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Abstract 11 

The French dairy sector—like the rest of the economy—has to address the challenge of mitigating 12 

greenhouse gas (GHG) emissions to curb climate change. Deciding the economically optimal 13 

mitigation level and mix of abatement strategies requires knowledge on the cost of reducing GHG 14 

emissions. Agricultural bio-economic models can help identify which production-system changes are 15 

needed to reduce GHG emissions at different levels of incentives at minimal cost. The results reflect 16 

the model structure and parameter set, especially for GHG emissions accounting. Here abatement 17 

strategies and related costs for several levels of tax on GHG emissions in French dairy production are 18 

compared using four bio-economic models: the three supply models AROPAj, ORFEE and 19 

FARMDYN and the global partial equilibrium model GLOBIOM. It is found that between 1% and 6% 20 

GHG emissions abatement can be achieved at the current price of the EU allowances without 21 

substantially reducing milk production or outsourcing input production such as feed or herd renewal. 22 

Costs reflect the planning horizon: mitigation is more expensive when past investments are not 23 

amortized. Models that account for demand-side factors show a carbon tax has potential negative 24 

impacts on consumers through higher milk prices, but could nevertheless partly offset the reduction in 25 

income of farmers simulated by farm models. Model results suggest that promising on-farm GHG 26 

emissions abatement strategies include measures that let animals reach their full production potential 27 

and moderately intensive land management.  28 
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Highlights  29 

•  GHG abatements simulated by three supply farm models and one partial equilibrium model  30 

• 15% milk price increase and considerable decrease in profits found at 100€/tCO2eq tax 31 

• 1% to 6% and 4% to 15% abatement found resp.at 20€ and 100€ tax with limited outsourcing 32 

• Up to 70% GHG abatement found at 100€/tCO2eq tax if the carbon tax is not embodied in 33 

trade 34 

• Up to 15% GHG abatement found with productive dairy cows raised on low-input forages  35 

 36 

Keywords 37 

Greenhouse gases, bio-economic farm model, partial equilibrium land-use model, abatement cost, 38 

livestock 39 

1 Introduction 40 

Anthropogenic activities generate greenhouse gas (GHG) emissions that drive major global climate 41 

change. As the impacts of these GHG emissions are not reflected in product prices, they are 42 

considered a negative externality. According to Bithas (2011), the internalization of environmental 43 

externalities is a necessary condition for sustainability. Economic-environmental instruments such as 44 

taxes and subsidies, incentives to invest in greener technologies, or permits are all designed to modify 45 

market signals to make polluting goods and technologies less attractive. The EU Emissions Trading 46 

System (EU-ETS) caps the total amount of certain GHG that can be emitted by companies covered by 47 

the system (European Commission, 2019). These companies receive carbon permits that can be traded. 48 

Agriculture is not covered by the EU-ETS, despite the fact that it ranks as third biggest GHG emitter 49 

at EU-27 level. The French agricultural sector accounted for about 17% of French GHG emissions in 50 

2016 (EEA, 2018). More than a third of the French agricultural GHG emissions stem from methane, a 51 

third of which comes from dairy cattle (EEA, 2018). France is the second largest milk producer in the 52 

EU. 53 
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Conversely to the sectors currently covered by the EU-ETS where emissions can be relatively simply 54 

derived from input use of fossil energy carriers, GHG emissions from agricultural sectors are non-55 

point emissions resulting from many diffuse sources, mostly not CO2. These emissions are hard to 56 

measure on real farms and depend on a complex interplay of location factors such as soil and climate 57 

and the chosen production technology. Indicators such as the ones proposed by the IPCC (2006) 58 

circumvent these difficulties, but it may not be feasible to use more accurate indicators (Lengers et al., 59 

2013), which explains why European agriculture is not yet integrated in the EU-ETS (Monni et al., 60 

2007). With increasingly ambitious GHG emissions reduction targets but shrinking abatement 61 

potentials in non-agricultural sectors, a closer look at the potential GHG emissions savings in 62 

agriculture and related costs seems warranted. Whether and how much the dairy sector should 63 

contribute towards reduced GHG emissions depends mainly on the economics of dairy GHG 64 

emissions abatement costs relative to other sectors. De Cara and Jayet (2011) ran simulations showing 65 

that a reduction around 10% of EU agricultural GHG emissions could be obtained with a carbon price 66 

at around 35€/tCO2eq. Pellerin et al. (2017) find that an abatement of at least 10% for the French 67 

agriculture could be even cheaper with ⅔ of the mitigation strategies costing less than 25€/tCO2eq. 68 

However, other analyses shows less optimistic results. Mosnier et al. (2017b) ran simulations for 69 

typical French dairy farms showing that a tax of 40€/tCO2eq would only reduce GHG emissions per 70 

kg of milk by less than 5%. Lengers et al. (2014) ran simulations showing that to abate 10% of GHG 71 

emissions in a typical German dairy farm would require a carbon price if over 100€/tCO2eq. Vermont 72 

and De Cara (2010) showed that marked variability in abatement costs can generally be attributed to 73 

methodological differences such as model categories, temporalities, and flexibilities in allocating 74 

resources, GHG sources or carbon prices. Povellato et al. (2007) also underlined that any single 75 

approach cannot even start covering all the complexity involved. 76 

This paper aims to inform policymakers on GHG emissions abatement strategies and costs in French 77 

dairy production and highlight how model and scenario assumptions impact results. The novelty of 78 

this study is that different models are used in order to assess the impacts of these strategies 1) both at 79 

farm level and market level, 2) for different French geographical contexts and at national level 80 
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including trade impacts, and 3) on a specific branch of production to emphasize the impacts of model 81 

assumptions.  82 

Abatement costs and strategies simulated by four different optimization models are compared. 83 

