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Zusammenfassung

Datengetriebene maschinelle Übersetzungssysteme konnten seit den ersten bahnbrechen-
den Arbeiten in den 1990-er Jahren enorm verbessert werden. Neuerdings werden Systeme
vorgestellt, die isolierte Sätze ebenso gut übersetzen wie professionelle menschliche Über-
setzer. Die Voraussetzung dafür sind ausreichend übersetzte Trainingssätze in der Zield-
omäne, von denen ein System lernen kann. In Domänen, für die es keine übersetzten Sätze
gibt, nimmt die Qualität dieser Systeme jedoch drastisch ab. Zudem beziehen maschinelle
Übersetzungssysteme üblicherweise keinen Kontext über die Satzebene hinaus mit ein.
Solches Kontextwissen kann jedoch notwendig sein, um einen Satz korrekt zu überset-
zen. Die vorliegende Arbeit hat zum Ziel, einen Beitrag zur Lösung der oben genannten
Probleme zu leisten, indem sie untersucht, wie Meta-Informationen auf Dokumentebene
in Übersetzungssysteme integriert werden können. Beispiele für Meta-Informationen auf
Dokumentebene sind Informationen zur inhaltlichen Kategorisierung und Urheberschaft
des Dokuments oder explizite Verbindungen zwischen Dokumenten, zum Beispiel durch
Hyperlinks oder Zitate. In vier kumulativ durchgeführten Fallstudien werden Methoden
entwickelt und ausgewertet, mit denen solche Meta-Informationen als schwaches Train-
ingssignal für die maschinelle Übersetzung nutzbar gemacht werden können. Dabei werden
Meta-Informationen sowohl eingesetzt, um ein System auf eine Zieldomäne anzupassen,
für die passende Trainingsdaten fehlen, als auch, um Trainingsdaten auf Satzebene mit
Kontextinformation auf Dokumentebene anzureichern. In allen Fallstudien kann die Über-
setzungsqualität verbessert werden.





Abstract

Data-driven machine translation has advanced considerably since the first pioneering work
in the 1990s with recent systems claiming human parity on sentence translation for high-
resource tasks. However, performance degrades for low-resource domains with no available
sentence-parallel training data. Machine translation systems also rarely incorporate the
document context beyond the sentence level, ignoring knowledge which is essential for
some situations. In this thesis, we aim to address the two issues mentioned above by
examining ways to incorporate document-level meta-information into data-driven machine
translation. Examples of document meta-information include document authorship and
categorization information, as well as cross-lingual correspondences between documents,
such as hyperlinks or citations between documents. As this meta-information is much more
coarse-grained than reference translations, it constitutes a source of weak supervision for
machine translation. We present four cumulatively conducted case studies where we devise
and evaluate methods to exploit these sources of weak supervision both in low-resource
scenarios where no task-appropriate supervision from parallel data exists, and in a full
supervision scenario where weak supervision from document meta-information is used to
supplement supervision from sentence-level reference translations. All case studies show
improved translation quality when incorporating document meta-information.
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CHAPTER 1

Introduction

Interest in machine translation has been apparent since the advent of electronic computers
in the 1940s (Hutchins, 2007). Early approaches, focusing on extensive lexical and gram-
matical rules based on formal linguistic theory, were successful in limited domains and
computer-aided translation. In the 1990s, data-driven machine translation, which uses
statistical methods to infer knowledge from large amounts of translated data, emerged
as a strong competitor to these approaches. Starting with the IBM models by Brown,
Della Pietra, Della Pietra, and Mercer (1993), phrase-based and hierarchical phrase-based
systems (Chiang, 2005; Koehn, Och, & Marcu, 2003) received interest from Natural Lan-
guage Processing (NLP) researchers and, increasingly, from companies. Since 2015, the
phrase-based statistical machine translation (SMT) paradigm has been surpassed by neu-
ral machine translation (NMT) models based on deep neural networks (Bahdanau, Cho,
& Bengio, 2015; Sutskever, Vinyals, & Le, 2014). These models have advanced the state-
of-the-art considerably, leading to the first claims of human parity in 2018 (Linn, 2018).

Despite this impressive progress, machine translation as a whole cannot be considered
a solved problem. One issue for current systems is their reliance on large amounts of
translated data. In fact, advances in machine translation have to a large extent been
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1 Introduction

fueled by regular, public evaluation campaigns.1 An important part of these evaluation
efforts has been compiling and distributing suitable data for training and evaluation. While
such data is invaluable for progress in machine translation research, low-resource domains
or languages still suffer a significant decay in translation quality. Another issue is the
current focus on the sentence as the unit of translation. Even in a resource-rich scenario,
some ambiguities in a sentence cannot be satisfactorily resolved without knowledge of a
wider context. If no context is provided, even human translators will be unable to produce
the correct translation.

Solving the two problems described above has been the target of recent research. To
address the first issue, the reliance on translated data, previous work has either focused
on cheaply expanding the amount and range of available data, for example by mining
translations from multilingual sources (Munteanu & Marcu, 2005; Smith et al., 2013;
Wołk & Marasek, 2015, inter alia) or by using crowdsourcing to produce translations for
low-resource languages (Post, Callison-Burch, & Osborne, 2012; Zaidan & Callison-Burch,
2011b, inter alia). Recently, training methods for neural machine translation systems have
been introduced, which are capable of being trained only from monolingual data in the
source and target language (Artetxe, Labaka, Agirre, & Cho, 2018; Lample, Denoyer, &
Ranzato, 2018). An extensive amount of work has also been conducted on the problem of
domain adaptation - i.e., fitting an existing model to a new domain – (Axelrod, He, & Gao,
2011; B. Chen, Kuhn, & Foster, 2013; Eidelman, Boyd-Graber, & Resnik, 2012; Foster &
Kuhn, 2007; Hasler, Haddow, & Koehn, 2014; Hewavitharana, Mehay, Ananthakrishnan,
& Natarajan, 2013; Matsoukas, Rosti, & Zhang, 2009, inter alia) for SMT and (B. Chen,
Cherry, Foster, & Larkin, 2017; B. Chen & Huang, 2016; Chu, Dabre, & Kurohashi, 2017;
Freitag & Al-Onaizan, 2016; R. Wang, Utiyama, Liu, Chen, & Sumita, 2017; Zhang, Li,
Way, & Liu, 2016, inter alia) for NMT. To address the second issue, the restriction to
sentence-level translation, various approaches have been devised to include the document
text beyond the sentence, e.g. by keeping a cache of previous translations (Grave, Joulin, &
Usunier, 2017; Hardmeier, Nivre, & Tiedemann, 2012; Tiedemann, 2010, inter alia). Other
approaches have targeted specific phenomena related to missing context information, such
as anaphora resolution or dropped pronoun restoration (Hardmeier & Federico, 2010;
L. Wang, Tu, Way, & Liu, 2018, inter alia).

This thesis complements the above-mentioned approaches by exploring the potential of a
rarely tapped resource in the context of machine translation research: document meta-
information, including metadata, document-level links, or other document characteristics.
Where most of the approaches mentioned above only rely on the document text, this

1The most well-known campaigns are the Conference on Machine Translation, the International Workshop
an Spoken Language Translation and the NIST Open Machine Translation Evaluations.
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1.1 Research Question

thesis focuses on the meta-information beyond the text. As most of the available data for
machine translation is restricted to sentence-level plain text, this information can be easily
overlooked. At the same time, it can be obtained for many data collections, which lack
translated training data. This thesis sets out to devise and test methods for making use
of this information in machine translation. In response to the first problem, we explore
document meta-information as guidance for automatically extracting additional training
data, and as a weak signal for supervised training. In response to the second problem,
we include document information in the translation model as a source of knowledge about
the document context.

1.1 Research Question

Before the contributions of this thesis are laid out in more detail, the core concepts and
main research question are defined.

Machine Translation All the work presented in this thesis is concerned with improving
machine translation. By machine translation we mean the automatic translation of text
in language A to language B using a machine translation system. More specifically, we
work on data-driven machine translation which uses statistical methods and large data
sets, rather than expert knowledge, to model how to translate a sentence from language A
to language B. Section 2 provides a detailed overview of relevant theory and technology.

Document meta-information While there is a substantial body of literature on the ques-
tion of what constitutes a document (Buckland, 2015), for this thesis it suffices to follow
the “conventional, material view” of a document as a “graphic record, usually text” that is
located on some medium, in our case a digital file (Buckland, 2015, p.7). We use document
meta-information as a broad blanket term to refer to any explicitly available information
about a text document as a whole, beyond the surface text. Meta-information is normally
stored in document metadata, which contains curated, structured information about a
document. We also include document-level links within a larger document collection.
Thirdly, we make use of other structural characteristics of a document derived e.g. from
its medium, such as a character limit for Twitter messages, for example. In summary, this
thesis focuses on explicit, document level information, that exists outside of the text.

3



1 Introduction

Weak supervision In fully supervised learning, the available supervision is strong enough
to constitute a ground truth for the task. We distinguish these scenarios from weak su-
pervision scenarios, where the available supervision provides some guidance, but is not
sufficient to establish a ground truth. The supervision could, for example, be too coarse-
grained, unreliable or incomplete (categorization from Zhou (2017)). Hence, lower perfor-
mance is expected compared to a full supervision scenario.

To combine the above concepts, this thesis aims to leverage weak supervision in the form
of document metadata, document-level links or document characteristics to improve ma-
chine translation. As document meta-information, unlike translated data, is insufficient to
establish a ground truth for a translation task, this information can only constitute weak
supervision for this task. Nevertheless, this information could provide helpful guidance
in low-resource scenarios. Additionally, document meta-information might even contain
contextual clues that are lacking from full sentence-level supervision due to the limited
context. We examine these hypotheses in different case studies, identify available docu-
ment meta-information and lay out, implement and evaluate novel methods for employing
this information to improve machine translation.

1.2 Chapter Overview

While all chapters relate to the central research goal formulated above, they can each
be viewed as self-contained units and read selectively according to special interest. Most
contributions have been published in peer-reviewed outlets. In this section, we summarize
the main directions of each chapter, its relation to the overall goals, as well as its applica-
bility in a broader context - concerning different machine translation paradigms, as well
as different translation tasks.

In Chapter 3, we use document meta-information in a topically constrained translation
task, where in-domain supervision is not available. This chapter presents a solution that
is specifically tailored to the considered task of topically constrained Arabic-English Twit-
ter translation. Starting out from the observation that information and comments about
events of global significance will dissipate on microblogging platforms like Twitter2 simul-
taneously and multilingually, we present a method to construct a topically constrained
Twitter translation system using automatically extracted pseudo-parallel in-domain data.
Document meta-information in the form of user-generated annotations (hashtags), as well
as information about the characteristics of Twitter messages is used to crawl and auto-
matically pair Arabic and English Twitter messages concerning the aftermath of the Arab

2twitter.com/
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1.2 Chapter Overview

Spring. The extracted messages are then used to extract an in-domain phrase-table. By
combining this phrase-table with an out-of-domain phrase table in a phrase-based SMT
system, substantial improvements are achieved over other domain adaptation methods.
Most parts of this chapter are published in Jehl, Hieber, and Riezler (2012). The main
contributions by the author of this thesis are:

• An end-to-end approach to building a topically constrained translation system for
Twitter messages using pseudo-parallel data extracted by leveraging document meta-
information (in cooperation with co-authors).

• Strategies for extracting an in-domain phrase table from candidate pairs of tweets.

• Construction of an in-domain evaluation set via crowdsourcing.

• Experimental evaluation of the proposed strategies.

• Extensive comparison to existing domain adaptation approaches which use mono-
lingual data or a small development set.

• A detailed qualitative and quantitative analysis of the strength and weaknesses of
the proposed approach.

In Chapter 4 we use document meta-information to simulate a downstream task loss to
optimize a query translation system. We start out from the observation that in patent prior
art search query translation requires full text machine translation, but that search queries
do not need to satisfy the same requirements as translations in a translation task. We again
operate in a scenario of incomplete supervision, as we do not have references specifically
for patent query translation. We approach the problem by leveraging patent citation
information to construct a large-scale training set for cross-lingual patent retrieval, and
by providing a tailored pairwise ranking approach to optimizing patent query translation
in a phrase-based system using a downstream task loss for optimization. Our method
shows promising trends according to several retrieval metrics. The baseline and data set
of this task were also described in Sokolov, Jehl, Hieber, and Riezler (2013). The main
contributions of this chapter are:

• A method to exploit the hierarchical structure of patent citations along with cross-
lingual patent family relations for the generation of large-scale patent retrieval train-
ing and evaluation data.

5



1 Introduction

• A state-of-the-art patent translation system, which was ranked second among con-
strained systems at the NTCIR10 shared task on patent translation (Simianer et al.,
2013).

• A pairwise-ranking method for directly optimizing patent translation for patent re-
trieval quality.

• Evaluation of our method on Japanese-English patent retrieval.

In Chapter 5 we again face a setup of incomplete supervision in a domain adaptation sce-
nario, where no in-domain parallel data are available. We leverage cross-lingual document
links directly as a weak supervision signal. As supervision from a relevant document pro-
vides a very weak signal compared to a translation reference, we add negative supervision
from irrelevant documents. A natural way to integrate positive and negative supervision
is via a structured ramp loss objective, which deliberately selects a hope and fear output,
which are then promoted (hope) or demoted (fear). We call objectives with this property
“bipolar”. As the objective is agnostic of a specific translation paradigm, we explore it for
both SMT and NMT paradigms. For SMT, we show that sparse lexical features weights
can be learned successfully using weak supervision from document-level links with bipolar
ramp loss. We also show improvements when using only weak links and when running
our approach on top of other adaptation methods. For NMT, we focus on analyzing the
performance of different ramp loss formulations and compare them to minimum risk train-
ing objectives that also optimize sequence-level metrics. Of the proposed objectives, only
the bipolar variants, which incorporate positive and negative supervision, show signifi-
cant improvements over an unadapted baseline. We also study the performance of ramp
loss on a fully supervised task, as this objective has not yet been studied for NMT, and
confirm the superiority of bipolar ramp loss compared to other objectives.Our work on
SMT is published in Jehl and Riezler (2016). The work on NMT is part of a submitted
paper draft (Jehl, Lawrence, & Riezler, 2018). To summarize, we provide the following
contributions:

• New bipolar ramp loss objectives for weakly supervised learning scenarios with pos-
itive and negative supervision.

• Two new reward metrics, which can be incorporated into metric-augmented struc-
tured prediction objectives for using document-level links as weak supervision for
machine translation.

• Setup of a Wikipedia translation task to evaluate the method, including a small
development and test set and an analysis of parallelism on Wikipedia.

6



1.2 Chapter Overview

• Evaluation of our objectives for tuning sparse lexicalized features of an SMT system
and comparison to other adaptation methods.

• Evaluation of bipolar and non-bipolar ramp loss objectives for NMT and comparison
to minimum risk training in weakly and fully supervised scenarios.

In Chapter 6 we use document meta-information on top of a full supervision setup. We
present ways of incorporating document metadata as side constraints on the source side
of training and test data. We evaluate our approach on patent translation, where rich
metadata is available and presents additional modeling challenges, but the methods could
be applied to other collections with metadata. Our work starts out from the observation
that information about patent classification or a patent’s author might provide clues for the
correct word choice when translating individual sentences, as the frequencies of translation
options vary across, e.g. patent classes. We provide different ways to pass metadata
information to the translation model as side constraints at the phrase level (SMT) or at
the sentence or word level (NMT) and evaluate our approaches on two patent translation
tasks, showing significant improvements for both NMT task and for the Japanese-English
SMT task. Most of this work has been published in Jehl and Riezler (2018). The main
contributions are:

• General formulation of document meta-information as side constraints.

• Approaches to integrate document meta-information on the source side for SMT and
NMT.

• Handling of multi-category and multi-value information.

• Extensive evaluation of the different strategies on two patent translation tasks.

Summary of contributions

This thesis investigates the use of document meta-information as weak supervision for
statistical and neural machine translation. Four case studies are conducted where po-
tentially useful document meta-information is identified in multilingual data collections.
The scenarios include cases of incomplete supervision, as well as one case where document
meta-information is used to complement full sentence-level supervision. Task-specific, as
well as generally applicable, novel approaches to integrating weak supervision from docu-
ment meta-information into these scenarios are laid out. Finally, the methods are applied

7



1 Introduction

Chapter 3 Chapter 4 Chapter 5 Chapter 6

data Twitter Patents Wikipedia Patents

task domain
adaptation

query
translation

domain
adaptation

end-to-end
translation

supervision incomplete incomplete incomplete full

meta-
information

hashtags,
character limit

citations interlingua,
inter-article
links

metadata

use of meta-
information

pseudo-parallel
data extraction

simulation of
downstream
loss

weak supervi-
sion instead of
reference

side constraints

applicability tailored tailored general general

translation
paradigms

SMT SMT SMT/NMT SMT/NMT

Table 1.1 Overview of cases studied in this thesis.

not only to established benchmark tasks, but also to new domains, such as Twitter mes-
sages or Wikipedia. Table 1.1 summarizes the different cases studied in this thesis, their
use of meta-information, and their general applicability. The work for this thesis was con-
ducted cumulatively, spanning the paradigm shift between statistical and neural machine
translation. Mainly for this reason, Chapters 3 and 4 only include experiments using SMT
systems. Both approaches are, however, easily transferable to the neural paradigm, as is
discussed briefly at the end of the conclusion for each chapter. For each study, improve-
ments over a system without meta-information are achieved. As each study presents a
self-contained research project with a different task and different data, the results are not
directly comparable. When looking at the magnitude of the gains achieved for each study,
using document meta-information for pseudo-parallel data extraction is the most effective
at the cost of generality, as this method needs to be tailored to the target data.
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CHAPTER 2

Background

The following pages outline the fundamentals of data-driven machine translation technol-
ogy, as relevant to the understanding of this thesis. Section 2.1 describes training data,
data processing and evaluation. The subsequent sections describe two predominant ap-
proaches to data-driven translation: phrase-based Statistical Machine Translation (SMT)
in Section 2.2 and Neural Machine Translation (NMT) in Section 2.3.

