1. Visualization of proportional loss value distributions with density plots of the original proportional loss values [0,1] (left) and logit-transformed proportional
loss values [-3.66, 3.66] (right).
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averages alone. Furthermore, using only highly correlated features to
impute missing values in the target variable improves the agreement
between the distribution of imputed values and that of the observed
values. However, due to aggregated sources of uncertainty, it is not
definitely clear in this example which method (i.e. kNN or MIPCA)
performs better. Nevertheless, it is of interest to have an idea about how
different imputation results compare, since more representative im-
putation results support the ability to draw conclusions from sub-
sequent analyses with greater confidence.

For this particular dataset, a combination of the aforementioned
imputation techniques was applied (Fig. 3). In particular, kNN was used
to impute both numeric and categorical missing entries and MIPCA was
used to impute the average sediment deposition heights for the subset
of debris flow data. With reference to the findings presented in Figure B,
while the results associated with mean-based imputation were found to
be less inadequate than those engendered with the other two methods,
closer inspection of the values imputed with kNN revealed some un-
satisfactory joint distributions. This is indicated by the vertical

Fig. 2. Data pre-processing workflow to address the challenges of sparsity and high dimensionality in a given input dataset prior to model building.

Table 2
Overview of different classifications of missing data and prescribed treatments (after Macabuag et al. (2016).

classification method of identification recommended action

missing completely at
random (MCAR)

Determine if missing data distribution is consistent for the
complete dataset (Kolmogorov-Smirnoff test for disaggregated data
or χ2-test for aggregated data)

Conduct complete-case analysis (i.e. exclude observations with any
instances of missing data and perform regression analysis on the remaining
dataset) or estimate missing data with MI techniques

missing not at random
(MNAR)

Determine if missing data from another feature is related to the
reason that data from the target feature is missing

Vulnerability analysis cannot be conducted without introducing bias; revisit
data collection process

missing at random (MAR) Neither MCAR or MNAR Estimate missing data with MI techniques
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alignment of data clusters in the kNN margin plot. Additionally, Fig. 3
indicates that imputations were conducted for subsets of debris flow
and fluvial sediment transport data separately. Imputation with the
MIPCA approach resulted in a stronger agreement when applied to the
DF subset, using only selected features that were highly correlated with
the target variable. Consequently, MIPCA was used to impute missing
cases of average sediment deposition height for debris flow observa-
tions and all other numeric feature variables were imputed with the
kNN method. In general, these data distribution comparisons provided
a basis to select for particular sets of estimates to build a complete set of
observation records for further analyses, in lieu of additional observa-
tions in field.

2.2.2. One-hot encoding
With the hybrid dataset of complete observations, all categorical

feature variables (nominal and ordinal) that were label encoded with
multiple factor levels were one-hot encoded. Label encoding often
carries a misleading assumption that the higher the categorical value,
the more significant the level or class. For example, a feature variable

representing different types of building materials may contain classes
label encoded as 1=masonry, 2= concrete, 3=wood (Fig. 4). From
this example, the numbers associated with the codes do not correspond
to additional information about the building's structural vulnerability
and interpolations between classes (e.g. building material with a value
of 1.5) are meaningless. Furthermore, label encoding of ordinal data
carries an additional, often invalid assumption that levels are equidi-
stant from each other. To exclude the introduction of these sources of
errors in model predictions, all categorical features were one-hot en-
coded as binary values before the features were used to train models.

2.2.3. Dimension reduction
This pre-processing step addresses two main concerns – the inclu-

sion of feature variables that are not highly correlated to the y-response
and high correlations between variables, which are undesirable in
subsequent regression modelling. By comparing the performance of
models built with these subsets of pre-selected features, we investigated
whether the variance in proportional loss can be better explained with
fewer features. Two dimension reduction approaches were evaluated.

Fig. 3. A hybrid dataset with complete observation records after the application of multiple types of imputation techniques.

Fig. 4. Example of one-hot encoding of a label coded feature variable (e.g. building materials).
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The first form of evaluation, bivariate analyses, was conducted to
detect relationships between feature variables (x) and proportional loss
(y), and instances of high correlations among features. The results of
these analyses were summarized in Table B (Supplementary materials)
and used to prepare input datasets based on significance pruning. This
excluded redundant or relatively low importance features from further
modelling. Two subsets (Table 3) were prepared as a result; the choice
of features in each of the subsets also corresponds to the pre-conditions
(pre) and post-event conditions (post) contributing to vulnerability
assessment. The null hypothesis is that neither subset of features has an
effect on the explanation of proportional loss when compared with a
baseline model that includes all available features (all).