Optimization models are particularly appropriate for this purpose, as they can endogenously simulate 84 

the most cost-effective mix of potential abatement measures and re-design production systems. The 85 

selected models jointly capture to a large extent the type of models used for this type of analysis: the 86 

global partial equilibrium land-use model GLOBIOM (Havlík et al., 2014), the aggregate linear 87 

programming model AROPAj (De Cara and Jayet, 2011) describing the behavior of a set of 88 

representative farms, and finally two high-technological-detail single-farm models, ORFEE (Mosnier 89 

et al., 2017a) as a static model and FARMDYN as a dynamic model (Lengers et al., 2014). These 90 

models have already been used elsewhere to assess mitigation potential in dairy production (but not 91 

exclusively). Here increasing levels of tax on GHG emissions are simulated in all these models to 92 

determine marginal abatement cost (MAC) curves that inform on the costs of an additional unit of 93 

emission reduction at the given emission level and pinpoint related cost-effective mitigation strategies. 94 

2 Methodology 95 

Model	description	96 

2.1.1 Overview	97 

All four models considered in this study (Table 1) are optimization models based on neo-classical 98 

economic theory, where economic agents are supposed to maximize profits (Figure 1).  99 

Table 1. Main model characteristics 100 

  GLOBIOM
a
 AROPAj

b
 ORFEE

c
 FARMDYN

d
 

Owner  IIASA INRA  

 

INRA  

 

University of Bonn 

Model type Partial equilibrium Supply  Supply  Supply  

Scale Production system Farm group Single farm Single farm 

Regional scale  World, for Europe at 

NUTS-2 level 

EU, at NUTS-2 

level 

Some French 

regions 

Some German regions, 

here parameterized for 

the same French case 

studies as ORFEE 
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Model type Linear Mixed integer 

linear 

Mixed integer linear  Mixed integer linear  

Temporal 

scale 

Recursive-dynamic in 

decadal steps 

Static, annual Static (one year 

with a monthly level 

of disaggregation)  

Dynamic in annual 

steps with a monthly 

level of disaggregation 

Production 

system 

Cattle, sheep and 

goats, swine, poultry, 

crops, grassland, 

forestry 

Cattle, sheep, 

goats, swine, 

poultry, crops 

and grassland 

Cattle, sheep, crops 

and grassland 

Cattle, swine, crops and 

grassland, biogas  

Decision 

variables 

Extent and location of 

crop area and 

livestock herd per 

system, trade and 

final demand 

quantities 

Herd sizes and 

feed mix, crop 

acreages and 

crop 

management  

Herd sizes and feed 

mix, crop acreages 

and crop 

management, types 

of machinery and 

buildings, contract 

work 

Herd sizes and feed 

mix, crop acreages and 

crop management, use 

of on/off farm labour, 

investments in building 

and machinery,  

Building and 

machinery 

cost 

Implicit calibrated 

cost 

none Depends on type of 

equipment, per unit 

cost and min. fixed 

cost per equipment.  

Returns to scale 

depicted by integers, 

initial endowments lead 

to sunk costs  

Labour (cost)  Implicit calibrated 

cost 

none Depends on herd 

sizes crop 

operations, type of 

equipment and 

contract work. 

Constrained to 

monthly labour 

availability  

Bi-weekly labour 

constraints with option 

to work off-farm 

(integers, reserve 

wage); amount of fixed 

labour to manage farm 

and branches 

Objective 

function 

Sum of producer and 

consumer surplus 

Sum of gross 

margins 

Risk utility function: 

here, mean-

variance of net 

operating profit  

Net present value of 

profits over simulation 

horizon, here 20 yr 

Notes: more details are available at
 : a

 Havlik et al. (2014) and Supplementary Material 1
 101 

b
 https://www6.versailles-grignon.inra.fr/economie_publique/Media/fichiers/ArticlAROPAj , version V5 102 

c
 Mosnier et al. (2017a) and Supplementary Material 2 103 

d 
http://www.ilr.uni-bonn.de/em/rsrch/farmdyn/farmdyn_e.htm ,   version of 2017 104 

 105 
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 106 

Figure 1: General structure of the optimization models.  107 
Notes: GoodCons, Goodimp, GoodExp: quantity of a given good consumed, imported (purchased), exported 108 
(sold); ActivityLevel and ActivityReq: quantity of each crop or animal activity produced and their requirements in 109 
goods (or in some goods-related elements); a,b: bounds such as land availability, non-negative variables etc. 110 
SM: Supply model, EM: Equilibrium Model 111 
 112 
GLOBIOM-EU (Frank et al., 2015) offers a more detailed representation of the agricultural sector in 113 

EU countries. GLOBIOM-EU is a global partial equilibrium model that covers crops, livestock and 114 

forestry activities at the sub-national level and markets at each EU country level. AROPAj covers the 115 

main EU agricultural production systems aggregating farm types based on the Farm Accounting Data 116 

Network (FADN) classification. The FADN collects accountancy data from a representative sample of 117 

thousands of agricultural holdings in the European Union by crossing economic and technical 118 

orientations of each farm. Decisions in AROPAj and GLOBIOM, are optimized at NUTS 2 level for 119 

Europe (Eurostat, 2019). The NUTS classification is a system for dividing up the economic territory of 120 

EU in order to produce regional statistics. France is divided into 27 NUTS-2 regions. FARMDYN and 121 

ORFEE are single crop–livestock farm models first developed for Germany and France, respectively. 122 