2.1 Input and Output

Data-driven machine translation systems are trained on millions of parallel training sen-
tences. Parallel text or bitext has been translated by proficient human translators into
one or more languages and is collected in a parallel corpus. As it is infeasible in a non-
commercial setting to produce this data, efforts have been directed at collecting bitext
from existing sources. These include multilingual parliamentary proceedings, such as the
Europarl (Koehn, 2005) and MultiUN corpora (Eisele & Chen, 2010; Ziemski, Junczys-
Dowmunt, & Pouliquen, 2016), the Web Inventory of transcribed TED talks (Cettolo,
Girardi, & Federico, 2012) and multilingual news outlets1 and the PatTR corpus contain-

1casmacat.eu/corpus/news-commentary.html

9

casmacat.eu/corpus/news-commentary.html


2 Background

ing German, English and French patent text (Wäschle & Riezler, 2012a). Other parallel
data sets, especially for non-European languages, have been provided as part of the NIST
evaluation campaigns2. Assembling a parallel corpus is an involved process: After ob-
taining the text in digital form, the plain text is extracted and the data are aligned at
the document level. As a machine translation system requires sentence-aligned data, the
documents are broken down into sentences and aligned across languages. Both tasks are
non-trivial, as end-of-sentence markers can be ambiguous and sentence boundaries can
differ between languages. The need for heavy processing of parallel data could be viewed
as one reason why document information has been disregarded in machine translation.
The corpora rarely provide markup or annotation at the document level alongside the
sentence-aligned text.

Due to the difficulty of obtaining bitext, only certain domains and genres are covered.
Weaker sources of knowledge are provided by comparable corpora and monolingual corpora.
A comparable corpus is a multilingual data set which does not contain direct translation,
but whose contents are related across languages. Monolingual data do not contain knowl-
edge about translational equivalence, but provide information about fluency and are easily
available for many domains and languages. Especially in phrase-based SMT, monolingual
target language data play an important role in language modeling.

Both SMT and NMT require data pre- and post-processing. Tokenization refers to split-
ting sentences into words (tokens). This is done by splitting sentences on whitespace for
whitespace- delimited languages. For non whitespace-delimited languages like Japanese,
tokenization requires more sophisticated models. Tokenization is required for machine
translation, as units smaller than sentences are necessary for collecting reliable statistics.
Other pre-processing steps are often applied to reduce the vocabulary. Lowercasing or true-
casing, which removes sentence-initial uppercase, can be applied to languages with Latin
script. Splitting text into subword units is another way to reduce vocabulary. This could
be accomplished by splitting words at morpheme boundaries or by a purely count-based
method such as byte-pair encoding (Sennrich, Haddow, & Birch, 2016c). Post-processing
is applied after translation to reverse the pre-processing. This involves merging subword
units into words, detokenization and re-casing. As all steps can introduce errors, this thesis
applies minimal processing where possible. However, by applying special pre-processing
steps, performance can improve significantly, as we show, for example, in Chapter 4.

We evaluate all end-to-end translation experiments using the BLEU score (Papineni,
Roukos, Ward, & Zhu, 2002). The BLEU score computes the geometric mean of 𝑛-gram
precisions 𝑝𝑛 up to a maximum order 𝑁 against one or more reference translations.3 An

2nist.gov/programs-projects/machine-translation
3𝑁 is usually set to 4.
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𝑛-gram is a contiguous span of 𝑛 tokens. The 𝑛-gram precision is modified to clip counts
for each 𝑛-gram at the maximum count observed in one of the references. This clipping
avoids, for example, overproduction of function words. As a precision-based metric would
favor short translations, the BLEU score also contains a brevity penalty term, which is
defined as

BP = exp(min(0, 1 − |𝑌 |
|𝑌 ∗|))

for a set of translations 𝑌 and a set of reference translations 𝑌 ∗.4 The BLEU score is
then computed as follows:

BLEU = BP ⋅ (
𝑁
∏
𝑛=1

𝑝𝑛)
1
𝑁

BLEU is corpus-based and aggregates sufficient statistics - 𝑛-gram counts and 𝑛-gram
matches for each 𝑛, as well as output lengths for each sentence. As BLEU uses the
geometric mean, it will automatically become 0, if 𝑝𝑛 = 0 for one or more 𝑛. However,
some training approaches require a metric, which can be calculated for single translations.
The easiest approach to defining a per-sentence approximation to BLEU is to calculate
a smoothed 𝑛-gram precision by adding 1 or a smaller value 𝛼 to 𝑛-gram counts and
matches. Problems with this simplistic approach and more sophisticated solutions on the
sentence level have been put forward by Nakov, Guzman, and Vogel (2012).

2.2 Statistical Machine Translation

Statistical machine translation is used in all content chapters of this thesis (Chapters 3 -
6). This section summarizes the basics of SMT, following descriptions in Koehn (2010)
and a survey by Lopez (2008).

2.2.1 Generative Model

SMT casts translating as solving the following problem:Given an input sentence 𝑥 from
a given source language (𝑠𝑟𝑐), find the translation ̂𝑦 in a given target language (𝑡𝑟𝑔) such
that

̂𝑦 = argmax
𝑦

𝑃(𝑦|𝑥) . (2.1)

In order to model this distribution in a tractable way, SMT models introduce hidden
variables. These hidden variables, denoted by ℎ, define a process by which a translation 𝑦

4|𝑌 ∗| is the length of the reference closest to the candidate translation.
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is created from an input sentence 𝑥. Hidden variables, or derivations, can be marginalized
out to obtain the probability over translations:

̂𝑦 = argmax
𝑦

∑
ℎ

𝑃 (𝑦, ℎ|𝑥) . (2.2)

computing this sum is intractable in the translation formalisms applied in SMT. Therefore,
an approximation is commonly made which replaces the sum over derivations with the
highest scoring derivation:

̂𝑦 = argmax
𝑦

max
ℎ

𝑃(𝑦, ℎ|𝑥) . (2.3)

In generative translation models, 𝑃(𝑦, ℎ|𝑥) is factorized using Bayes’ rule as

𝑃(𝑦, ℎ|𝑥) = 𝑃 (𝑥, ℎ|𝑦) ⋅ 𝑃 (𝑦)
𝑃 (𝑥) . (2.4)

Given this factorization, the translation problem can re-written as

̂𝑦 = argmax
𝑦

max
ℎ

𝑃(𝑥, ℎ|𝑦) ⋅ 𝑃 (𝑦) , (2.5)

where 𝑃(𝑥) can be ignored as it is constant. Factoring 𝑃(𝑦, ℎ|𝑥) into two separate models
had been successfully applied to speech recognition before it was suggested for machine
translation by Brown et al. (1993). The approach includes two independent knowledge
sources: a translation model distribution 𝑃(𝑥, ℎ|𝑦), and a language model distribution
𝑃(𝑦). This factorization makes sense, as the translation model ensures translational ad-
equacy, and the language model focuses on modeling target side fluency. Note, that the
translation model direction is now reversed, conditioning on outputs rather than inputs.
As the true distributions are unknown, they are approximated by models for which parame-
ter estimation and inference are possible. This requires strong independence assumptions
between the steps of the generative process. Below, two generative translation models,
word alignment models and phrase-based models, are introduced, followed by an 𝑛-gram
language model.

Word alignment The simplest translation models define the translation process via an
alignment function 𝑎(𝑗) from positions 𝑗 in 𝑥 to positions in 𝑡 in 𝑦.5 According to this
function, each token in 𝑦 corresponds to exactly one token in 𝑥 or to a special NULL
token. The word alignment between a German source and an English target sentence
is illustrated in Figure 2.1. A simple parametrization using alignment functions is IBM
Model 1 (Brown et al., 1993). This model defines the probability of an output sentence

5This explanation now follows the reversed translation modeling direction as described above.
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soy what happened here ?

NULLx was ist hier passiert ?

Figure 2.1 Word alignment

under alignment 𝑎 as the product of the individual aligned tokens and a uniform alignment
probability:

𝑃(𝑥, 𝑎|𝑦) ≈ 𝜖
(|𝑦| + 1)|𝑥|

|𝑥|
∏
𝑗=1

𝑝(𝑥𝑗|𝑦𝑎(𝑗)) , (2.6)

where 𝜖 is a placeholder for a uniform distribution over the possible length of 𝑥 (see
Koehn (2010), page 86). The word alignment probabilities 𝑝(𝑥𝑗|𝑦𝑎(𝑗)) are the only pa-
rameters in this model, as the model assumes independence between individual words.
As there are usually no word-aligned corpora available, word alignments are inferred from
sentence-aligned data in an unsupervised fashion using an expectation maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977). The EM algorithm learns the word transla-
tion probabilities that maximize the likelihood of the training corpus. IBM Model 1 and
its refinements, IBM Models 2 through 5 (Brown et al., 1993), were quicky replaced by
phrase-based translation formalisms for end-to-end translation systems. But they consti-
tute an important step in the pipeline architecture of phrase-based models, as they are
used to align training data at the word level, which is a pre-requisite for phrase extraction,
as described below.

Phrase-based model The IBM models define only a uni-directional alignment function,
allowing for one-to-many alignments, but not many-to-many. This makes the translation
of non-decomposable phrases, such as idioms, difficult. Moreover, the word-based models
do not easily capture the fact that larger chunks of a sentence often move their posi-
tions together when translated. These phenomena can easily be captured by phrase-based
translation formalisms, where the units of translation are contiguous segments of variable
length, or phrases. Deriving a translation can be viewed as the process of first selecting
a segmentation of the source into phrases, then selecting a translation for each phrase
from a phrase translation table, and finally reordering the phrase translations. Figure 2.2
illustrates the process.

A simple parametrization of the phrase-based translation process was given by Koehn et
al. (2003). In this parametrization, the translation model probability is factored into the
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so what happened here ?

[ happened here ][ so what ] [ ? ]segmentation:

[ was ] [ ist hier passiert ] [ ? ]translation:

[ was ] [ ist hier passiert ] [ ? ]reordering:

Figure 2.2 Phrase translation

phrase translation probabilities of all phrases participating in a derivation. Conditional
independence is assumed between phrases. The full translation model is defined as

𝑃(𝑥, ℎ|𝑦) ≈ 1
|Seg(𝑥)|

𝐼
∏
𝑖=1

𝑝( ̄𝑥𝑖| ̄𝑦𝑖) ⋅ 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1). (2.7)

In this model, 1
|Seg(𝑥)| is a uniform probability distribution over all possible segmentations

of 𝑥. 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖−𝑒𝑛𝑑𝑖−1−1) is a distance-based reordering model, which captures how much
phrases are moving from there position in the input sentence. Assuming that we prefer less
movement, distortion can be modeled by an exponentially decaying cost function 𝑑(𝑧) = 𝛼𝑧

with 𝛼 ∈ [0, 1]. 𝜙( ̄𝑥𝑖| ̄𝑦𝑖) is the probability of translating the 𝑖-th phrase ̄𝑦𝑖 into its
counterpart ̄𝑥𝑖. The phrase translation probabilities are the parameters of this model, and
are stored in a phrase table. A phrase table can be learned from word-aligned data using
maximum likelihood estimation. Word alignment is run in both translation directions
and the results are symmetrized. This symmetrization starts from the intersection of
alignments and uses a heuristic method called grow-diag-final-and to add neighboring
unidirectional alignment points (Koehn et al., 2003; Och & Ney, 2003). All phrases up
to a maximum phrase length, which are consistent with the word alignment, are then
extracted. A phrase pair is consistent with an alignment if and only if it contains at least
one alignment link, and none of source or target words within the phrase are aligned to
a word outside of the phrase. Phrase translation probabilities are then extracted using
relative frequency counts:

𝑝( ̄𝑥| ̄𝑦) = 𝑐𝑜𝑢𝑛𝑡( ̄𝑦, ̄𝑥)
𝑐𝑜𝑢𝑛𝑡( ̄𝑥)

Hierarchical phrase-based model Phrase-based translation cannot capture the regular-
ities of long-range dependencies between words, as phrases need to be contiguous. In our
previous example, “happened” translates to the German “ist … passiert”. A phrase-based
model has no way to capture this dependency. These problems can be fixed by moving
to a more powerful formalism, namely a synchronous context-free grammar. In this for-
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malism, phrases are encoded as context-free grammar rules. A non-terminal symbol X is
introduced to represent a gap which can be filled by another phrase of arbitrary length.
A synchronous context-free grammar rule matching the example could be

X → happened X | ist X passiert

In this formalism, a translation is derived by synchronously parsing the source sentence
and generating the target sentence. The process is parameterized as

𝑃(𝑥, ℎ|𝑦) ≈ ∏
𝑟∈ℎ

𝑝(𝑟) , (2.8)

where ℎ is a synchronous parse tree by which 𝑥 can be derived from 𝑦, and 𝑟 is a hi-
erarchical translation rule participating in this tree. The parameters of this model are
the probabilities of the translation rules, 𝑟. These probabilities are again estimated using
maximum likelihood estimation and stored in a grammar. Grammar extraction starts out
from a phrase table. Hierarchical rules are generated by first adding all contiguous phrases
as rules to the grammar. If a phrase pair contains another consistent phrase pair, the lo-
cation of this smaller phrase pair can be replaced with a gap marked by the non-terminal
symbol. If there is more than one gap, the non-terminal symbols are annotated with a
position marker. Extracting hierarchical phrases is computationally challenging, requiring
specialized algorithms and data structures (Lopez, 2007). A set of heuristics is used to
keep the number of phrases manageable, such as limiting the number of allowed gaps to
2 or limiting the maximum phrase length (Chiang, 2005).

Language Model The second part of the generative decomposition of 𝑃(𝑦, ℎ|𝑥) is the
language model, which approximates the true distribution over target strings, 𝑃(𝑦). As 𝑦
is a string of tokens

𝑦 = 𝑦1, 𝑦2, 𝑦3, … 𝑦|𝑦| ,

the chain rule of probability can be used to decompose 𝑃(𝑦) as follows:

𝑃(𝑦) = 𝑃(𝑦1) ⋅ 𝑃 (𝑦2|𝑦1) ⋅ 𝑃 (𝑦3|𝑦1, 𝑦2) ⋯ 𝑃(𝑦|𝑦||𝑦1, 𝑦2, … , 𝑦|𝑦|−1)

In order to make the model tractable, conditional independence between a word and all
but its 𝑛 − 1 preceding words assumed, leading to the following simplification and final
parametrization of the model:

𝑃(𝑦) ≈
|𝑦|
∏
𝑡=1

𝑝(𝑦𝑡|𝑦𝑡−𝑛+1, 𝑦𝑡−𝑛+2, … , 𝑦𝑡−1) , (2.9)
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In practice, the cases where 𝑡 < 𝑛 are handled by adding 𝑛 − 1 beginning-of-sentence
markers to each string. The parameters of this model are the probabilities of individual
𝑛-grams. These probabilities are also estimated from training data using maximum likeli-
hood estimation. For example, the probability of the 4-gram “was ist hier passiert” would
be estimated as

𝑝(passiert|was, ist, hier) = 𝑐𝑜𝑢𝑛𝑡(was ist hier passiert)
𝑐𝑜𝑢𝑛𝑡(was ist hier) .

In Equation 2.9, an unseen 𝑛-gram would be assigned a probability of zero, which would
lead to the probability of the entire sequence being zero. In language models for SMT,
unseen 𝑛-grams are assigned a non-zero probability via smoothing (see Chapter 7 in Koehn
(2010)).

2.2.2 Discriminative Model

While the generative model would be theoretically optimal if the true distributions
𝑃(𝑥, ℎ|𝑦) and 𝑃(𝑦) were known, strong approximations have to be used in order to make
it tractable, as has been described above. A much more flexible approach is given by
using discriminative training, which directly optimizes the posterior distribution over
outputs, 𝑃(𝑦, ℎ|𝑥) (Ney, 1995). In SMT, the discriminative approach commonly models
the posterior in a log-linear or maximum entropy model, first proposed by Och and Ney
(2002):

𝑃(𝑦, ℎ|𝑥) ≈ exp(w⊤𝜙(𝑥, 𝑦, ℎ))
∑𝑦′,ℎ′ exp(w⊤𝜙(𝑥, 𝑦′, ℎ′)) , (2.10)

where 𝜙(𝑥, 𝑦, ℎ) is a vector of real-valued feature functions defined by the user and w is
a weight vector, with one real-valued weight assigned to each feature. Inference in the
log-linear model then becomes

̂𝑦 ∶= argmax
𝑦

max
ℎ

(w⊤𝜙(𝑥, 𝑦, ℎ)) . (2.11)

This model is more flexible than the generative model as it allows arbitrary components
to be added in the form of additional feature functions.