The second way to reduce dimensionality is by conducting principal
component analysis (PCA; Hotelling, 1933; Pearson, 1901). This ap-
proach is attractive as the analysis returns uncorrelated variables in the
form of principal components and mitigates against overfitting. While
techniques for the exploration and visualization of 2- and 3-dimen-
sional problems are commonly applied, a different approach is required
to explore a high-dimensional dataset. The overall aim is to retain a
minimal number of principal components (PCs) to reduce input feature
variable dimensionality. PCA can be considered as a type of multi-di-
mensional scaling that returns a linear transformation of a higher
number of feature variables (i.e. > 3) into a lower dimensional space
in the form of PCs, while retaining as much information about the
original feature variables (X1, X2,…Xp) as possible. Consequently, these
components are the result of the optimization problem and are linear
combinations of the original feature variables, generated based on
maximum variances (Aguilera et al., 2006). A standardized input da-
taset of interest (n x p) is decomposed into two orthogonal output
matrices containing PC loadings and scores, respectively (Figure C;
Supplementary material). The loadings output matrix stores eigen-
vector coefficients, which can be interpreted as weights associated with
each of the feature variables to a specific PC. The weights are calculated
according to the degree of variance in each variable and indicate the
relative contribution or importance of a variable to a particular PC. The
scores output matrix can be interpreted as a new measurement value
that is the sum of the product of normalized values and the relative
contribution of the particular value (i.e. eigenvector coefficient). Two
main PCA approaches exist: eigenvalue decomposition and singular
value decomposition. The latter is preferred over the former method for
numerical stability. In this study, the prcomp routine from the R
package stats (R Core Team, 2018) was used to perform PCA.

Truncation or exclusion of PCs beyond the top-ranked number of
components informs about the complexity of the input dataset; the
dataset is less complex if a greater percentage of variance can be ex-
plained by a lower number of components. Furthermore, the noise in
the data is reduced in the process. Three metrics (stopping rules) are
commonly applied to guide the optimal number of PCs retained, namely
the number of components 1) with eigenvalues greater than 1, under
unit variance, 2) prior to the inflection point observed in scree plots and
3) that explain at least a user-defined threshold of cumulative variance
(e.g. 75%) (James et al., 2013). An eigenvalue>1 or s/p indicates that
the associated PCs account for more variance than by one of the original
feature variables, on the condition that the data is standardized. If y-
aware standardization has been applied to the features (further ex-
planation in 2.2.4), variables may no longer have unit variance; ei-
genvalue > s/p accounts for this change, where s represents the sum of
variances across all feature variables included in the PCA and p is the
number of features. Scree plots illustrate the number of PCs that cor-
respond with a proportion of variance explained (%) in descending
order of magnitude. It is a visual heuristic that is commonly used to
support the selection of a certain number of PCs based on relative im-
portance. The inflection point at the base of the steeply descending
slope is assumed to be an indicative point where subsequent PCs have a
limited to negligent contribution to explaining residual variance in the
y-response variable.Ta
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In this study, all three of the aforementioned metrics were applied
to retain an optimal number of components. Variable importance could
then be identified and more easily interpreted by rotating the PC
loadings matrix. The portions of the scores matrix corresponding to PCs
that were retained were used as alternative explanatory variables to
build models (Figure D - left; Supplementary material).

2.2.4. Feature standardization
Standard PCA is an unsupervised approach, since the y-response

variable is not directly considered; PCs that capture the maximum
variance in the feature data set are assumed to explain most of the
variance in the y-response (James et al., 2013). Results are only as
reliable as the quality of data introduced to a model. PCA results are
sensitive to input feature pre-selection based on significance and if
features are standardized. Standardizing feature variables prior to fur-
ther analyses with PCA address concerns about the interpretability and
credibility of results. Model inputs are often collected at different scales
or measured in different units. The effective variance of each feature
(e.g. the variance of a count of occurrences per 100,000 buildings will
likely be greater than a measurement in centimeters expressed as me-
ters) cannot be accurately compared. Consequently, PCA results would
erroneously assign very high loadings to features with the highest un-
scaled variances.

Typically, X-aware standardization, which involves centering each
feature variable on its mean and dividing by the standard deviation, is
applied to feature variables prior to conducting PCA. Without stan-
dardization, variables with high variance would be associated with
larger resultant loadings. This would erroneously lead to the

dependence of a PC on variables with high, unscaled variances.
Consequently, while the actual values of the predictors are modified in
the standardization process, the loss in interpretability of the features is
counterbalanced by the increased interpretability of resultant model
coefficients as changes from low to high values (Gelman, 2008).

However, since the y-response variable is not directly related to the
variance of the feature variables, it is possible that PCs with low ei-
genvalues, constructed on features with low variance but high ex-
planatory power with respect to y, are excluded from further analyses.
In these cases, the underlying assumption that high variance in feature
variables explains the most variance in the y-response is invalid.
Exclusion of PCs with low eigenvalues from further analyses can be
problematic if the y-response variable has a close relationship with
these components; this adversely impacts the predictive accuracy of the
associated model. To address this concern, y-aware standardization has
been recommended by Zumel & Mount (2016) and was applied to the
three test sets of data prepared in the previous step. The standardization
of feature variables to the y-response requires a model that reflects the
nature of the data. The choice of standardization model will impact
subsequent PCA results. However, the magnitude of this impact can
only be assessed when reviewing the results at the end of the modeling
stage. A logit model, rather than the standard linear model, is more
appropriate to transform each column of feature data values with re-
spect to the bounded y-response variable. Assessments with y-logit and
standard linear transformations were conducted to support the eva-
luation of this pre-processing step.

Performing y-aware standardization at this stage of the workflow
with all available observations (e.g. 81) means that the entire set of

Fig. 5. Model building and assessment workflow.
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response variables will be used. Consequently, prior to conducting this
step, 21 observations are retained as a test set. Subsetting the available
data at this point ensures that information from the test set is not used
to train the models. Furthermore, y-logit standardization was only ap-
plied to datasets used to fit two of the single predictor models. These
include the logit-linear regression and double generalized linear
models, which are introduced in the next section (2.3).