In this study, all models focus on French dairy production.  123 

GLOBIOM optimizes production (acreages and herd sizes), trade and consumption decisions to 124 

maximize the sum of producer surplus which refers to the benefit for selling the goods and consumer 125 
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surplus minus trade costs. The consumer surplus is the difference between cost of the goods and the 126 

price they were willing to pay for them. It is the only one of the four models to feature endogenous 127 

consumption quantities and output prices. 128 

AROPAj, ORFEE and FARMDYN are supply-side models with given exogenous prices. They all 129 

simulate decisions of farmers by assuming they optimize a profit function. These decisions encompass 130 

crop acreages, herd sizes, feed mix, and fertilizer applications. AROPAj maximizes the weighted sum 131 

of gross margin each farm type. Gross margins are defined from outputs multiplied by market prices, 132 

variable costs of production and policy support. ORFEE maximizes a risk utility function based on a 133 

mean-variance approach in relation to profits under price variability. Profit is calculated as gross 134 

margin minus depreciation and financial costs and labour costs. Type of farm machinery and buildings 135 

used also serve as decision variables. FARMDYN maximizes the discounted sum of profit over the 136 

planning horizon where the timing and cost of investments are taken into account.  137 

The modeling of adaptations over time differs. AROPAj and ORFEE do not simulate farm trajectories 138 

but only endpoints. AROPAj assumes that capital is practically fixed, and so the endpoint is thus at 139 

short to mid-term. ORFEE can consider either a short-term horizon if capital endowments are 140 

constrained to the initial situations or a long-term horizon if capital endowments are freely optimized, 141 

assuming that the current equipment will be completely depreciated. GLOBIOM simulates different 142 

points between the startpoints and endpoints considering changes in demand, productivities, diets, etc. 143 

It is solved with recursive–dynamic decadal steps. FARMDYN depicts the annual evolution between 144 

the initial and final states at farm level such that simulation results depend on the time horizon 145 

considered and on initial farm endowments.  146 

  147 
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 148 
2.2 Mitigation	strategies	considered	149 

The different adjustment mechanisms taken into account by each model (Table 2) enable possibilities 150 

to reduce GHG emissions by: decreasing herd sizes, improving animal efficiency, improving manure 151 

management, modifying crop and forage production to reduce the use of fertilizers, to store more 152 

carbon and to provide better diets for animals. 153 

Table 2. Adjustment mechanisms optimized by the model  154 

 GLOBIOM AROPAj ORFEE FARMDYN 

Alternative to dairy 

and forage 

production 

Crops, 

forest, 

fallow, other 

animals 

Crops and fallow Crops (except in 

permanent 

grasslands) 

Crops (except in 

permanent grasslands) 

Herd size and total 

milk production  

 

Cow= ± 5% 

of change by 

agroecologic

al zone (AEZ) 

Cow= up to -15% of 

initial value  

Cow*: Free or 

 = production 

reference 

Free 

Milk 

production/cow Constant by 

AEZ- 

allocation 

across AEZ is 

optimized 

Fixed Milk yield:  

2 breeds × 

3 yield levels 

Milk yield: milk 

potential and below 

Reproduction -Purchase or 

produce 

replacement 

heifers 

- 4 calving periods 

- Age at first 

calving  

- Breed  

 

-Culling rate 

-Age at first calving 

Animal feeding  Feed mix optimized in the model 

Crop and forage 

management 

Tillage 

alternatives, 

allocation 

across NUTS-

2 and 

production 

systems 

Type of crop 

(cereals, forages, 

fallow), crop yield 

target 

Type of crop 

(cereals, legumes, 

forages), crop 

rotation, 3 yield 

targets 

Tillage alternatives, 

type of crop (cereals, 

forages, fallow) 

Manure storage  Not 

considered 

Not considered Fixed Optimized in the 

model 

Demand Elasticity =    

-0.3 

Not considered, Fixed price 

*Two alternative scenarios were simulated: “Mountain“ and “West“ where milk production is free and 155 
“Mount.Q“ and “West.Q“ where milk production is fixed (farm-type reference level).  156 
 157 

2.2.1 Changes	in	herd	sizes,	production	per	animal	and	animal	feeding	158 

GLOBIOM-EU divides cattle farming into dairy cattle, replacement heifers, and other. The balance of 159 

the different categories is fixed on statistical data from the year 2000. One type of dairy production is 160 
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defined per agro-ecological zone, which is defined as an area with similar climatic conditions 161 

(Appendix 1). Quantity of meat and milk produced per head and per year and quantity of feed 162 

consumed are defined as model inputs based on the RUMINANT model (Herrero et al., 2013). In 163 

France, dairy cows productivity ranges between 4064 kg milk/year/cow and 8187 kg milk/year/cow 164 

according to agro-ecological zone. 165 

All farm models allow some extent of herd size adjustment. In ORFEE, two alternative scenarios were 166 

simulated with and without fixing the herd size. Dairy production can be optimized by modifying 167 

breed (Appendix 2), calving period and production objective to produce at below milk potential or 168 

delay first calving. In FARMDYN, milk production and replacement rate can be optimized up to the 169 

breed potential. The replacement strategies take into account the evolution of milk production 170 

according to animal age and year of birth. In AROPAj, it is not possible to modify breed or milk yield 171 

for a given farm, but the model can choose between producing or purchasing replacement heifers. In 172 

the supply models, the type and quantity of feed used by the different herds are optimized subject to 173 

requirement constraints. FARMDYN uses IPCC (2006) equations to define animal requirements based 174 

on net energy and crude protein in combination with minimal and maximal dry matter intake. 175 

AROPAj and ORFEE use the INRA feeding system (Inra, 2007), which is based on net energy 176 

available for milk or meat, digestible protein in the rumen and digestible protein in the intestine in 177 

combination with minimal and maximal dry matter intake. The calibration step in AROPAj refines the 178 

pre-estimated parameter sets that characterize feed contents and animal requirements. 179 