In the log-linear model, the components of the generative model, the translation model log-
probability, the language model probability, and the reordering cost, can be used as feature
functions. Other feature functions include the reverse translation model log-probability,
a word penalty(Och & Ney, 2002), which counts the number of produced output tokens,
and lexical weighting features (Koehn et al., 2007), which consider the individual word
translation probabilities within a phrase. A lexicalized reordering model (Tillmann, 2004)
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can capture reordering decisions more precisely. As the above features have non-zero
values for most inputs, we refer to them as “dense features”. Other work has introduced
so-called sparse features, which only take on a non-zero value in a few instances (Green,
Cer, & Manning, 2014; Liang, Bouchard-Côté, Klein, & Taskar, 2006; Simianer, Riezler,
& Dyer, 2012, inter alia). These features could, for example, be indicators that a certain
𝑛-gram has been observed on the source or target side or that a pair of source and target
words have been observed together in a phrase.

The feature weights w are hyperparameters or meta-parameters of the translation model.
Note that the generative components of the model, the phrase table and language model,
are still trained generatively, and parameterized by phrase translation and 𝑛-gram prob-
abilities. Meta-parameters are then trained discriminatively to assign weights to those
models and other feature functions. By moving away from the generative model, these
parameters can be optimized for an external error metric between a translation 𝑦 and a
reference 𝑦∗. The task of discriminatively optimizing meta-parameters for a specific trans-
lation quality (or error) metric is also called tuning. While reasonable weights for a small
number of dense feature functions can be set by hand through careful experimentation,
there is no guarantee that these weights are optimal. Setting weights for large, sparse
feature sets is impossible to do manually and requires automatic optimization.

Minimum Error Rate Training (MERT) (Och, 2003) can be used to directly optimize error
on the training set 𝑋, 𝑌 ∗.

𝐿error = err⎛⎜
⎝

𝑌 ∗, {argmax
𝑦,ℎ

w⊤𝜙(𝑥, 𝑦, ℎ)}
𝑥∈𝑋

⎞⎟
⎠

, (2.12)

where argmax𝑦 maxℎ is abbreviated as argmax𝑦,ℎ. For SMT, 1 − BLEU can be used to
measure error. MERT uses a specialized line search over the 𝑘-best outputs generated
by the current model to iteratively optimize each weight 𝑤𝑖 ∈ w separately. As the
objective contains an argmax operation and BLEU is not continuously differentiable,
MERT has no guarantees for finding a globally optimal solution. The solution further
depends on the initial values of w. As MERT scales linearly with the number of features,
it is computationally difficult to handle larger feature sets. Using larger feature sets with
MERT is also prone to overfitting the training data, as the algorithm does not use any
regularization. In this thesis, MERT is used for tuning dense feature sets in Chapters 3
and 4.

To counter the shortcomings of MERT, other tuning approaches have been suggested,
which use different objectives. These objectives replace training set error with another
loss function, which includes the error metric. The specific loss function is usually selected
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because of its favourable mathematical properties such as smoothness or convexity, which
allow for easier optimization and better extendability to large feature spaces. In this
thesis we apply the pairwise ranking perceptron loss (Hopkins & May, 2011; Simianer et
al., 2012) for tuning weights for large feature sets. Pairwise ranking losses conveniently
reduce the optimization problem to classifying whether the ranking of any two translations
𝑦 and 𝑦′ according to the model is identical to their ranking according to the error metric,
giving rise to the following criterion:

err(𝑦∗, 𝑦) < err(𝑦∗, 𝑦′) ⟺ w⊤𝜙(𝑥, 𝑦, ℎ) > w⊤𝜙(𝑥, 𝑦′, ℎ′) .

Based on this condition, the loss is written as

𝐿perc_rank = ∑
{𝑦,ℎ;𝑦′,ℎ′},err(𝑦′)>err(𝑦)

max (0, −w⊤Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′)) , (2.13)

where
Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′) ∶= 𝜙(𝑥, 𝑦, ℎ) − 𝜙(𝑥, 𝑦′, ℎ′)

Following Collobert and Bengio (2004), a margin term can also be included in the percep-
tron loss for better generalization performance as

𝐿perc_rank = ∑
{𝑦,ℎ;𝑦′,ℎ′},err(𝑦′)>err(𝑦)

max (0, 1 − w⊤Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′)) . (2.14)

The pairwise ranking perceptron is optimized using stochastic gradient descent. The pref-
erence pairs 𝑦, 𝑦′ used to train the pairwise ranking perceptron are commonly generated
from the list of 𝑘-best model outputs, 𝒦(𝑥). As the number of possible pairs is quadratic
in 𝑘, pairwise ranking optimizers often use heuristics to select pairs rather than generating
all pairs. Unless otherwise specified, we use Simianer et al. (2012)’s scheme, which selects
pairs from the top and bottom 20 percent of the 𝑛-best list. The pairwise ranking per-
ceptron has been used for tuning log-linear models with large feature spaces in Chapters
4 and 6.

2.2.3 Decoding and Pipeline

In phrase-based models, solving Equation 2.11 is a highly complex search, or decoding,
problem. In the phrase-based model a beam search algorithm is used which builds the
translation left-to-right, keeping track of input coverage and 𝑛-gram histories in partial
hypothesis states (Koehn, 2004). As an exhaustive search of all possible translations under
the model is normally computationally infeasible, the search space is pruned, for example
by only keeping the 𝑛 hypotheses with the highest score for each number of input word
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Figure 2.3 Phrase-based MT pipeline.

(Koehn, 2004). This approach is called stack decoding. For decoding in the hierarchical
phrase-based formalism, dynamic programming algorithms from parsing, such as the CKY
algorithm, can be transferred to machine translation. These algorithms build tree struc-
tures from the bottom up, covering larger input spans as they advance, in polynomial time.
However, integrating 𝑛-gram language models becomes more challenging, as the output is
no longer built left-to-right. Cube pruning (Chiang, 2007), which lazily combines only the
most promising partial parses, makes language model integration computationally feasible.

Putting all steps together, one obtains a pipeline for phrase-based SMT systems. Figure
2.3 illustrates the data flows and steps necessary to build a complete phrase-based system.
The translation model, a phrase table, or rule table in hierarchical phrase-based SMT,
is trained by inferring word alignments from bilingual sentence-parallel data, and subse-
quently extracting phrase pairs. In open-vocabulary, open-domain translation, millions of
aligned sentence pairs are necessary for good translations. The language model collects
𝑛-gram counts from monolingual target language data. For good performance, again, mil-
lions of sentences are required. When translation model and language model have been
trained, feature weights of the log-linear model are learned to maximize performance on a
small heldout data set of several thousand sentence pairs. This is accomplished using an
iterative tuning process. Finally, input documents can be decoded using the trained mod-
els and weights. Phrase-based or hierarchical phrase-based models are employed in every
part of the thesis. In Chapters 5 and 6 they are compared to neural machine translation
models, which are discussed below.

19



2 Background

2.3 Neural Machine Translation

Neural machine translation (NMT) has surpassed the performance of statistical machine
translation (Jean, Firat, Cho, Memisevic, & Bengio, 2015; M.-T. Luong & Manning, 2015).
This approach to translation is called neural as translation is modeled by a non-linear
artificial neural network.6 In this thesis we use the Nematus toolkit, which implements
a recurrent encoder-decoder model with attention as proposed for machine translation
by Bahdanau et al. (2015). Below, we describe the model architecture.7 The exposition
follows tutorials by Goldberg (2015) and Neubig (2017), as well as the text book by
Goodfellow et al. (2016).

The recurrent NMT model is based on recurrent neural language models (RNN-LMs)
(Mikolov, Karafiát, Burget, Černockỳ, & Khudanpur, 2010). Unlike the 𝑛-gram models
discussed in the previous section, RNN-LMs are able to condition on the entire history
of a word. Neural machine translation models extend the RNN-LM by also conditioning
on the input sequence. By capturing the entire source context, as well as the complete
target history, NMT models are better at capturing long-distance dependencies and pro-
ducing long-range reordering than SMT models (Bentivogli, Bisazza, Cettolo, & Federico,
2016). In a recurrent NMT model, a translation 𝑦 = 𝑦1...𝑦|𝑦|, 𝑦𝑡 ∈ 𝑉𝑡𝑟𝑔 where 𝑉𝑡𝑟𝑔 is
a fixed size output vocabulary, is generated from left to right, one token at a time.The
generation stops once an end-of-sequence symbol is produced or a maximum number of
generation steps have been completed. Each token 𝑦𝑡 is conditioned on the input sentence
𝑥 = 𝑥1...𝑥|𝑥|, 𝑥𝑗 ∈ 𝑉𝑠𝑟𝑐 where 𝑉𝑠𝑟𝑐 is a fixed size input vocabulary, and all previously gen-
erated output words 𝑦1...𝑦𝑡−1. We abbreviate the output history by 𝑦<𝑡. The posterior
probability of the entire translation 𝑦 given input 𝑥 is modeled as:

𝑃(𝑦|𝑥) ≈
|𝑦|
∏
𝑡=1

𝑝𝑤(𝑦𝑡|𝑥, 𝑦<𝑡) (2.15)

𝑝𝑤(𝑦𝑡|𝑥, 𝑦<𝑡) is the output of a deep recurrent neural network. 𝑤 represents the parameters
of the network.

6An introduction to artificial neural networks and deep learning is beyond the scope of this thesis, but
the reader is referred to the textbook by Goodfellow, Bengio, and Courville (2016).

7Recently, the convolutional sequence to sequence model by Gehring, Auli, Grangier, Yarats, and Dauphin
(2017) and the transformer model by Vaswani et al. (2017) have emerged as successful alternatives to
the architecture by Bahdanau et al. (2015), but we will focus on the models relevant for the work
described in this thesis.
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2.3.1 Translation Model

The core of the recurrent NMT model are two RNN-LMs, called an encoder and a decoder,
which are trained jointly, and an attention mechanism, which connects the encoder and
the decoder. The input is passed to the encoder via an additional input layer or embedding
layer, and the distribution over the output vocabulary is generated by an output layer or
softmax layer.

The output layer is a linear transformation of the hidden decoder state followed by a
softmax operator which ensures that the outputs form a probability distribution over
𝑉𝑡𝑟𝑔:

𝑝𝑤(𝑦𝑡|𝑥, 𝑦<𝑡) = softmax(W𝑜𝑢𝑡h𝑑𝑒𝑐
𝑡 + b𝑜𝑢𝑡)

where W𝑜𝑢𝑡 ∈ R|𝑉𝑡𝑟𝑔| × |ℎ𝑖𝑑𝑑𝑒𝑛| and b𝑜𝑢𝑡 ∈ R|𝑉𝑡𝑟𝑔| are parameters defining the output
layer of the decoder, |𝑉𝑡𝑟𝑔| is the target vocabulary size and |ℎ𝑖𝑑𝑑𝑒𝑛| is the hidden layer
dimension, which is a user-defined hyperparameter of the model. The vector vector h𝑑𝑒𝑐

𝑡 ∈
R|ℎ𝑖𝑑𝑑𝑒𝑛| is computed by the decoder.

The hidden decoder layer is a recursively defined function, taking as input the previous
hidden decoder state h𝑑𝑒𝑐

𝑡−1 and a vector representation y𝑡−1 ∈ R|𝑒𝑚𝑏| of the previous
output 𝑦𝑡−1:

h𝑑𝑒𝑐
𝑡 = 𝑓𝑑𝑒𝑐(y𝑡−1, h𝑑𝑒𝑐

𝑡−1) ∶= tanh(U𝑑𝑒𝑐y𝑡−1 + W𝑑𝑒𝑐h𝑑𝑒𝑐
𝑡−1 + b𝑑𝑒𝑐)

where W𝑑𝑒𝑐, U𝑑𝑒𝑐 and b𝑑𝑒𝑐 are the parameters of the hidden layer. The decoder is
initialized using a context vector c0 which is emitted by the input encoder.

The hidden encoder layer uses the same type of recursive function as the decoder, but
with different inputs and parameters. A hidden input state ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐

𝑗 is computed as

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐
𝑗 = 𝑓𝑒𝑛𝑐(x𝑗, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐

𝑗−1 ) ∶= tanh(U𝑒𝑛𝑐x𝑗 + W𝑒𝑛𝑐⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐
𝑗−1 + b𝑒𝑛𝑐) with ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐

0 = 0 .

Like the hidden decoder layer, for each input position 𝑗 ∈ 1...|𝑥|, the layer takes as input
the previous hidden encoder state ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐

𝑗 ∈ R|ℎ𝑖𝑑𝑑𝑒𝑛| and a vector representation of the
𝑗-th input word x𝑗 ∈ R|𝑒𝑚𝑏|. The parameters of the hidden encoder layer are W𝑒𝑛𝑐 ∈
R|ℎ𝑖𝑑𝑑𝑒𝑛|×|𝑒𝑚𝑏|, U𝑒𝑛𝑐 ∈ R|ℎ𝑖𝑑𝑑𝑒𝑛|×|ℎ𝑖𝑑𝑑𝑒𝑛| and b𝑒𝑛𝑐 ∈ R|ℎ𝑖𝑑𝑑𝑒𝑛|. In a simple NMT
model without attention layer, the final encoder output ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐

𝐽 is used to initialize the
encoder. A graphical representation of this simple model is shown in Figure 2.4.
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Figure 2.4 Recurrent sequence-to-sequence model.

𝑓𝑒𝑛𝑐 and 𝑓𝑑𝑒𝑐 can be replaced by Long-Short-Term Memory (LSTM) units (Hochreiter &
Schmidhuber, 1997) or Gated Recurrent Units (GRU) (Cho et al., 2014) in order to prevent
the problem of vanishing gradients during training (Goodfellow et al., 2016, Section 10.10).
These units are equipped with a gating mechanism that controls how much of the gradient
is propagated to the next step. We use both types of units in our experiments and will
specify the selected unit when describing the experimental setup.

The input and output vector representations, or embeddings, x𝑗 and y𝑡 are dense real-
valued vectors with a dimensionality |𝑒𝑚𝑏| ≪ |𝑉 |. Embeddings can be computed by
applying a linear transform to a one-hot input encoding r:

x𝑗 = Er𝑗 where r𝑗 ∈ {0, 1}|𝑉 |,
|𝑉 |
∑
𝑖=1

r𝑗[𝑖] = 1, (2.16)

where the embedding matrix E ∈ R|𝑒𝑚𝑏|×|𝑉 | is learned jointly with the other parameters of
the model. As r𝑗 is a one-hot encoding of the 𝑚-th item in 𝑉𝑠𝑟𝑐, Equation 2.16 corresponds
to looking up the 𝑚-th column of E.

In order to couple the beginning of the source and target sequence more closely, Sutskever
et al. (2014) proposed to encode the input sentence in reverse order. The reverse hidden
encoder states are computed as:

⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖h𝑒𝑛𝑐
𝑗 = 𝑓(x𝑗, ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖h𝑒𝑛𝑐

𝑗+1 ) = tanh(U𝑒𝑛𝑐x𝑗 + W𝑒𝑛𝑐⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖h𝑒𝑛𝑐
𝑗+1 + b𝑒𝑛𝑐) .

This method has been extended further to a bidirectional encoder, which performs both a
left-to-right and a right-to-left pass over the input and concatenates both hidden states as

h𝑒𝑛𝑐
𝑗 = [⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗h𝑒𝑛𝑐

𝑗 ); ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖h𝑒𝑛𝑐
𝑗 )] with h𝑒𝑛𝑐

𝑗 ∈ R2|ℎ𝑖𝑑𝑑𝑒𝑛|
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2.3 Neural Machine Translation

where [ ] represents vector concatenation.8 A closer coupling between encoder and decoder
can be achieved through an attention mechanism. This mechanism computes a context
vector c𝑡 at each output step 𝑡 as a weighted sum over the hidden encoder states with
attention weights 𝛼𝑗,𝑡:

c𝑡 =
𝐽

∑
𝑗=1

𝛼𝑗,𝑡 ⋅ h𝑒𝑛𝑐
𝑗 with c𝑡 ∈ R|ℎ𝑖𝑑𝑑𝑒𝑛|

The attention weight vector 𝛼𝑡 is computed by taking a softmax over unnormalized at-
tention scores 𝑎𝑗,𝑡. These are computed by applying an additional non-linear layer to the
hidden encoder and decoder states9

𝑎𝑗,𝑡 = (w𝑎𝑡𝑡 ⊤ tanh(W𝑎𝑡𝑡h𝑒𝑛𝑐
𝑗 + U𝑎𝑡𝑡h𝑑𝑒𝑐

𝑡 + b𝑎𝑡𝑡)) ,

where W𝑎𝑡𝑡, U𝑎𝑡𝑡 ∈ R|ℎ𝑖𝑑𝑑𝑒𝑛|×|ℎ𝑖𝑑𝑑𝑒𝑛| and b𝑎𝑡𝑡, w𝑎𝑡𝑡 ∈ R|ℎ𝑖𝑑𝑑𝑒𝑛|. Through an atten-
tion layer, the coupling between decoder and encoder now happens at every each time
step. h𝑑𝑒𝑐

𝑡 is now computed depending on the previous context vector:

h𝑑𝑒𝑐
𝑡 = 𝑓𝑑𝑒𝑐(y𝑡−1, c𝑡−1, h𝑑𝑒𝑐

𝑡−1)

The output layer then uses the current context vector:

𝑝(𝑦𝑡|𝑦<𝑡, 𝑥) = softmax(W𝑜𝑢𝑡h𝑑𝑒𝑐
𝑡 + U𝑜𝑢𝑡c𝑡 + b𝑜𝑢𝑡) .