At the end of this step, x- and y-aware standardized training datasets
were prepared for PCA (Table C – first three columns on the left; Sup-
plementary materials). The x-aware datasets established the baseline or
null hypothesis that y-aware standardization has no impact on results.
The y-aware datasets supported the investigation of the alternative
hypothesis. When y-aware standardization is applied, binary features
take on numeric values in the process.

Prior to performing PCA, training datasets my contain feature
variables with zero variance (i.e. constant values) and should be ex-
cluded from further analyses. This is pertinent to datasets with low
observation records or rarely occurring levels. As a result, the full range
of levels per feature may be under-represented, even with stratified
random sampling to generate training and test datasets.

2.3. Statistical models

Considering past developments (e.g. studies presented in Table 1),
logit-linear models (i.e. linear regression applied to datasets with logit-
transformed dependent variable) and GLMs (e.g. double and random
generalized linear models) were built and their performance in terms of
predictive accuracy compared in this study. A workflow describing the
evaluation of selected models of interest is illustrated in Fig. 5, which
continues with the outputs prepared by the end of the pre-processing
steps (Fig. 2). Table 4 summarizes the characteristics of the models that
were applied to specific datasets and the corresponding R packages.

2.4. Model building

Four types of models were built in this study: with original feature
variables, with pre-selected features based on significance pruning,
with principle components (PCs) and the aforementioned models with
additional consideration of interaction terms. Ettinger et al. (2016)
reported that while preliminary analysis of second-order (pairwise)
interactions between features did not identify significant results, in-
terdependencies should be considered in future investigations. More-
over, the effects of interactions between principal components on pre-
dictive accuracy have yet to be examined in past developments of
vulnerability functions. The inclusion of interaction terms from PCs can
be interpreted as a way to evaluate a more comprehensive set of in-
teractions among weighted linear combinations of feature variables,
rather than pairwise interactions of original variables. In this study,
series of logit-linear regressions were built with original variables
(LLR1 and LLR5), PCs (LLR3, LLR4, LLR7 and LLR8), original variables
with pairwise interaction terms between original variables (LLR2 and
LLR6) and PCs with interactions between PCs (LLR4C and LLR8C). Two
sets of DGLMs were built to model expected damages as Gaussian
(DGLM_G0 to G5) and binomial distributions (DGLM_B0 and B1). Ad-
ditionally, two RGLMs were built (RGLM0 and RGLM1). Altogether, 23

models were built and evaluated (Table 5).

2.5. Model diagnostics

Once the different models were fitted on training data, the model
objects were passed on to the test data. Diagnostics applied to modelled
results provide a basis for comparison based on predictive accuracy; the
model with the highest predictive accuracy was then chosen. In this
study, three metrics were calculated to support this assessment. The
first metric, AICc, assesses model fit against added complexity in terms
of the number of features included in a model. It is an adaptation that is
recognized to return more accurate results than AIC (Akaike, 1974)
when modelling with small sample sizes. Both AIC and AICc depends on
the goodness-of-fit (likelihood function) and considers an extra penalty
term that prevents selecting overfitted models with too many para-
meters. In this way, the resultant AICc or AIC represents a compromise
between model fit and complexity.

Both root mean squared error (RMSE) and mean absolute error
(MAE) are metrics that evaluate predictive accuracy (James et al.,
2013). Since errors are squared prior to averaging in the RMSE calcu-
lation, it can be used to detect the presence of large errors, whereas
errors in the MAE calculation are averaged. If both RMSE and MAE
scores calculated for models of interest are relatively lower than the
baseline model, there is an improvement in the predictive power of the
alternative models. The model with the highest predictive accuracy is
associated with the lowest RMSE and MAE scores.

Model selection in this study was based on the highest relative
predictive accuracy. Significant or important features were then iden-
tified with the selected model. In the case where PCs were used as al-
ternative explanatory variables in the models, important features were
identified by ranking the absolute value of variable loadings associated
with the first PC (Figure D - right; Supplementary material).

3. Results

3.1. Model selection

Table 6 summarizes the ranked scores of the three model diagnostic
metrics calculated for each of the 23 models that were built. Based on
these results, we observed that models built with all available feature
variables all failed to converge (i.e. indicated by the –Inf or NA values
under AICc) due to the high number of explanatory variables with re-
spect to the number of observations.

The AICc metric favoured a combination of linear regression and
GLMs based on model fit against added complexity, whereas RMSE and
MAE metrics favoured GLMs only based on predictive accuracy. Since
the objective of the study is to optimize the latter, the models with the
highest predictive accuracy were identified to be DGLM_G4 or
DGLM_G5, and RGLM0, as single and ensemble predictors, respectively.
Due to the added complexity of the RGLM approach, the DGLM_G4 or
G5 models were considered to be the best performing models. Both of
the DGLM_G4 and G5 models were built with reduced dimensionality,
more specifically, with a subset of the first four PCs as alternative ex-
planatory variables (Table 5). Additionally, the G5 model accounts for
overdispersion by considering the two hazard types.

