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We here review the ecological role of essential nutritional biomolecules [fatty acids (FA),

amino acids (AA), sterols, vitamins] in aquatic and terrestrial food webs, encompassing

the forces behind their environmental distribution. Across ecosystems, mutualistic

relationships frequently ensure exchanges of vitamins between producer and demander,

especially between B12 and other B vitamins as well as the AA methionine. In contrast,

FA, sterols and most AA are transferred up the food chain via classical predator-

prey interactions, and therefore have good biomarker potential for trophic interactions.

As biomass-flow depends on the absolute amounts of potential limiting resources,

considering solely the relative share in the respective biochemical group may under-

or overestimate the availability to consumers. Moreover, if not accounted for, “hidden”

trophic channels, such as gut symbionts as well as metabolic conversion of precursor

molecules, can hamper food web analyses. Fundamental differences exist between

aquatic and terrestrial ecosystems: Vitamin B12 produced by ammonium oxidizing

Archaea is essential to many aquatic algae, whereas terrestrial plants escaped this

dependency by using B12 independent enzymes. Long-chain ω3 polyunsaturated FA

(LC-ω3PUFA) in aquatic systemsmainly originate from planktonic algae, while in terrestrial

systems, belowground invertebrates can well be a source, also supporting aboveground

biota. Interlinks from terrestrial to aquatic ecosystems are of a biochemically totally

different nature than vice versa. While biomass rich in proteins and LC-ω3PUFA is

transferred to land, e.g., by trophic relationships, the link from terrestrial to aquatic

ecosystems provides recalcitrant plant carbon, mainly devoid of essential nutrients,

fuelling detrital food chains. Recent global changes influence food webs via altered input

and transfer of essential biomolecules, but separating the effects of nutrients, CO2, and

warming is not trivial. Current evolutionary concepts (e.g., Black Queen, relaxed selection)

considering the costs of metabolic production partly explain food web dynamics,

especially for vitamins, whereas adaptations to potential oxidative stress seem to bemore

important for LC-PUFA. Overall, the provision with essential biomolecules is precious for

both heterotrophs and auxotrophs. These nutritional valuable molecules often are kept

unaltered in consumer metabolism, including their stable isotope composition, offering a

great advantage for their use as trophic markers.

Keywords: food web, essential biomolecules, fatty acids, amino acids, sterols, vitamins, trophic transfer,

environmental distribution
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INTRODUCTION

Despite the importance for trophic interactions and consumer
fitness, a general comprehension of essential biomolecules
structuring food webs and driving consumer adaptations is
still lacking to date. For example, little is known about
the environmental distribution of essential FA, AA, sterols
and vitamins, and how ecosystem functions are constrained
by their bioavailability. Essential biochemical resources can
directly influence consumers’ growth and reproduction, and in
turn trophic relationships, including food intake or metabolic
requirements. Thus, their availability can act as selection pressure
on the evolution of consumer populations.

This paper conceptually summarizes current knowledge and
potential implications of essential biomolecules on ecosystem
dynamics, i.e., their biochemistry and functionality, their
availability and transfer within food webs, and their use as trophic
markers. A major focus is set on the forces behind environmental
distributions, interlinks between ecosystems and alterations
due to anthropogenic impacts. Further, evolutionary aspects
in the provision of biomolecules and metabolic adaptations
are highlighted.

THE ROLE OF ESSENTIAL
BIOMOLECULES IN THE FOOD WEB

Fatty Acids
Biochemistry and Functionality

Among FA, ω3- and ω6PUFA are essential for many animals.
Unlike plants and higher fungi, whose methyl-end desaturases
introduce double bonds in C16- and C18FA at the ω3 and
ω6 position, animal desaturases work toward the carboxyl-
end beyond the ω6 position (Sprecher et al., 1995; Monroig
and Kabeya, 2018). This results in characteristic “ω families,”
i.e., ω3, ω6, ω9 (Figure 1). For animals the primary essential
dietary derived PUFA of the ω6 family is linoleic acid (LA:
18:2ω6), and of the ω3 family α-linolenic acid (ALA: 18:3ω3).
LA and ALA are the precursors for the respective LC-PUFA,
also called highly-unsaturated fatty acids (HUFA), obtained
by chain elongation and further desaturation (Figure 1).
Conversion rates among PUFA, especially from ALA to
eicosapentaenoic acid (EPA: 20:5ω3) or docosahexaenoic acid
(DHA: 22:6ω3), are low (Stanley-Samuelson et al., 1987; Bell
and Tocher, 2009). For instance, only around 5% of ALA
are converted to EPA in omnivorous vertebrates, including
humans (Davis and Kris-Etherton, 2003). Dietary provision with
EPA and DHA can directly enhance consumers’ growth, health
and fitness (e.g., humans—Hulbert et al., 2014; Nwachukwu
et al., 2017; insectivorous birds—Twining et al., 2016; soil
microarthropods—Menzel et al., 2018). Therefore, LC-ω3PUFA
are classified as semi-essential (Müller-Navarra, 1995a), and
LC-ω3PUFA supplementation, e.g., produced via metabolic
engineering (Gong et al., 2014), is recommended for humans.

LC-PUFA have several key physiological functions in animals.
They are an integral part of biological membranes and
maintain their adequate viscosity and selective permeability
(Vance and Vance, 2002). Further, γ-linolenic acid (GLA:

18:3ω6), arachidonic acid (ARA: 20:4ω6) and EPA serve as
precursor for tissues hormones such as eicosanoids, which
mediate inflammatory processes, immune response or cell
growth (Stanley and Kim, 2019). Moreover, EPA and DHA
are concentrated in nervous tissue, being the dominant FA of
brain lipids (Wiktorowska-Owczarek et al., 2015). Differences in
PUFA requirements exist depending on the consumer taxonomic
affiliation, its ontogenetic stage and especially egg production
(for zooplankton: Brett et al., 2009), which can affect trophic
interactions (Müller-Navarra, 2008). Overall, the dietary LC-
PUFA content is critical for growth, reproduction, and neural
development for many aquatic and terrestrial invertebrates as
well as vertebrates, including humans (e.g., Stanley-Samuelson
et al., 1988; Parrish, 2009; Hulbert and Abbott, 2012).

Main Producers

The main ω3- and ω6PUFA producer in aquatic systems are
eukaryotic algae (Table 1). In particular, the synthesis of LC-
ω3PUFA in algae is tightly connected to photosynthesis, because
they are part of the glycolipids in thylakoid membranes of
chloroplasts (Guschina and Harwood, 2009). Similar to accessory
pigments, LC-PUFA play a role in the light harvesting process.
Systematic affiliation seems to be the strongest determinant
of PUFA distribution in seston (Müller-Navarra et al., 2004),
a finding also reported from cultures (Cobelas and Lechado,
1989; Ahlgren et al., 1992; Galloway and Winder, 2015;
Taipale et al., 2016a). However, environmental factors including
nutrients, temperature, salinity and light also directly affect
the PUFA pattern of algae (Guschina and Harwood, 2009).
While LC-ω3PUFA compositions in algae based on relative
proportions already assigns group specific pattern (Galloway
and Winder, 2015; Peltomaa et al., 2017), differences based
on absolute amounts are much more pronounced (data by
Cobelas and Lechado, 1989; Ahlgren et al., 1992; Müller-Navarra,
1995b; Jónasdóttir, 2019) and important for the availability
to consumers.

