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Abstract 16 

 17 

Forecast-based actions are increasingly receiving attention in flood risk management. However, 18 

uncertainties and constraints in forecast skill highlight the need to carefully assess the costs and 19 

benefits of the actions in relation to the limitations of the forecast information. Forecast skill decreases 20 

with increasing lead time, and therefore, an inherent trade-off between timely and effective decisions 21 

and accurate information exists. In our paper, we present a methodology to assess the potential added 22 

value of early warning early action systems (EWEAS), and we explore the decision-makers’ dilemma 23 

between acting upon limited-quality forecast information and taking less effective actions. The 24 

assessment is carried out for one- and a two-stage action systems, in which a first action that is based 25 

on a lower skill and longer lead time forecast may be followed up by a second action that is based on a 26 

short-term, higher-confidence forecast. Through an idealized case study, we demonstrate that a) that 27 

the optimal lead time to trigger action is a function of the forecast quality, the local geographic 28 

conditions and the operational characteristics of the forecast-based actions and b) even low-certainty, 29 

long lead time forecasts can become valuable when paired with short-term, higher quality ones in a 30 

two-stage action approach. 31 

 32 

 33 

 34 
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1. Introduction 49 

 50 

Flood risk management aims to reduce the impacts that floods pose to humans and the environment. 51 

To achieve this, flood risk mitigation strategies have traditionally focused on long-term protective 52 

strategies, using hard infrastructure. However, no matter how high a protection level is, a residual risk 53 

always remains. To further reduce this risk ‘softer’ emergency actions (e.g. temporary flood protection 54 

measures, evacuation) (Kabat et al., 2005) that are triggered by forecasts are applied during the time 55 

window between the flood alert and the actual event. A system in which warnings are translated into 56 

anticipatory actions is called an early warning early action system (EWEAS). EWEAS increase 57 

resilience and reduce mortality in low-income countries with recurrent disasters, where limited 58 

budgets for structural measures lead to high residual risk (Golnaraghi, 2012). Therefore, EWEAS are 59 

considered important components in flood risk management strategies (UNISDR, 2004) and their 60 

success is primarily associated with their ability to issue reliable flood alerts at lead times (LT) that are 61 

sufficiently long to implement risk reduction measures (UNICEF, 2015).  62 

 63 

In flood risk management, EWEAS are usually triggered by hydrological forecast models. These 64 

models are subject to different types of uncertainty that are associated with the model itself, the 65 

available hydro-meteorological data, the geographical characteristics and the quality of the 66 

meteorological forecasts (e.g. Verkade and Werner, 2011; Zappa et al., 2011). To quantify and express 67 

this uncertainty probabilistically, ensemble streamflow prediction systems are used. This is achieved 68 

by producing multiple forecast simulations by an ensemble of numerical weather prediction and/or 69 

with perturbed initial conditions (e.g., Cloke and Pappenberger, 2009; Wetterhall et al., 2013). 70 

Probabilistic forecasts are preferred rather than deterministic ones since they give the opportunity to 71 

the users to select triggering action probability thresholds based on their minimization or 72 

maximization objectives (Roulin, 2007; Krzysztofowicz, 2001; Cloke and Pappenberger, 2009; Jaun et 73 

al., 2008; Velázquez et al., 2010; Buizza, 2008). 74 

 75 

Similarly to most forecast systems, hydrological probabilistic forecast models exhibit a decrease in 76 

skill with increasing LT, revealing an inherent trade-off in the implementation of the EWEAS between 77 

timely decisions and accurate information. Recent advances in flood forecasting have led to more 78 

informative forecasts, with better skills and longer LTs (Golding, 2009). This has provided the 79 

opportunity to take actions that require longer implementation time but may have a larger risk-80 

reducing impact than actions with shorter implementation time. However, in cases where potential 81 

consequences of acting in vain are high, postponing actions can be preferred, even if the action 82 

effectiveness decreases. Alternatively, decision-makers may decide to follow proactive, no-regret 83 

strategies to increase the portfolio of options at a later stage (Heltberg et al., 2009; UNDP, 2010).  84 

 85 

In most cases, the basic rationale of EWEAS assumes an essentially linear sequence of actions, 86 

starting with the definition of the discharge thresholds that correspond to floods and of the forecast 87 

probabilities required to trigger action, the issue of the forecast and the final decision. At a later stage, 88 

the evaluation of these systems is usually carried out through cost-benefit analyses (e.g., Murphy, 89 

1977; Katz and Murphy, 1997; Richardson, 2000(Priest et al., 2011)(Priest et al., 2011)(Priest et al., 90 

2011)(Priest et al., 2011)), that is tailored to the needs and requirements of each end-user. Although it 91 

is not possible to create an objective measure that quantifies the EWEAS performance for all end-92 

users, the basic rationale is that the EWEAS provide added benefit to the risk mitigation strategies 93 

when the benefits (reducing the risk) of taking action outweigh the overall costs (e.g. costs of forecast 94 

and other management activities, cost of acting in vain). In the flood risk management context, the 95 

cost-benefit analysis has been extensively used to assess the value of different forecast types. For 96 

example, Wilks (2001) estimated the economic value of seasonal and weather precipitation forecasts, 97 

taking into account their limited reliability. Roulin (2007) assessed the relative economic value of a 98 

hydrological ensemble prediction system in two Belgian catchments. Verkade and Werner (2011) 99 

compared the benefits of single value and probabilistic forecasts for a range of LTs and Matte et al. 100 

(2017) incorporated risk aversion into the cost-loss decision model. While these studies have assessed 101 
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the value of EWEAS for a single action-forecast combination, they have not examined the potential 102 

benefits of preparatory measures that are triggered by forecasts with longer lead times. In addition, 103 

they have used discrete values for the ratio between residual and potential damage over time, while 104 

budget and implementation time constraints are not taken into account. 105 

 106 

In this study, we build on existing valuation approaches to present a methodology that assesses the 107 

economic value of EWEAS, taking into account trade-offs concerning forecast quality, restrictions in 108 

the implementation of actions, and time-varying costs and losses. The assessment is carried out for an 109 

one- and a two-stage action system, in which a first action that is based on a lower skill and longer 110 

lead time forecast is followed up by a second action that is based on a short-term, higher-confidence 111 

forecast. We demonstrate the EWEAS added value in an idealized case study, using forecast data from 112 

the global flood awareness (GloFAS) in Akokoro, Uganda. We must note that the scope of our paper 113 

is not to profoundly analyse the model’s forecast skill for this case study, but rather to demonstrate 114 

how an operational forecast and its skill assessment can be incorporated into the decision-making 115 

process.  116 

 117 

The paper is organised as follows: In section 2, we present the necessary background information for 118 

the evaluation of EWEAS. In section 3, we outline the basic components of the EWEAS we have used 119 

in our idealized case study, and in section 4, we present the results. In section 5, we discuss the 120 

limitations of this study and outline options for further research. In section 6, we summarize the main 121 

conclusions. 122 

 123 

2. Methods: evaluation of a flood Early Warning Early Action System 124 

(EWEAS) 125 

 126 

In this section, we present the necessary components to consider for the evaluation of EWEAS (Figure 127 

1):  128 

• the forecast model that provides the early warnings, which in our study is GloFAS (section 129 