2.2.2 Changes	in	land	allocation	and	cropping	management		180 

In GLOBIOM-EU, European crop, grassland, forest, and short rotation tree productivity are estimated 181 

at NUTS-2 level. Three alternative tillage systems are included: conventional, reduced, and minimum 182 

tillage. Crop production is used for animal feed, human food and bioenergy. In AROPAj, crops and 183 

fodders, with up to 30 area categories depending on farming system, interact through “rotating” 184 

constraints and/or crop-specific thresholds. In ORFEE, crop and grassland production are defined 185 

based on expert knowledge and surveys. Emphasis is placed on providing a large variety of grassland 186 
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management, on integrating effects of crop succession on crop yield and nitrogen requirements, and on 187 

proposing two or three levels of yield targets. In FARMDYN, there are five different intensity levels, 188 

between 20% and 100% of the normal level, for the amount of N fertilizer applied.  189 

2.3 Estimation	of	GHG	emissions	and	carbon	storage	190 

Methane emissions—the most important GHG in dairy systems—stem from enteric fermentation 191 

and excreta of animals. In all four models, methane emissions from enteric fermentation depend on 192 

feed intake. In FARMDYN and GLOBIOM, estimations are driven mainly by gross energy intake 193 

(Table 3). In ORFEE, the main drivers are quantity and digestibility of organic matter ingested, 194 

proportion of concentrate feed, and quantity of dry matter intake per kg liveweight (Sauvant et al., 195 

2011). AROPAj uses an earlier version of the model developed by Sauvant et al. (2011) based on feed 196 

digestibility and gross energy. To estimate methane from excreta, all estimations are based on the 197 

IPCC (2006) Tier 2 method, which considers type of storage and local climate. 198 

Table 3. Estimations of GHG emissions  199 

 GLOBIOM AROPAj ORFEE FARMDYN 

N2O-soils Biophysical model  IPCC Tier 1   IPCC Tier 1 

 

IPCC Tier 2 

N2O-manure mgt IPCC Tier 2 IPCC Tier 2 IPCC Tier 2 IPCC Tier 2 

N2O-indirect IPCC Tier 1  IPCC Tier 1  IPCC Tier 1 + Velthof 

and Oenema (1997) 

IPCC Tier 1 + Velthof 

and Oenema (1997) 

CH4-manure mgt IPCC Tier 2 IPCC Tier 2 IPCC Tier 2 IPCC Tier 2 

CH4-enteric IPCC Tier 3 

 

(Giger Reverdin et 

al., 1996) 

(Sauvant et al., 

2011) 

IPCC Tier 3 

 

C soils Land use change 

Carbon in crop soils  

(EPIC) 

None Land use change 

and carbon storage 

in grassland 

None 

GHG emissions 

related to 

purchased inputs  

None None Dia’terre (Ademe) None 

 200 

In all four models, N2O emissions from manure management systems are proportional to the 201 

quantity of nitrogen excreted by animals and are differentiated according to storage type as per Tier 2 202 

method (IPCC, 2006). Direct emissions of N2O from managed soils are computed according to IPCC 203 
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Tier 1 (2006). They take into account manure spreading, inorganic N fertilization, and N deposited by 204 

grazing. Indirect N2O emissions from atmospheric deposition of N volatilized from managed soil and 205 

leaching (NO3
−) are taken into account in farm models. 206 

Regarding carbon storage, in GLOBIOM, EPIC (2019) was used to simulate a carbon response 207 

function for each crop rotation, management system, simulation unit, and initial stock of carbon. It 208 

provides estimates for soil organic carbon in croplands and from land use change from natural land to 209 

cropland. In ORFEE, carbon sequestration in grassland and land use change from grassland to annual 210 

crops is accounted based on Soussana et al., (2010). Indirect CO2e emissions of purchased inputs such 211 

as feeds and litter produced off-farm, non-organic fertilizers and purchased animals and direct 212 

emissions from the burning of fuels are estimated using life cycle assessment values from Dia’terre® 213 

(ADEME, 2010) version 4.5.  214 

Emissions are aggregated into a single indicator of global warming potential (GWP) expressed in 215 

equivalent CO2 (CO2eq) using the 2007 IPCC GWP of each gas (GWP N2O = 298, GWP CH4 = 25) 216 

calculated at farm level. In GLOBIOM, only the emissions associated with the cropping area required 217 

to produce the feed for dairy cows and replacement heifers are included here in GHG estimate.   218 

	219 

2.4 Carbon	tax	scenarios	220 

There are three potential alternatives for simulating mitigation strategies in bio-economic models. 221 

Either a carbon tax can be introduced, or the optimization process can look for the optimal strategy 222 

under a target of climate change abatement. Both yield the same result at the points where the tax rate 223 

is equal to the dual value of the emission ceiling and thus deliver the same MAC curves. The third 224 

option is to only consider GHG estimates in model outputs. In this case, alternative production 225 

systems are either tested by fixing some decisions exogenously or else taken from the implementation 226 

of scenarios not directly involving GHG emissions. In this study, mitigation potential was simulated 227 

for three carbon tax levels: €20/tCO2eq, €50/tCO2eq and €100/tCO2eq that were implemented as 228 

additional production costs or subsidies in the case of carbon storage (Table 4).  229 
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Table 4. Sources of GHG emissions taxed.   230 

 GLOBIOM AROPAj ORFEE FARMDYN 

Sources of GHG 
emissions taxed 

CH4, N2O,  

CO2 (LUC and crops)  

CH4, N2O CH4, N2O,  

CO2 (inputs + grassland soils) 

CH4, N2O 

LUC: land-use change 231 

In GLOBIOM, taxes are in US dollars (2017 exchange rate €1 = $1.17). Taxes are applied at farm 232 

level, except in GLOBIOM in which the tax is implemented at EU level for the whole land-based 233 

system. The scenarios are compared with the business-as-usual (BAU) scenario which simulates how 234 

production systems would evolve under the same assumptions regarding the economic context, 235 

adjustment possibilities, etc. but without carbon taxation. Two contrasting types of farm are chosen for 236 

each supply model: one with high milk yield per cow and with a significant proportion of arable land 237 

in the western part of France (‘West’), and one with lower milk yield per cow and little arable land in 238 

the Auvergne upland area of central France (‘Mountain’). In AROPAj, these two farms are picked 239 

from among the farm groups specialized in dairy production based on the FADN. In ORFEE and 240 