2.3.2 Training

NMT models are standardly trained to minimize the cross entropy of the model prediction
̂𝑦 and a reference 𝑦∗, which corresponds to maximum likelihood estimation. If we assume

that at each step 𝑡 the reference token 𝑦∗
𝑡 has a probability of 1 and all other token in 𝑉𝑡𝑟𝑔

have a probability of 0, minimizing cross entropy between this distribution and the model
distribution amounts to minimizing the negative log-likelihood of the reference under the
model:

𝐿𝑀𝐿𝐸(𝑦(𝑖)) = − 1
|𝑦∗|

|𝑦∗|
∑
𝑡=1

log(𝑝𝑤(𝑦∗
𝑡 ∣ 𝑥, 𝑦∗

<𝑡)) .

8Note that if a concatenation of hidden states is generated by the encoder, either the hidden layer
dimensionality |ℎ𝑖𝑑𝑑𝑒𝑛| needs to be adjusted in the decoder to match the hidden encoder dimension,
or an additional transformation needs to be applied to the encoder output.

9This description follows the original description of attention in Bahdanau et al. (2015), which is imple-
mented in the nematus toolkit used in this work (Sennrich et al., 2017).
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The model parameters 𝑤 are optimized using stochastic gradient descent (SGD). As an
online learning algorithm, SGD performs an update after one single training example,
as opposed to batch algorithms, which only update after seeing the entire finite training
set. Online algorithms are used to train NMT models, because the size of the training
set precludes the application of a batch algorithm. However, a minibatch version of SGD
with minibatch size 𝑀 ∶ 1 < 𝑀 ≪ |𝑋| leads to more stable learning and allows to
exploit hardware parallelism (see Goodfellow et al. (2016), Section 8.1.3). Algorithm 1
shows SGD in a minibatch version for the MLE objective. More advanced algorithms
such as ADADELTA (Zeiler, 2012) or Adam (Kingma & Ba, 2015) compute a per-
coordinate learning rate based on previous updates, allowing to control the rate at which
each parameter is updated. This thesis uses both SGD and more complex optimizers.

Algorithm 1 SGD
Require: Learning rate 𝜂, minibatch size 𝑀
Require: Initial parameters 𝑤

1: while Stopping criterion is not reached do
2: Sample minibatch of 𝑀 examples (𝑥1, 𝑦1), ...(𝑥𝑀, 𝑦∗

𝑀)
3: 𝑔 ← 1

𝑀 ∇𝑤 ∑𝑀
𝑚=1 𝐿𝑀𝐿𝐸(𝑦∗

𝑚) ▷ compute gradient estimate
4: 𝑤 ← 𝑤 − 𝜂𝑔 ▷ apply update
5: end while
6: return 𝑤

The gradients for a neural network with respect to each parameter are computed automat-
ically using the back-propagation algorithm (Rumelhart, Hinton, & Williams, 1986). This
algorithm provides a dynamic programming method for automatic differentiation with
respect to the different parameters. It performs calculations by representing the neural
network as a computation graph. In this directed acyclic graph, each node represents a cal-
culation, with the children of a node representing the arguments. The network is applied
to an input by a forward pass over the computation graph. A backward pass computes
the derivatives, given the forward computation. Building computation graphs and per-
forming forward and backward passes can be easily done using libraries such as theano10,
pytorch11 or tensorflow12. The training algorithms above can be applied to any neural
network architecture. In order to compute gradients for recurrent neural networks using
back-propagation, the recursive node is unrolled over all time steps. The gradients are
then computed backwards for each time step, a procedure called back-propagation through
time (BPTT). As propagating error through very deep networks can be subject to vanish-
ing or exploding gradient problems, we use LSTM or GRU layers and clip the gradients if
their norm is larger than a given threshold (Pascanu, Mikolov, & Bengio, 2013).

10deeplearning.net/software/theano. Note that theano is no longer being developed, but has been
included as it has been used in parts of this dissertation.

11pytorch.org
12tensorflow.org
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Figure 2.5 The NMT pipeline

2.3.3 Decoding and Pipeline

Decoding in an NMT model tries to find the sequence ̂𝑦 such that

̂𝑦 = argmax
𝑦

|𝑦|
∏
𝑡=1

𝑝𝑤(𝑦𝑡|𝑥, 𝑦<𝑡) .

The output sequence is generated step-by-step until the end-of-sentence marker is gener-
ated or a maximum step size is exhausted. The simplest, greedy approach to decoding,
outputs the most likely word at each time step. Using beam search instead of greedy
search allows the model to explore a larger search space or to generate the 𝑛 most likely
hypotheses, where 𝑛 is the beam size. In this approach, at 𝑡+1, the model expands each of
the current hypotheses with the 𝑛 most probable words, but only keeps top 𝑛 hypotheses
with the highest total score. By avoiding the limiting independence assumptions of the
SMT models, NMT models have surpassed SMT in benchmark evaluations and become
the state of the art at the time this thesis was written. Using a recurrent encoder-decoder
architecture with attention allows for a much simpler training protocol compared to the
SMT pipeline, as shown in Figure 2.5. A drawback of the NMT architecture is its high
computational cost requiring specialized hardware (Graphical Processing Units) and its
need for large training data to achieve good performance. These factors make SMT still
an attractive choice for low-resource settings.
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CHAPTER 3

Exploiting Meta-Information for Task-Specific Parallel Data Mining

In-domain supervision is crucial when adapting a translation model to a new, known do-
main. But what if there is no full supervision available for the target domain? A known
approach to this problem is to extract pseudo-parallel sentences or smaller fragments from
weaker sources of supervision, such as comparable corpora. In this case, document meta-
data or cross-lingual document-level links can play a crucial role in identifying candidate
sentence pairs. This chapter studies translation of microblog messages as a previously
unexplored task. We present a tailored approach to the topically constrained extrac-
tion of pseudo-parallel microblog messages for an Arabic-English translation task using
a cross-language information retrieval model. Document meta-information present in the
messages is used to identify topically relevant messages and as an additional source of
information in the retrieval model.

Our work starts out from the observation that information and comments about events
of global significance will dissipate on public microblogging platforms like Twitter1 simul-
taneously and multilingually. Being able to access content from different languages or
to automatically make content available in different languages, could provide a valuable
service to those involved in the event, as well as international organizations or aid work-
ers. Twitter messages (tweets) are challenging to translate automatically, mainly because

1https://twitter.com/

27

https://twitter.com/
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the length restriction and informal register of tweets give rise to creative and varied uses
of written language. Non-standard spelling and punctuation are used intentionally for
pragmatic purposes, such as emphasis or expressing a user’s emotion or the strength of
their opinion. Abbreviations, colloquial expressions and syntactic variation present fur-
ther challenges. For a detailed analysis of linguistic variation in social media and their
challenges for Natural Language Processing (NLP) applications, see e.g. Eisenstein (2013).
Language use on twitter can differ greatly from the formal register used in machine trans-
lation training sets from parliamentary proceedings or news articles, thus causing a large
percentage of out-of-vocabulary terms (OOVs).

Twitter’s Streaming API enables users to access large amounts of Twitter messages via a
crawler. These messages are presented as structured data. They contain metadata such
as time stamps, a user’s location, gender, and other metadata, which users can choose
to disclose. They also contain markup from within the text. Users can link to URLs,
annotate their messages with topic or discourse markers, so-called hashtags (marked by
a preceding ‘#’), or mention other users (marked by a preceding ‘@’) . When referring to
the same event, the same hashtags are often used across languages. Given the observation
that users are spreading the same information about globally significant events in more
than one language and that they use the same annotations, we hypothesize that some of
the messages will be parallel or nearly parallel. This chapter describes first describes a
method for identifying nearly parallel tweets in a topically constrained setting using a tai-
lored cross-language information retrieval model. Second, various methods are described
and evaluated for integrating the nearly parallel tweets with a phrase-based statistical
machine translation (SMT) system trained on out-of-domain data. The effectiveness of
the approach is demonstrated on the task of Arabic-English translation of tweets related
to the aftermath of the Arab Spring.

This chapter presents work published in Jehl et al. (2012). This work was conducted
jointly with the co-authors of the paper. As the main ideas were being developed collab-
oratively, they will be included here. Concerning implementation and modeling details,
the chapter will focus on the work conducted by the author of this thesis and summarize
briefly any relevant portions of the work which were mainly conducted by co-authors.
While co-developing the overall approach and having input on all parts of the work, the
author of this thesis was mainly responsible for: (1) Strategies for the extraction of phrases
from noisy pseudo-parallel data. (2) A development set of manually translated tweets, col-
lected via a crowdsourcing task, along with a description and analysis of the task. (3) An
extensive series of experiments which evaluate various adaptation strategies on the Twit-
ter translation task, including our custom strategies. (4) A quantitative and qualitative
analysis of the different systems. The rest of this chapter is structured as follows: Section
3.1 gives an overview of related work. Section 3.2 describes our approach. Section 3.3
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describes and analyzes the generation of an in-domain evaluation set via crowdsourcing.
Section 3.4 specifies our experimental setup and presents the results. In Section 3.5 a
quantitative and qualitative analysis of results is conducted.

3.1 Related Work

In recent years, Twitter has become a genre of interest to many parts of the NLP commu-
nity. This has led to a large volume of publications and a dedicated annual workshop on
Natural Language Processing for Social Media, which was first held in 2013.2

The potential of using social media content for disaster relief, one of the motivations of
our work, has also been explored, for example, in the 2013 IJCNLP workshop on Lan-
guage Processing and Crisis Information.3 This workshop focused mostly on the Tōhoku
earthquake of 2011, and contributors did not use multilingual data. The Haitian Creole
translation task at WMT 20114 targeted the translation of short text messages, a domain
similar to microblog messages, in the aftermath of the 2010 earthquake in Haiti. Like
us, participants of this task faced a difficult domain with very little in-domain training
data (17,192 sentences). The proposed solutions included the use of crowdsourcing (Hu et
al., 2011) or parallel data extraction from comparable data (Hewavitharana, Bach, Gao,
Ambati, & Vogel, 2011).

Automatically extracting parallel data from multilingual document collections has also
been of general interest to the SMT community. Early research has focused on the ex-
traction of parallel data from newswire (Fung and Cheung (2004); Munteanu and Marcu
(2005); Tillmann and Xu (2009)). More recent work has targeted large-scale crawled web
data (Smith et al. (2013)) or Wikipedia (Gupta, Pal, and Bandyopadhyay (2013); Ture
and Lin (2012); Wołk and Marasek (2015)). While the approaches above focus on aligning
parallel sentences in comparable documents, other work has tackled the task of extracting
parallel fragments in non-parallel sentences (Bakhshaei, Safabakhsh, and Khadivi (2019);
Cettolo, Federico, and Bertoldi (2010); Munteanu and Marcu (2006); Quirk, Udupa, and
Menezes (2007); Vogel and Hewavitharana (2011)). Munteanu and Marcu (2006) is closest
to our work, since they also use word-based cross-language information retrieval.

Our work, which was published in 2012, is the first to venture into the task of translating
tweets. Since then, other researchers have taken up this task. While we use CLIR to iden-

2https://sites.google.com/site/socialnlp2016/
3https://sites.google.com/site/lpci2013workshop/
4http://www.statmt.org/wmt11/featured-translation-task.html

29

https://sites.google.com/site/socialnlp2016/
https://sites.google.com/site/lpci2013workshop/
http://www.statmt.org/wmt11/featured-translation-task.html


3 Exploiting Meta-Information for Task-Specific Parallel Data Mining

keyword list crawl

SRC
tweets

TRG
tweetscandidate

retrieval

TRG-SRC
pairs

SRC-TRG
pairs candidate

consolidation

candidates
phrase

extraction

phrase table

decoding

SRC input
out-of-domain
phrase table

TRG output

Figure 3.1 Pipeline for building an adapted Twitter translation system.

tify nearly parallel tweets across languages, Ling, Xiang, Dyer, Black, and Trancoso (2013)
extract in-domain training data by identifying bilingual users on Twitter or Sina Weibo
and extracting parallel segments from single tweets. Like us, they also use crowdsourcing
to create an in-domain test set (Ling, Marujo, Dyer, Black, & Trancoso, 2014). In 2015,
a shared task on translating tweets was organized (see Alegria et al. (2015)).5 The test
data for this task was obtained both by identifying bilingual users and by crowdsourcing
translation of tweets.

3.2 Approach

This section describes our approach to extracting topically constrained pseudo-parallel
tweets and to integrating these tweets with an existing out-of-domain translation system.
As the approach follows a pipeline architecture, the first part of the section surveys the
entire pipeline. The subsequent parts contain detailed descriptions for more complex steps.
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3.2 Approach

3.2.1 Pipeline Overview

Our goal is to build a domain-specific Twitter translation system which can be used for
translating tweets about events or developments of global significance. Twitter is dif-
ferent from other comparable corpora, because we do not have reliable document-level
alignments. However, hashtags, user mentions and URLs provide us with a weak guid-
ing signal. Furthermore, for most comparable corpora, document alignment and sentence
alignment are two separate steps, and sentence alignment is often non-trivial. Since tweets
cannot exceed 140 characters,6 we do not differentiate between document and sentence
level and thus do not require a separate sentence alignment step. In line with our motiva-
tion to build translation systems for events of global significance, we tailor our approach to
the extraction of topically constrained tweets, where the topic is defined by a user-supplied
keyword list. Our 5-step pipeline is shown in Figure 3.1. Below, we outline each step.

Step 1: Crawl. We start by creating a database of topically relevant Twitter messages.
The database is constructed via a keyword-based crawl of the Twitter Streaming API.
Keywords can be constructed by starting a test crawl with a seed set of relevant person
or place names and tracking frequent terms within the crawl to find common spelling
variations or additional important terms. In this step, we take advantage of within-text
annotations (hashtags and usernames). These are often in English, even if the rest of the
tweet uses another language.

Step 2: Candidate retrieval. After filtering and de-duplication of the crawled tweets,
we search for nearly parallel pairs of tweets within the database. This is accomplished by
performing cross-lingual information retrieval using tweets in one language as a query to
retrieve similar tweets in the other language. Again, this step makes use of within-text
annotations, as hashtags, usernames and URLs are used across languages.

Step 3: Candidate consolidation. The cross-lingual retrieval model provides a ranking
of target language tweets for each source language query. After retrieval, a consolidation
step uses this ranking information to create the final set of pairs. We explore different
consolidation strategies.

5http://komunitatea.elhuyar.eus/tweetmt/
6This restriction has been changed to 280 characters in 2017 (Rosen, 2017).
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Step 4: Phrase extraction. In the 4th step, we extract an in-domain phrase table for
adapting an existing SMT model from the accepted pairs. We try out two different strate-
gies for phrase table extraction.

Step 5: Decoding. For decoding, the extracted phrase table is integrated with the
existing system. We look into different phrase table combination strategies and compare
our approach to other adaptation methods.

In our experiments, step 1 ran over a period of several months. In a case of urgency, our
setup could be used in an iterative fashion, starting out from a small database, which is
then updated as more messages come in. Steps 2 to 5 could then be performed in regular
intervals.

3.2.2 Database Generation and Cross-lingual Pairing of Tweets

The first two steps of our method, database generation and candidate retrieval, were
implemented by Felix Hieber. We therefore focus on the description of the retrieval model
and the most relevant implementation details. The reader is referred to Jehl et al. (2012)
for more details about the implementation.