2.1); 130 

• the discharge thresholds that correspond to floods of different magnitudes, the probabilistic 131 

thresholds that trigger action, and the forecast skill assessment at different lead times(section 132 

2.2); 133 

• the forecast-based actions and the differences in taking action at one- and at two-time 134 

steps.(sections 2.3 and 2.4).  135 

 136 

 137 
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 139 

Figure 1 Flowchart that outlines the steps taken towards the configuration and evaluation of EWEAS 140 

2.1 Forecast model description: GloFAS 141 

 142 

Every flood risk mitigation decision-making process starts with the application of a forecast model. In 143 

this study, we use the Global Flood Awareness System (GloFAS) (Alfieri et al., 2013), a global model 144 

that produces daily forecasts to issue flood alerts at a 0.1o spatial resolution by using 51-ensemble 145 

member streamflow forecasts, each driven by meteorological forecasts 15 days ahead. Its forecast 146 

probabilities are based on the fraction of the ensemble members exceeding a predefined discharge 147 

threshold. For example, if 10 out of 51 members exceed a threshold, the probability of its exceedance 148 

is 0.19. GloFAS is being used operationally by the forecast-based financing project of the Red Cross 149 

(Coughan de Perez et al., 2015) in several developing countries around the world such as Peru, 150 

Bangladesh, Nepal, and Uganda. For a more detailed discussion on GloFAS, we refer to Alfieri et al. 151 

(2013).   152 

 153 

In our study, we used GloFAS forecasts for the river cell of the Victoria Nile that exhibits the highest 154 

annual mean discharge in the Akokoro subcounty in Apac district, Uganda (1.55N, 32.55E).  This area 155 

has experienced catastrophic flood events in the past (e.g. August 2007, October 2012) and has been 156 

used as a case study of the partners for resilience project (https://partnersforresilience.nl/).  157 

 158 

 159 

2.2 Thresholds for triggering action and forecast skill assessment 160 

 161 

To evaluate forecast skill it is first needed to define discharge thresholds that are representative for 162 

flood events. In operational EWEAS, when the forecasted discharges exceed these thresholds at pre-163 

agreed probabilities, flood risk mitigation actions are triggered. Regarding the skill of the forecast 164 

model, decision-makers are mostly interested in the event-based metrics, namely the correct hits (CH), 165 

the misses (MS), the false alarms (FA) and the correct negatives (CN), since these are necessary for 166 

the actual valuation of losses and benefits. A forecasting model that systematically underestimates the 167 

probability of floods leads to a high likelihood of missed events, while overestimations lead to 168 

frequent false alarms. Given the absence of perfect forecasts, decision-makers aim to set the action-169 

triggering forecast probabilities in such a way that they meet their requirements, while at the same 170 

time maximize the potential benefits of using the forecast model. For instance, Coughlan de Perez et 171 

al. (2016) identified the forecast probabilities of GloFAS that should trigger action in two districts in 172 
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Uganda, using as basic criterion that the FA ratio, which is the verification score of interest to 173 

humanitarians (Hogan and Mason, 2012) and is defined as the number of false alarms per total number 174 

of alarms, is lower than 0.5. On the other hand, under other circumstances (e.g. budget 175 

restrictions),decision-makers prefer not to take action unless they are absolutely certain that an 176 

upcoming hazard will occur (Demeritt et al., 2007; Suarez and Patt, 2004). 177 

 178 

These event-based metrics are usually calculated over aggregated large spatial scales, such as a 179 

country or a continent (Thiemig et al., 2015; Bischiniotis et al., 2019), given the limited availability of 180 

sufficient information on rare flood events at specific locations. However, EWEAS are usually applied 181 

to smaller spatial scales (e.g., a village, town or province) and consequently, end users are interested in 182 

the local forecast skills.  183 

To be in line with this need, we used daily flood forecasts from GloFAS over a period of 184 

approximately 8 years (between May 1st 2008 and December 31st 2015) for a specific location with 185 

lead times from 0 to 14 days (LT0 to LT14) to a) set the discharge thresholds above which a flood 186 

occurs, and b) evaluate different forecast probability thresholds that trigger action. We used the LT0 187 

discharges, which refer to the initial conditions that forecasts were issued, as a proxy for the real-world 188 

discharge. From this time series, we calculated the 80th, 85th and 90th percentile, considering that they 189 

represent the thresholds of small-, medium- and big-magnitude floods, respectively, similarly to 190 

Coughlan de Perez et al. (2016). In the real world, we would expect much higher discharge percentiles 191 

to trigger flood events, but given the limited available forecast time series, we used relatively low ones 192 

to generate sufficient statistics and demonstrate the concept of our methodology. We distinguished 193 

different flood magnitudes to illustrate the diversity of the model skill in predicting different floods, as 194 

well as to address how the budget, time constraints, costs and damage have an effect on different flood 195 

outcomes. We used three probability thresholds for triggering action (30%, 60% and 90%) to 196 

demonstrate that this can also affect the overall usefulness of the EWEAS. The probabilities are 197 

estimated using the different members of the ensemble of GloFAS forecasts as indicated in 2.1. 198 

 199 

In our study, the forecast skill assessment is carried out using the forecasts of each LT separately for 200 

all three probability thresholds and for all three flood thresholds (Table 1), taking also into account the 201 

period that the action can provide protection, following Coughlan de Perez et al. (2016). This means 202 

that as soon as an action is triggered after a forecast warning, it has a lifetime period, within which the 203 

action is not re-triggered and can provide protection effectively. Taking action’s lifetime into account 204 

is a consideration that potentially increases the forecast skills since in case a flood does not occur 205 

exactly on the forecasted date but within the lifetime period, the flood signal is counted as correct hit 206 

(CH). If there is no flood during this period, the flood signal is counted as false alarm (FA), while if a 207 

flood occurs but no flood signal was issued, it is a Miss (MS). The flood conditions (i.e. discharge 208 

higher than the threshold) can remain after the expiration of the action’s lifetime. In this case, if there 209 

is a flood signal, the action is re-triggered, while flood conditions are ongoing. In our analysis, we 210 

considered this case a new event (we further discuss this in section 2.4). Furthermore, each flood 211 

magnitude is treated separately and thus, successive exceedance of different flood magnitude 212 

thresholds (e.g. first a small and later medium flood) are regarded as two individual events, i.e. one 213 

small and one medium flood.  214 

 215 

Table 1 Event-based metrics such as Correct Negatives (CN), Misses (MS), 216 
 False Alarms (FA), and Correct Hits (CH)) are calculated for each flood 217 
magnitude (FMQ), probability threshold (PTi) and lead time (LTj).  218 

Flood Magnitude(FMQ) Small (Q80)/Medium (Q85)/Big (Q90) 
Probability Threshold (PTi) i=30%,60%,90% 

Lead Time (LTj) j=1:14 

Event-based metrics 
CN(FMQ,PTi,LTj) MS(FMQ,PTi,LTj) 

FA(FMQ,PTi,LTj) CH(FMQ,PTi,LTj) 