Table 4
Overview of selected models of interest – logit-linear regression (R Core Team, 2018), DGLM (Corty, 2018; Smyth, 1989) and RGLM (Langfelder, 2018; Song et al.,
2013).

model type of predictor R package::function input data

pre post all

logit-linear regression single stats::lm( ) ✓ ✓ ✓
double generalized linear model (DGLM) single dglm::dglm( ) ✓ ✓ ✓
random generalized linear model (RGLM) ensemble randomGLM::randomGLM( ) ✓
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While the inclusion of interaction terms appears to improve the
model fit, improvements to predictive accuracy could not be con-
clusively demonstrated in this study with the working datasets. Finally,
modelling expected damages as a binomial distribution resulted in
lower predictive accuracy than modelling proportional loss as a
Gaussian distribution.

3.2. Feature importance

Features that significantly contributed to models with the highest

relative predictive accuracy (either DGLM_G4 or G5) were identified
from the ranked absolute value of variable loadings associated with the
first PC and reported in Table 7. Based on the evaluation of the models
with the available dataset, the two features were identified to con-
tribute the most to explaining proportional loss (i.e. with higher vari-
able loadings). These include the highest level of a target building (e.g.
upper floors to ground floor or basement) that was affected by water
and/or sediment intrusion and the points of weakness(es) that materials
entered into the structure (e.g. windows, doors, walls). To a lesser ex-
tent, building resistance and surrounding area profile features helped to
explain residual variability in proportional loss when included in the
model. The features identified as important contributors included the
insurance value, the type of wall material it was constructed with and
the process pathway. The latter included data on whether the area
around the building is open or if the building is located beside pre-
ferential conduits and the number of neighbouring buildings sheltering
hazard process materials from the building in question.

4. Discussion

The study indicates that several challenges exist for researchers and
practitioners in risk management communities, especially with regards
to identifying best practices to analyse data and to deduce vulnerability
functions. In particular, 1) critical decisions often need to be made in
this domain with the most prevalent information available and 2) new
data is continually being collected. The utility of the workflow (Figs. 2
and 5) was demonstrated on a dataset that was compiled from post-ex
field assessments. Doing so highlighted the challenges of working with
real data, while showing what kinds of insights can be derived from
findings and how they can be interpreted. The reliability, and therefore
transferability, of the chosen vulnerability function is dependent on
multiple factors, including the quality and quantity of empirical data
used to derive it, the statistical approach applied to the data and the
manner in which damages were appraised (Papathoma-Köhle et al.,
2017). The following sections discuss insights from the modelling re-
sults using the prescribed workflow.

Table 5
Combinations of model inputs and models that were built and evaluated in this study; for models built with PCs, the number of PCs retained as alternative
explanatory variables correspond to the results presented in Table C

model n p pre-selected
features

original feature
variables

principal
components

interaction terms dispersion

LLRBL logit-linear regression 60 0 N N N N N
LLR0 60 87 N Y N N N
LLR1 60 20 Y Y N N N
LLR2 60 20 Y Y N Y N
LLR3 60 20 Y N Y (PC1-5) N N
LLR4 60 20 Y N Y (PC1,3,4) N N
LLR4B 60 20 Y N Y (PC1,3) Y N
LLR4C 60 20 Y N Y (PC1,3) Y (PCs) N
LLR5 60 55 Y Y N N N
LLR6 60 55 Y Y N Y N
LLR7 60 55 Y N Y (PC1-4) N N
LLR8 60 55 Y N Y (PC1-3) N N
LLR8B 60 55 Y N Y(PC1-3) Y N
LLR8C 60 55 Y N Y(PC1-3) Y (PCs) N
DGLM_G0 double generalized linear model (DGLM;

family=Gaussian)
60 22 Y Y N N N

DGLM_G1 60 22 Y N Y(PC1-5) N N
DGLM_G2 59 55 Y Y N N N
DGLM_G4 60 55 Y N Y(PC1-4) N N
DGLM_G5 60 55 Y N Y(PC1-4) N Y
DGLM_B0 DGLM (family=binomial) 60 24 Y Y N N N
DGLM_B1 60 55 Y Y N N Y
RGLM0 random generalized linear model (RGLM) 60 86 N Y N N N
RGLM1 60 86 N Y N Y N

Table 6
Ranked relative performance of models, from highest to lowest, based on a
conventional model selection metric (AICc) and predictive accuracy metrics
(RMSE, MAE). The single predictor (DGLM_G4) and ensemble predictor
(RGLM0) models that performed best based on the defined objective function of
predictive accuracy in this study are indicated in bold.

model fit and complexity predictive accuracy

AICc RMSE MAE
LLR4B −8242.39 RGLM0 0.11 DGLM_G4 0.08
LLR2 −655.69 DGLM_G4 0.11 RGLM0 0.08
DGLM_G5 −109.22 RGLM1 0.16 RGLM1 0.12
DGLM_G4 −81.75 DGLM_G0 0.24 DGLM_G5 0.15
LLR8C −38.81 DGLM_G5 0.27 DGLM_G0 0.19
LLR7 −32.43 DGLM_G1 0.40 DGLM_G1 0.31
LLR8 −27.24 LLR5 1.12 LLR5 0.72
DGLM_G1 −18.24 LLR7 1.19 LLR4 0.95
LLR4C 35.37 LLR8 1.22 LLR7 0.96
DGLM_G0 36.57 LLR4C 1.36 LLR8 1.00
LLR3 37.68 LLR4 1.37 LLR4C 1.05
LLR4 37.88 LLR3 1.50 LLR3 1.07
LLR1 89.22 LLR1 1.54 LLR8C 1.09
DGLM_B1 887.59 LLRBL 1.88 LLR1 1.16
DGLM_B0 889.39 LLR8C 1.93 LLRBL 1.40
LLR5 1492.15 LLR4B 2.05 LLR4B 1.63
LLR0 -Inf LLR8B 2.05 LLR8B 1.63
LLR6 -Inf LLR0 2.60 LLR0 2.00
LLR8B -Inf DGLM_B1 5.49 DGLM_B1 5.48
LLRBL NA DGLM_B0 5.68 DGLM_B0 5.67
DGLM_G2 NA LLR6 53.41 LLR6 32.09