FARMDYN, farms are parameterized based on the INOSYS farm types ‘PL2B’ in Western France 241 

and ‘C17’ in Auvergne (Idele, 2019).  242 

3 Results 243 

3.1 Optimal	mitigation	strategies	simulated	244 

For all the models, a reduction in animal numbers is simulated with higher CO2eq tax levels (Table 5).  245 

  246 
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Table 5. Production-system adjustments with carbon tax level (change in % of BAU situation) 247 

  GLOBIOM AROPAj ORFEE FARMDYN 

  Carbon 

tax(€/t) 

France Mnt. West Mnt. Mnt.Q West West.Q Mnt. West 

  

Number of dairy 

cows (head) 

 

BAU 3.8 M 69
 a

 59
 b

 63 56 74 54 60 50 

20 -1.3% 0% 0% -7% 0% -15% 0% 0% 0% 

50 -1.9% 0% 0% -27% 0% -51% 0% 0% 0% 

100 -3.5% 0% 0% -30% 0% -59% 0% 0% 0% 

Pregnant heifers 

(head) 

BAU 2.5 M
 c
 19 10 15 13 27 19 7 9 

20 -0.5% -

100% 

-

100% 

-7% 0% -15% 0% 2% -9% 

50 -2.0% -

100% 

-

100% 

-27% 0% -51% 0% -4% -17% 

100 -3.6% -

100% 

-

100% 

-30% 0% -59% 0% -7% -26% 

Milk yield (t/dairy 

cow) 

BAU 6.5 5.8 7.1 5.8 5.8 7.9 7.9 5.8 8.3 

20 -0.1% / / 0% 0% 0% 0% 0% 0% 

50 -0.5% / / 0% 0% 0% 0% 0% 0% 

100 -0.9% / / 0% 0% 0% 0% 0% 0% 

Spring calving 

(number of cows)
d
 

BAU na na na 31 24 0 0 na na 

20 / / / 0% 0% 0% 0% / / 

50 / / / 56% 32% 0% 0% / / 

100 / / / 103% 32% 0% 0% / / 

Mineral N 

application (Kg/ 

ha) 

BAU na na na 20 13 37 43 23 77 

20 -2% 0% 3% -38% -15% 12% -25% -4% -1% 

50 -4% -11% 3% -69% -14% 22% -23% -6% -22% 

100 -6% -60% -21% -68% -46% -4% -23% -24% -43% 

Productive 

grasslands for 

dairy production 

(ha) 

BAU 1668550 96 59 90 90 26 27 83 36 

20 0.4% -30% 0% / / 11% 6% -1% 5% 

50 1.3% -30% 0% / / 22% 26% -10% 1% 

100 1.6% -32% 0% / / 27% 32% -17% -6% 

Consumption of 

concentrate feed 

(grain, meal etc. in 

t) 

BAU na na na 76 61 134 72 33 31 

20 / na na -16% 0% -30% 10% 0.5% 2% 

50 / na na -42% -8% -61% -3% 1.2% 3% 

100 / na na -50% -8% -70% -3% 2% 4% 

Note: / adjustment not possible, na: not available; 
a 

+1 suckler cow + 1 goat + 2 swine; 
b
+4 suckler cows; 

 c 
all 248 

heifers,  
d 

proportion of calvings between March and May;
 
* change in ha (baseline = 0); Q: simulations with 249 

fixed milk production 250 
 251 

This is the most radical solution to reduce not only all emissions directly related to enteric 252 

fermentation and manure management but also emissions related to forage and crop production due to 253 

lower feed requirements. All animal numbers are reduced in some models including dairy cows at the 254 
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expense of beef and milk production. This is the case for GLOBIOM with up to -3.5% of dairy cows 255 

for a 100 $/tCO2eq tax. For the same carbon tax level, ORFEE finds a stronger reduction of herd sizes 256 

of up to -60% whereas the other supply models find that dairy cow inventory is maintained. This 257 

higher reduction is linked to the fact that dairy cow marginal profit is much lower in ORFEE, which 258 

considers that labour, machinery and housing costs are approximately proportional to the number of 259 

dairy cows and thus consequently more sensitive to a carbon tax. Numbers of replacement heifers are 260 

reduced in AROPAj and FARMDYN. In FARMDYN, the rearing period is accelerated to let heifers 261 

enter the herd earlier in order to reduce the number of unproductive animals. In ORFEE, the youngest 262 

age possible at first calving is already reached in the BAU situation. For AROPAj, the rearing of 263 

replacement heifers is largely externalized, even at low levels of tax. The number of replacement 264 

heifers is divided by 5. This option was initially introduced with the aim of representing practice in 265 

some farms rather than reducing GHG emissions. In the ‘West’ farm under AROPAj, two out of the 266 

four suckler cows are eliminated to reduce emissions. Average milk yield is reduced up to 0.9% in 267 