 219 

2.3 Forecast-based actions 220 

 221 
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A wide range of potential forecast-based actions exists in early action protocols, all having different 222 

features: cost, implementation time requirements, lifetime, tangible and intangible benefits. For 223 

example, temporary flood measures such as sandbags can be installed or put in place to protect 224 

dwellings and critical infrastructure; evacuation can be applied to reduce fatalities and chlorine tablets 225 

can be distributed to provide clean water and prevent the spread of disease. In some cases, the actions 226 

can be complementary. To demonstrate this relationship, we use two decision-making approaches: a 227 

static (one-stage action) and a dynamic (two-stage action) one. In the first, a decision for action is 228 

taken at one point in time. In the second, decisions are taken at two time points; initially a preliminary 229 

action at longer LT and subsequently a main action. In our case, the preliminary action is not a 230 

prerequisite for triggering the main action but is used to facilitate it, as it is explained in sections 2.4.2 231 

and 3), if this is triggered at a later LT. In this way, we assess the added value of sequential decision-232 

making, similar to the ‘ready-set-go’ approach, a methodology applied within the humanitarian sector 233 

allowing the progressive staging of actions (Goddard et al., 2014). 234 

 235 

2.4 Relative economic value of EWEAS 236 

 237 

To evaluate the EWEAS, we use its relative economic value (Vew) (e.g. Katz & Murphy, 1997, 238 

Verkade and Werner, 2011,  Lopez, et al., 2018). This is defined as the relative reduction in total 239 

losses from disaster responses when using early warnings by a forecast model (TLew) compared to the 240 

total losses when no forecast model is available and only climatological probability information is 241 

used (TLno_ew) (Eq. 1): 242 

 243 V�� = (TL�	_�� − TL��)/TL�	_��       (Eq.1)  244 

 245 

where,  246 

Vew: Relative economic value of the EWEAS  247 

TLno_ew: Total losses incurred when there is no forecast 248 

TLew: Total losses incurred when action is taken based on a forecast 249 

 250 

When Vew  > 0, the EWEAS provides added value in flood risk mitigation, since losses are lower when 251 

appropriate forecast-based actions are implemented compared to not taking action at all.  252 

 253 

 254 

2.4.1 Evaluation of an one-stage action EWEAS 255 

 256 

In an one-stage action system, decision-makers have to choose between two options at each time step: 257 

to take action or to wait for further forecast information that comes with shorter LTs. Therefore, this 258 

choice can be seen as a repetitive problem, in which decision-makers face the same dilemma at each 259 

LT, until action is taken (Figure 2 left). 260 

 261 

To compute the relative economic value of the EWEAS (Vew), the event-based skill metrics (CH, MS, 262 

FA and CN) are required. As mentioned in section 2.2, in our study, we a) calculated these metrics for 263 

each flood magnitude, for all three probability thresholds (i.e. 30%, 60% and 90%) and for each 264 

forecast LT(Figure 2, right) and b) the forecast-based action is triggered if the forecast issues a 265 

warning that exceeds the predefined threshold, while no action is taken when no warning is issued. 266 

The forecast-observation pairs are illustrated in the contingency table (Table 2). 267 

 268 

Table 3 shows the consequences of these pairs; when no action is taken and a flood occurs (MS), the 269 

losses are equal to the damage (D) that corresponds to the observed flood magnitude. When action is 270 

taken in vain in case of a FA, the losses are just the implementation costs of the action taken (C). 271 

When action is correctly taken (CH), the total losses are the sum of the action costs (C) and the 272 

residual damage that has been partly or entirely mitigated thanks to this action (RD). Therefore RD <= 273 

D. When no warning is issued and no flood occurs (CN), there is no action and no damage. In case of 274 

an FA, there is often a change to the original cost, ∆C that may account for e.g. the reputational risk 275 
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(Coughlan de Perez et al., 2015). Although this can be significant in some cases, we assume that it is 276 

0. 277 

 278 

The forecast-based actions are not instantly carried out. For this reason, we consider that a longer LT 279 

allows more implementation and the actions are more effective in damage reduction. Hence, the cost 280 

of the action is a function of time and implementation requirements and therefore, the action’s 281 

effectiveness and consequently the residual damage are also dependent on the available budget, the 282 

implementation costs and requirements. This is illustrated with an example in section 3. 283 

 284 

     285 
Figure 2 One-stage Action: the repetitive dilemma of whether or not to trigger action (left), and the event tree 286 
(right) used to calculate the event-based skill metrics (i.e. Correct Hit (CH), Miss (MS), False Alarm (FA) and 287 
Correct Negative (CN)). The dashed lines demonstrate the different time steps, the squares the time points that 288 
decisions need to be made and the black dots the time points of a final decision.  289 

Table 2 Contingency table illustrating the evaluation metrics (CN: Correct Negatives, MS: Misses, FA: False 290 
Alarms, CH: Correct Hits) based on the forecast probability that a certain discharge will be exceeded in relation 291 
to the probability threshold to trigger action. 292 
 Flood  No Flood 
Forecast probability > 
probability threshold 

CH FA 

Forecast probability < 
probability threshold 

MS CN 

 293 
Table 3  Contingency table that illustrates the cost of action (C), damage (D) and residual damage (RD) when 294 
forecast-based action is taken.  295 
 Flood No Flood 
Forecast probability >  
probability threshold 

C+ RD C 

Forecast probability < 
probability threshold 

D 0 

 296 

The total losses of having no EWEAS (TLno_ew)  are equivalent to using the total number of flood 297 

events (i.e. MS + CH) multiplied by the damage (D) corresponding to each flood magnitude (Eq.2). 298 

 299 

TLno_ew = (CH + MS)·D        (Eq.2) 300 

 301 

The total losses (TLew) when taking action based on a one-stage EWEAS over a finite time period is 302 

calculated by aggregating the product of the losses of each forecast and observation pair (Table 3) and 303 

their corresponding occurrences (Table 2; Eq.3). 304 

 305 

TLew = (CH)·(C+RD) + (FA)·(C) + (MS)·D      (Eq. 3) 306 

  307 

In reality, a failure of the measure can have the same consequences as a miss and cannot be neglected. 308 

To avoid this level of complexity, however, we assumed in this analysis that the failure probability of 309 

the action taken is 0. In the supplementary material, we present the equation when accounting for the 310 

failure probability (Eq. S1). 311 

 312 
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 313 

2.4.2 Evaluation of a two-stage action EWEAS 314 

 315 

As discussed in 2.3, in a two-stage action system, decision-makers have the option to take preliminary 316 

actions triggered at longer LTs (e.g. at LT14), followed by a main action triggered at shorter LT (e.g. 317 

between LT13 and LT1). The preliminary action facilitates the implementation of the main action, 318 

increasing its effectiveness. Similarly to the one-stage action, decision-makers face the dilemma to 319 

wait or act (Figure 3, left). This procedure can be more complicated if the decision-maker is granted a 320 

range of days to trigger preliminary action (e.g., anytime between LT14 and LT7). However, for the 321 

sake of simplicity, we assume that preliminary action can be triggered only at LT14 and is 322 

implemented within one day, as it will be discussed in section 3. In result, the estimation of the 323 

relative economic value (Vew) of the EWEAS requires the joint performance of the two lead time 324 

forecasts in relation to the outcome (i.e. flood or no flood) (see Table 4) (e.g. forecast at LT14 – CH 325 

and forecast at LT1- CH, forecast at LT14 – CH and forecast at LT1- MS). In this way, for each LT 326 

triggering action, our contingency table has eight entries (Figure 3, right). The probability thresholds 327 

used to trigger the preliminary and the main actions are not necessarily the same. Therefore, the skill 328 

metrics of the entire system are different for each threshold combination used. In our case, there are 9 329 

combinations possible (i.e. 30%, 60%, 90% for LT14 (threshold 1) times 30%, 60%, 90% for the later 330 