LLR2 78.40 LLR2 33.03
DGLM_G2 NA DGLM_G2 NA
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4.1. Critical discussion of data pre-processing

Results from the exploratory analyses highlighted the high di-
mensionality (i.e. a number of feature variables is greater than the
number of observations) and sparsity (i.e. data contains a significant
number of missing entries) of the input dataset. The problem of di-
mension reduction with PCA on this type of data has been found to
share comparable characteristics typically associated with non-linear
models, particularly the challenges of overfitting, inadequate locally
optimal solutions and inefficient execution of traditional PCA algo-
rithms (Ilin and Raiko, 2010). In particular, an analytical solution
cannot be reached when a data covariance matrix is non-trivial to es-
timate. Furthermore, the objective function contains multiple local
minima. This is in contrast to classic PCA, where solutions return a
single global minimum and it is difficult to verify if the output of an
optimization problem with missing data is the true solution. Therefore,
matrix regularization steps are imperative to prevent overfitting a
model if the data is intended for further analyses.

It is highly recommended to collect a larger number of actual ob-
servations when possible. However, this may not be viable, especially in
natural hazard studies, and listwise deletion of partially incomplete
observation records would result in too much data loss and emphasize
biases in the remaining data. Matrix completion methods are a type of
applied regularization to address the problem of missing data. In this
study, selected data imputation methods were assessed to demonstrate
how cases of missing data can be treated before further analyses are
conducted. These methods included mean-based imputation, k-nearest
neighbour and MIPCA. The result of this pre-processing step is a hybrid
dataset with complete observation records, which is based on the
combination of survey or observed data and statistically imputed data.
As such, it reflects the realities in the three study sites to a limited
extent and any conclusions using this data should be drawn with cau-
tion since many of the records no longer link back to actual buildings.
Consequently, there are implications on the subsequent analysis of re-
sults based on the use of hybrid data. It is important to open this dis-
cussion to provide proper guidance to researchers and practitioners
when specifying an imputation model, predicated on the risk of in-
troducing estimates that do not accurately reflect the nature of the
missing data.

While the data sparsity problem can be addressed with imputation,
the challenge of high dimensionality persists. For datasets with fewer
observation records than measured feature variables (i.e. p > n), PCA

overfits to noise and is an inconsistent estimator of the subspace of
maximal variance. This means that the estimator fails to converge in
probability to the true value of the parameter of interest. This type of
problem also requires regularization, which involves including addi-
tional information to reach a viable solution. It is imperative to resolve
this problem before results can be used to inform decisions with ac-
ceptable levels of confidence. Two solutions may be considered. The
first involves the collection of additional observations so that n > p.
Consequently, an adequate number of observations can support the
differentiation of signal from noise. The second solution is predicated
on an underlying assumption that the available data is well represented
in a sparse basis (Johnstone and Lu, 2009). This approach involves
reducing the dimensionality of the dataset prior to applying PCA-based
methods. In particular, a simple asymptotic model was proposed in the
study to verify the consistency of the main PC identified with standard
PCA, if and only if p(n)/n → 0 (Johnstone and Lu, 2009). Furthermore,
it has been demonstrated that if PCA is conducted on a selected subset
of coordinates that represent the largest sample variances, then con-
sistency can be recovered, even if p(n) ≫ n.

Although the model proposed by Johnstone and Lu (2009) was not
applied in this particular study, the idea of dimension reduction was
achieved by significance pruning via bivariate analyses, which resulted
in two subsets of feature variables (i.e. pre and post) that are highly
correlated to the y-response. However, it is important to note that
significance detection is dependent on sample size. Therefore, analyses
conducted with the current dataset can only provide general guidance
about features of interest. The evaluation should be rerun with the
acquisition of complete observations without imputation and with a
sufficient number of observations per feature level (Ettinger et al.,
2016). From the results, it was evident that the number of overall di-
mensions to explain at least 75% of the cumulative variance in the y-
response was significantly reduced from using original feature variables
with 1) pre-selected features and 2) using PCs identified from PCA re-
sults, where the input is features that have been standardized to the y-
response with an adapted logit transformation. Consequently, dimen-
sion reduction and y-aware feature standardization prior to conducting
PCA are recommended as data pre-processing steps.