Retrieval model. We apply a word-based probabilistic cross-language information re-
trieval model to construct candidate pairs of English and Arabic tweets. This model
combines the generative probabilistic cross-lingual retrieval model of Xu, Weischedel, and
Nguyen (2001) with the concept of self-translation as formulated by Xue, Jeon, and Croft
(2008). In this context, self-translation refers to a translation model mapping a source
term onto itself in the target output. The retrieval score between a query 𝑞 = 𝑞1, … , 𝑞|𝑞|
from a source language query collection 𝑄 and a document 𝑑 = 𝑑1, … , 𝑑|𝑑| from a target
language document collection 𝐷 is defined as the likelihood of 𝑑 having generated 𝑞 as
follows:

𝑃(𝑞|𝑑) = ∏
𝑞𝑖∈𝑞

𝑃(𝑞𝑖|𝑑) (3.1)

= ∏
𝑞𝑖∈𝑞

𝜆𝑃𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝑞𝑖|𝑑) + (1 − 𝜆)𝑃backoff (𝑞𝑖|𝑄) (3.2)

𝑃𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝑞𝑖|𝑑) = 𝛽 ∑
𝑑𝑗∈𝑑

𝑃𝑇𝑀(𝑞𝑖|𝑑𝑗)𝑃 (𝑑𝑗|𝑑) + (1 − 𝛽)𝑃self (𝑞𝑖|𝑑) (3.3)
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Equation 3.1 defines the probability of generating 𝑞 as the product of the probabilities
of the individual query terms 𝑞𝑖 given document 𝑑, showing that the model treats query
terms independently. Equation 3.2 then defines the query term probability as a linear
interpolation between a translation probability defined with respect to 𝑞𝑖 and 𝑑, and a
backoff probability. The backoff probability is computed between 𝑞𝑖 and the collection
of queries in the source language, 𝑄. It acts as a smoothing distribution to avoid zero
terms in the product. Finally, Equation 3.3 defines the translation probability between
𝑞𝑖 and 𝑑. This distribution is also defined as a linear interpolation between two distribu-
tions. The first term defines the probability of 𝑞 having been generated by 𝑑 through a
translation process. As it is unknown which document term generated a query term, this
probability is computed by taking the expectation over all document terms. 𝑃𝑇𝑀(𝑞𝑖|𝑑𝑗)
is the Translation Model probability of query term 𝑞𝑖 given document term 𝑑𝑗. This
probability is weighted by the probability of term 𝑑𝑗 in 𝑑. The second interpolation term,
the self-translation probability 𝑃self (𝑞𝑖|𝑑), represents the probability of 𝑞𝑖 being directly
generated by 𝑑 without a translation step. The self-translation probability is an important
component of the model, as it captures tokens which are identical across languages, such
as hashtags, user mentions, and URLs. As these tokens are very unlikely to appear in a
word translation table from out-of-domain data, their translation probability will likely
be zero. The self-translation probability will still assign some probability mass to occur-
rences of, e.g., the same hashtag across tweets. The distributions 𝑃backoff (𝑞𝑖|𝑄), 𝑃(𝑑𝑗|𝑑)
and 𝑃self (𝑞𝑖|𝑑) are each estimated via relative frequency estimation on monolingual in-
domain data. 𝑃𝑇𝑀(𝑞𝑖|𝑑𝑗) requires a word translation model, which can be estimated, for
example, by running one or more of the IBM models (Brown et al., 1993). The interpola-
tion weights 𝜆 and 𝛽 are hyperparameters to be specified by the user.

Implementation notes. Twitter messages were crawled over a period of 4 months from
September 2011 until January 2012 via the Streaming API7 in keyword-tracking mode,
using a list of keywords related to the events of the Arab spring. The database consisted
of 25.5 million Twitter messages. After filtering out languages other than English and
Arabic8 and removing tweets repeated by users (called re-tweets), 6.6 million Arabic and
5.1 million English tweets remained. In order to find nearly parallel pairs of tweets,
the system performs a cross-language information retrieval step using the retrieval model
described above, where tweets in one language are treated as queries and tweets in the
other language as documents. This step is performed in both directions, Arabic → English
and English → Arabic. 𝜆 and 𝛽 were selected by grid search on our in-domain development
set (see Section 3.3, as well as Section 5.2 in Jehl et al. (2012)) and set to 0.9. Computing

7https://dev.twitter.com/docs/streaming-api/
8Language filtering was done using a Naive Bayes classifier implemented in the Java language detection

library by Nakatani Shuyo https://github.com/shuyo/language-detection

33

https://dev.twitter.com/docs/streaming-api/
https://github.com/shuyo/language-detection


3 Exploiting Meta-Information for Task-Specific Parallel Data Mining

consolidation # extracted pairs

top3 14.8 million
top1 5.1 million
top1 + intersect 3.5 million

Table 3.1 Extracted sentence pairs for different consolidation strategies.

retrieval probabilities over the Cartesian product of the Arabic and English tweets was
made possible by the use of an efficient Lucene9 index for storing pre-computed word
probabilites and running the model on a Hadoop10 cluster. The retrieval step produces a
ranking of target language tweets for each source language tweet.

3.2.3 Candidate Consolidation Strategies

In this step, we condense the rankings produced by the retrieval step into a set of accepted
bilingual pairs. Due to the shortness of tweets, we do not need to perform sentence
alignment. Instead, each accepted pair of tweets can be treated as a “parallel” sentence
pair. The first strategy, topN, adds the 𝑁 highest-ranking tweets paired with the query
to the set of accepted pairs. The second strategy, intersect, requires retrieval in both
language directions. The consolidation step then returns the intersection between the
topN results in both directions. Table 3.1 shows example counts of extracted pairs for
the different strategies. The top1+intersect strategy reduces the number of returned
sentences by 31%.

3.2.4 Phrase Extraction Strategies

Since the retrieval-based pairing is noisy, we first pursue a conservative approach to ex-
tracting phrases from pseudo-parallel Twitter data (conservative). The conservative
strategy is inspired by the work of Munteanu and Marcu (2006). They extract parallel
fragments from comparable sentences by starting out with alignment points from a clean
lexicon and then applying a smoothing filter to extract longer fragments. Our approach
constructs word alignments for the pseudo-parallel candidates using word alignment ta-
bles from the out-of-domain translation model. We then apply the grow-diag-final-and
heuristic (Koehn et al., 2003) to these initial alignments and use Och and Ney (2004)’s

9lucene.apache.org
10hadoop.apache.org
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consolidation extraction # extracted phrases

top3 conservative
(bidirectional, 𝑚 = 3)

7 million

top1 bold 54 million
top1+intersect bold 29 million

Table 3.2 Phrase table sizes for bold and conservative extraction strategies.

phrase extraction algorithm to construct an in-domain phrase table. This approach is
similar to the smoothing approach mentioned before, as unaligned words from the vicinity
of the initial alignments points will be added to the phrases by the extraction algorithm.

Constraints on the translation table and the minimum required alignment points can
make this approach more or less restrictive: Experiments can either use alignments from
unidirectional translation tables (unidirectional) or, in an even stricter setup, use a
bidirectional word translation table (bidirectional), which only contains word pairs
occurring both in the Arabic → English and English → Arabic word translation tables.
Candidate pairs can further be filtered according to the number of initial alignment points,
requiring each accepted pair to have at least 𝑚 alignment points. The conservative strategy
is tested with different consolidation settings up to top10.

The conservative phrase extraction strategy is restrictive, because it only learns new words,
which occur in the proximity of known words from the out-of-domain model. Therefore,
this strategy is contrasted with a bolder strategy (bold). The bold strategy treats the
extracted candidate pairs like a parallel data set and runs EM-based word alignment from
scratch. In order to combat noisy phrases and to keep data size manageable, the bold
strategy is only applied to candidate sets generated with the top1 and top1+intersect
consolidation approaches. For all experiments, only phrases up to length 3 are extracted
from the candidate pairs (the default is 7) in order to avoid learning too much noise.

Table 3.2 shows examples of extracted phrase table sizes using the bold and conservative
strategies. The conservative strategy extracts much fewer phrases than the bold strategy,
even though the bold strategy uses top1 consolidated pairs and the conservative strategy
uses top3 consolidated pairs. Replacing top1 consolidation with top1+intersect for the
bold strategy reduced the phrase table size by 46%, while still producing 4 times more
phrases than the conservative strategy.
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3.3 Evaluation Data Construction

In order to measure performance of our approach, a small in-domain evaluation set is re-
quired. As we did not have access to professional translators, this evaluation set was cre-
ated using Amazon Mechanical Turk11. In setting up the task we followed the exploratory
work of Zaidan and Callison-Burch (2011b) on acquiring translations via crowdsourcing.
This section describes the task setup as well as an analysis of the performance by the
“turkers” (workers on Amazon Mechanical Turk).

We randomly set aside 2,000 Arabic tweets from the filtered crawl for manual translation.
Hashtags, user mentions and URLs were removed from each message beforehand, because
they do not require translations and would just artificially inflate BLEU scores at test
time. Additional cleaning and filtering was done manually. We discarded messages which
contained very little text or large portions of other languages, and removed any remaining
Twitter markup. 1,029 tweets were retained as input to the Mechanical Turk task. We
split the data into batches of ten sentences. Each batch then made up one HIT (human
intelligence task). We require each HIT to be completed by three different workers. In
order to have some control over translation quality, we inserted one control sentence per
HIT, which was taken from the LDC-GALE Phase 1 Arabic Blog Parallel Text. We
selected this data set because of its similarity to the Twitter domain. Workers were payed
10 cents per translation. Following the recommendation of Zaidan and Callison-Burch
(2011b), all Arabic sentences were converted into images in order to prevent workers from
pasting them into online translation engines. The instructions asked translators to insert
an “unknown” token whenever they were unable to translate a word. Additionally, the
HIT setup did not allow workers to skip a sentence, forcing them to complete an entire
batch.

The HITs were completed by 38 workers in total. Most HITs were completed within
three days. Workers who entered random symbols were easily identified manually, as they
took only few seconds per HIT. These worker’s submissions were rejected and the workers
banned from completing more HITs. Figure 3.2 shows the number of completed HITs
per worker. It can be seen that most workers completed only few HITs: There were 26
workers who completed five HITs or less, while twelve workers completed more than five
HITs, and only four workers completed more than 20 HITs. Worker 22, who completed
70 HITs, is an outlier. Figure 3.3 on page 38 shows the average time each worker spent
on each HIT. We can see that worker 22 spent 500 seconds per HIT, while others took
six times as long. This low average time indicates that worker 22 invested less effort than
others to produce translations. For future crowd-sourcing experiments, requiring workers
11http://www.turk.com
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Figure 3.2 Number of HITs completed per worker.

to spend a minimum time on each HIT could help with potential low-effort translators.
Alegria et al. (2015) automatically rejected workers who took less than 150 seconds to
translate ten tweets. With an average of 500 seconds per HIT, worker 22 is still far above
this threshold. On inspection, it was decided to accept the submissions by this worker,
since the translations were of inferior quality, but were clearly better than random input.
By collecting three translations per input, we allowed for some translation mistakes to be
balanced out by the other translations. Table 3.3 on page 38 shows example translations for
one of the quality control sentences, along with the reference translation by a professional
translator. The example illustrates the tendency of translators to make grammar mistakes
or odd word choices. Translators also tended to omit punctuation marks. However, some
variations in the translations was caused by reasonable translation alternatives (such as
“gathered” and “collected” in the example).

Our final evaluation data set consisted of 1,029 tweets with three translations each. In
order to account for translation variants, all three translations obtained via Mechanical
Turk are used as references for each input tweet. We randomly split our small parallel
corpus, using half of the tweets for development and half for testing.
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Figure 3.3 Average time per HIT per worker.

Reference breaking the silence, a campaign group made up of israeli soldiers,
gathered anonymous accounts from 26 soldiers.

Translation 1 and breaking silence is a group of israeli soldiers that had unknown
statistics from 26 soldiers israeli

Translation 2 breaking the silence by a group of israeli soldiers who gathered
unidentified statistics from 26 israeli soldier.

Translation 3 breaking the silence is a group of israeli soldiers that collected
unknown statistics of 26 israeli soldiers

Table 3.3 Example of crowd-sourced translations.

3.4 Experiments

This section describes the out-of-domain baseline system, as well as various adapted base-
lines using only monolingual Twitter data and the crowd-sourced development set. We
then compare these results to the results obtained by using various configurations of our
approach described above, which uses the automatically extracted pseudo-parallel data.
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3.4.1 Experimental Setup

Baseline SMT system. A baseline model was trained using 5.8 million parallel sentences
in Modern Standard Arabic (MSA) and English from the 2009 NIST Open Machine Trans-
lation evaluation campaign12. This data contains parallel text from different domains, in-
cluding UN reports, newsgroups, newswire, broadcast news and weblogs. The English side
of the data was used to train a 5-gram language model. All experiments were conducted
using the Moses machine translation toolkit13 (Koehn et al., 2007) with standard settings.
Language models were built using the SRILM toolkit14 (Stolcke, 2002). The models used
the standard dense features implemented in Moses (language model, 7 distortion model
weights, 5 translation model weights and word penalty). Feature weights were tuned us-
ing MERT (Och, 2003). The baseline weights were optimized using the development data
from the NIST evaluation (696 segments with 4 references).

Pre-processing. We applied several pre-processing steps to the Arabic and English data.
To avoid sparsity, we normalized all digits by replacing them with one single digit, but
preserving the structure of numerical expressions. All Arabic sentences were transliter-
ated using the Buckwalter Arabic transliteration scheme15 to avoid encoding difficulties.
Transliteration was done using the MADA toolkit (Habash & Rambow, 2005). For Arabic
tokenization, we chose not to use MADA/TOKAN, because we found that the imple-
mentation did not scale to our dataset (millions of microblog messages). Instead, we
implemented the simpler approach by Lee, Papineni, Roukos, Emam, and Hassan (2003)
for tokenization. This approach only requires a small set of annotated data to obtain a list
of prefixes and suffixes and uses 𝑛-gram models to determine the most likely prefix∗-stem-
suffix∗ split of a word. The 𝑛-gram model required for tokenization was trained on 5.8
million Modern Standard Arabic sentences from the NIST evaluation campaign. This data
had previously been tokenized with the same method, trained to match the Penn Arabic
Treebank, v3 (Maamouri, Bies, Buckwalter, & Mekki, 2004). All English sentences were
tokenized and lowercased using scripts from the Moses toolkit. We removed all Twitter-
specific text markup from Twitter data for translation, since it was not included in our
evaluation set (see Section 3.3).

Adaptated baselines. We compare our approach with a series of known adaptation meth-
ods that only use monolingual in-domain data and/or a small tuning set. A similar set of

12nist.gov/itl/iad/mig/open-machine-translation-evaluation
13http://statmt.org/moses/
14speech.sri.com/projects/srilm/
15qamus.org/transliteration.htm
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experiments is conducted in Bertoldi and Federico (2009) on Spanish-English adaptation
in the domain of parliamentary proceedings. We conduct experiments using three adapta-
tion methods: First, the crowd-sourced in-domain development set is used for optimizing
the weights of the feature weights as proposed by Koehn and Schroeder (2007). Second,
the English tweets in our crawl are used to build a 5-gram in-domain language model.
This adaptation technique was first proposed by Zhao, Eck, and Vogel (2004). Third, the
Arabic portion of our crawl is used to synthetically generate additional parallel training
data. This is accomplished by machine-translating the Arabic tweets with the best sys-
tem after performing the first two adaptation steps, as proposed by Ueffing, Haffari, and
Sarkar (2007). Due to time constraints, only 1 million randomly selected Arabic tweets
are used to generate synthetic parallel data. We also combine all three approaches de-
scribed above. All experiments are compared to a baseline of using no in-domain data for
translation model, language model and weight optimization.

Our Approach. Using the best adapted model, we then integrate the phrase tables cre-
ated by our method. Moses offers different mechanisms for phrase-table combination. We
experiment both with a strategy which loads translation options from both phrase tables,
along with the back-off mechanism, where the in-domain phrase table is only used if no
translation is found in the original phrase table.

3.4.2 Experimental Results

For all experiments, we report lowercased BLEU-4 scores (Papineni et al., 2002) as calcu-
lated by Moses’ multi-bleu script. For assessing significance, we apply an approximate
randomization test (Noreen, 1989; Riezler & Maxwell, 2005), computed with the multe-
val toolkit (Clark, Dyer, Lavie, & Smith, 2011).

Table 3.4 shows BLEU scores for the baseline, as well as language model, tuning set and
self-training adaptation. All adaptation experiments were significantly better than the
unadapted baseline. Using the in-domain development set while leaving everything else
untouched led to an improvement of about 1 BLEU point over the baseline (Experiment
2). Experiments 3 and 4 use a Twitter language model. Experiment 3 improved over
the baseline by 2 BLEU points, while Experiment 4, which used only in-domain language
model and development data, improved by 1.8 points. There was no significant differ-
ence between Experiments 3 and 4. These results confirm Bertoldi and Federico (2009)’s
findings of the language model being the most helpful component for domain adaptation.
Experiment 5 used both in-domain and out-of-domain language models. The language
models were treated as separate features in the log-linear model (called “log-linear in-
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translation model language model dev set % BLEU

1 NIST NIST NIST 13.90
2 NIST NIST Twitter 14.83
3 NIST Twitter NIST 15.98
4 NIST Twitter Twitter 15.68
5 NIST Twitter & NIST Twitter 16.04
6 self-train Twitter & NIST Twitter 15.79
7 self-train & NIST Twitter & NIST Twitter 15.94

Table 3.4 Domain adaptation experiments. Boldface indicates a significant improve-
ments over baseline (1).

terpolation” by Foster and Kuhn (2007)). There was no significant improvement over
Experiments 3 and 4. In Experiments 7 and 8 a translation model was either trained
completely on synthetically generated parallel in-domain data (7) or on the combination
of self-translated and out-of-domain data (8). We observed no improvement by adding
self-translated data to our translation model. As has been observed before by Bertoldi
and Federico (2009), it did not matter whether the synthetic data were used on their own
or in addition to the original training data. We use the configuration from Experiment 5
in all further experiments, since it yielded the highest absolute BLEU score.