LTs (threshold 2)). 331 

 332 

The total losses from taking action are calculated by the aggregation of the actions’ implementation 333 

costs and the residual damage that accrue from the joint system of two forecasts (Table 5) multiplied 334 

by their corresponding occurrences (Table 4). In practice, given the restricted budget that is usually 335 

allocated to forecast-based measures, decision-makers are requested to determine in advance the 336 

budget fraction that is allocated to the first and second stages; in our study this budget allocation is 337 

fixed (see example in section 3). However, the aggregation of the cost of the preliminary (C1) and the 338 

main actions (C2) cannot exceed the available budget. Although we consider that preliminary action 339 

has implementation costs, it is only used to facilitate the main action rather than providing protection 340 

against floods itself. Thus, when only preliminary action is taken, damage is not mitigated. On the 341 

other hand, when the main action is triggered, damage is mitigated regardless if preliminary action is 342 

taken (RD12) or not taken (RD2). However, since the preliminary action increases the effectiveness of 343 

the main action, RD12 < =RD2. 344 

 345 

 346 
Figure 3 Real-time decision-making chain that illustrates the decision-makers’ dilemma of whether and when to 347 
take preliminary and main actions (left), and the event tree used to calculate the evaluation metrics of the joint 348 
forecast system in the two-stage action system. The dashed lines demonstrate the different time steps, the squares 349 
the time points that decisions need to be made and the black dots the time points of a final decision. 350 

Table 4 Contingency table that outlines the evaluation metrics (p1:p8, see Figure 3 right) for the two-stage 351 
action system based on the forecast probabilities in relation to different triggering action thresholds for the 352 
preliminary action (triggered by forecast 1 [F1] at LT14) and the main action (triggered by forecast 2 [F2] 353 
between LT13 and LT1). 354 
 F1 probability > probability 

threshold_1 
F1 probability < probability 

threshold_1 
 Flood No Flood Flood No Flood 
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F2 probability > 
probability threshold_2 

p1=CHF1∩CHF2 p2=FAF1∩FAF2 p5=MSF1∩CHF2 p6=CNF1∩FAF2 

F2 probability < 
probability threshold_2 

p3=CHF1∩MSF2 p4=FAF1∩CNF2 p7=MSF1∩MSF2 p8=CNF1∩CNF2 

 355 
Table 5 Contingency table that presents the costs and damage of taking action at two stages. Preliminary action 356 
is triggered by forecast 1 (F1) at LT14 and main action is triggered by forecast 2 (F2) between LT13 and LT1. 357 

 F1: LT14 > threshold_1 F1: LT14 < threshold_1 
 Flood No Flood Flood No Flood 

F2 probability > 
threshold_2 

C1 + C2+ RD12 C1 + C2 C2 + RD2 C2 

F2 probability < 
threshold_2 

C1 + D C1 D 0 

 358 

Similar to a one-stage system, the Vew is calculated using the total losses when there is no EWEAS 359 

(Eq.4) and when EWEAS is used (Eq.5); 360 

 361 

TLno_ew= (p1 + p3 + p5+ p7) · D                   (Eq.4) 362 

 363 

 364 

TLew=p1·(C1+C2+RD12) +p2· (C2+C2)+p3·(C1+D)+p4·(C1)+p5·(C2+RD2)+p6·(C2)+p7· D    (Eq.5) 365 

 366 

 367 

As in 2.4.1, the equations used hereby do not take into account the failure probability of the risk 368 

mitigation measures. Equation S2 in the supplementary material presents the total losses in case the 369 

failure probabilities of both the main and preliminary actions are taken into account. 370 

 371 

 372 

3. Configuration of the EWEAS used in our case study 373 

 374 

In addition to the generic methods and parameters described in Section 2, EWEAS should be 375 

configured based on the needs, requirements and risk mitigation capabilities of the study areas. To 376 

facilitate the reader’s understanding and demonstrate some of the key features that are important in 377 

operational flood risk decision-making, in our study, we use volunteer training and sandbag dike 378 

construction as examples of preliminary and main forecast-based actions, respectively. Based on these 379 

actions, we show a) how the financial, temporal and location parameters interact with each other and 380 

b) how they lead to the calculation of the residual damage after the implementation of the EWEAS 381 

that is necessary for its evaluation (Figure 4).   382 

  383 

 384 

 385 

 386 

 387 
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 388 
 389 

Figure 4 Scheme showing the parameters that are taken into account in our case study example. 390 

In our example, the decision-makers use the EWEAS to provide protection at a fictitious area with size 391 

A and perimeter L during the time period that GloFAS forecasts are available. Although a lot of flood 392 

adaptations are available, for the sake of simplicity, we here assume only one forecast-based action: to 393 

construct a sandbag dike ring around the area every time a flood warning is issued. Sandbags are often 394 

readily available in developing countries such as Uganda, at relatively low cost and are effective in 395 

preventing flooding with water levels of up to one meter in height (Kelman and Spence, 2003; Botzen 396 

et al., 2009). To achieve greater effectiveness, we assume that sandbags are prepositioned in the 397 

location (Rawls & Turnquist, 2010). Although forecast LT and mitigation time can be different 398 

(following the forecast issue, time is required to disseminate it and take action (Carsell et al., 2004), 399 

we consider these two to be identical similarly to Verkade and Werner (2011). The use of other 400 

measures would require some adaptations, but the basic rationale would remain the same.  401 

 402 

As discussed in section 2, we treat each lead time separately. Action is triggered (i.e. the sandbag dike 403 

construction starts) as soon as a flood forecast warning is issued and is not interrupted by successive 404 

forecasts that may ‘recall’ the flood signal. The design height depends on the threshold above which a 405 

flood is defined (hs, hm or hb, with the subscripts s, m and b referring to small-, medium- and big-406 

magnitude floods, respectively) and we assume that protects against all floods. To reach this height for 407 

one linear meter, N sandbags are needed (Ns for small-, Nm for medium- and Nb for big-magnitude 408 

floods, respectively). Given the trapezoidal sandbag dike cross-section, these numbers are not linearly 409 

proportional to the water level. The total dike length that can be constructed Ld depends on the design 410 

dike height, the placement productivity rate PP (sandbags placed per day) that the available manpower 411 

allows (i.e. with one day LT (LT1), we can place 1·PP sandbags, with two days LT (LT2), 2·PP, etc.), 412 

and consequently on the forecast LT of triggering action (i.e. the longer the LT, the more time 413 

available). In our example, the sandbag dike ring has a square shape, and therefore, the area that can 414 

be protected is calculated in Eq. 6.  415 

 416 

Area	Protected = �
��∙��
�� 	
�  

!
        (Eq.6) 417 

 418 
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Therefore, the cost of the main action is not only subject to the flood magnitude, which determines the 419 

height and the number of sandbags that should be placed, but it is also a function of the LT, at which 420 

action is triggered, and of the PP, which determines how many of them can be placed.  421 