Due to their high absolute EPA content, diatoms are the
greatest EPA supplier, both in most marine and freshwater
(except dystrophic) systems, followed by chryptophytes,
haptophytes, dinophytes and eustigmatophytes (Table 1).
From their absolute DHA content, dinophytes are the main
supplier, followed by haptophytes. However, certain diatoms
as well as most dinophytes are too big to be ingested by most
zooplankton. Moreover, heterotrophic stramenopiles (e.g.,
thraustochytrids) used in pharmaceutical DHA production
(Gupta et al., 2012) may be a so far underestimated DHA
provider. Heterotrophic eukaryotes can also contribute to
sestonic EPA (e.g., ciliates—Bec et al., 2010; Hartwich et al.,
2012), converting ALA mainly supplied by chlorophytes and
cryptophytes to EPA, i.e., trophically up-grading sestonic food
quality for zooplankton. Cyanobacteria generally do not contain
LC-PUFA, although some taxa comprise C18-PUFA (e.g., ALA)
but at low absolute concentrations (Table 2). Prokaryotes are
usually not a source of LC-PUFA, although they occur in
bacteria in deep-sea isolates, which is probably an adaptation
to low temperature and high pressure in the habitat (DeLong
and Yayanos, 1986). Macro-algal chlorophytes display a FA
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FIGURE 1 | Major pathways in synthesis of long-chain polyunsaturated fatty acids (LC-PUFA) in eukaryotic organisms (modified after Sprecher et al., 1995). LA,

linoleic acid; ALA, α-linoleic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; dd, direction of the enzymatic desaturation in the

fatty acids molecule; methyl-end desaturases introduce double bonds in C16- and C18-FA at ω3 and ω6 position, animal desaturases work toward the carboxyl-end

beyond the ω6 position.

pattern similar to their micro-algal counterpart, while marine
rhodophytes have an especially high share of EPA (but none
or low DHA) and phaeophytes comprise intermediate levels of
LC-PUFA (Fleurence et al., 1994; Pereira et al., 2012).

Vascular plants are considered as the major source for PUFA
in terrestrial food webs and predominantly contain C18-PUFA,
i.e., ALA and LA. Herbivores such as ruminants can acquire
LC-ω3PUFA via ciliates as gut symbionts (Veira, 1986; Newbold
et al., 2015), which may be able to convert ALA to EPA,
like certain ciliates in aquatic systems. Primary producers in
biological soil crusts (green algae and cyanobacteria) synthesize
ALA, with green algae additionally comprising the PUFA 16:3ω3
as a potential precursor (Buse et al., 2013; Table 2). However,
the role of biological soil crusts as ω3PUFA supply for terrestrial
food webs has not been explored yet. Among heterotrophs higher
fungal taxa commonly synthesize ALA (Ruess and Chamberlain,
2010), moreover lower soil fungi can supply LC-ω3PUFA,
predominantly Chytridiomycetes and Oomycetes (Lösel, 1988),
and arbuscular mycorrhiza fungi (Gladyshev et al., 2013).
Further, there is evidence that many soil invertebrates provide
LC-ω3PUFA (see Figure 3, and chapter ω3PUFAs—aquatic vs.
terrestrial food webs).

Trophic Transfer and Biomarkers

The importance of EPA and DHA for food quality affects biomass
trophic transfer in aquatic ecosystems (Müller-Navarra, 1995a;
Brett and Müller-Navarra, 1997; Müller-Navarra et al., 2000).
PUFA itself can be as twice as efficiently transferred from the first

to the second trophic level compared to bulk carbon (Gladyshev
et al., 2011; Mayor et al., 2011). LC-ω3PUFA are particularly
retained and accumulated in consumer lipids of aquatic food
webs (Strandberg et al., 2015; Guo et al., 2016), which is also a
central issue in aquaculture (e.g., Navarro et al., 2014). Generally,
fatty acids from the diet can be incorporated into consumer
body tissue without major modification, a fact called “dietary
routing” (Stott et al., 1997). Based on this, ω3PUFA were used
as qualitative markers for trophic interactions in freshwater
plankton (Desvilettes et al., 1997), and semi-quantitatively in
food webs in marine pelagial (Dalsgaard et al., 2003) and benthos
(Kelly and Scheibling, 2012). By applying metabolic conversion
factors, dietary routing was traced quantitatively (Iverson et al.,
2004) in vertebrates connected to the marine food chain, e.g.,
for arctic mammals (polar bears—Thiemann et al., 2008) or sea
birds (Williams and Buck, 2010). Further, Galloway et al. (2015)
employed a Bayesian approach (FA source-tracking algorithm)
comparable to the use of stable isotopes in food web ecology.
This wide application of lipids as trophic markers in aquatic
habitats has benefitted from the frequent occurrence of ω3PUFA
in primary producers at the food web base.

In contrast, the use of FA biomarker in terrestrial food webs
has lagged behind. First trophic transfer of fatty acids was
assigned in detrital food chains in soils from bacteria and fungi to
microbial grazers (nematodes—Ruess et al., 2002; Collembola—
Haubert et al., 2006) and further up to omnivores and predators
(Collembola—Ruess et al., 2004; spiders—Pollierer et al., 2010).
Opposite to aquatic ecosystems, this was based on the dietary
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TABLE 1 | Essential biomolecules within the groups of fatty acids, sterols, vitamins, and amino acids.

Molecule Habitat Main producer Predominantly

affected

consumers

Biomarker potential Limitation (When

and where?)

Reference

ω3

poly-unsaturated

fatty acids

Aquatic EPA1: diatoms,

cryptophytes,

dinophytes,

haptophytes,

eustigmatophytes

DHA1: dinoflagellates,

haptophytes,

cryptophytes

ALA: green

algae, cryptophytes

Herbivores

(zooplankton), fish

(esp. juveniles)

+ (hyper)eutrophic

systems; summer

Cobelas and Lechado,

1989; Ahlgren et al., 1992;

Müller-Navarra et al., 2004;

Galloway and Winder, 2015;

Jónasdóttir, 2019

Terrestrial Algae, higher plants

(ALA as precursor for

EPA and DHA)

Herbivores

(plant feeders)

+ (16:3ω3; 18:3ω3) Continuously Ruess and Chamberlain,

2010; Buse et al., 2013

Sterols Aquatic Eukaryotic algae

(phytosterols), fungi,

vertrebrates (cholesterol)

Arthropods, other

invertebrates

±/+ (e.g., dinosterol,

gorgosterol,

oxysterols)

Cyanobacterial

bloom conditions

Goad, 1981; Von Elert et al.,

2003; Krauss et al., 2011;

Santos et al., 2015

Terrestrial Fungi (ergosterol,

sitosterol), vertebrates

(cholesterol), plants

(phytosterols)

Arthropods + (ergosterol) Some pollen feeding

insects

Burden et al., 1989; Pilorget

et al., 2010; Vučić and

Cvetkovi, 2015; Moreau

et al., 2018

Vitamin B1

(Thiamin)

Aquatic (cyano)bacteria, algae

(78% are B1 autotrophs)

Animals, auxotrophic

algae

- Unknown (connection

to other B-vitamins)