GLOBIOM as dairy cows are reallocated to less productive areas. This corroborates the ORFEE 268 

results that show a stronger reduction of dairy cow numbers in the western part of France where more 269 

alternatives to ruminant production are available. Milk yields are not modified in the other models and 270 

are at their maximum values. Note that they were at their maximum potential before the 271 

implementation of the tax. In ORFEE, spring calving increases to i) increase fresh grass intakes that 272 

emit less methane during digestion than rough forages, and ii) reduces feed purchases which are 273 

associated with indirect CO2 emissions (LCA).   274 

To reduce fertilization-related nitrous oxide emissions, models can opt for technologies or crops 275 

requiring less nitrogen, or they can replace on-farm feed production by purchased feed. These two 276 

factors explain why the conversion of grassland into fallow, the reduction of wheat, and the marked 277 

increase in feed purchases are chosen by AROPAj. In FARMDYN, a reduction in fertilizer use related 278 

to the reduction in crop yield is also observed, the partial substitution of pasture by harvested 279 

grassland (silage), and the increase in fallow land. In ORFEE, corn is replaced by alfalfa and 280 

permanent grassland. ORFEE accounts for CO2 emissions of purchased inputs and for carbon storage 281 
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in grassland, which explains the expansion of grassland, particularly permanent grassland, which is 282 

assumed to store more carbon. This reduction is made at the expense of corn silage and is associated 283 

with maintained or increased levels of alfalfa and protein crops. The proportion of grazed-only pasture 284 

also increases, since fresh grass has better nutritional value than conserved grass. In GLOBIOM, the 285 

increase in carbon storage is explained by reduced tillage on croplands and by an increase in grassland 286 

caused by an increased proportion of grass in animal diet.  287 

 288 
3.2 Marginal	abatement	costs	and	GHG	emissions		289 

GHG emissions are reduced in all the models in response to a carbon tax, but the MAC curves have 290 

different shapes according to the model (Figure 2). In GLOBIOM, the abatement rate is almost 291 

constant at 0.04% of abatement per additional euro of tax per tCO2eq. Emissions are reduced linearly 292 

with herd reduction. In AROPAj, the externalization of feed and replacement heifer production leads 293 

to higher emission reduction at already-low tax levels. In ORFEE, the highest abatement rate 294 

corresponds to the greatest herd size reduction. It reaches up to 70% for a 100 € CO2eq tax. The 295 

abatement rate is far smaller when milk production is maintained: between 2 and 7% for 20 € CO2eq 296 

tax and between 5 and 16% for 20 € CO2eq tax. This is closer to the range simulated by GLOBIOM: 297 

0.5% and 4% respectively. for a 20€ and 100€ CO2eq tax and FARMDYN: between 1 and 2% and 298 

between 8% and 14% respectively. for a 20€ and 100€ CO2eq tax. In FARMDYN, the ‘Mountain’ 299 

MAC curve is not linear and its inflexion point corresponds to the reduction of age at first calving.   300 

The reduction of GHG emissions per kg of milk produced depends on mitigation options used, 301 

emission sources or sink considered, and GHG accounting frame (Figure 3). In the BAU scenario, 302 

methane emissions are lowest in GLOBIOM with 0.45 kg CO2eq/kg milk and highest in AROPAj  303 

with between 0.91 and 1.12 kg CO2eq/kg milk, with FARMDYN (between 0.44 and 0.60) and ORFEE 304 

(between 0.62 and 0.73) giving intermediate values. These differences are explained by the methane 305 

estimation method (CITEPA, 2019) and the amount of feed consumed per animal, which is smaller in 306 

GLOBIOM than ORFEE (Appendices 1 and 2). The rough division of all GHG emitted by the 307 

quantity of milk produced can also explain why AROPAj, which also considers some other ruminants 308 
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on both farms, gives higher methane values. The reduction of methane emissions in response to a 100 309 

€ tax depends first on the reduction of unproductive animals e.g. heifers and, in AROPAj, other 310 

ruminants per productive cow and second on changes in animal diets. These gains reach up to 25% of 311 

BAU-scenario methane estimate in AROPAj and 15% in FARMDYN, but no more than 5% in 312 

ORFEE which only modifies diets. In GLOBIOM, methane emissions only increase by 0.5% with the 313 

reduction of average milk yield. 314 
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Figure 2. Marginal abatement cost curves: GHG reduction according to carbon tax level (in % 315 
and in quantity of GHG emissions in business-as-usual scenarios).  316 
 317 

Regarding nitrous oxide emissions, differences in the BAU scenarios are explained by different levels 318 

of fertilization, types of manure and proportions of cash crops produced. In the 100€ tax scenario, the 319 

proportion of N2O per kg of milk is reduced up to 20% in AROPAj, up to 13% in FARMDYN, and up 320 

to 9% in ORFEE due to fertilization reduction. In ORFEE ‘West’ farm, parallel to the reduction of 321 

herd size, the increase in cash-crop area leads to a higher amount of mineral fertilizer applied at farm 322 

level and per kg of milk produced. ORFEE accounts for CO2 emissions linked to the purchase of 323 

inputs, which are almost as high as nitrous oxide emissions and account for 20% of total emissions. 324 

The simulated mitigation strategies can reduce these emissions by up to 37% if herd size is reduced 325 

but by just 8% if herd size is maintained. Carbon sequestration in grassland accounts for a significant 326 

proportion of the GHG emission balance in ORFEE. Quantity of carbon sequestered per kg of milk 327 

increases if herd size decreases and/or if some forage crops are substituted for grasslands. Land use 328 

change and carbon sequestration in croplands represent a fairly small proportion of GHG emissions 329 

related to the French dairy sector in GLOBIOM (7%).  330 
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 331 

Figure 3. GHG emissions per kg of milk for BAU and 100€ CO2 eq tax scenarios.  332 

3.3 Impacts	on	the	milk	market	333 

In GLOBIOM, the tax reduces both production and consumption in France by about 4.5 % for a 100 € 334 

carbon tax (Figure 4), which means the tax has little effect on trade. Dairy production in the other EU 335 

countries is defined in the same way as in France and has similar marginal abatement costs, and is 336 

consequently impacted at similar levels of magnitude. Furthermore, in the calibration year (2000), 337 

France only imported milk from Eastern Europe and only in relatively little quantities. GLOBIOM 338 

features some barriers to trade, making it possible, but costly, to create new trade flows, which might 339 

explain the limited changes in imports. The decrease of supply caused by the tax drives milk prices up 340 

(Figure 5). For a tax of 100 $/tCO2eq, the increase in milk price is around 40 $/t milk which is 341 

equivalent to a 15% increase of the baseline price. Since GLOBIOM estimates average emissions at 342 