 422 

In addition, as it happens in reality, the budget B (USD) that is allocated to the forecast-based actions 423 

is restricted and therefore, the maximum total costs and protected area are subject to this restriction. In 424 

the one-stage action system (see section 2.4.1), the entire budget is used for the sandbag dike 425 

construction (main action), which involves the purchase and placement cost S (USD/bag) by employed 426 

personnel. In the two-stage action (see section 2.4.2), a fraction α of the total budget is allocated to the 427 

preliminary action, leaving (1-α)·B available for the main action. When the initial forecast at LT14 428 

does not issue a flood warning signal, preliminary action is not triggered. Hence, the entire budget can 429 

be used for the main action.  430 

In our study, we use as an example of preliminary action volunteer training, whose potential in disaster 431 

impact mitigation is increasingly recognized worldwide (Whittaker et al., 2015). This facilitates the 432 

main action, both monetarily and temporally, by a) reducing the cost S per sandbag with a factor β, 433 

since no placement by employed personnel is needed and b) increasing the placement productivity rate 434 

PP by a factor γ. The preliminary action has a lifetime LF1 days and the main action LF2 days. We 435 

assume that the preliminary action has a fixed implementation time IT1, which lasts one day (see 436 

section 2) and its LF1 lasts as many days as main action is being implemented, if it is triggered by the 437 

following forecasts so as the main action is constantly facilitated. As described in section 2.2, LF2, 438 

which is involved in the calculation of the event-based metrics, is fixed and exceeds the forecast range 439 

so no extra action is needed during this period. When the flood duration exceeds LF2, we consider that 440 

action as triggered anew, if the forecast continues to predict high discharge levels. In the real world, 441 

effort would be exerted to expand the action’s lifetime through maintenance activities that require less 442 

cost and implementation time. However, to avoid this level of complexity, we treat the two actions 443 

equally, using the same costs and implementation time as if no sandbag dike is present. The potential 444 

damage D, when no mitigation action is taken, depends on the flood magnitude (Ds for small-, Dm for 445 

medium- and Db for big-magnitude floods).  446 

 447 

Financial and temporal constraints lead to restrictions on the total area A that is protected. This partial 448 

protection is a metaphor for real situations, in which authorities prioritize the areas to protect. In our 449 

case, when the main action is triggered, the residual damage RD is the fraction of the area that is 450 

protected per total area multiplied by the potential damage (Eq.7). This implies that potential damage 451 

is homogeneously distributed in the area and that residual damage is only a function of the protected 452 

area, which stays completely dry, whereas the unprotected area is flooded. This is a result of the 453 

assumption that sandbags can only reduce water level entirely in the protected area and not partly. 454 

Therefore, decision-makers of our EWEAS aim to create a sandbag dike ring with sufficient height for 455 

a smaller area rather than protecting a larger area with lower dike. In case the action is able to partly 456 

reduce the water column in the protected area, then Equation 7 would be multiplied by an 457 

effectiveness ε that would be function of the inundation level. 458 

 459 

 460 

RD = $%�&	'%	(�)(�*
$ ∙ D         (Eq.7) 461 

 462 

Figure S1 (supplementary) show schematically the steps taken to calculate the protected area. The 463 

numerical values of all parameters presented are given in the Table S1 (supplementary). 464 

 465 

 466 

For the one-stage EWEAS, we calculate the relative economic value Vew for the time and budget 467 

restrictions that we presented, and we carry out a sensitivity analysis to examine how the Vew of each 468 

flood magnitude is affected by the absence of restrictions on budget or time. Subsequently, we 469 

calculate the Vew for the two-stage EWEAS. The sensitivity analysis was not carried out for the two-470 

stage EWEAS, since the budget and the implementation time of the preliminary action are considered 471 

to be fixed and hence, they do not depend on budget and time changes. We must also note that our 472 

model is different from the 2-stage system described in Katz and Murphy's (1997). In their work, the 473 
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budget is used all at once (to take actions that completely eliminate risk), damage can accrue at various 474 

points in time and an early action does not serve as a facilitator of a later one. 475 

  476 

 477 

4. Results 478 

 479 

4.1 Forecast skill 480 

 481 

 482 

Figure 5 displays the daily discharge produced by the GloFAS simulations at LT0 for the period 483 

between 1 May 2008 and 31 December 2015. The wet season in that area is from April until 484 

November, with a principal peak between April and August, and the dry season is from December 485 

until March. The daily discharge time series values are used as a baseline for observed flood 486 

occurrences (small flood [80th percentile-blue line], medium flood [85th percentile-red line] and big 487 

flood [90th percentile-green line]). The main action lifetime LF2 is 30 days (see Table S1 in the 488 

supplementary material). As described in sections 2.2 and 3, if a flood lasts longer than this period, a 489 

new event is considered to have occurred. If the discharge exceeds a higher threshold, we also count 490 

the number of lower threshold events (e.g. if the 90th percentile is exceeded, we count one event for 491 

big-, one for medium- and one for small-magnitude events). So, the number of independent events 492 

against which action can be taken is 21 for small-, 16 for medium- and 12 for big-magnitude floods. 493 

 494 
Figure 5 The GloFAS modelled daily discharge at LT0 from 1 May 2008 until 31 December 2015 for Akokoro, 495 
Uganda. Blue, red and green lines denote the triggering action thresholds for small (80th percentile), medium 496 
(85th percentile) and big (90th percentile) floods, respectively.  497 

 498 

Figure 6 presents the CH and FA as functions of the forecast LT for the three flood magnitudes and 499 

the three triggering action probability thresholds (30%, 60% and 90%). The MS rates are implicitly 500 

indicated, since they are equal to the difference between the number of events of each flood magnitude 501 

and the CH. We observe that up to LT4, the number of CH usually remains the same and it decreases 502 

with longer LTs; as a consequence, MS increases. The relationship between FA and LT is not as 503 

straightforward, but in general, the number of FA is higher for smaller magnitude floods and lower 504 

probability thresholds. Furthermore, we can observe that both the number of CH and FA is not 505 

strongly sensitive to the selected probability threshold. This can be attributed to a) the fact that in this 506 
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river cell, the model tends to forecast high discharges using high probabilities, b) the limited number 507 

of events and c) the fact there are some cases where flood events last longer than the action’s lifetime 508 

and therefore, forecasts predict with high certainty that the discharge remains above the flood 509 

thresholds during the flood period.  510 

 511 

 512 

 513 
Figure 6 Forecast skill expressed in number of Correct Hits (CH) (solid lines) and False Alarms (FA) (dashed 514 
lines) as functions of lead time (x axis) for all three flood magnitudes (small flood: blue line, medium flood: red 515 
line, big flood: green line) when using 30% (left), 60% (medium) and 90% (right) threshold probabilities of 516 
detecting a flood. 517 