Table 3.5 on page 42 shows the results for our approach, using different consolidation and
extraction settings. For the experiments using conservative extraction (Experiments 8a-
11), differences are small across different settings. Results 8a and 9a clearly perform worse
other experiments with the same consolidation setup, showing that requiring five or more
bidirectional alignment points for candidate pairs to even be considered is too restrictive.
Due to time constraints and small differences in results not all phrase extraction settings
were tried out with all candidate consolidation approaches. The unidirectional, 𝑚 = 3
setting can be compared across all consolidation approaches (Experiments 8c, 9c, 10a and
11). For this setting, less restrictive consolidation (top10) seems to work better, although
the differences between experiments are small. The best result for conservative phrase
extraction (Experiment 9b) uses top3 consolidation and filters all candidates with less
than 3 bidirectional alignment points. This setting produces an improvement of 1
BLEU point over Experiment 5.

Experiments 12, 13 and 14 use the bold phrase table extraction strategy. Compared to the
conservative strategy, the bold strategy produced a much larger improvement of almost 3
BLEU points over the adapted baseline and 5 BLEU points over the unadapted system.
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consolidation extraction phrase table
combination

%BLEU

8a top10 bidirectional, 𝑚 = 5 both 16.38
8b top10 bidirectional, 𝑚 = 3 both 16.52
8c top10 unidirectional, 𝑚 = 3 both 16.90

9a top3 bidirectional, 𝑚 = 5 both 16.59
9b top3 bidirectional, 𝑚 = 3 both 17.04
9c top3 unidirectional, 𝑚 = 3 both 16.86
9d top3 - both 16.96

10a top1 unidirectional, 𝑚 = 3 both 16.79
10b top1 - both 16.79

11 top1+intersect unidirectional, 𝑚 = 3 both 16.53

12 top1 bold both 18.73∗

13 top1+intersect bold both 18.85∗

14 top1+intersect bold back-off 18.85∗

Table 3.5 Variants of our approach using pseudo-parallel in-domain data. All runs use
the same configuration as Experiment 5 in Table 3.4 for development set and language
models. Boldface indicates a significant improvement over row 5 in Table 3.4 and ∗ indi-
cates a significant over row 9b, each at 𝑝 ≤ 0.01.

Results with the bold strategy are very similar to each other, but the best overall result
was achieved in experiment 14 by using top1+intersect consolidation and adding the in-
domain phrase table in back-off mode. This result suggests that the conservative strategy is
unable to capture much of the information present in the automatically extracted nearly
parallel tweets. It also suggests that the SMT model is able to handle a considerable
amount of noise in the phrase table without any further restrictions.

3.5 Analysis

This section contains a more in-depth quantitative and qualitative analysis to outline the
strengths and weaknesses of our proposed approach, as well as the remaining challenges.
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Out-of-vocabulary words. As mentioned above, the Twitter translation task suffers from
high numbers of out-of-vocabulary (OOV) items due to stylistic and orthographic vari-
ation. We therefore analyze to what extent the adapted models were able to solve this
problem. We measure the effect of OOV words by counting the number of tokens in Arabic
script that appear in the translated output. These tokens are copied and pasted into the
output string when the decoder is unable to find a good translation. The Arabic token
count is then divided by the total number of output tokens to compute the Arabic (AR)
token rate. Table 3.6 reports the Arabic token rate for Experiments 1 (baseline with no
adaptation), 5 (language model and development set adaptation), 9b (conservative trans-
lation model adaptation on top of 5), and 14 (bold translation model adaptation on top of
5). We can see that the adapted baseline (5) and the conservative in-domain phrase table
(9b) have lower AR token rates than the unadapted baseline, with (9b) again having a
lower AR token rate than (5). However, the rate remains high. The model using the bold
in-domain phrase table (14), on the other hand, only has an AR token rate of 4.22%. This
result shows that there is a large overlap in Twitter- or topic-specific vocabulary between
the test data and the automatically extracted pseudo-parallel data, which the system is
unable to learn from the out-of-domain training data.

Experiment AR token rate

1 22.56
5 20.05
9b 17.47
14 4.22

Table 3.6 Arabic token rate for different adaptation methods.

Dialectal content. One difficulty posed specifically by Arabic-English translation of in-
formal content is the large dialectal variation within Arabic. As most of our out-of-domain
data set comes from official sources, it is mainly in Modern Standard Arabic. To gain an
impression of the amount of dialectal content in our data, we used the Arabic Online Com-
mentary Dataset created by Zaidan and Callison-Burch (2011a) to train language models
for the purpose of classifying our test data. Table 3.7 shows the distribution of dialects
in our test data according to language model probability of each tweet. This distribution
should be viewed with a grain of salt, since the shortness of tweets might cause unreliable
results when using a model based on word frequencies for classification. Still, the results
points to a high proportion of dialectal content and spelling variation in our data. One
frequent example of this is the preposition في , meaning “in”, which is often written as فى .
The out-of-domain translation model, as well as the conservatively extracted in-domain
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phrase table failed to translate this frequently occurring word. Only when applying the
bold phrase table generation strategy, did the system translate it correctly.

Dialect # Sentences

Egyptian 141
Levantine 147
Gulf 78
Modern Standard Arabic 145

Table 3.7 Dialectal content in our test set as classified by the AOC dataset.

Qualitative Analysis of translation examples. Pages 45 and 46 show examples of trans-
lations generated using the different adaptation methods to illustrate strengths and weak-
nesses of our approach. The source is given along with the crowd-sourced reference trans-
lations. We then compare translations generated by Experiments 1, 5, 9b and 14. We also
include a translation generated by Google’s online translation service16.

Example 1 contains a case where unknown words were learned through translation model
adaptation. Models 9b and 14 correctly translated the word مسيلات as “tear gas”, where
the baselines (1 and 5) passed through an unknown term. Even the Google translator
transliterated the word and produced the output “Msellat”. The unadapted baseline erro-
neously translated the ambiguous place name “sitra” as “jacket”. The same mistake was
made by the Google translator and by two of the human translators. Only Experiment
9b produced the correct translation. A similar problem occurred when translating the
ambiguous place name “wadyan”, which could also be taken as meaning “and religions”.
This error was probably introduced by our pre-processing, which incorrectly split off the
prefix “w” which often carries the meaning “and”.

In Example 2, our best system (14) clearly outperformed all other systems, as it was the
only one of our systems to translate the proper names “obama” and “al awlaki” at all.
This shows the success of our method at adapting to specific terminology of the target
domain.

16translate.google.com. Note that the translations were obtained in early 2013 and do not reflect the
current state of the service.
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Example 1

Source الدموع مسيلات وتطلق مترجلة واديان تقتحم الشغب قوات سترة
Ref. 1 vest riot forces break into wadyan by foot and trough gas tear

Ref. 2 sotra the riot forces enter on foot and shoot tear bombs

Ref. 3 the cover for riot police enters wadian walking and shoot tear bombs

Baseline (1) jacket riot forces storm and religions foot وتطلق مسيلات tears

(5) sitra and religions of the foot of the riot forces storm وتطلق مسيلات tears

(9b) in sitra riot police storming and religions of tear gas on foot

(14) the riot police stormed and religions of the foot firing tear gas

Online Riot troops stormed the jacket and religions foot and launches Msellat
tears

Example 2

Source العولقى مقتل عن اليوم سيتحدث أوباما
Ref. 1 obama will talk today about the killing of al - awlaki

Ref. 2 obama is talking today about el awlaqi death

Ref. 3 obama will speak today about the killing of al - awlaqi

Baseline (1) سيتحدث أوباما today killed العولقى
(5) سيتحدث أوباما friday for the killing of العولقى
(9b) أوباما today on the killing of

(14) obama today on the al awlaki killing

Online Obama will speak today the death of al-Awlaki
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Example 3

Source (: يستغيثون حماة في الشبيحة
Ref. 1 the gangsters in hama are asking for help

Ref. 2 the gangs in hamah are peading :)

Ref. 3 the thugs in hama are calling for help :)

Baseline (1) الشبيحة mired in calling for help : )

(5) الشبيحة in hama calling for help : )

(9b) inside the protectors of the calling for help : )

(14) shabiha in hama calling for help : )

Online Cbihh in Hama are crying :)

Example 4

Source الأوبرا بسنترال غرفة فى الشركة رئيس يحتجزون للاتصالات ية بالمصر عاملون :: يـه حـر
Ref. 1 freedom :: workers in the egyptian for communication are holding the

company president in a room in the opera central

Ref. 2 freedom , workers in egypt for calls detain the head of the company in
a room in opera central

Ref. 3 hurriya :: workers in telecom egypt detaining the president of the com-
pany in a room in the opera central

Baseline (1) : : free workers بالمصرية للاتصالات holding company chairman فى بسنترال
الأوبرا chamber

(5) : : workers free بالمصرية للاتصالات holding company chairman بسنترال
الأوبرافى room

(9b) free : : afcd بالمصرية hold ceo hostage ppl is the president of the chamber
of بسنترال الأوبرا

(14) egypt : : workers telecom workers are holding the head of the company
in the chamber of really opera

Online Freedom :: Telecom Egypt workers holding company’s president in a
room Psontral Opera
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While the first two examples resemble news text, Example 3 is a more informal message.
It is particularly interesting to note that with our best system (14) the term “shabiha” is
learned, which was used in Syria to mean “thugs” and specifically refers to armed civilians
who assaulted protesters against Bashir Al-Assad’s regime (see Syria unrest: Who are the
shabiha?, 2012).

Example 4 also shows substantial unknown word reduction by our best system. However,
the term بسنترال الأوبرا (“in Opera Central”, the location of Telecom Egypt) is incorrectly
translated as “really opera”.

Conclusions

In this chapter, we have formulated the hypothesis that document meta-information con-
tained in Twitter messages could be leveraged to extract pseudo-parallel in-domain data
to build a topically constrained translation system. Such a system could be helpful for,
e.g., aid workers, the press or people involved in events of global significance. To test
our hypothesis, we developed a tailored approach for mining pseudo-parallel data from
a large crawl of Twitter messages. Document meta-information was used to crawl rele-
vant messages, as well as to pair tweets cross-lingually. We also leveraged the shortness
of tweets, which allowed us to directly pair retrieved candidate tweets with query tweets
without having to perform sentence alignment. We then tested different ways of using
those messages to improve an out-of-domain SMT system. Besides several ways of fil-
tering candidate pairs returned by the retrieval step, we also compared conservative and
bold strategies for extracting an in-domain phrase table. To evaluate our method we used
an in-domain evaluation data set of relevant Arabic tweets, for which we solicited English
translations using crowdsourcing. Analysis of the crowdsourced translations shows that
with our setup it was possible to obtain an evaluation set in a reasonable amount of time.
Workers who cheated the system could be easily filtered by the task completion time.
Redundancy was found to be crucial, as the translations are not of professional quality,
as expected. In the experiments, various configurations of our method were compared
experimentally. We also tested several baselines using only monolingual Twitter data and
the Twitter development set for adaptation.

The results showed that

• standard adaptation methods produced an improvement of up to 2 BLEU points
over the out-of-domain baseline.
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• the conservative phrase table extraction strategy improved the system by up to 1
BLEU point over the adapted baseline.

• the bold phrase table extraction strategy improved the system by almost 3 BLEU
points over the adapted baseline.

A quantitative and qualitative analysis of the translations showed that translation of
proper names and Arabic dialectal content still remains a challenge. However, it also
showed that a substantial reduction of out-of-vocabulary terms can be achieved by our
method.

Applicability to Neural Machine Translation (NMT) While our experiments have been
conducted using an SMT system, the approach can be adapted to the neural paradigm.
Our final system combines phrase tables from general-domain data with an in-domain
phrase table. While this approach cannot be directly translated to NMT, there are several
approaches to integrating in-domain data into an NMT model. First, continued training
(Freitag & Al-Onaizan, 2016; M.-T. Luong & Manning, 2015) utilizes smaller amounts
of in-domain data by first training a model on a large general domain data set and then
continuing to train on the smaller in-domain data to bias the model towards the target
domain. Second, if there is sufficient data, separate in-domain and out-of-domain models
can be trained and combined by ensemble decoding as done in Sutskever et al. (2014).
Finally, back-translation of monolingual in-domain data has shown much more promise for
NMT than self-translation approaches have for SMT (Sennrich, Haddow, & Birch, 2016b).
The CLIR model also utilizes a word translation table, created by the IBM models for word
alignment algorithm associated with SMT. Recent work on neural information retrieval has
suggested using word embeddings to model word translation probabilities for monolingual
information retrieval (Zuccon, Koopman, Bruza, & Azzopardi, 2015). T. Luong, Pham,
and Manning (2015) inter alia present ways to learn bilingual word embeddings ,which
would allow to transfer this approach to the bilingual case.
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CHAPTER 4

Simulating Task Loss Using Citation Information for Query Translation

We now turn to a scenario where full supervision for translation is available. This means
that we have a large parallel data set from the desired domain. But what if the downstream
application we are interested in is not translation, but another multilingual task? In
this case, the translations may need to fulfill requirements that cannot be captured by
optimizing a translation quality metric on references. The task studied in this chapter is
query translation for cross-lingual patent prior art search as a downstream application. In
this scenario, search queries have to be constructed from full-text patent applications. But
even though full supervision is provided for end-to-end translation, no direct supervision is
available for query translation. Unlike end-to-end translation systems, a query translation
system is judged by its ability to generate queries which return relevant documents when
passed to a retrieval system, not by their fluency or adequacy. We therefore propose an
adapted training objective and algorithm to directly optimize a query translation system
for retrieval performance. Given the absence of large-scale training data for this task, we
use document information in the shape of cross-lingual document-level links to provide a
training signal. More specifically, we simulate the task of patent prior art search using
citation information in a large multilingual patent collection.

Before a patent application can be granted, the office to which the patent has been sub-
mitted, has to confirm the invention’s novelty by checking that it is not part of the state
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of the art.1 Any existing patents invalidating an application’s novelty are called prior
art. Identifying such prior art is the main objective of patent prior art search. Patent
prior art search is usually conducted by a trained human patent examiner. Given a new
patent application, the examiner’s task is to identify any previously published patents
which invalidate the proposed patent’s novelty. While automating prior art search may
not eliminate the need for human review, it has the potential to speed up the search
process. In particular, automatic query translation could replace a costly manual process
of constructing a search query and translating query terms into the desired target lan-
guage. In combination with a strong end-to-end translation system, the entire process of
cross-lingual patent prior art search could be conducted in a single language. Automated
cross-lingual prior art search also helps inventors, who could use such a system to check
for existing prior art before filing a patent application. Prior art search differs from other
retrieval tasks in two ways: First, the search query consists of a full-text document. These
queries make it necessary to use a full SMT system rather than a simple dictionary lookup
of terms, as might be sufficient for, e.g., web search queries. Second, patents, as well as
their publication history, are publicly available, allowing us to build a large data set for
training purposes.

In this work we focus on optimizing query translation for prior art search. We compare
untuned translation systems to translation systems optimized for translation quality and
for retrieval quality. Our main contributions are: (1) An objective and training algorithm
for directly optimizing patent query translation for retrieval performance, as well as an
analysis of the hyperparameters and a proof-of-concept evaluation of the approach. (2) The
construction of large-scale training and evaluation data for Japanese-English cross-lingual
patent retrieval. (3) A competitive Japanese-English patent translation system. While
contribution (1) is entirely the author’s own work, contributions (2) and (3) were made
in collaboration with other authors and published in Sokolov et al. (2013) (contribution
2) and Simianer et al. (2013) (contribution 3). After reviewing related work in Section
4.1, we describe the construction of a large-scale data set for Japanese-English cross-
lingual patent retrieval in Section 4.2. Section 4.3 gives details on the Japanese-English
patent translation system. Section 4.4 presents a task-specific learning objective and a
framework for optimizing the translation model for this objective. Lastly, Section 4.5
describes experiments and discusses results. This section also contains some analyses
which motivate design and feature choices.

1See for example Article 54 of the European Patent Convention ( http://www.epo.org/law-practice/
legal-texts/html/epc/2016/e/ar54.html).
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4.1 Related Work

4.1 Related Work

There is a substantial amount of prior work on automated patent retrieval and patent
translation, including several benchmark tasks. From 2009 to 2013, the CLEF Initiative2

organized an Intellectual Property track (CLEF-IP). This track featured various patent
related tasks, including patent prior art search on a multilingual document collection from
the European Patent Office (EPO). The test collection created for this task is similar to
the data set which is presented in this work. Differences with respect to our data set
and task setup will be discussed in Section 4.2. Benchmarks for patent translation and
patent retrieval were also held at the NTCIR workshops3 from 2002 to 2013. The patent
translation system presented here was submitted to the NTCIR-10 patent translation
workshop in 2013, where it performed comparatively well. Section 4.3 contains our system
description.

Most multilingual patent retrieval approaches use translation as a black box. Magdy and
Jones (2011) suggest to learn a translation system on pre-filtered data. Their experiments
mainly aim to speed up the translation process, while ours target the question how to
optimize the translation system for patent retrieval. The work most similar to ours is
Nikoulina, Kovachev, Lagos, and Monz (2012). They use data from the CLEF AdHoc-
main, AdHocTEL and GeoCLEF tracks for training and evaluate on the CLEF AdHocTEL
task. Like us, they use a ranking algorithm. However, their work re-ranks 𝑘-best trans-
lation outputs, leaving the translation system untouched. Our work goes further insofar
as we specifically try to re-train the translation system to produce good search queries.
Their approach offers the advantage that they can extract additional syntactic features
from the completed hypotheses. However, their results fail to identify robust features
across language pairs, and are often very similar for different feature sets, making it hard
to determine whether syntax features actually help in query translation.