0.63 tCO2eq/t milk, almost ⅔ of the tax is transferred to an increase in milk price, which is 343 

consequently quite high. This is explained by a relatively low elasticity of demand (0.3) and limited 344 

possibilities to adjust production technology and trade.  345 
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 346 

Figure 4. Evolution of milk production and consumption in France in GLOBIOM 347 

	348 
Figure 5. Evolution of milk price in France in GLOBIOM 	349 
	350 
	351 
3.4 Impacts	on	farm	profit	352 

Profit loss at farm level results to a large extent from the implementation of the tax by itself and to a 353 

small extent from adaptations of the production system that either drive additional costs and/or reduce 354 

receipts due to reduced production (Table 6). This means that there is little room for farmers to avoid 355 

the tax other than by drastically reducing herd sizes. It is clear that with a 100 €/tCO2eq tax, there will 356 
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be little money left to pay farmers for their work. However, as shown in Figure 4, profit loss can be 357 

partly offset by macro-economic adjustments of prices. 358 

Table 6: Total GHG emissions and economic indicator values for BAU and 100€ carbon tax 359 

scenarios 360 

 GHG 

emissions 

(tCO2eq) in 

BAU 

Economic indicator (k€/yr) 
a
 

BAU Reduction  

AROPAj – Mountain 647  181  52 (Tax= 47.9 k€) 

AROPAj – West 601  160  53 (Tax=51.5 k€) 

ORFEE Mount. 218 43  22 (Tax=8.5 k€) 

ORFEE Mount.Q b
 169 39

 
 16 (Tax=16.0 k€) 

ORFEE West 551 55
 
 48 (Tax=16.1 k€) 

ORFEE West.Q b 393 44
 
 35 (Tax=32.9 k€) 

FARMDYN Mount. 312 46  28 (Tax=26.8 k€)  

FARMDYN West 286 65  35 (Tax=26.4 k€) 

Note: 
a 

Gross margin in AROPAj, operating profit for ORFEE and FARMDYN (=gross margin – structural costs – 361 
depreciation and financial costs); Objective function differs from this indicator of profit, so that profit loss in the 362 
100€ tax scenario is sometimes higher than a 100€ tax applied to GHG emissions in the BAU scenario. 

b
.Q: 363 

simulations with fixed quantity of milk sold.  364 

4 Discussion 365 

Vermont and De Cara (2010) conclude their review on marginal abatement costs in agriculture by 366 

stating that “studies that account for market feedbacks of mitigation policies through partial or general 367 

equilibrium effects report a higher abatement rate for a given emission price”. Here the opposite is 368 

found. This suggests that differences in abatement levels at a given tax rate depend more on 369 

assumptions regarding costs and flexibility to modify the production system than on type of model. 370 

High flexibility results from having broad options for adapting the system to carbon taxes at low cost. 371 

Kuik et al. (2009) distinguish “where”, “when” and “what” flexibilities. Models assuming a high 372 

“where” flexibility, meaning that inputs or outputs can be produced outside the system to avoid the 373 

tax, achieve the highest abatement rates, up to -70% in ORFEE scenarios when milk production is 374 

allowed to decrease, up to -25% in AROPAj due to the externalization of heifer and feed production, 375 

for a moderate carbon tax. If a tax is implemented within a delimited system, one strategy to reduce 376 

GHG emissions is to partially or totally externalize the production process into a non-tax part. 377 

Although leakage occurs when one region has a less stringent environmental policy than another 378 
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(Frank et al., 2015), some simulated leakages such as feed production in supply models would not 379 

occur at large scale in the real world without increasing their price, either directly due to the tax or 380 

indirectly through market adjustments. The implementation of LCA data in ORFEE partly overcomes 381 

leakage by considering emissions from the purchased inputs. This option has a strong impact on model 382 

results, as a reversal is observed: a reduction of the purchased inputs and animal stocking rate in line 383 

with previous farm level analysis (Adler et al., 2015). LCA is a valuable approach when the primary 384 

objective is to identity a strategy to reduce GHG emissions at farm level while avoiding pollution 385 

leakage. Nonetheless, it remains economically biased, because the increase in input price will not be 386 

equal to the tax applied, since (i) marginal and average emission factors are not equal, and (ii) prices 387 

depend on both supply and demand. In addition, it does not prevent externalization of the whole 388 

production process by lowering production levels.  389 

In GLOBIOM, emission leakage associated with the externalization of inputs and outputs is accounted 390 

for in the optimization program through the global and sectoral approach. Similar to Neufeldt and 391 

Schäfer (2008), production is reduced. The simulated reduction of milk output directly impacts 392 

consumption. It does avoid leakage, but it also leaves questions hanging over the impact of this change 393 

on human diet and health (Hasegawa et al., 2018). This reduction of milk consumption –which here is 394 

relatively small- may increase the demand for other products that may leave a larger carbon footprint 395 

if mitigation policies are applied only unilaterally on specific products, sectors or regions. GLOBIOM 396 

also simulates a sharp increase in milk prices. That price increase could be fed back into the farm-scale 397 

models where, at a given tax rate, simulations would lead to a lower reduction of herd size and lower 398 

economic losses, which implies higher MAC but without changing the cost-efficiency ranking of the 399 

simulated strategies.  400 

The “when” flexibility can be related to the transition or adjustment costs included in the model. Once 401 

buildings and machinery have been purchased, they can be considered as sunk costs. Capital is near-402 

fixed in FARMDYN scenarios because the dynamics of investments are included and fixed in 403 