 518 

4.2 Added value of EWEAS in one-stage approach 519 

 520 

Figure 7 presents the ability of the EWEAS to provide protection to the entire study area by creating a 521 

sandbag dike around it. This is demonstrated for the different flood magnitudes and for each LT that 522 

an action can be triggered, taking into consideration  budget (B) and placement productivity (PP) 523 

constraints, which determine whether there is sufficient implementation time (IT) for the action. So, 524 

using the parameters from Table S1, when the protected area (Equation 6) is larger than the actual 525 

study area, it means that there is both sufficient time to protect the entire area and budget to finance 526 

the action costs (Figure 6, green box). Similarly, we demonstrate the result for the other IT/B 527 

combinations. For small floods, the budget requirements are low, and given the available sandbag 528 

placement productivity rate, there is a temporal cut-off point only at LT4. At shorter LTs, there is not 529 

sufficient time to construct a sandbag dike around the entire area. For medium floods, this point shifts 530 

to LT7, since the increased water levels require a higher dike crest and therefore, longer 531 

implementation times. Finally, for big floods, there is neither sufficient time nor budget to protect the 532 

entire area, when action is triggered at the LT of our forecast range (LT1-LT14). There is sufficient 533 

time to do so from LT15 backwards. However, B is still insufficient. 534 
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 535 
Figure 7 Qualitative demonstration of the EWEAS’s ability to protect the entire study area A as a function of LT 536 
and flood magnitude, given the restrictions on the budget (B) and action implementation time requirements (IT).  537 
The time intervals in colour exhibit whether there is sufficient B and IT to protect the entire area; in green, both 538 
B and IT1 are sufficient, in orange only B is sufficient, in yellow only IT is sufficient and in red neither B nor IT 539 
are sufficient. 540 

 541 

As we discussed in section 3, the damage reduction is only proportional to the percentage of the total 542 

area that is surrounded by the sandbag dike ring. This percentage is listed in Figure 8 at each LT that 543 

action is triggered for each flood magnitude (blue line-small flood, red line-medium flood and green 544 

line-big flood), which determines the height of the sandbag dike and consequently, the number of 545 

sandbags needed. As qualitatively presented in Figure 7, full protection is achieved when actions are 546 

triggered at LTs longer than LT4, and LT7 for small and medium floods, respectively, while for big 547 

floods the maximum protection percentage is 30% from LT8 onwards.  548 

 549 

 550 
Figure 8 Percentage of the area protected as a function of the triggering action at each LT for the three flood 551 
magnitudes (small flood: blue line, medium flood: red line and big flood: green line). 552 

 553 

Figure 9 presents the Vew as a function of the LT at which action is triggered for different probability 554 

thresholds and flood magnitudes. In small floods, an optimum Vew is reached at LT4 to LT5. At these 555 

LTs, the full protection of the area is feasible in terms of time limitations; the budgets are sufficient 556 

and the forecast skill is better than that of longer ones, in the sense that the CH number decreases over 557 

time and number of FA usually either remains the same or increases. In few cases at longer LTs, we 558 

observe that the FA number is lower. Nevertheless, the high MS level keeps the Vew relatively low. In 559 

addition, at shorter LTs, the Vew is identical for all the probability thresholds. As already discussed in 560 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

15 

 

4.1, this can be attributed to the model’s tendency to yield high probabilities for this discharge 561 

threshold at these LTs in this river cell. 562 

 563 

Medium floods demonstrate an optimum value at LT7, when using a threshold probability of 60%. 564 

The sudden drop of Vew at LT11 using 30% and 60% probability thresholds can be attributed to the 565 

erratic forecast skills at this LT, as a result of the small dataset. Similarly, the forecast value is higher 566 

at LT12 than at LT9 to LT11 when using the 60% probability threshold, which is a result of non-567 

monotonous trends of MS, CH and FA over time and their resulting costs. At the long LTs, we 568 

observe that the Vew is slightly higher when using the 30% threshold compared to the others. Despite 569 

the already described limitations of the forecast dataset, this is an indication that the optimal triggering 570 

action probability threshold can differ from LT to LT. A low forecast threshold at longer LTs may 571 

result in more FA; however, when action is correctly triggered, it can provide the additional time 572 

needed for the extra protection of the area, outweighing the unnecessary costs of acting in vain. Hence, 573 

since the action triggering is a repetitive dilemma faced by the decision-maker (Figure 2), the selection 574 

of the optimal probability thresholds should be carefully selected at each decision time point.  575 

 576 

Finally, the low Vew for big floods, often below 0, demonstrate that the EWEAS does not provide any 577 

added value on the long-term, despite the fact that the forecast skill in the shorter lead times is high 578 

(e.g. LT1). The highest Vew for big floods of our EWEAS is achieved at LT10, using a 90% threshold 579 

probability, but is still quite low compared to the other flood magnitudes. The main reasons are that a 580 

miss by the forecast leads to extremely high economic consequences and that the measures that are 581 

within our set of options, given the available budget and placement productivity rate, cannot provide 582 

effective protection. 583 

 584 
Figure 9 Value of the EWEAS (Vew) for triggering action at each LT, using the 30% (left), 60% (middle) and 585 
90% (right) probability thresholds, for flood events of different magnitude (small flood-blue line, medium flood-586 
red line, big flood-green line).  587 

 588 

4.2.1 Sensitivity analysis of one-stage action 589 

 590 

The evaluation of the EWEAS involves numerous parameters that interrelate with each other and 591 

affect the overall outcome. A sensitivity analysis was performed to highlight the role of the two major 592 

boundary conditions for the application of the EWEAS: the available budget (B) and placement 593 

productivity (PP). Results of this analysis are shown in Figure 10. We use three combinations: a) 594 

restricted B and unlimited PP (i.e. infinite sandbags can be placed in one day; solid lines), b) unlimited 595 

B and restricted PP (dashed lines) and c) unlimited B and unlimited PP (dotted lines).  596 

 597 

When B is restricted and PP unlimited, the relative economic value Vew of all flood magnitudes 598 

reaches the highest value at LT1, where the forecast skill is highest while decreasing at longer LTs. At 599 

LT1, Vew for medium flood exceeds that of small floods, while for big floods it is the lowest. This 600 

order varies when taking action at other LTs, reflecting that Vew is not always linearly related to the 601 

flood magnitude or LT. This variation illustrates the difficulties that decision-makers face when, given 602 

the limited budget they have at their disposal during a finite time period, they have to choose when 603 

and at which flood magnitude they will initiate action (e.g., a small and frequent flood, but with 604 
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relatively low potential damage and relatively inexpensive measures; or a big and rare flood with high 605 

potential damage and expensive measures). 606 

 607 

When B is unlimited and PP is restricted, the lowest relative economic value Vew for all flood 608 

magnitudes is at LT1. This indicates that even an excellent forecast skill and a sufficient budget are 609 

not enough for EWEAS to provide added value, since an increase in Vew is also dependent on the 610 

temporal parameters (i.e. available time, implementation requirements and the coping capacity PP of 611 

the system). For small and medium floods, the Vew increases up to the point that it meets the line 612 

representing restricted PP and unlimited B. After this point, the dashed and solid lines coincide, 613 

demonstrating that the added value of the system is subject only to the forecast skill. On the contrary, 614 

in big floods, the Vew keeps increasing until LT14, indicating that a larger budget would provide extra 615 

value if action is taken at long LTs, even with poor forecast skill (four correct hits, eight misses), since 616 

not taking action has large economic consequences.   617 

 618 

Finally, when both B and PP are unlimited, the highest values are found at LT1, decreasing over 619 

longer LTs. The small and medium flood actions are insensitive to budget increases. Therefore, an 620 

increase in Vew at short LTs (LT4 and LT7 respectively) can result from a PP increase or forecast skill 621 

improvement, while at longer LTs, Vew is only dependent on the forecast skill. For this reason, at these 622 

flood magnitudes, the three lines coincide. Contrastingly, for big floods, any increase in B or PP 623 

positively affects the relative economic value of the system. 624 

 625 

 626 
 627 

 628 
Figure 10 Vew as a function of LT for small (left panel), medium (middle panel) and big floods (right panel) 629 
under a 90% probability threshold as trigger for action, when a) the budget B is restricted and placement 630 
productivity PP is unlimited (solid lines), b) B is unlimited and PP restricted (dashed lines) and c) both B and PP 631 
are unlimited (dotted lines).  For small- and medium-size floods, an unlimited B and PP (dotted lines) overlap 632 
with a restricted B and an unlimited PP (solid lines) at LTs shorter than LT4 and LT7 respectively, whereas all 633 
lines coincide at longer LTs. 634 