Since our work focuses on translation, we consider a scenario where we are given a mono-
lingual retrieval system. We aim to produce query translations that will optimize this
system’s performance. Other recent work has sought a tighter integration of retrieval
and translation in a probabilistic model (Ture, Lin, & Oard, 2012) or by using the SMT
decoder directly for document ranking (Hieber & Riezler, 2015). While these approaches
have shown promising improvements in retrieval quality, they also face issues of scalabil-
ity. In contrast, our approach requires additional training time, but does not slow down
test time performance compared to a direct translation baseline which produces target
language queries by running a task-agnostic translation system.

2http://www.clef-initiative.eu/web/clef-initiative/home
3http://research.nii.ac.jp/ntcir/index-en.html
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4.2 Creating a Crosslingual Patent Retrieval Corpus

The creation of this data set was carried out collaboratively with the author taking main
responsibility, but other co-authors also contributing. We will give pointers to related
publications where applicable.

As mentioned in the introduction, we focus on the task of simulated patent prior art search.
Graf and Azzopardi (2008) describe a method to build an annotated test collection for
patent prior art search. They suggest to exploit the patent citation graph to extract
relevance judgments for patent retrieval from patent citations. The key idea of their
proposal is to regard patent documents that are cited in a query patent, either by the
patent applicant, or by the patent examiner in a patent office’s search report, as relevant
for the query patent. We adopt this approach. This means that our setup does not directly
mimic prior art search, as our system is tasked with producing all patents cited by an
application document, and rank them in the correct order - with examiner citations being
assigned higher relevance than applicant citations. This method has also been applied to
generate a test collection from European patent documents for CLEF-IP shared tasks for
2009 and 2010 (Roda, Tait, Piroi, and Zenz (2010), Piroi and Tait (2010)). However, these
evaluations do not focus on the multilingual/translation aspect but more on the retrieval,
as they allow versions of documents in all three official European patent languages. Since
this study is focused on the translation system, only the source language portions of a
query and only the target language portions of a document are extracted. This setup does
not fully match the reality of patent prior art search, as many documents are partially
translated, but provides a cleaner test bed for evaluating only query translation.

This study uses Japanese-English patent translation. The data set is based on Japanese
patent applications from the NTCIR evaluation. Cross-lingual citation information is
extracted from the citation graph provided with the MAREC4 data set. This data set
includes citation information for patents published in Japan and in the United States.
Since the MAREC corpus only contains English abstracts for Japanese patents, but not
the Japanese full texts, the patent documents in the NTCIR-10 test collection described
above are merged with the Japanese (JP) section of MAREC, allowing them to conform to
MAREC’s XML format. Following previous work, we use the cross-lingual applicant and
examiner citations of patent documents published by the United States Patent and Trade-
mark Office (USPTO) for each Japanese patent application to define relevance levels.As
applicant citations have been found to be less relevant than examiner citations (Criscuolo
& Verspagen, 2008), they are assigned a lower relevance level (level 1) than patents cited
by an examiner (level 2). Additionally, family patents are also added to the set of relevant

4http://www.ifs.tuwien.ac.at/imp/marec.shtml
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4.3 A Japanese-English Patent Translation System

#queries (JP) #relevance links (JP-EN) #unique docs (EN)

train 107,061 1,422,253 888,127
dev 2,000 26,478 25,669
test 2,000 25,173 24,668

Table 4.1 Statistics of the query and document collections of BoostCLIR. Queries are
extracted from Japanese patent applications. The second column lists the total number of
relevance links between Japanese and English patents extracted from the citation graph.
The third column lists the number of unique English relevant documents.

documents for training. Two patents are in the same family if they are granted by differ-
ent authorities but related to the same invention. As family patents are often translations
of the original document or at least closely comparable, we assign to them the highest
relevance level (level 3). The extraction and validation of the patent citation relations was
in part carried out in Ruppert (2013).

Information to reproduce our final data set has been published at http://www.cl.uni
-heidelberg.de/statnlpgroup/boostclir. Training, development and test sets used
by the experiments reported in Sokolov et al. (2013) are provided in this data set. The
training set is restricted to data from the years 2003-2005, as this leaves data from previ-
ous years for training the patent translation system. The document collection for training
contains all USPTO patents from 2003-2005 that were included in the MAREC collec-
tion. Development and test sets are sampled from applications submitted in 2006-2007.
They each contain 2,000 queries. The document collections for development and test set
have been obtained by randomly adding irrelevant documents from the NTCIR-10 collec-
tion until two pools of 100,000 documents are obtained. Table 4.1 contains summarizing
statistics of the collection.

4.3 A Japanese-English Patent Translation System

Patent translation is a challenging task in itself. The jargon, technical vocabulary, and
highly idiomatic sentence structure require a system trained on genre specific data and
an elaborate pre-processing pipeline. At the same time, patents can be easier to translate
than other genres, because their language is highly regulated and very repetitive, and does
not contain named entities. Along with the large volume of parallel or highly comparable
multi-lingual patent documents, these facts make SMT very well-suited for patent trans-
lation. Our system further exploits these characteristics by introducing sparse lexicalized
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features. This section describes the HDU system submitted to the NCTIR-10 shared task
on patent translation. It is based on the system description published as (Simianer et al.,
2013). Work by other authors of this paper will be presented summarily and indicated as
such.

4.3.1 System Setup

When translating from Japanese into English, the typical long sentences of patent text
present an even more pressing problem than they would in languages with similar word
order. We employ a hierarchical phrase-based translation model (Chiang, 2005) to bet-
ter handle reordering problems. We use the implementation of the model in the cdec
toolkit (Dyer et al., 2010). During training, symmetrized word alignments are generated
using GIZA++ (Och & Ney, 2003) on lowercased data in both directions and applying
the grow-diag-final-and heuristic (Koehn et al., 2003). The SCFG-grammars required
for cdec are induced from the word alignments using the method described by Lopez
(2007). We include a 5-gram language model trained with the SRILM toolkit (Stolcke,
2002). Given these settings, we train a baseline using 12 dense decoder features, which
are tuned using minimum-error rate training (MERT) (Och, 2003). The final benchmark
system includes two crucial modifications of this baseline: First, an extended, tailored
pre-processing pipeline and second, a multi-task tuning method, which includes lexical-
ized sparse features. Both modifications and their impact are described below.

4.3.2 Preprocessing

The specialized vocabulary of patents, along with the particular challenges posed by
Japanese-English translation requires task-specific pre-processing. In order to deal with
this problem, our system draws from several pre-existing approaches to put together a
tailored pre-processing pipeline.

The MeCab5 toolkit is used for segmentation of Japanese text. We apply several post-
processing steps to the segmented output to alleviate over-segmentation of ASCII-strings
and under-segmentation of katakana terms. Due to their technical nature, the patent
texts contain a large number of non-Japanese expressions, such as abbreviations, patent
identifiers or English terms. Since the non-Japanese-characters in the provided data are
in Fullwidth Latin, MeCab tends to heavily over-segment them at each character posi-
tion, leading to faulty alignments. Therefore, we convert all fullwidth Latin characters

5https://code.google.com/p/mecab/
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Baseline In addition, リヤバンパービーム 111 is inclined in the direction
of the arrow, and load is applied to

+katakana-split In addition, the rear bumper beam 111 is inclined in the direc-
tion of the arrow and load applied to the rear bumper beam 111
escapes.

reference In addition, if the rear bumper beam 111 inclines in the arrow
direction, the load acting on the rear bumper beam 111 will escape.

Table 4.2 Example illustrating the effect of splitting katakana transliterations of English
compounds.

to ASCII format before running the segmenter. Even with this format, tokenization of
ASCII strings occurring in English and Japanese sentences is sometimes inconsistent. To
avoid this problem for training, we follow Ma and Matsoukas (2011)’s approach for Chi-
nese segmentation and tried to enforce one consistent tokenization to ASCII-strings in the
Japanese training data and to their English counterparts. For the parallel training data,
we use regular expressions to align ASCII-strings between Japanese and English and then
replace strings in Japanese with their English counterparts. For the Japanese test data,
we always use the tokenization which has been seen most often in the training data.

We also follow Feng et al. (2011), who apply a modified version of the compound splitter
described in Koehn and Knight (2003) to katakana strings. Katakana characters are
used in Japanese for foreign loan words, many of which are transliterations of English
compound words. These katakana strings are not split by MeCab, causing additional
out-of-vocabulary (OOV) words or faulty alignments. Applying compound splitting to
katakana strings reduces the number of OOV terms in the devtest set from 98 to 34.
Table 4.2 shows an example translation where katakana splitting is crucial to produce the
correct translation.

In addition to the above steps, a modified version of the Moses tokenizer6 is applied to
the English side of the training data. The tokenizer’s list of prefixes where no whitespace
is inserted before a punctuation mark is extended to include patent-specific prefixes such
as “Chem”, “FIG” or “Pat”. This pre-processing step has been implemented by one of the
co-authors, while the other pre-processing steps have been implemented by the author of
this thesis.

The combined pre-processing pipeline produces an improvement of 1 BLEU point over
a baseline using the segmenter and tokenizer without modifications. After decoding, the

6github.com/moses-smt/mosesdecoder
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system % BLEU

RWTH-2 33.08
HDU-2 32.07
HDU-1 31.92
BASELINE-2 28.86
BASELINE-1 28.56
ONLINE-1 24.24

Table 4.3 Experimental results on the Intrinsic Evaluation set at the NTCIR10
Japanese-English patent translation subtask. HDU-1 and HDU-2 are identical, except
for HDU-2 stopping early in the tuning phase. HDU-2 ranks second among systems which
use a constrained data setup.

system output is detokenized and recased using the Moses tools, with the recaser trained
on the truecased English side of the training data.

4.3.3 Tuning and Shared Task Results

For the final system we use the pairwise ranking optimizer dtrain (Simianer et al., 2012),
which, unlike MERT, is able to handle the tuning of hundreds of thousands of sparse
lexicalized features. dtrain also includes a framework for multi-task training with feature
selection, thus allowing to tune on larger data sets. Multi-task tuning with sparse features
produces a gain of 1.16 BLEU points over the baseline described above, which uses 12
dense features and MERT-tuning. For details on the tuning experiments, which were
carried out by another co-author, refer to Section 4.3 of Simianer et al. (2013). Our
benchmark system uses multi-task tuning with sparse feature selection on 5 development
sets of approximately 1,000 sentences. Table 4.3 shows the official benchmark results. By
combining a hierarchical phrase-based model with a tailored pre-processing pipeline and
sparse features selected with multi-task tuning, our systems (HDU) are able to perform
2nd and 3rd best on the patent translation task, substantially outperforming the baselines
supplied by the task organizers. For full listings of results for all subtasks and evaluations
see Goto, Chow, Lu, Sumita, and Tsou (2013).
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4.4 A Pairwise Ranking Framework for Retrieval-Optimized
Translation

Given a strong translation system and a large data set for cross-lingual patent retrieval,
we now propose a method to bridge the gap between end-to-end translation and monolin-
gual retrieval by specifically optimizing query translation for retrieval performance. We
present ROPE, a retrieval-optimized pairwise ranking perceptron algorithm for patent
query translation.

Loss function We use the pairwise ranking perceptron for retrieval-based optimization.
This is well-suited to this task as it is linear in the number of training examples and able
to handle large amounts of sparse features. It is easy to implement and does not require
a gold reference. We assume a log-linear SMT model with 𝑚 feature functions 𝜙(𝑥, ℎ, 𝑦)
weighted by weights w. The features are defined over in input 𝑥 = 𝑥1, … , 𝑥𝑖 in the source
language, a latent derivation ℎ and the translation 𝑦 = 𝑦1, … , 𝑦𝑗 in the target language
yielded by ℎ. We further require an external metric 𝛿(𝑦) which assigns a non-negative
real-valued score to translations. The pairwise ranking perceptron optimizes the following
structured hinge loss:

𝐿𝑝𝑒𝑟𝑐_𝑟𝑎𝑛𝑘 = ∑
(𝑦,𝑦′)∈𝒫(𝑥)

max (0, −w⊤Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′)) , (4.1)

with
Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′) = 𝜙(𝑥, 𝑦, ℎ) − 𝜙(𝑥, 𝑦′, ℎ′) .

𝑦 and 𝑦′ are translations from the output space of 𝑥, 𝒴(𝑥), with their corresponding
derivations ℎ and ℎ′. Let 𝒫(𝑥) be a set of translation pairs such that 𝑦 is preferred over
𝑦′ according to the metric 𝛿:

𝒫(𝑥) = {𝑦, 𝑦′ ∈ 𝒴(𝑥) ∣ 𝛿(𝑦) > 𝛿(𝑦′)}

This loss can be optimized using stochastic subgradient descent with the gradient being
defined as

∇w𝐿𝑝𝑒𝑟𝑐_𝑟𝑎𝑛𝑘 =
⎧{
⎨{⎩

−Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′) if Δ𝜙(𝑥, 𝑦, ℎ, 𝑦′, ℎ′) < 0
0 otherwise .

The output space 𝒴(𝑥) is often too large to be efficiently enumerated, but can be ap-
proximated by a 𝑘-best list of translations which we designate by 𝒦(𝑥). Further, heuristic
methods have been used to restrict the set 𝒫(𝑥) to the most informative pairs (see Hopkins
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& May, 2011; L. Shen & Joshi, 2005; Simianer et al., 2012). The pairwise ranking percep-
tron has been successfully applied for the optimization of end-to-end translation models
by Hopkins and May (2011) and Simianer et al. (2012). For end-to-end translation, the
metric 𝛿(𝑦) is computed with respect to a reference translation 𝑦∗, using a sentence-level
approximation of the BLEU score (Nakov et al., 2012).

Retrieval metric For the task of query translation there are no reference translations.
Instead, we are given a set of multi-sentence queries 𝑞 in the source language and docu-
ments 𝐷 in the target language. For each query, a set of relevant documents 𝐷+(𝑞) ⊂ 𝐷
is provided by cross-lingual document-level links. We assume a monolingual retrieval
model retrieve(𝑞, 𝐷) which, given a query, outputs a list of the top 𝑁 highest-ranking
documents 𝑑 ∈ 𝐷 with respect to the query. We then define the metric 𝛿(𝑦) for query
translation as

𝛿( ̃𝑞) = score(retrieve( ̃𝑞, 𝐷), 𝐷+(𝑞)) ,

where ̃𝑞 is a translated query containing 𝑦. For the score operator, we use Normalized
Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002) For a query 𝑞𝑗,
considering the top 𝑁 returned results, NDCG is defined as

NDCG(𝑞𝑗) = 𝑍𝑁𝑗
𝑁

∑
𝑚=1

2𝑅(𝑗,𝑚) − 1
log2(1 + 𝑚) ,

where 𝑅(𝑗, 𝑚) refers to the relevance score assigned to the document returned at rank 𝑚
with respect to query 𝑗, and 𝑍𝑁𝑗 is a normalizing factor, which ensures that a perfect
ranking up to rank 𝑁 will receive an NDCG score of 1. We use NDCG, as it is specifically
designed to handle non-binary relevance.

Handling multi-sentence queries. A learning algorithm for the envisaged setup must
address the issue that the translation system expects to process one sentence at a time,
while the performance metric is defined with respect to a query. A simple solution would
be to treat each translation as a search query in isolation and to ignore the given query
context. But including the query context for each translation 𝑦 would be a better match
for the task of query translation. The query context is included by treating each multi-
sentence query as a minibatch. Updates are accumulated over all training instances (pairs)
generated from one input query before updating the weight vector. Our algorithm first
generates 𝑘-best translations for each sentence in the query 𝑞, resulting in at most 𝑘 ⋅
|𝑞| translations. The query context ̂𝑞 is then generated by concatenating the Viterbi
translation ̂𝑦 for each sentence in 𝑞. Search queries ̃𝑞 are constructed by replacing a Viterbi
translation in ̂𝑞 with a translation 𝑦 ≠ ̂𝑦 from the corresponding 𝑘-best list. Retrieval is
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4.4 A Pairwise Ranking Framework for Retrieval-Optimized Translation

Algorithm 2 ROPE: Retrieval-optimized pairwise ranking perceptron
Require:

1: Number of epochs 𝑇 ,
2: Set of target language documents 𝐷,
3: Set of source language queries 𝑄 with relevance annotations 𝐷+(𝑞) for each 𝑞 ∈ 𝑄,
4: 𝑘-best list size 𝑘, learning rate 𝜂, document sample size 𝑠
5: w ← 0
6: for 𝑇 epochs do
7: for each query 𝑞 ∈ 𝑄 do
8: ̂𝑞 ← ∅
9: for each sentence 𝑥 ∈ 𝑞 do

10: 𝒦(𝑥) ← decode(𝑥, 𝑘, w) ▷ Generate 𝑘-best list
11: ̂𝑞 += ̂𝑦 ▷ Add top-1 translation to query context
12: end for
13:
14: 𝒫(𝑞) ← ∅ ▷ Initialize preference pairs.
15: 𝐷′ ← sample(𝑠, 𝐷) ▷ Sample documents.
16: for each sentence 𝑥 ∈ 𝑞 do
17: Ret(𝑥) ← ∅ ▷ Initialize retrieval scores
18: for each translation 𝑦 ∈ 𝒦(𝑥) do in parallel
19: ̃𝑞 ← replace( ̂𝑦, 𝑦) ▷ Insert translation into query
20: Ret(𝑥) += score(retrieve( ̃𝑞, 𝐷′), 𝐷+(𝑞))) ▷ Retrieval and scoring
21: end for
22: 𝒫(𝑞) += genpairs(𝒦(𝑥),Ret(𝑥)) ▷ Build preference pairs
23: end for
24:
25: for (𝑦, 𝑦′) ∈ 𝒫(𝑞) do
26: w += 𝜂∆𝜙(𝑦, 𝑦′) ▷ Update weights.
27: end for
28:
29: end for
30: end for

then performed for each candidate query, and the 𝑘-best lists are sorted according to
retrieval scores. For each input sentence 𝑥 ∈ 𝑞, a set of preference pairs is then created
from the corresponding 𝑘-best list and added to the set of pairs for the current query, 𝒫(𝑞).
Finally, the weight vector is updated for each pair. Algorithm 2 contains pseudocode for
our retrieval-optimized pairwise ranking perceptron (ROPE).