Provasoli and Carlucci,

1974; Croft et al., 2006

Terrestrial Bacteria, plants Herbivores,

grannivores,

frugivores, fungi

- Plant dormancy,

ectomycorrhizal fungi

without plant host

Grayston et al., 1996; Roje,

2007; Aseni-Fabado and

Munné-Bosch, 2010;

Vranova et al., 2013

Vitamin B7/8

(Biotin)

Aquatic Certain bacteria, algae

(95% are biotin

autotrophs)

Animals - Unknown (connection

to other B-vitamins)

Croft et al., 2006

Terrestrial Plants Herbivores,

grannivores,

frugivores, fungi

- Plant dormancy,

ectomycorrhiza fungi

without plant host

Grayston et al., 1996; Roje,

2007; Aseni-Fabado and

Munné-Bosch, 2010;

Vranova et al., 2013

Vitamin B9

(Folates)

Terrestrial Plants, soil bacteria

(streptomycetes),

endoysmbionts of

invertebrates

Herbivores,

grannivores,

frugivores, fungi

- Plant dormancy,

ectomycorrhiza fungi

without plant host

Baya et al., 1981; Roje,

2007; Taylor et al., 2012;

Hunter et al., 2015

Vitamin B12

(Cobalamin)

Aquatic Thaumarchaeota

(cobalamin),

cyanobacteria

(pseudo-cobalamin)

Auxotrophic algae,

animals, fungi

+ (as gene transcripts) Summer/fall,

coastal/high nitrogen

low chlorophyll areas

Croft et al., 2006; Doxey

et al., 2015; Helliwell et al.,

2016

Terrestrial Gut symbionts, soil

bacteria, certain green

algae, higher plants

Animals Cobalt deficient soils Croft et al., 2006; Roje,

2007; McCutcheon et al.,

2009; Taylor et al., 2012

“Source” amino

acids

Aquatic Bacteria, algae Animals + (combined with

stable isotopes)

Allochthon/detrital

impacted systems

(protein limitation)

Bleakley and Hayes, 2017;

Choi et al., 2017

Terrestrial Higher plants, bacteria,

gut symbionts

Animals + (combined with

stable isotopes)

Detrital systems

(protein limitation),

nematophagous

fungi (N limitation)

Steffan et al., 2015; Larsen

et al., 2016; McMahon and

McCarthy, 2016; Takizawa

et al., 2017

Given are molecules with known ecological impact in aquatic and terrestrial food webs. ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.
1For the specific differences between freshwater and marine ecosystems see section “main producers” in the text.

routing of non-essential FAs, e.g., methly-branched and cyclic
forms derived from bacteria (Ruess and Chamberlain, 2010).
The achievement of comparable results in the herbivore food
chain was hindered by the lack of LC-ω3PUFA in terrestrial

primary producers, resulting in ALA as major biomarker for
plant feeding (Ruess and Chamberlain, 2010) and C16-ω3PUFA
for algal feeding (Buse et al., 2013). However, this drawback of
lower diversity in FAmarkers can be overcome by applying stable
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TABLE 2 | Proportion of polyunsaturated fatty acids (PUFA in % of total fatty acids) in the neutral lipids of photoautrotrophic microbiota dominant in terrestrial soil crusts.

PUFA Chlorella vulgaris Klebsormidium flaccidum Nostoc commune Saccharomyces cerevisiae ANOVA

F(3,8) P

16:2 ω6,9 6.9a 8.9b 0.4c -c 260 <0.001

16:3 ω3,6,9 19.4a 16.4b -c -c 1519 <0.001

18:2 ω6,9 11.2a 27.5b 6.3c 0.2d 1964 <0.001

18:3 ω3,6,9 36.7a 22.0b 36.4a 0.3c 541 <0.001

18:3 ω6,9,12 0.2a 1.1b 1.0b -a 23 <0.001

Total fat in mmol g−1 (fresh weight)

22.1a 10.9b 3.4c 4.3c 121 <0.001

Compared are the green algae Chlorella vulgaris and Klebsormidium flaccidum, and the cyanobacterium Nostoc commune to the common yeast Saccharomyces cerevisiae. Given are

ANOVA F and P values; data within a row with the same letters are not significantly different according to Tukey HSD (P < 0.05). Modified after Buse et al. (2013); -, not detected.

isotope fingerprints, tracing FA dietary routing via their δ13C
signal. Here, main approaches are 13CO2 pulse-labeling of plants
(Pausch et al., 2016) or using natural differences in 13/12C ratios
of C3 and C4 plants (Haubert et al., 2009; Ngosong et al., 2011)
(Figure 2). However, a broader application of FA in food web
ecology of vertebrates, as common in marine systems, is still
lacking, except of the usage of FA markers in food chemistry
(Molketin and Giesemann, 2007). For an overview on trophic
transfer and biomarkers in terrestrial systems see reviews of Ruess
and Chamberlain (2010) and Traugott et al. (2013).

Sterols
Biochemistry and Functionality

Sterols are an important lipophilic part of cell membranes
in eukaryotic organisms, embedded within the membrane
phospholipids. Moreover, they are frequently esterified to
membrane LC-PUFA. The central sterol synthesized in animals
is cholesterol, a C27 sterol. However, not all animals are capable
of de novo sterol synthesis. For example, arthropods lack this
ability (Goad, 1981; Martin-Creuzburg and von Elert, 2009), and
many insects and crustaceans prefer 15 and 15,7 over 17 and
122 sterols (e.g., Teshima, 1971; Behmer and Nes, 2003). Known
from herbivorous insects and crustaceans, dietary phytosterols
are typically altered by de-alkylation and saturation, e.g., of
C24 methyl and ethyl sterols, to form cholesterol (Svoboda and
Thompson, 1985). Despite this, sterol limitation was shown
for crustaceans feeding on laboratory cultures of heterotrophic
and autotrophic bacteria (e.g. Martin-Creuzburg et al., 2011
for Daphnia) or diatoms (Hassett, 2004 for Acartia, Calanus).
However, interacting effects of sterols with the provision of
EPA (Martin-Creuzburg et al., 2009 for Daphnia) or AA
(Wacker and Martin-Creuzburg, 2012 for a rotifer) were also
demonstrated. Nevertheless, a minor part of sterols (less than
1%) is required as precursor for molting hormones in arthropods
(e.g., ecdysteroids; Svoboda and Thompson, 1985).

In vertebrates, 7-dehydrocholesterol is converted to
cholecalciferol (vitamin D3) under UV irradiation and functions
as steroid hormone in the Ca-metabolism, with special
importance for skeleton structures, e.g., in humans (DeLuca,
1998). Except for hormone production, sterol requirements

of many organisms seem not to be specific. Additionally, the
metabolic modification of dietary sterols widens sources for
organisms with a low or lost ability of de novo synthesis.

Main Producers

In planktonic food webs, eukaryotic macro- and micro-algae
are very variable sources of over 250 different sterols (mainly
C28 phytosterols) (Santos et al., 2015) (Table 1). However, their
distribution within an algal class is not as uniform as for
PUFA (e.g., Volkman, 1986, Martin-Creuzburg and Merkel,
2016; Taipale et al., 2016a). Prokaryotic planctomycetes and
poribacteria have the genetic infrastructure for sterol synthesis
(Pearson et al., 2003) but their role in dietary sterol supply is
unknown. Eukaryotic fungi are potentially an important resource
in aquatic ecosystems, especially in streams (Krauss et al., 2011).
The same applies to chytrids, ubiquitous fungal parasites in
aquatic ecosystems, providing a sterol source to their grazers
even in absence of their phytoplankton hosts (Gerphagnon et al.,
2019). Cyanobacteria as prokaryotes do not produce sterols at all
(Volkman, 2003).