AROPAj. These models generate a herd structure that is less sensitive to a carbon tax than ORFEE 404 

scenarios which, here, considered capital and labour as fully variable based on annualized costs. This 405 
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hints at differences in short and long-run abatement costs at business and consequently also sectoral 406 

level. 407 

The “what” flexibility should be replaced by “how” in the context of this study, since it was set out to 408 

pinpoint what abatement options will be used within the dairy cattle system. The range of options 409 

considered in the different models has significant impacts on the MAC curves. Apart from strategies 410 

resulting in a reduction of crop and animal production per unit of land, milk yields tend to increase 411 

with the tax, if not already at maximum potential in the baseline. This corroborates previous findings 412 

(Monteny et al., 2006) that improving animal efficiency through faster growth or higher milk yields 413 

will reduce methane production per unit of product. However, GLOBIOM simulations led to a 414 

reduction in the proportion of the most productive cows. This is explained by a geographical 415 

reallocation of production and by the incentive to store carbon in soils. The incentive to store carbon in 416 

soils and the lack of dairy production alternatives also explains why, first, increasing the proportion of 417 

grassland emerges as an efficient strategy in ORFEE, and second, why dairy production is more 418 

strongly reduced in areas suitable for cash crops. There are also studies which assume, unlike the 419 

optimization models used here, where farmers are assumed to always operate on the efficient frontier, 420 

there are also other studies that assume that pressure to abate emissions can shift inefficient farmers 421 

towards the technical and economic efficiency frontier. In GLEAM (Global Livestock Environmental 422 

Assessment Model) for instance, around 33% of emissions are mitigated while maintaining constant 423 

output, based on the assumption that producers in a given system were to apply the practices of the 424 

10th percentile of producers with the lowest emissions intensities (FAO, 2019). Pellerin et al. (2017) 425 

also estimate that lengthening the grazing period or increasing the proportion of legumes on the 426 

grasslands could reduce both emissions and production costs. Further promising strategies were not 427 

introduced in the models studied, and might have further increased the abatement rates. They include 428 

the improvement of grassland and grazing managements to store more carbon or limit nitrous oxide 429 

emissions (Luo et al., 2010), limit fertilizer and fuel consumption, grazed intercropping to reduce 430 

tillage, fertilization and conserved forage consumption, and unsaturated fats and additives in animal 431 

diets.  432 
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5 Conclusion 433 

This analysis compares mitigation strategies and abatement costs in dairy production across four 434 

economic models to shed light on abatement potential and costs and the related uncertainties.  435 

Model results suggest that up to 15% of GHG abatement could be achieved with the following 436 

strategies: (1) let animals reach their full milk yield and calving potential, (2) feed them with low-437 

input forages such as grassland, legume crops and (3) reallocate dairy production to areas less 438 

favourable to cash crops. It was also found that little GHG abatement (between 1% and 6%) can be 439 

achieved at the price of 20€/tCO2e, a price close to the current price of EU allowances which 440 

fluctuates around 25 €/t CO2eq, without substantially reducing milk production or outsourcing input 441 

production for feed and herd renewal. This abatement range between 4% and 15% for a 100€ tax. It 442 

can be concluded that dairy production is not a sector where integration into the EU-Emission Trading 443 

System is advantageous. Streamlining climate change policies with other common agricultural 444 

policies, such as green direct payment, agri-environment climate measures or nitrate directive seems 445 

more efficient.  446 

This study finds advantages of co-using different economic models for systematic comparison, to gain 447 

insight into different drivers of adjustment, and cover a wider range of mitigation strategies. Both 448 

supply models and partial equilibrium model highlight key aspects for policymaking. On one hand, a 449 

considerable decrease in profit is simulated for high tax level, highlighting the risk that some farmers 450 

might be pushed out of production. On the other hand, the results from the partial equilibrium model 451 

show that the decrease of milk production increase milk price and thus food security concerns in a 452 

situation where the trade balance is preserved. In further studies, better connections could be made 453 

between models: partial equilibrium models could focus on better representing the most important 454 

mitigation strategies highlighted by the supply models, while supply models could use the prices 455 

simulated by the partial equilibrium models. This would limit the simulation of high reduction of 456 

agricultural production and GHG emissions if the carbon tax is not embodied in trade 457 

 458 
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 559 

Appendix 1. Characteristics of animal production by agro-ecological zone in France for  560 
GLOBIOM 2030–business-as-usual  561 

    Medium Arid Medium Hum. Medium 

Temp. 

Other 

Production 

(kg/cow/year) 

Milk 5411 6808 8187 4064 

Beef 82 107 104 84 

Dairy cow Total intake 

(tDM/year/cow) 

4.35 5.53 6.80 4.48 

  Grass intake (% DM) 71% 54% 44% 71% 

Replacement Total intake 

(tDM/year/cow) 

2.4 2.1 2.4 2.1 

  Grass intake (% DM) 87% 85% 74% 85% 

  Number of female 

replacements / cow 

0.58 0.71 0.67 0.57 

 GHG CH4 / in kg CO2eq/kg 

milk 

0.46 0.42 0.39 0.59 

 Proportion of dairy 

cows in 2000 

9.6% 32.5% 31.6% 26.0% 

 Proportion of dairy 

cows in BAU 

6.6% 25.6% 41.6% 26.2% 

 Proportion of dairy 

cows in 100USD carbon 

tax 

6.8% 26.8% 39.2% 27.2% 

Note: The characteristics of the production systems are the same in business-as-usual as in 2000  562 

Appendix 2. Characteristics of animal production by production system for  563 
ORFEE 2030– business-as-usual (scenarios with fixed total milk production)  564 
    Mountain.Q West.

Q 

Production (kg 

/cow/year) 

Milk 5755 7928 

Beef 140 275 

Dairy cow Total intake (tDM /year/cow) 5.6 6.3 

  Grass intake (% DM) 85 34 

Replacement Total intake (tDM /year/heifer) 2.4 2.4 

  Grass intake (% DM) 94 73 

  Number of female replacements / cow 0.66 0.81 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 

 

GHG CH4 / in kg CO2eq/kg milk 0.73 0.66 

 565 

 566 