It was observed that while dimensions were consistently reduced
from the number of feature variables prior to pre-processing, the re-
commended number of PCs to retain varied (Table C; Supplementary
materials). An additional metric that may be considered involves the
exclusion of all components below a threshold that is defined on the

Table 7
Ranked summary of features that contributed most to explaining the variance in proportional loss associated with the model with highest relative predictive
accuracy, DGLM_G4.

feature variables categories variable loadings

level of building affected by intrusion: 2. OG damage patterns 0.835
pathway(s) of sediment intrusion: throughout building damage patterns 0.480
total destruction (Y/N) damage patterns 0.177
insurance value building resistance 0.080
damage due to boulder (> 1m) intrusion or large woody debris (Y/N) damage patterns 0.073
building frame shifted (Y/N) damage patterns 0.070
wall materials: masonry building resistance 0.070
process pathway: street/preferential pathway surrounding area profile 0.060
process pathway: open surrounding area profile 0.054
number of neighbouring buildings surrounding area profile 0.040
hazard type: sediment-laden flood damage patterns 0.036
hazard type: debris flow damage patterns 0.036
average sediment deposition height damage patterns 0.034
distance to channel surrounding area profile 0.032
estimated volumes of sediment inside of building: none damage patterns 0.032
level of building affected by intrusion: EG damage patterns 0.031
pathway(s) of sediment intrusion: through windows or doors damage patterns 0.023
sediment in building interior (Y/N) damage patterns 0.022
local protection measures: vegetation surrounding area profile 0.021
damage claim damage patterns 0.020
pressure damage to openings from impact of process materials (Y/N) damage patterns 0.018
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level of noise in a given dataset (Gavish and Donoho, 2014). A com-
bination of visual heuristics and information that can be readily ob-
tained from the PCA model object were used in this study.

The use of the outputs from PCA is twofold: firstly, they can provide
insight about relative feature importance to explain variance in the y-
response variable. Secondly, the retained PCs can be used as alternative
explanatory variables to build models for further analyses. In summary,
PCA is a useful method that can handle instances of multicollinearity
and facilitate data dimension reduction. However, the results are only
considered to be consistent if the underlying problem involving sparse
and wide input datasets is regularized.

4.2. Predictive accuracy of proportional loss

Overall, of all the models that were built and evaluated, the GLMs
were associated with higher predictive accuracy scores, compared with
the linear regression models. Based on the results, prediction of the
expected value with a DGLM with a Gaussian family distribution per-
formed better than formulating the problem with a binomial distribu-
tion. Definition of hazard types (i.e. debris flows and sediment-laden
floods) in the optional overdispersion sub-model resulted in compara-
tive predictive accuracy to the model without. However, some im-
provement in the model fit against added complexity could be observed
(i.e. reduction in AICc score associated with DGLM_G5 compared with
G4). It may be of interest to consider other sources in the future; for
instance, Rheinberger et al. (2013) indicated that overdispersion de-
tected across building levels is possible, especially for residences.
DGLMs built with reduced dimensions (i.e. preselected variables based
on significance pruning and subsequently retained PCs) returned the
highest predictive accuracy and model fit among all of the models that
were evaluated. RGLMs were also associated with high predictive ac-
curacy and warrant further investigation.

In general, models built with PCs and interaction between PCs re-
sulted in higher predictive accuracy than models built with the same
subsets of feature variables without interactions. Second-order inter-
action effects between original variables may have performed relatively
worse given a low number of observation records. The results may be
associated with overfitting when the additional pairwise interaction
terms are added to the model.

In general, higher predictive accuracy was returned with models
built from predictors identified via information gained from dimension
reduction. This finding suggests that information from certain pre-
processing steps is helpful and joint application of variable selection
with pre-processing and conventional model selection approaches can
further improve the predictive accuracy of GLMs. These observations
should be investigated further with a larger set of observation records
to determine if results are consistent across other comparable datasets.

In terms of model selection based on model fit or predictive accu-
racy, conventional model selection approaches based on the identifi-
cation of the most parsimonious model (i.e. AICc scores that identify
solutions predicated on model fit while minimizing complexity). This
may not necessarily identify models with the highest predictive accu-
racy. The application of AICc and other similar metrics may be limited
to inferential or exploratory analyses rather than predictive (Leek and
Peng, 2015), such that selecting for the most parsimonious model can
be inconsistent with the objective of maximizing predictive accuracy.
This can account for the discrepancy between the combination of linear
regression and GLMs selected for based on model fit alone and the se-
lection of only GLMs based on predictive accuracy; the observation is
consistent with observations reported in Li et al. (2017). This may also
have implications for RGLM results, since some form of AIC is used in
the process to evaluate model fit; further investigation is recommended.

Given the critical review of existing challenges associated with the
input data used to derive the multivariate vulnerability functions, the
models should be accepted and used to support decision making with
caution. It is highly recommended that more data will be collected in

the future to support the continued derivation and evaluation of these
functions with greater reliability before transferability to other con-
sidered scenarios. Additional points of discussion are elaborated on in
section 4.4.

4.3. Feature importance

Predictive models using proxy predictors may support the identifi-
cation of causal variables, which can provide guidance in future data
collection and investigative efforts (Li et al., 2017). Models built on
feature variables that are proxies are often referred to as black boxes.
This is because there is a recognized limitation of proxies to directly
inform how the dependent variable is related to causal variables or
drivers. Consequently, application of information gained from fitted
models, such as the results from this study, may be limited to providing
an indication of importance when explaining expected damages and
defining the scope of future investigations. These results can be used to
recommend certain aspects to focus on, especially when resources are
limited.

While it has been recognized in past studies (see Introduction) that
hazard intensity proxies are strongly correlated to expected damages,
the inclusion of pre-condition features describing both the building
resistance and surrounding area may help to explain residual variability
in the data. In general, the features identified as important in this study
are consistent with the aforementioned features identified in past stu-
dies.