In terrestrial ecosystems, higher plants deliver mainly C28

and C29 sterols (Moreau et al., 2018) e.g., by leaves, fruits, roots
and bulbs to herbivores, both in above- and belowground food
webs (Table 1). Fungi are also frequent sterol producers in soil
systems (Burden et al., 1989), contributing ergosterol as a major
component of their cell membranes (Joergensen and Wichern,
2008). If and how these fungal sterols can act as a nutrition source
for soil animals has yet to be explored. Finally, symbiotic fungi in
the gut may provide a substantial part of sterols to their insect
host (reviewed by Douglas, 2009).

Trophic Transfer and Biomarkers

Phytosterols are metabolic converted by several herbivorous
consumers to suit specific physiological requirements, hampering
their trophic biomarker usage. Above, many animals—especially
vertebrates—are capable of de novo sterol synthesis, which
makes sterol limitation further up the food chain unlikely,
especially in the 3RD and 4TH trophic level of both, aquatic and
terrestrial food webs. However, a comprehensive understanding
is still lacking.
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FIGURE 2 | Carbon stable isotope fingerprinting in aquatic and terrestrial food webs based on differences in δ13C of primary producers. Left—δ13C content in bulk

tissue of major resources and in non-essential and essential amino acids of Atlantic blue crabs (Callinectes sapdius) in bay and marsh habitats (data from Fantle et al.,

1999). The difference in δ13C between primary producers or amino acid fractions is expressed as 113C. Right—fractionation (113C) in linoleic acid (18:2ω6,9)

between Collembola (Orchesella villosa, Protaphorura fimata) and soil fungi in a C3 (soya) and C4 (maize) arable system with different farming practice (data from

Haubert et al., 2009). No fractionation indicates dietary routing of linoleic acid and hence fungal-feeding. Values with the same letters are not significantly different

according to Tukey HSD (P < 0.05).

Metabolic sterol processing was reported, e.g., for
heterotrophic protists feeding on macro-algae (Chu et al.,
2009), soil nematodes feeding on plant roots (Chitwood and
Lusby, 1991; Chitwood, 1999), millipedes feeding on terrestrial
plant litter (Rawlins et al., 2006), and crustaceans feeding
on phytoplankton (Martin-Creuzburg and Merkel, 2016 for
Daphnia). Additionally, biochemical sterol modulation generally
occurs is herbivore insects (Svoboda and Thompson, 1985).
However, the suitability of phytosterols may differ (Martin-
Creuzburg et al., 2014 for Daphnia; Gergs et al., 2015 for
gammarids), and not all zooplankton consumers do convert
those (Wacker and Martin-Creuzburg, 2012 for rotifers).
Although the less group-specific occurrence of phytosterols in
algae and their conversion in many herbivores are hampering
their sole application as trophic markers in pelagic food webs,
sterols together with FA as markers seem promising to track food
intake, as shown for dwelling ophiurids and holothurians in a
deep-sea environment (Drazen et al., 2008). In general, sterols
are widely used as biomarkers in sediments due to their chemical
persistence, e.g., separating allochtonous and autochtonous
produced biomass (Bianchi and Canuel, 2011).

Vitamins
Biochemistry and Functionality

Vitamins are a diverse class of rather complex compounds, and
from the two major groups only the most important in food web
ecology are considered here:

Lipid soluble vitamins (A, D, E)
Vitamin A is essential for animals and primarily needed
for vision. Carotenoides (provitamin A) are synthesised in
chloro- and chromoplasts of photoautotrophic organisms as
photoprotecting agent (Saini et al., 2015; Huang et al., 2017).
Vitamin E is an anti-oxidant protecting susceptible LC-PUFA,
and requirements in animals are connected to PUFA provision
(Zhang et al., 2017). This protective function may also be related
to the transition from parthenogenetic to sexual reproduction,
male fertility (spermatogenesis) and enhanced growth of the
mictic offspring as shown for the rotifer Asplanchna by Gilbert
(1980). Vitamin D is a derivate from cholesterol and considered
in the chapter on sterols above.

Water soluble vitamins (B-group)
B1 (thiamin) is a cofactor of several core enzymes, e.g., in
the transfer of C2-groups (dehydrogenases, decarboxylases) in
the carbohydrate metabolism. Requirements of external B1 are
mostly due to the lack of either synthesis of the pyrimidine or the
thiazole moiety in algae (Lewin, 1961). If capable of biosynthesis,
thiamin is only produced on demand via riboswitches, both
in prokaryotes and eukaryotes (McRose et al., 2014), making
the process very efficient. Physiological interconnections exist
with other vitamins, e.g., folic acid (B9) deficiency influences B1
adsorption and metabolism (Wolak et al., 2017). Further, supply
in B1 can alter the FA pattern towards EPA and DHA, e.g., in the
alga Rhodomonas baltica (Chi et al., 2018).
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B7 (biotin) requirements are known for some crysophytes,
dinophytes, and euglenoid algae (Provasoli and Carlucci, 1974).
Folic acid (B9) is synthesized by plants, including algae (Baker
et al., 1981), but is essential to animals as a cofactor of thymidyl-
synthase, catalyzing nucleotide syntheses, which governs DNA
repair and replication.

B12 (cobalamin) is a cofactor in enzymes carrying activated
methyl groups or providing carbon-based free radicals for
reactions removing non-acid hydrogen atoms (Marsh, 1999). It
is involved in the synthesis of AA and DNA, and in shuffling
C1-groups into the citrate circle. Two synthesis pathways exist,
i.e., the more ancient anaerobic pathway of bacteria and Archaea
leading to cobalamin, and the aerobic pathway of cyanobacteria
resulting in pseudo-cobalamin (Raux et al., 1999). Cobalamin
cannot be synthesized by most eukaryotes, including animals
(Gräsbeck and Salonen, 1976). Overcoming potential limitations
due to B12 auxotrophy seems to be governed by a non-cobalamin
methionine synthase in higher plants and certain algal taxa
(Croft et al., 2006). Moreover, B1 deficiency syndromes in fish
(Marcquenski and Brown, 1997) and sea birds (Balk et al.,
2009) may be coupled to B12 shortage in resources. Overall, the
metabolic pathways of B1, B9, B12 and the AA methionine are
interwoven, and also relevant on the ecological level by impacting
nitrogen (N) and sulfur metabolism of eukaryotic phytoplankton
(Bertrand and Allen, 2012). This makes it difficult to determine
the vitamin that is the most limiting (Table 1).

Main Producers

Lipid soluble vitamins
The syntheses of the lipophilic vitamins A and E are tightly
connected to the metabolic capacity of algae in aquatic (Huang
et al., 2017) and of plants in terrestrial (Saini et al., 2015)
ecosystems. In marine and freshwater, microalgae as well as
makrophytes represent the dominant source (Cuvelier et al.,
2003; Huang et al., 2017) (Table 1). Pro-vitamin A dominates in
leaves and fruits, whereas seeds comprise the highest amounts of
vitamin E, and leaves of vitamin K (Aseni-Fabado and Munné-
Bosch, 2010). Fungi and yeast are major producer of ergosterol,
the precursor of ergocalciferol (i.e., pro-vitamin D2), but UVB
exposure is necessary for conversion, restricting the supply to
aboveground habitats. Traditionally higher plants were thought
to contain only negligible amounts of D3 but recent work raises
evidence for a broader distribution (Jäpelt and Jakobsen, 2013).
Whether these contents are sufficient to subsidize decomposer
food webs in lightless soil habitats remains to be explored.