 635 

4.3 Added value of EWEAS in two-stage approach 636 

 637 

In a two-stage decision-making system, the event-based metrics (CH, MS and FA) of the two 638 

triggering action LTs are jointly calculated (see Table 4). This is likely to lead to different optimal 639 
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probability thresholds that trigger the two actions (i.e. there are three thresholds for early and three 640 

thresholds for late action, which results in nine combinations). In Figure 11, we demonstrate the 641 

lowest and the highest relative economic values Vew from this set of thresholds (solid lines), together 642 

with Vew for the one-stage action (dashed lines) of a 90% probability threshold for each of the three 643 

flood magnitudes at each LT. Although decision-makers are interested in the highest Vew, we also 644 

include the lowest Vew to indicate that sometimes even the worst combination of the two-stage 645 

approach is better than the optimal value of the one-stage approach. This is observed mainly at the 646 

short LT of small and medium floods, where the forecast tends to yield high probabilities and 647 

therefore, the low and the high thresholds produce identical results. In addition, at these LTs, an 648 

increase in Vew is predominantly affected by an increase in placement productivity PP that is provided 649 

by the preliminary action, indicating that the preliminary action does provide added value.  650 

 651 

The difference between the minimum and the maximum values of the two-stage approach increases 652 

over time, reflecting the variations in forecast skill and demonstrating the need for the careful selection 653 

of the optimal thresholds at each LT that action is taken. 654 

 655 

In small floods, the highest Vew of the two-stage approach exceeds that of the one-stage approach for 656 

all LTs, while the optimal LT to trigger action remains unchanged (LT4 and LT5), mainly indicating 657 

that the preliminary action leads to lower implementation costs for the same protection level. In 658 

medium floods, the maximum Vew in the two-stage approach is always higher, and the minimum Vew 659 

is lower than that of the one-stage approach for all LTs from LT7 onwards. In this case, the optimal 660 

Vew is shifted by one day (LT6, instead of LT7), compared to the one-stage approach, demonstrating 661 

that the decision-maker is able to postpone the decision and wait for new forecast information. This 662 

delay generates a higher relative economic value, since the preliminary action provides the extra time 663 

needed for procuring a more accurate forecast and maintaining the same safety level. For big floods, 664 

for which the existing budget and time constraints make the protection of the entire area unfeasible, 665 

the optimal time point to trigger the main action is at LT10 for the two-stage approach. This is 666 

consistently more cost-effective than the one-stage approach, indicating that having the possibility to 667 

trigger preliminary action is a risk-free option, since this engenders lower construction costs (hence, 668 

more available funds) and higher placement productivity (hence, lower implementation time). 669 

However, in these events Vew is still much lower than in the other two scenarios, demonstrating that, in 670 

practice, a reduction in the number of misses at long LT that is accompanied with a budget increase is 671 

needed to achieve higher EWEAS performance. Table S2 (supplementary material) outlines the 672 

combinations of probability thresholds that produce the minimum and maximum Vew for all LTs and 673 

flood magnitudes. 674 

 675 

 676 
 677 

Figure 11 Minimum and maximum Vew derived from the different combinations of forecast probability 678 
thresholds for the two-stage action approach (solid lines) compared to the one-stage action (dashed lines) for 679 
small- (blue lines), medium- (red lines) and big-magnitude floods (green lines). Vertical dashed line and right 680 
boundary shows the time period during which preliminary action is carried out.  681 

 682 

 683 

5. Discussion and Recommendations 684 
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 685 

Assessing the performance and the accuracy of a hydrological model is a challenge globally 686 

(Veldkamp et al., 2018), and particularly in developing countries, where observations for calibration 687 

or evaluation of these models are sparse. In many of these countries, global models are often used as a 688 

primary source of information (McNulty et al., 2016) to trigger humanitarian action (Coughlan de 689 

Perez et al., 2016), in spite of a lack of consistently good performance and high resolution forecasts. 690 

Usually, the assessment of the quality of a forecast model for a given river basin is carried out by 691 

comparing its output for each section to the observed discharge (e.g. Bartholmes et al., 2008). 692 

However, the short period for which forecasts were available in our study (approximately 8 years) and 693 

the rare nature of flood events hamper a thorough forecast skill assessment. This is the reason that we 694 

used relatively low discharge thresholds. Alternative ways to allow a statistically robust assessment 695 

would be to pool together observed flood events in large regions. For instance, Thiemig et al. (2015) 696 

calculated the skill metrics of the African flood forecasting system for entire Africa and Bischiniotis et 697 

al. (2019) computed the skill of GloFAS in Peru. However, both forecast skill and risk mitigation 698 

actions are highly location-dependent which restricts the use of large spatial aggregates of the 699 

forecasting systems. Therefore, we chose to focus on one location, using relatively low percentiles 700 

from the modelled discharge as flood proxies. Forecast with longer time series is a prerequisite for a 701 

more thorough evaluation that will lead to more accurate results. 702 

 703 

The evaluation of the operational forecast system skill is different than its evaluation from a 704 

hydrological point of view. For this reason, we incorporated operational characteristics such as the 705 

lifetime of the forecast-based actions in the skill assessment, which is particularly relevant for end-706 

users of the humanitarian sector (Coughlan de Perez et al. 2016). The actions’ lifetime duration has an 707 

impact on the skill assessment and consequently on the overall benefits of the EWEAS; for example, a 708 

hypothetical measure with short implementation time and very long lifetime (e.g. 2 year) would lead 709 

to a lower number of event-based metrics, while a measure with a very short lifetime (e.g. 1 days) 710 

would require higher accuracy regarding the onset time of the event and would lead to higher number 711 

of event-based metrics. 712 

 713 

In our study area, we observed that the model tends to forecast high discharges using high 714 

probabilities, which was also noted by Coughlan de Perez et al. (2016) in 2 similar river cells in 715 

Magoro and Kapelebyong, Uganda. This led to similar results among the three triggering action 716 

probability thresholds used. To improve forecast skill, various bias-correction methods exist (e.g. 717 

Atger, 1999; Eckel and Walters, 1998; Krzysztofowicz, 1992; Krzysztofowicz and Long, 1990). Post-718 

processing GloFAS output instead of using raw forecasts may have affected our results (e.g., Wilks, 719 