4.4. Applications and challenges

Insights from vulnerability functions fitted with available data
communicate theoretical possibilities predicated on what was observed
and collected in the past. There is also the possibility that observed
values are not fully representative of reality. Furthermore, while pre-
dictive accuracy can inform about the past, there are limitations when
applying the predictions to future scenarios or conditions at another
location in the present with the same degree of accuracy.
Transferability is extended if the model can be continuously updated to
correct for past errors and if new observations, including site- and ha-
zard-specific data, can be used to retrain the model. This re-
commendation takes into consideration findings reported by Charvet
et al. (2017), which showed that developed fragility functions cannot
typically be generalized or applied to comparable buildings in different
geographic locations. However, it should be noted that the occurrence
of unpredictable extreme events is always possible. Models are unable
to anticipate them and the magnitude of associated errors is unknown.
For this reason, direct application of the fitted model with highest
predictive accuracy from this study should not be directly applied to
future scenarios without further investigation.

Furthermore, structural variability among buildings means that
hazard processes will have differential consequences, which also has
implications for model transferability to different locations where
building construction varies. In several studies with sufficiently large
numbers of observations describing a range of building structure dif-
ferences, separate vulnerability functions were generated for each (e.g.
Charvet et al., 2015). From an engineering perspective, the primary
question is whether the structural integrity of a building has been
compromised. Consequently, there should be an emphasis on re-
sistance-based investigations conducted by experts with access to
building plans to determine the amount of pressure the structure can
sustain for a given natural hazard. This perspective may be more ac-
tively integrated in future field assessments and survey design. In par-
ticular, questions need to be pertinent to the deformation or movement
of building structures (e.g. shifting or destruction of building frames),
whereas questions about water or flood proofing or about the impact of
pressure on building elements can only reasonably provide partial im-
pressions. Comprehensive assessment about building strength against
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impact pressures and high velocities should be conducted by engineers;
it is generally not reasonable to expect that affected residents be able to
provide this type of information.

Nevertheless, the prescribed workflow and evaluation metrics
highlighted in this study can be a useful starting point. Emphasis is
placed on the ability to update inputs and components of the workflow
and to continually remodel and to reassess vulnerability functions with
respect to the nature of the input data. The treatment of wide and
sparse datasets that are common in this field was demonstrated with the
pre-processing part of the workflow. A range of multivariate models
were built in a stepwise manner, so that the relative importance of
feature contributions and interaction effects to explaining the variance
observed in the y-response could be demonstrated. The workflow also
includes selected metrics to quantitatively assess model fit against
complexity and predictive accuracy. Furthermore, the study provides
guidance on how to obtain information on relative feature importance
from model objects. Pertinent issues associated with each of the factors
contributing to the reliability of derived vulnerability functions are
unlikely to be resolved at once but rather iteratively with time and upon
data availability. Consequently, the results from this study are de-
scriptive rather than prescriptive.

5. Conclusions and future work

In summary, the workflow can be used to assess the potential of
statistical models to predict proportional loss associated with buildings
affected by natural hazards. The findings can be used as guidance to
collect additional data in the future to maximize information gain about
pre-hazard event conditions that contribute to losses. In such a way,
even if the exact nature of hazards to come cannot be known with full
certainty, it may still be possible to minimize vulnerability to these
hazards by reducing building susceptibility and exposure. A number of
recommendations stem from the different components and lines of in-
vestigations that an end-to-end workflow involves. Questions arise from
outstanding challenges and curiosity along the way. This section pro-
vides a summary of ways the continued development and assessment of
vulnerability functions may be improved.

5.1. Data quality

The quality of data that is defined as inputs affects the quality of the
resultant vulnerability function. Firstly, the nature of missing data must
be accurately identified and treated prior to further analyses. In this
study, three data imputation techniques were applied as a first assess-
ment; the results demonstrated that there can be stronger agreement
between original and imputed data (Figure B; Supplementary material).
Additionally, performing imputations under MCAR/MAR assumptions
raises valid questions about the impact of effectively assuming random
missingness for a data set with mixed missing data patterns. Due to the
nature of MNAR data, the missing data has a different distribution than
the observed data. Since missing MNAR data values can only be esti-
mated from available information, it is important to emphasize that
bias is introduced to the predicted values (Munguía and Armando,
2014). This should be weighed against the degree of bias and limited
prediction power that would otherwise be associated with the use of a
lower number of complete observations in subsequent modeling stages.
Future work should involve more extensive investigations into appro-
priate methods to handle different types of non-observed responses,
including numeric (continuous), categorical (ordinal, nominal) and
hybrid data (Munguía and Armando, 2014). Furthermore, Lazer et al.
(2016) described the development of more advanced diagnostic tools
that would be capable of categorizing instances of missing data based
on both the mechanisms of generation and at varying resolutions or on
multiple levels. Future work in matrix regularization may apply an al-
ternative approach based on a probabilistic formulation of PCA. Ilin and
Raiko (2010) proposed a computationally efficient algorithm that is an

extension of variational Bayesian learning (VB). In particular, the study
demonstrated the effects of regularization and the modelling of pos-
terior variance. The availability of such tools and approaches would be
instrumental in exploring hybrid solutions to address the different un-
derlying natures of missing cases and more accurately capture the
properties of real distributions of interest with data imputation. As a
result, hybrid datasets could represent reality more closely, especially
given the challenges of acquiring complete observation records in the
field of natural hazards.