Water soluble vitamins
In aquatic systems, red and green algae are a good source of B
vitamins, especially B1, and B9 (Croft et al., 2006) (Table 1). In
contrast, main B12 producer seem to be ammonium oxidizing
thaumarchaeota, primarily under cold conditions, i.e., at greater
depth, during winter and in polar-regions (Doxey et al., 2015).
Interestingly, most algae—especially those groups known to
provide LC-ω3PUFA to food webs—are only minor vitamin B
suppliers, as many of them are auxotroph in respect to B1 (20%),
B7 (5%) and especially B12 (50%) (Provasoli and Carlucci, 1974;
Croft et al., 2006). Although cyanobacteria are rich in B1, they are

an inefficient source of B12 as they only contain the nutritionally
inferior pseudo-cobalamin (Helliwell et al., 2016).

In terrestrial systems, higher plants are the major
producers of B-vitamins (Roje, 2007), delivering these water-
soluble vitamins via root exudation into the rhizosphere
and additionally supporting their mycorrhiza symbionts
(Grayston et al., 1996) (Table 1). The second important
vitamin B sources are soil bacteria, with phosphate-
solubilising taxa azotobacters and rhizobia as significant
producers (Vranova et al., 2013). The cumulative vitamin
production by bacteria in the rhizosphere enhances general
bioavailability and complements root exudates (Baya
et al., 1981), likely important for the associated fungi
and fauna.

Trophic Transfer and Biomarkers

Lipophilic vitamins synthesized by algae or vascular plants
are generally transferred to heterotrophic consumers via
predator-prey interactions. In contrast, syntrophic relationships
with microbes seem to be important to overcome certain
vitamin B limitations, as shown for marine algae co-cultured
with bacteria (Paerl et al., 2015). Beneficial microbe-algae
(Croft et al., 2005) and algae-algae interactions (Carlucci
and Bowes, 1970; Baker et al., 1981) seem rather to be the
rule than the exception. However, their role in overcoming
B12 limitation sustaining global primary production is
debated (e.g., Droop, 2007). In nature, B12 is acquired
from soluble surroundings with specific transporters by
B12 auxotrophic algal cells (Bertrand and Allen, 2012),
ensuring rapid uptake. For food webs of marine pelagic
systems there is evidence that B1 is not accumulated but
rather diluted from phytoplankton to zooplankton to fish
(Sylvander et al., 2013).

In aquatic ecosystems, B12 provision by endosymbionts is
known for certain ciliates (Baker et al., 1981). More recently,
Fiore et al. (2015) showed symbiotic interactions with Archaea
and bacteria to be crucial for the Caribbean giant barrel sponge
(Xestospongia muta) in obtaining B-vitamins and essential
AA. So far, mutualistic relationships of sponges or corals are
rather viewed in the light of carbon acquisition but should
also be connected to the acquisition of essential biomolecules.
In contrast to aquatic ecosystems, the importance of gut
symbionts as suppliers of vitamins to their terrestrial vertebrate
and invertebrate hosts has been recognized for a long time,
especially for bacteria or ciliates as endosymbionts in social
insects such as wood feeding termites or insects that suck
on plant sap, which is poor in vitamins (Moran et al., 2003;
McCutcheon et al., 2009). B2 is provided by gut bacteria to
earthworms (Sulik et al., 2012) or by the mutualistic Wolbachia
bacteria to nematodes (Taylor et al., 2012). Moreover, the
intestinal flora plays a major role in the provision with B7,
as shown for humans (Magnúsdóttir et al., 2015). Overall,
the provision with B vitamins by mutualistic prokaryotes in
invertebrates and vertebrates as “hidden” trophic interactions
complicates determination of their trophic transfer in food
web studies.
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Amino Acids
Biochemistry and Functionality

AA are the structural elements of enzymes, regulating key
metabolic pathways important for health, survival and growth,
e.g., neurological and immunological functions (Wu, 2010).
Traditionally, AA are classified as none-essential (dispensible)
and essential (indispensible). The former can be de novo
synthesized by the consumer, whereas the later must be
provided with the diet. Nine AA have been assigned as
essential in humans and other vertebrates, i.e., isoleucine,
histidine, leucine, lysine, methionine, phenylalanine, threonine,
tryptophan, and valine (Young, 1994), yet requirements vary
between taxonomic entities. In addition, arginine is essential
for terrestrial carnivores (Morris, 1985). A third category is
named conditionally indispensable or “functional” AA, which
are semi-essential as synthesis rates in certain taxa are limiting
(Wu, 2010). A relevant example is arginine in many mammals
(Wu et al., 2013). The metabolic flexibility in consumers,
such as compensatory mechanisms can affect AA limitation.
Only recently, the upregulation of AA retention efficiency as
a response to nitrogen deficiency was shown in copepods
(Burian et al., 2018). In conclusion, we are still at the start
of understanding which AA are essential in different animal
groups, and what implication this dependency has for food
web ecology.

Main Producers

In aquatic food webs, phytoplankton, particularly protein-rich
algae (above 50% dry weight - Bleakley and Hayes, 2017) are a
main source for AA (Table 1). Aquatic macrophytes, in contrast,
display a much lower protein (Rather and Nazir, 2015) and
consequently AA content, due to more structural components
(cellulose, hemicellulose, lignin). Terrestrial plants, their leaves,
flowers and fruits provide AA to herbivores in terrestrial food
webs (Takizawa et al., 2017). However, AA levels are typically low
and supply often needs to be enriched via mutualistic interactions
with gut microbiota in herbivores (Cantalapiedra-Hijar et al.,
2016 for lambs). Microbial derived proteins further represent
an important resource for essential AA in detritivore food
webs as shown by Steffan et al. (2017) analyzing invertebrates
(moths, beetles) and vertebrates (fish). Degradation of plant
litter by bacteria and fungi provide AA for detrivores (Larsen
et al., 2009). Protein is hydrolysed via extracellular enzymes,
followed by adsorption of free AA from the soil solution
(Czimcik et al., 2005). Particularly bacteria, which can acquire
AA by both, de novo synthesis using inorganic nitrogen, and by
direct incorporation of organic substrates, comprise diverse AA
(McMahon and McCarthy, 2016). Moreover, AA can be derived
from endo-symbiotic gut bacteria, e.g., in earthworms and
enchytraeids (Larsen et al., 2016) or intracellular co-symbionts
like Buchnera in nematodes and insects (Moran et al., 2003;
McCutcheon et al., 2009).

Trophic Transfer and Biomarkers

In contrast to terrestrial systems, protein limitation per se is
rather unlikely in pelagic aquatic systems, but certain essential
AA may become in short supply (review by Müller-Navarra,

2008). Moreover, trophic transfer of AA can be impaired by
co-limiting resources such as sterols (Wacker and Martin-
Creuzburg, 2012 for a rotifer). In addition, a meta-analysis of
zooplankton across 29 oligotrophic lakes by Guisande et al.
(2003) revealed taxa specific AA composition, likely indicating
distinct food sources.