2001), but the overall concept  of our methodology is not critically dependent on these bias-720 

adjustments. However, such post-processing is recommended to the end users of this model for this 721 

area, before triggering flood risk mitigation actions. 722 

 723 

Changes in discharge at rivers with high water volumes, like the one used in this research, occur at 724 

slow rates (Alfieri et al., 2013). Therefore, it is expected that hydrological forecasts will not differ 725 

substantially between lead times that are only a few days apart. This makes the application of multi-726 

stage actions that are based on hydrological forecasts more likely, in contrast to decision-making 727 

systems that solely use forecasts with lower autocorrelation, such as precipitation forecasts, to trigger 728 

action. Hence, following the assessment of the 2-stage decision-making system that was illustrated in 729 

this research, end users should work with forecasters to explore where and which forecasts to use so as 730 

the ‘ready-set-go’ approach is worthy. 731 

 732 

To facilitate the understanding of our concept, we used as an example of forecast-based action that 733 

mitigates flood damage by the placement of sandbags around the study area. We acknowledge that this 734 

action may not be the most suitable measure for every study area, but it acts as a measure metaphor 735 

with dynamic effectivity, implementation time and cost/benefit ratio. A thorough analysis that meets 736 

the local needs, characteristics and physical boundary conditions must precede the selection of 737 

forecast-based actions. For example, we assumed that the water levels will not exceed a level for 738 

which sandbags cannot provide protection. Higher water levels would require other types of measures 739 
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to mitigate flood risk (e.g. removable flood barriers). Also, we assumed that the sandbag dike ring will 740 

be uniform, which in reality will depend on local characteristics and flow conditions. Finally, we 741 

assumed that the sandbags are prepositioned in the study location and that therefore no transportation 742 

time and costs is required. In case sandbag transportation was considered the preliminary action that 743 

was triggered by an earlier forecast, then this action would be a prerequisite for the implementation of 744 

the main action and Eq. 4 would be substituted by Eq.S3 (supplementary). Hence, before 745 

implementing a ‘Ready-Set-Go’ approach, the interrelationships between the actions should be 746 

quantified. Although the incorporation of these details is very important for practical applications, we 747 

consider that the simplifications made allow us to demonstrate in a more clear way the paper’s scope. 748 

 749 

We distinguished between three flood event magnitudes, intending to show how these affect our 750 

system, considering that as soon as a flood threshold is exceeded, damage will be deterministic. In 751 

reality, this will not be the case, since damage will depend on the inundation level and therefore water 752 

level/damage curves are needed. The distinction between different flood levels can raise several 753 

questions to a practitioner. For example, at the time that a big flood is forecasted by the model, the 754 

area could possibly already experience a small flood. Identifying the optimal way to act and the 755 

actions that can be adapted is a major challenge for end-users. These are required to give answers to 756 

the questions on whether it is worthier to start building a short sandbag dike that can later turn into a 757 

higher one, build a very high one as soon as the first forecast is issued, or is it worthier to take action 758 

against small and frequent floods rather than big and rare ones, given the budget restrictions. This 759 

illustrates the large number of degrees of freedom in the real world's decision context, and can be 760 

studied in future research.  761 

 762 

Another source of uncertainty in the evaluation of the EWEAS is the paucity of data regarding the 763 

costs and benefits of forecast-based mitigation actions. In our study, we only considered simplified, 764 

tangible costs of the mitigation actions. In operational flood risk management, however, other 765 

intangible costs can strongly affect the EWEAS value. For instance, a system may lose its credibility 766 

when action is taken in vain due to frequent false alarms, leading to reduced responses for future alerts 767 

(LeClerc and Joslyn, 2015), a phenomenon known as the ‘crying wolf effect’ (Breznitz, S., 1984). 768 

Although other tangible costs can be easily added into our evaluation system, the quantification of 769 

intangible costs is complex, and to the best of our knowledge no extensive record exists. 770 

 771 

Similarly, in our example we have used simple representations of the early action benefits. In reality, 772 

multiple sets of measures with different targets and levels of suitability are at decision-makers’ 773 

disposal for each occasion. For example, evacuation prevents the loss of lives, chlorine tablets prevent 774 

the spread of diseases, training raises public awareness, and temporary flood barriers protect critical 775 

infrastructure. All these have different characteristics and for a complete evaluation of the benefits of 776 

EWEAS the entire range of actions should be considered (Pappenberger et al., 2015). Furthermore, 777 

different actors have different goals (e.g. maximize the number of prevented events or minimise the 778 

total expected losses) and thus, there is not a truly objective measure of the EWEAS benefit. In the 779 

humanitarian sector, for instance, maximising prevention is usually more appropriate for decision-780 

makers with fixed budgets in specific locations, while minimising cost is more suitable for decision-781 

makers who aim to reach larger geographical areas (Lopez et al., 2018). Finally, preliminary actions 782 

that can be considered ‘no-regret’ options, owing to negligible costs or because they provide a risk-783 

free benefit, are usually carried out to facilitate other actions, without a directly quantifiable benefit. 784 

Aggregating and estimating the overall effectiveness of these measures is complex, and thus a 785 

comparison of flood damage between an event with ex-ante risk mitigation measures and an event for 786 

which no measures are taken is not easily made. Further research and operational data on the 787 

effectiveness of these measures would be highly valuable. More elaborated cost/benefit analysis would 788 

provide more insights on the EWEAS evaluation and may alter the optimal time point to trigger 789 

action, but the elementary trade-off between rapid action and waiting for higher quality forecasts will 790 

remain present under all circumstances. 791 

 792 

 793 

 794 
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6. Conclusions 795 

 796 

In this study, we adapted existing approaches to present a methodology that assesses the added value 797 

of early warning early action systems (EWEAS) in flood risk mitigation, when action can be taken at 798 

different time points. In doing so, we used a configuration of an EWEAS, taking into account forecast 799 

uncertainty, limited budgets, constraints on actions’ implementation time, and time-varying costs, 800 

damage and benefits. We used forecasts from a global flood forecast model (GloFAS) in Akokoro, 801 

Uganda and the lifetime of the forecast-based actions to evaluate the forecast skill from operational 802 

point of view and we explored two scenarios of taking action; a) at one point in time (one-stage action) 803 

b) at two points in time (two-stage action), where initially a preliminary action, based on a lower skill 804 

and longer lead time forecast, and subsequently, a main action, triggered by a shorter-term and higher 805 

confidence forecast, are taken. Using an idealized case study we showed that a two-stage system can 806 

provide added value to the overall effectiveness of EWEAS; in small floods, the preliminary action 807 

actually helps by decreasing the costs of the main action. in medium floods it allows the decision-808 

makers to postpone the decision to take action while waiting for a higher quality forecast. In big 809 

floods, where the available budget and time requirements are not sufficient for the protection of the 810 

entire study area, the preliminary action always leads to a higher economic value than when taking 811 

only the main action. This shows that low-certainty and long lead time forecasts can be useful when 812 

paired with high-certainty and short lead time information. Finally, we demonstrated that even if the 813 

forecast skill is high, the relative economic value of EWEAS can be small or non-existent, which is 814 

subject to the capability to act upon a forecast. This shows that the preparation time needed for the 815 

forecast-based actions should not be neglected when early action protocols are formed, as the optimal 816 

lead time to trigger action is a function of forecast quality and operational characteristics of the 817 

forecast-based actions. Therefore, investments should focus on both extending the forecast range and 818 

accuracy and increasing adaptation capabilities, either by providing sufficiently large budgets for 819 

effective measures or by reducing their implementation time. Otherwise, even an excellent forecast 820 

system will have a limited benefit. 821 

 822 
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