Furthermore, data aggregation should generally be avoided
(Charvet et al., 2017). Since the number of observation records is often
limited, it may be tempting to collate and analyze data from multiple
sources as a single dataset (e.g. from different events or hazard types). If
aggregated data is used, care needs to be taken to select for an appro-
priate model structure. In this study, the aggregation of 81 observations
from three hazard events were fitted with logit-linear and GLMs was
found to be a good starting point. Further investigation with general-
ized linear mixed models have been recommended, where a random
intercept is introduced for each subgroup within the dataset to ex-
plicitly account for the subgroup as an explanatory variable (Rossetto
et al., 2014). It may also be possible to account for the effects of
combining subgroups of data by modelling for overdispersion in the
DGLM.

A dataset with a limited number of observation records may result
in overfitted models. In general, a minimum number of observations
must be used to generate reliable results and the number required to
develop a vulnerability function varies with the degree of uncertainty
that users of the function are willing to accept. For example, Laudan
et al. (2017) expressed that the 94 observations that their study was
based on was considered to be small and results have low transferability
and should not be generalized. Furthermore, the issue of unbalanced
datasets is also prevalent, especially given low numbers of observations.
This is when there is an over or underrepresentation of certain types of
building feature combinations and/or buildings that sustained a certain
amount of damage. Consequently, a representative dataset should have
a minimum number of observations that represent a relatively equal
range all possible unique feature combinations.

The call for more comprehensive and systematic data collection is
imperative to support the ongoing verification of modelled results and
to be able to apply associated findings to inform risk management
strategies with greater confidence. In particular, objective criteria to
accurately document building resistance should be defined in colla-
boration with experts in the building engineering domain and con-
sistently applied to acquire data in the future. This would effectively
minimize bias that may otherwise be introduced due to variations in
individual understanding and interpretations and contribute to ag-
gregated uncertainties and errors (Laudan et al., 2017). In terms of
accounting for potentially important damage driving features, variables
identified to be strongly correlated to proportional loss or important
with respect to relative variable loadings should be considered in sub-
sequent data acquisition campaigns (Laudan et al., 2017).

5.2. Models and model selection

Model structures of interest should be chosen with respect to the
nature of the expected value and whether underlying assumptions
about their distribution are satisfied. The comparison of predictive ac-
curacy between linear regressions and GLMs in this study with non-
normally distributed proportional loss demonstrated the importance of
choosing an appropriate model structure. In this example, the lower
predictive power is the result of linear regressions fitted with data that
violated the assumptions of normality.

Joint applications (i.e. model building based on information learned
from pre-processing) was found to be advantageous, particularly steps
prescribed to reduce high dimensional datasets prior to further ana-
lyses. Furthermore the evaluation of models based on predictive
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accuracy metrics, rather than conventional diagnostics based on the
assessment of model fit is recommended for selecting predictive models
(Li et al., 2017).

The workflow described in this study is based on a multi-step pro-
cedure that accounts for dimension reduction prior to model fitting and
these models were found to be associated with greater predictive ac-
curacy. More advanced modelling techniques, such as the sparse prin-
cipal component regression for generalized linear models (SPCR-glm),
may be of interest. It is comprised of a basic loss function that is based
on a combination of the regression squared loss and PCA loss (Kawano
et al., 2016). By considering both loss functions simultaneously in a
single-stage procedure, sparse PC loadings that are directly related to a
response variable are identified. This effectively streamlines the main
challenges addressed with the workflow and may be of interest to in-
vestigate further. A sensitivity analysis may be conducted to determine
the most optimal turning parameter values with predictive accuracy as
the target objective.

5.3. Sources of uncertainty associated with results

The study did not explicitly examine sources of uncertainty but
acknowledges that such an assessment should be conducted and re-
ported with results. Uncertainty contains information beyond that
which is contained in a single prediction and failing to communicate
this can result in adverse consequences. Charvet et al. (2017) re-
commended that uncertainty in both the explanatory and response
variables should be quantified. Merz et al. (2013) emphasized that
contributions may be attributed to data sparsity and generally limited
understanding of damaging processes, among many other sources of
uncertainty at the interface of natural and built environments. The in-
troduction of aggregated uncertainty that is invariably introduced in
quantitative evaluations can potentially be significant (Vogel et al.,
2014) and, therefore, should be clearly communicated with results.
From a practical perspective, the inclusion of uncertainty information
with damage analyses can serve as an instrumental way to discuss the
cost-benefits of investing in particular risk management strategies and
the consequences of insufficient preparedness.

This study described an end-to-end workflow that can provide
guidance on the development, evaluation and interpretation of em-
pirically-based, multivariate physical vulnerability functions for build-
ings affected by hazardous processes. The workflow was complimented
with a review of outstanding challenges and potential solutions. The
final section highlighted recommendations and new lines of investiga-
tion that may be of interest to researchers and practitioners in risk
management. The recommendations stemming from this work can
serve as a basis upon which critical and continuous review of vulner-
ability functions is possible. Furthermore, as new data becomes avail-
able, first insights gained about drivers of damage and modelling
techniques can be applied to build models that may better capture their
relationships to loss.
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