The AA composition of primary producers can be markedly
different to their animal consumers or microbial degraders
(Steffan et al., 2015; Takizawa et al., 2017), offering great potential
to follow the transfer of specific AA along the trophic cascade.
Two AA categories are distinguished as biomarker in food
web ecology: The so called “source” AA exhibiting small 15N-
discrimination but preserve the 15N/14N ratio (δ15N) of the
food (McMahon and McCarthy, 2016), while the amino-N of
“trophic” AA is routinely exchanged in the metabolic pool
(O’Conell, 2017). Thus, 15N of “trophic” AA is enriched along the
trophic cascade (McMahon et al., 2016) (see Table 3). However,
it is important to note that the categorization in “source” and
“trophic” AA is based on differences in cycling of the N moiety
and not on changes within the carbon skeleton. The latter
is distinguishing essential and non-essential AA, respectively.
The respective parameters and calculations to assign trophic
positions by the stable isotope signal of AA are summarized
in Table 3.

The broadest biomarker application received the AA
couple glutamic acid (Glu; trophic) and phenylalanine
(Phe; source). The underlying assumption is that the
isotopic fractionation is constant across binary links with
the trophic discrimination factor (TDFGlu−Phe) being
7.6‰ (Chikaraishi et al., 2007) (Table 3). TDFGlu−Phe
was successfully applied to assign trophic positions of
consumers in very different trophic relationships. These
comprised arthropod functional groups in orchard food
webs, ranging from sap-feeding herbivores over parasitoids
and hyperparasitoids to predators (Steffan et al., 2013) as
well as food chains with a broad phylogenetic spectrum,
ranging from bacteria and fungi over insects to mammals
(Steffan et al., 2015). However, recent work questions a
single fixed value for TDFGlu−Phe and reports variability
from 0 to 10‰ depending on diet quality, consumer
nitrogen excretion, and trophic level (Nielsen et al.,
2015; McMahon and McCarthy, 2016; O’Conell, 2017;
Pollierer et al., 2019).

Another premise in applying δ15N of AA in food web ecology
is the absolute term “β”, the difference in δ15N of AA in primary
producers at the base of food webs (Table 3). For example,
in primary producers, δ15N of AA in floral biomass seem to
depend on the absence or presence of active photosynthesis
(Takizawa et al., 2017). At the consumer level interspecific
differences in prey organisms may also lead to AA imbalance and
subsequently variation in AA δ15N (Ventura and Catalan, 2010
for different crustaceous zooplankton) or increased AA losses by
N excretion (Saavedra et al., 2015). The βGlu/Phe (Table 3) was
initially proposed to be −3.4‰ for coastal marine and +8.4‰
for terrestrial primary producers (Chikaraishi et al., 2010) but
variation in “β” occurs, and its combination with δ13C in bulk
tissue is recommended to enhance resolution (Choi et al., 2017).
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TABLE 3 | “Trophic” and “source” amino acids, fractionation factors, and formula used in in food web studies (Modified after McMahon and McCarthy, 2016).

Parameter Abbreviation Amino acid/Calculations Information value

Trophic amino acid Trophic AA Glutamic acid (Glu), aspartic acid (Asp), alanine (Ala),

isoleucine (Ile), leucine (Leu), proline (Pro), valine (Val)

Trophic level (115N increases)

Source amino acid Source AA Phenylalanine (Phe), methionine (Met), lysine (Lys),

tyrosine (Tyr)

Baseline 15N (minor fractionation for 15N)

Trophic fractionation 115N 115NAA = (δ15N consumer – δ15Ndiet) Individual AA trophic fractionation

(i.e., 15N enrichment during trophic transfer)

Trophic discrimination

factor

TDF TDFx−y = 115Nx - 115Ny Enrichment between a consumer and its diet

in respect to a trophic AA—x (e.g., Glu) and a

source AA—y (e.g., Phe)

Trophic position TP TPx/y = 1 + [
δ15Nx δ15Ny−βx/y

TDFx−y
] Consumer trophic position derived from the

δ15N baseline of a source AA (y) and the

numbers of trophic transfers of a trophic AA

(x); β - difference in δ15N of these AA in the

primary producers at the food web base

Generally, inter-trophic AA 15N discrimination seem to
be similar among bacteria, fungi and animals (Steffan et al.,
2015), whereas the δ15C of essential AA exhibited very
different pattern between plants and bacteria or fungi (Larsen
et al., 2009). This allows enhancing the resolution in the
application of AA as trophic markers by using their isotopic
C signal. Stable isotope fingerprinting of 13C/12C in AA is
particularly successful in habitats where primary producers
display distinctly different 13C signals (Figure 2). This approach
was used to identify plant, fungal or bacterial origin of AA
(Larsen et al., 2009), feeding habits of the Atlantic blue
crab (Fantle et al., 1999) as well as movement and foraging
ecology of birds (McMahon et al., 2015b). Only recently, this
approach was employed to quantify the trophic levels and
the basal resources in soil detritivores (earthworms, Potapov
et al., 2019) as well as predators (gamasid mites, spiders;
Pollierer et al., 2019). Overall, there is sufficient evidence
that the “trophic” and “source” concept is pertinent for many
organisms, yet a quest for a single TDF or “β” value may
not hold across food webs and ecosystems. Factors such
as AA limitation or excretion can lead to mismatches in
biochemical stoichiometry, which calls for more physiological
and environmental studies to improve the application of AA in
trophic ecology.

FORCES BEHIND ENVIRONMENTAL
DISTRIBUTION

Natural Environmental Conditions
There are vast differences in the comprehension of what drives
the distribution of essential biochemicals in ecosystems with the
least known about AA and for terrestrial systems. In aquatic
habitats, strong negative correlations between total phosphorus
and the lakes’ summer seston content of EPA and DHA—but
not ALA—were reported (Müller-Navarra et al., 2004; Table 1).
Those were connected to the relative abundances of algal groups
(Müller-Navarra et al., 2004; Sushchik et al., 2014) and—via

trophic transfer—could even be detected in top predators, such as
perch (Taipale et al., 2016b, 2018). The whole years’ distribution
of PUFA is, however, more complex (Gladyshev et al., 2007).
In addition, temperature and light can alter seston PUFA
directly as shown for EPA in a clear water lake by Hartwich
et al. (2012). Humic substances in dystrophic lakes may shield
susceptible LC-PUFA from UV, but also exert direct toxic effects
to consumers, such as daphnids (CasaNova et al., 2018 and
references therein). Salinity gradients structuring estuaries can
affect trophic dynamics of LC-ω3PUFA, especially in larval fish
(Litchi et al., 2017).

Vertical distributions of PUFA and sterols differ in particulate
organic matter of aquatic ecosystems. Generally, LC-PUFA are
depleted and sterols enriched during sinking, mainly because
of the high susceptibility of LC-PUFA but high persistency of
sterols against degradation (Wakeham and Canuel, 1986). Many
profundal habitats depend on pelagic provision with PUFA, e.g.,
when algae blooms perish (Ahlgren et al., 1997), and consumers
have adapted to this low availability. For example, benthic
harpactoid copepods have a more efficient conversion of C18-
PUFA to the respective LC-PUFA than pelagic calanoid copepods
(Nanton and Castell, 1998). Aquatic phanerogams contain only
ALA and allochtonous carbon is devoid of nutritional LC-PUFA
alongside protein (Brett et al., 2017).

Pronounced differences also exist in the distribution of B12 in
aquatic ecosystems with Archaea preferentially producing B12 in
cold areas and times of the year (Doxey et al., 2015). Primary
production can be B12 limited in high-nutrient low-chlorophyll
areas (Koch et al., 2011 for Gulf of Alaska), and the competition
for B12 between eukaryotic algae and heterotrophic bacteria
impact total phytoplankton quantity, species composition and
succession (Koch et al., 2012). The vitamins B1, B7, and B12 seem
to co-act in controlling algal succession and blooms in the ocean
(Sañudo-Wilhelmy et al., 2006, Gobler et al., 2007). Occurrence
of harmful algae blooms in marine systems may be favored by
high vitamin B presence, as especially toxin-producing chryso-
and dinophytes are vitamin B auxotrophs (75% B1, 37% B7,
and 100% B12; Tang et al., 2010). In freshwater systems, algal
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blooms dominated by cyanobacteria reduce resource quality at
the food web base. Cyanobacteria lack LC-ω3PUFA and sterols,
their pseudo-cobalamin is no source of B12 for most herbivores,
and, moreover, they potentially contain toxins.

ω3PUFA—Aquatic vs. Terrestrial Food
Webs and Interlinks
In contrast to aquatic systems with a predominant supply of
LC-ω3PUFA (EPA, DHA) by micro-algae, higher plants as
major primary producers in terrestrial ecosystems provide only
C18-ω3PUFA (ALA; Figure 3). This questions the main origin of
LC-ω3PUFAs in terrestrial food webs. The potential of aquatic
derived LC-ω3PUFA to subsidize terrestrial ecosystems was first
estimated by Gladyshev et al. (2009). Trophic transfer to land can
occur when terrestrial predators (bears, herons, eagles; Figure 3)
directly feed on aquatic animals (molluscs, crustaceans, fish). The
same applies when terrestrial predators (swallows; Twining et al.,
2016) feed on terrestrial stages of prey with both, aquatic and
terrestrial life stages (e.g., after insects’ emergence; Borisova et al.,
2016). In addition, the wax and wane of flooding events (Junk
et al., 1989), with algal production in temporary shallow water
habitats of riparian areas, is a crucial source of LC-ω3PUFA. In
sum, aquatic systems are currently considered a major origin of
LC-ω3PUFA for residential terrestrial animals, including humans
(Gladyshev et al., 2013; Hixson et al., 2015; Colombo et al.,
2017) (Figure 3).

However, this hypothesis is controversial. For example,
the highest DHA contents were not found in water birds,
such as waterfowls feeding in aquatic habitats, but instead,
in terrestrial feeders such as Passeriformes species (Gladyshev
et al., 2016). Correspondingly, Fontaneto et al. (2011) suggested
terrestrial insects, which besides ARA and ALA also comprise
EPA, as a better source for LC-PUFA than aquatic insects
due to their higher abundance and accessibility to terrestrial
consumers. Moreover, the contribution ofω3PUFA derived from
photosynthetic microalgae in biological soil crusts (Table 2) to
food webs in nutrient poor and dry desert, dune and tundra
habitats remains to be explored.

A so far neglected source of LC-ω3PUFA in terrestrial
ecosystems is the soil fauna (Figure 3). Across a wide taxonomic
range of soil invertebrates the capability to synthesize LC-
ω3PUFA de novo was shown. The entire set of desaturases
and elongases to produce LC-ω3PUFA occurs in the nematode
Caenorhabditis elegans (Watts and Browse, 2002). Recent
molecular studies proved the presence of ω3FA desaturase
enzymes in several other free-living soil nematode taxa (Menzel
et al., 2019) as well as in terrestrial oligochaetes and insects
(Kabeya et al., 2018). EPA synthesis was further indicated for soil
Collembola (Menzel et al., 2018) and earthworms (Petersen and
Holmstrup, 2000).

Proportions of EPA in total fatty acids reported are 3.5%
for free-living soil nematodes (Kühn et al., 2018) and up
to 17.4% for yeast feed Collembola (Chamberlain and Black,
2005). In particular, earthworms (their body, gut and burrow
lining) are a rich source for LC-ω3PUFA, with EPA being 7.5
times higher than in bulk soil (Sampredo et al., 2006). This

represents a considerable source irrespective of whether LC-
ω3PUFA are acquired by the animal itself or from gutmicrobiota.
Comparable to aquatic food webs, EPA seems to be selectively
retained in soil decomposer food chains as suggested by the
occurrence in top predator such as centipedes and spiders
(Pollierer et al., 2010; Ferlian et al., 2012). In sum, there is
sufficient evidence that belowground biota build central deposits
for essential LC-ω3PUFA, which can fuel higher trophic levels
above ground (Figure 3).

Anthropogenic Impact
Since humans have settled, they preferentiallymodulated riparian
areas, which have a central role in LC-ω3PUFA production and
export to land, thereby altering the ecological availability of these
nutritional valuable biomolecules. A more recent anthropogenic
impact is global climate change, i.e., elevated atmospheric CO2

and temperature. Temperature changes act predominantly on
PUFA, due to their central role in maintaining membrane fluidity
in poikilothermic species (Hazel, 1995). The proposed food web
impacts of increased temperature focus on a general decline of
LC-ω3PUFA in aquatic primary producers (e.g., Hixson andArts,
2016). However, extrapolating temperature effects observed for
algal cultures to a potential worldwide reduction in sestonic LC-
ω3PUFA may be misleading. As algal group composition mainly
drivesω3PUFA content, all factors altering community structure,
including nutrient regimes and their interactions (Suikkanen
et al., 2013) need to be considered, not solely temperature.
A recent statistical model predicts a 12% decline of EPA in
top predator fish at increasing ocean surface temperatures off
Australia, in an area also prone to alterations in nutrient
regime (Pethybridge et al., 2015). Moreover, trophic transfer
can be impacted by the mismatch in timing rather than by the
biochemical composition of the prey (e.g., Seldon et al., 2018).
In any case, melting of polar ice with increasing temperatures
will affect the occurrence of ice-algae as reliable source of EPA
for zooplankton productivity in the Arctic (Leu et al., 2011) and
Antarctic (Kohlbach et al., 2017).

In terrestrial plants, the decline of the LC-ω3PUFA precursor
ALA with increasing temperature can reach 50% in soybeans
(Byfield and Upchurch, 2007) and 77% in rapeseed (Namazkar
et al., 2016). On one hand, this is due to low expression of ω3-
FA desaturase genes, on the other hand it is induced by general
temperature stress that reduces the overall fat and seed biomass.
Higher growing temperatures also lower vitamin contents in
fruits and vegetables, as shown for vitamin C in kiwi (Richardson
et al., 2004) or broccoli (Kumar et al., 2016). With elevated
temperature, alterations in PUFA pattern and vitamin contents
are expected in herbivores (Adler et al., 2013 for cow milk)
accompanied by changes of plant community structure from C3
to less nutritious C4 (Warne et al., 2010). Finally, temperature
increase can provoke proteomic responses of microorganisms
affecting biosynthesis of essential nutrients in decomposer food
chains (Mosier et al., 2015).

The ecological influences of elevated atmospheric CO2 on
essential biomolecules in aquatic ecosystems are not uniform, as
CO2 can be a potential limiting resource for primary producer
but also a stressor by lowering the pH. Ocean acidification
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FIGURE 3 | Proposed origin of long-chain polyunsaturated fatty acids (LC-PUFA) in terrestrial ecosystems. Left—transfer to land via different trophic levels of the

aquatic food chain is commonly regarded as major input; right—soil decomposers are a neglected source. Please note that “hidden” channels such as mutualistic gut

microbiota in e.g., earthworms or ruminants, are not specifically emphasized. ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

Illustration credit: https://vecteezy.com.

can induce phytoplankton community shifts, which negatively
influences trophic transfer of essential compounds (e.g., Rosoll
et al., 2012). However, larval fish exhibited more whole-body fat
at higher CO2, including essential FAs (Díaz-Gill et al., 2015).
Studies combining effects of warming and acidification found
minor or no changes in the essential AA content in marine
diatoms (Bermúdez et al., 2015) but an increase in EPA in
primary producer and mesozooplankton consumer (Wang et al.,
2017). By using AA-specific δ13C measured in long living deep-
sea corals, McMahon et al. (2015a) could detect a shift toward
non N2-fixing cyanobacteria during warmer times, i.e., in the
Medieval Climate Anomaly and the Industrial Era.

In terrestrial ecosystems, elevated CO2 per se and in
combination with temperature increase, reduced ALA and
vitamin C contents in fruits, oils and seeds of plants (Kahn
et al., 2013; Namazkar et al., 2016). Increased droughts can up-
regulate the metabolic pathways for thiamin (B1) reported for
Zea mays (Rapala-Kozik et al., 2008), a response to enhance
stress tolerance of the plant. Moreover, changes in land use
affect the interactions between plants and the soil microbiome,
altering vitamin exudation by roots as well as the production
by rhizosphere bacteria. For example, herbicides reduced the
production of B vitamins in the soil bacterium Azotobacter

(Murcia et al., 1997). Overall, such changes in the rhizosphere
as a hot spot for diverse microbial communities and, thus,
metabolic pathways and substrates, have considerable impact
on the occurrence and availability of essential biomolecules for
higher trophic levels.

EVOLUTIONARY ASPECTS

Essential biomolecule physiology recently achieved attention
as a trait within evolutionary concepts (reviewed by Ellers
et al., 2012). For example, the loss of de novo synthesis of
vitamin C in many mammals is connected to ample access
by frugivory, leading to “relaxed selection” sensu Lahti et al.
(2009). Under “environmental compensation” lost traits can be
functionally compensated by others, e.g., in the case of vitamin D
dietary provision is substituted by light. According to the “Black
Queen Hypothesis,” genes and related traits can be lost as the
metabolites are provided as common goods by other members
of a consortium (Morris et al., 2012).

Whether these evolutionary concepts will explain the
environmental distribution in nutritional valuablemolecules on a
food web level warrants further investigation. With comparative
genomics, Mee and Wang (2012) showed that AA de novo
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synthesis of Eukarya is restricted to 4.1 AA (humans 11 AA),
whereas Archaean on average de novo synthesize 8.3 and bacteria
7.9 out of 20 AA, respectively. Corresponding to the constitutive
costs proposed by Lahti et al. (2009), most organisms do not
synthesize those AA, which require many biochemical steps,
thus are metabolically more costly to produce. Moreover, intra-
and extracellular production of AA and vitamins differ between
free-living bacteria and biofilms in marine benthos (Johnson
et al., 2016), suggesting provision of essential biomolecules by the
consortium in line with the “Black Queen Hypothesis.” Essential
extracellular metabolites such as AA and vitamins may even
be a valuable “currency” in microbial cross-feeding (Seth and
Taga, 2014) and for microbial grazers at the base of aquatic and
terrestrial decomposer food webs.

The dynamics of ω3- and ω6PUFA in food webs, however, do
not fit those evolutionary trait considerations of dependencies
through adaptive gene loss. In a phylogenetic study across
54 invertebrate taxa, including Acari, Crustacea, Insecta, and
Nematoda, no indication of a link between the dietary availability
of LA and its de novo synthesis was detected, rather LA
synthesis was facilitated by the bi-functionality of desaturase
enzymes (Malcicka et al., 2018). Generally, fewer steps are
involved in the synthesis of LC-PUFA than for many other
essential biomolecules. LC-PUFA are prone to peroxidation if
not protected by antioxidants like vitamin E, with peroxidation
products being harmful (Finkel and Holbrook, 2000). This
suggests that, in contrast to other nutritional biomolecules, the
response to oxidative stressmay be the trait here, and the costs are
related to features mitigating the damaging effects of LC-PUFA
peroxidation (Monaghan et al., 2009). Nevertheless, holding
genes such as the Fads2 desaturase to de novo synthesize DHA, is
considered important for recurrent freshwater colonization and
radiation in fishes (Ishikawa et al., 2019).

Overall, synthesis of specific nutritional biomolecules can be
lost by species or whole systematic groups if it is more efficient
to obtain those from the environment. This converts them into
essential dietary compounds, yet constraints appear to differ
according to biochemical susceptibility and synthesis pathways.

CONCLUSION

Essential biomolecules play an important role in trophic
interactions across taxa in aquatic and terrestrial ecosystems.
Their availability at the base of the food web matters for
the mode of trophic transfer, affecting food web structure as
well as response to environmental changes. For example, algae

and higher plants as primary carbon fixers do not provide all
essential biomolecules, and e.g., Archaea are the main producer
of B12. As its’ biochemical functioning is tightly connected
to other essential biomolecules (B vitamins and methionine),
mutual to symbiotic trophic interactions are characteristic
for provision. In contrast, LC-ω3PUFA and AA are mainly
transferred via predator-prey interactions and their minor
metabolic alterations predetermine them for dietary tracing.
Particularly in combination with compound-specific stable
isotope analyses they provide quantitative estimates of resource
flows. Terrestrial and aquatic food webs differ considerably
in the amount and distribution of essential biomolecules, e.g.,
in FAs, and interlinks are important, especially from water
to land.

However, our knowledge on the function of essential
biomolecules in food webs is far from complete. Future food
web research questions to be addressed are: (1) How are food
web assemblages in different biomes adapted to the local sources
of essential nutritional compounds? (2) Are there considerable
exchanges/fluxes in essential compounds between terrestrial
herbivore and detritivore food chains? (3) How do food chain
loops, such as the microbial loop, contribute to the dynamics of
essential biomolecules, besides known trophic-upgrading within
PUFA? (4) How does the availability of essential biomolecules
affect the organization of biotic consortia, e.g., aquatic biofilms
or rhizosphere microbiomes? (5) What is the impact of hidden
sources, e.g., gut microbiota, on the reconstruction of food webs
using essential biomolecules as trophic markers? (6) What is the
general role of essential biomolecules in food web dynamics at
higher trophic levels compared to the frequently investigated
plant-herbivore interface? Finally, as the capability for de novo
synthesis can act as trait in evolution, a new research field opens
up, connected to questions on how essential biomolecules can
impact adaptations and radiation of species, including the divers
trophic interactions—from mutualism to parasitism.
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