Implementation Notes. Using a retrieval-based metric requires running retrieval for 𝑘⋅|𝑞|
query translation candidates per input query. As we do not update the weights while
processing one query, we can speed up this step by scoring hypotheses in parallel. We
also do not use the full target document collection 𝐷 for scoring candidate queries, but
only use a sample 𝐷′ with |𝐷′| ≪ |𝐷| of irrelevant documents. The sample size 𝑠 is
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4 Simulating Task Loss Using Citation Information for Query Translation

a hyperparameter to be set by the user. We base our implementation on the code by
Simianer et al. (2012).7

4.5 Experiments

4.5.1 SMT and Retrieval Baselines

The translation system described in Section 4.3 is used in our experiments with minor
modifications. Our experimental system is trained only on the NTCIR-7 training data
(1.8 million sentence pairs). This data has been extracted from Japanese and English
patents published prior to 2003. We set aside patents published from 2003 to 2005 for
retrieval-based optimization. Using this setup, we create three baseline SMT systems: The
first system, manual, uses manually set weights for 12 default dense features: Language
model probability and language model OOV count, five rule translation probabilities, word
penalty and binary indicator features for source and source-target singletons, pass through
rules and glue rules.8 The second system, mert, optimizes weights for the 12 decoder
features for translation quality using minimum error rate training (MERT). The manual
weights are also used as input weights for MERT. The reported results are averaged
over three runs of MERT to account for optimizer instability. The third baseline, dtrain,
uses sparse lexicalized features (rule identifiers and target bi-grams) on top of the 12
decoder features. Feature weights are optimized for translation quality using the pairwise
ranking optimizer dtrain9 (Simianer et al., 2012). dtrain is trained for 10 epochs with
a learning rate of 1𝑒−5, a loss margin of 1, and a 𝑘-best size of 100. Final weights are
averaged (Collins, 2002). This baseline is very similar to our experiments with ROPE,
using the same pairwise ranking objective with the same sparse features, but optimizing
for translation quality. The mert and dtrain baselines both use the NTCIR-8 development
set (2,000 sentence pairs) for tuning. Unlike our benchmark system, we do not use multi-
tasking while tuning.

7The code is no longer being developed, but a legacy fork is available on https://github.com/pks/
cdec-dtrain-legacy.

8We use initial weights recommended by an earlier version of the CDEC documentation at
cdec-decoder.org/, but no longer included in the current version. The features and weights
are LanguageModel=0.1, LanguageModel_OOV=-1, CountEF=0.1, EgivenFCoherent=-0.1,
MaxLexFgivenE=-0.1, MaxLexEgivenF=-0.1, SampleCountF=-0.1, WordPenalty=-0.1,
IsSingletonF=-0.01, IsSingletonFE=-0.01, PassThrough=-0.1, Glue=0.01

9The code is no longer being developed, but a legacy fork is available on https://github.com/pks/
cdec-dtrain-legacy.
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4.5 Experiments

At retrieval time, all queries are translated sentence-wise and subsequently re-joined to
form one query per patent abstract. Our retrieval system uses the Okapi BM25 for docu-
ment ranking (Spärck Jones, Walker, & Robertson, 2000), and returns the top 𝑁 = 1, 000
documents per query. We evaluate retrieval only on level 1 and 2 annotations (appli-
cant and examiner citations). This setting more accurately represents the patent prior
art search scenario, as family patents (level 3) contain published versions of a patent
application at other patent organizations, rather than prior art. Additionally, retriev-
ing family patents is much easier than retrieving cited patents. For metrics that focus
on the top-ranked results, including family patents inflates scores. Besides NDCG, we
evaluate retrieval performance according to three metrics: The total number of returned
relevant documents (NUM_REL_RET), Mean Average Precision (MAP), and the Patent
Retrieval Evaluation Score (PRES) (Magdy & Jones, 2010). MAP returns the averaged
precisions over the top-1 up to 𝑛𝑗 ranked documents for a query 𝑞𝑗, where 𝑛𝑗 is equal to
the number of relevant documents for 𝑞𝑗:

MAP(𝑞𝑗) = 1
𝑛𝑗

𝑛𝑗

∑
𝑘=1

Precision(𝑅𝑘) ,

where 𝑅𝑘 refers to the set of the top-𝑘 ranked documents returned by the retrieval model
(Definiton follows (Manning, Raghavan, & Schütze, 2008)). While MAP is precision-
oriented, PRES has specifically been designed with patent prior art search in mind, and is
more oriented towards recall, as finding all relevant prior art is crucial to this task. For a
single query 𝑞𝑗 with 𝑛𝑗 relevant documents, considering the top 𝑘 returned results, PRES
is defined as

PRES = 1 −
1𝑛 ∑ 𝑟𝑖 − 1

2(𝑛 + 1)
𝑁 ,

where 𝑟𝑖 is the rank at which the 𝑖-th relevant document is retrieved. Magdy and Jones
(2010) show experimentally that PRES prefers a system which returns more relevant
documents within the top 𝑁 results, regardless of their ranks, to a system which returns
fewer relevant documents, but ranks them more highly.

4.5.2 Preliminary Analysis

ROPE approximates the search space over all possible translation hypotheses by using a
𝑘-best list. In this section, we conduct an analysis of the effect of several hyperparameters
on the 𝑘-best list in order to motivate design choices and to gauge the oracle performance
of our method. We analyze 𝑘-best lists generated by our baseline translation system.
We compare retrieval performance of the oracle hypothesis and model-best translation,
as measured by NDCG. As we are using multi-sentence queries, computing an oracle
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weights pop-limit 𝑁 Viterbi NDCG Oracle NDCG

manual 100 200 0.15473 0.194156
manual 100 1000 0.15473 (±0.0%) 0.209644 (+1.5%)
manual 200 1000 0.15286 (−0.2%) 0.213365 (+1.9%)
tuned (BLEU) 100 1000 0.15693 (+0.2%) 0.206901 (+1.3%)

Table 4.4 Effect of hyperparameters and tuning on one-best and oracle performance on
200 queries

with respect to retrieval quality is not straightforward. Finding the true oracle would
require scoring all possible combinations of all 𝑘-best hypotheses, which is prohibitively
expensive. We compute an approximate oracle using the following greedy approach: We
first construct queries using the one-best translations of each sentence in a query. We then
iterate over the sentences in the query, replacing the current sentence with each of the 𝑘-
best translations and scoring this query. Finally, we combine the top-scoring translations
for each sentence into a single search query. We generate 𝑘-best lists for 200 queries from
the BoostCLIR training set. All 𝑘-best lists are generated using a filter which ensures that
hypotheses differ by their surface string, and not just by their derivation.

Hyperparameters. Our first experiments investigate the effect of the length of the 𝑘-
best list and the cube-pruning pop-limit. Table 4.4 compares retrieval quality on oracle
queries and one-best queries. The difference between oracle and one-best NDCG is 4
percentage points. Increasing 𝑘-best size from 200 to 1,000 improved oracle NDCG by 1.5
percentage points. Raising the pop-limit and therefore allowing the model to explore a
larger portion of the search space, produced an additional, but smaller, increase in oracle
NDCG of 0.4 percentage points. One-best NDCG was actually decreased slightly. As both
hyperparameters affect decoding speed, we increase 𝑘, but keep the pop-limit fixed at 100.

Initial Weights We then look at the difference between tuning decoder weights for trans-
lation quality and using manually set weights. When using weights tuned for translation
quality, we observed a worse oracle NDCG compared to the manual weights, but a slightly
higher one-best NDCG. This points to the conclusion that translation and retrieval quality
are not independent. However, tuning for translation quality might produce a narrower
range of 𝑘-best hypotheses, leading to decreased oracle NDCG. We therefore decide to
initialize ROPE with manually set weights rather than weights optimized for translation
quality.
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filtering pop-limit 𝑁 Viterbi NDCG Oracle NDCG

unique 100 1000 0.15473 0.209644 (+1.5%)
bow+sw 100 1000 0.15473 0.231421 (+3.7%)
bow+sw+patent 100 1000 0.15473 0.231470 (+3.7%)

Table 4.5 Oracles for reranking on 200 queries

Filtering The baseline system uses a filtering scheme when producing 𝑘-best lists to en-
sure that all generated hypotheses differ by their surface string and not just by their latent
derivation. Since retrieval uses stopword-filtering and bag-of-words representations of the
queries, hypotheses differing only by word order will have identical scores. In order to
generate more diverse queries, we introduce a modified filtering scheme. This filter only
accepts a new hypothesis if its bag-of-words representation differs from previous hypothe-
ses. Additionally, we incorporate stopword filtering to enforce the creation of hypotheses
which differ by content words. We attempt to tailor the hypothesis generation even more
to the task of patent retrieval by adding patent-specific terms to the stopword list. We
construct a patent-specific stopword list by sorting all non-stopword terms according to
frequency and adding the 500 most frequent terms to the stopword list.

Table 4.5 shows oracle NDCG for 𝑘-best lists generated with standard filtering (unique),
bag-of-words filtering with general stopwords (bow+sw) and bag-of-words filtering with
general and patent stopwords(bow+sw+patent). Gains in Oracle NDCG are calculated
with respect to the first line in Table 4.4. We can see that introducing the bow+sw filter
produced a substantially higher oracle NDCG, showing that it is important to explore the
search space. Using additional stopwords from patents did not lead to an improvement.
We explore both unique and bow+sw filtering experimentally.

Figure 4.1 illustrates the effectiveness of our filtering scheme. The figure shows an example
plot of the NDCG-score for 𝑘-best translations by their ranks for an example 𝑘-best list
with unique filtering (left) and bow+sw filtering (right). The left graph shows has a much
larger range between maximum and minimum scoring hypothesis, and the top-scoring
“tier” of hypotheses is not generated at all with unique filtering. This figure also shows
no visible correlation between the ranking of hypotheses by the translation model and
their retrieval performance.
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(a) unique filtering

(b) bag-of-words + stopword filtering

Figure 4.1 Scatter plot of NDCG scores of top-1,000 translations for a single sentence
according to model score with different 𝑘-best filters.

Lexical differences and retrieval quality. We qualitatively examine the discriminative
power of individual lexical choices for retrieval quality using the same example as above.
Figure 4.2 lists the best and worst scoring translations according to NDCG in the filtered
𝑘-best list from Figure 4.1 and marks content words, which differ between the translations.
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Best solving means cast at least one portion of the rotor , the
rotor and the rotor extending around rotor on both sides of
the pair of side of the superconducting+ coil winding and
having a coil winding of the rotor between the pair of side
of at least one tension rod extending through the conduit
and tension coil housing , and each of the rod ends of coil
housing is mounted around the coil winding of a tension
rod to enclose .

Worst solving cast at least one portion of the rotor , the rotor and
the rotor extends around the rotor on both sides of the pair
of side of the superconductive− coil winding and having a
coil winding of the rotor between the pair of side of at least
one tension rod extending through the conduit and tension
coil housing coil housing is provided in each of the opposite
ends of the rod of the coil winding tension position around
the rod attached.

Figure 4.2 Best and worst scoring translations according to NDCG of a query us-
ing bow+sw-filtered 𝑘-best lists. Bold-faced terms occur only in the best translation,
underlined terms occur only in the worst translation.

We can see that the translations differ by only few terms. Figure 4.3 on page 66 shows
the same plot as Figure 4.1 (b), but marks each translation according to the presence or
absence of a single term in the translation. Subfigure (a) shows figure that the presence
or absence of the term “superconducting” in a translation almost perfectly separates the
top and bottom clusters according to NDCG. In contrast, the presence or absence of the
term “mounted” is not helpful. The term superconducting is very relevant for the patent
at hand10 , as can be seen by its appearance in the patent title (“Rotor coil support for
high-temperature superconducting synchronous machine equipped with tension rod, and
method of assembling the coil support”). Consequently, the translation choice of a single
term can have a large impact on NDCG. We allow the model to learn the importance of
certain words or phrases for retrieval by using sparse lexicalized features. As ROPE is
able to handle large feature sets, we add them to our model.

10The cited patent’s ID is JP-2003023766.
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(a) superconducting

(b) mounted

Figure 4.3 Figure 4.1b, filtered according to the presence or absence of a single term
(“superconducting” and “mounted”). “+” marks that the term is present in the translation,
“-” marks its absence.
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4.5.3 ROPE Training Setup and Hyperparameters

We train ROPE on 200 queries (798 sentences) from the BoostCLIR training set. We start
from the same initial weights that are used for the manual baseline, as well as to initialize
the mert baseline. Like the dtrain baseline we use rule identifiers and target bigram
features. Following our analysis in Section 4.4, we use filtered 𝑘-best lists with 𝑘=1,000
and set the cube pruning pop-limit for 𝑘-best list generation to 100. For retrieval-based
scoring during training, we sample 200 irrelevant documents per query and use MAP as
retrieval metric. For ROPE, we use a constant learning rate 𝜂 of 1𝑒−6 and a loss margin
of 1. We train ROPE for 10 epochs. Final weights are obtained by averaging over the
updated weight vectors for each epoch. In order to investigate the effect of training on a
weaker signal, we conduct an experiment using all relevance levels, as well as an experiment
using only levels 1 and 2 in training.

4.5.4 Results

Table 4.6 on page 68 shows results for the three baselines and ROPE. These results are ob-
tained by evaluating the systems on 200 heldout queries from the BoostCLIR training set.
When comparing the baselines, we see that the mert baseline with tuned weights improves
over the manual baseline according to the PRES metric and, very slightly, NDCG, while
causing a decrease in MAP. This result indicates that there is only a weak correlation be-
tween translation quality and retrieval quality. Comparing dtrain to manual, we observe
a reverse effect. Adding sparse features improves MAP, but leads to a slight decrease in
PRES and NDCG. Since MAP is precision-oriented, while PRES takes recall into account
more strongly, the baseline results indicate that mert tuning increases recall at the cost
of precision , while dtrain with sparse features increases precision at the cost of recall.

Training ROPE only on levels 1 and 2 (line 4), produces worse results than the baselines,
showing that the family citations are crucial for success. A possible explanation for this gap
is that the weaker training signal from levels 1 and 2 is a very poor fit for the translation
model, and guides the model to produce outputs that are no longer adequate translations.
ROPE, trained on all levels, is able to outperform the baseline systems according to all
retrieval metrics, leading to better precision, as well as recall. This result confirms that
optimizing a query translation SMT system using downstream task performance leads to
more task-appropriate translations. As the bag-of-words filtering scheme for generating
𝑘-best lists during training does not improve results on the heldout set, we revert to the
faster unique filtering scheme for further experiments.
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train setting NUM_REL_RET MAP NDCG PRES

1 manual baseline 7583 0.0482 0.14983 0.27983

2 mert baseline 7611,3 0.0466 0.15031,3 0.29221,3

3 dtrain baseline 730 0.05151,2 0.1496 0.2751

4 ROPE (levels 1,2) 712 0.042 0.1383 0.2717
5 ROPE (all levels) 798 0.05671,2,3 0.16361,2,3 0.30431,2,3

6 ROPE (all levels)
+bow

7681,2,3 0.05621,2,3 0.16151,2,3 0.29621,2,3

Table 4.6 Results for JP-EN patent retrieval on heldout data. Numbers in superscript
indicate that the result is better than the baseline with this row number.

train setting NUM_REL_RET MAP NDCG PRES

1 manual baseline 139402,3 0.14862,3 0.33232,3 0.55052,3

2 mert baseline 139363 0.14543 0.32873 0.54583

3 dtrain baseline 13349 0.1359 0.3136 0.5218

4 ROPE (levels 1,2) 13387 0.1262 0.3047 0.5199
5 ROPE (all levels) 140701,2,3 0.14991,2,3 0.33461,2,3 0.55191,2,3

Table 4.7 Results for JP-EN patent retrieval on test set. Numbers in superscript indi-
cate that the result is better than the baseline with this row number.

Table 4.7 shows results on the BoostCLIR test data. Here, we observe a different ranking:
The mert baseline clearly outperforms the dtrain baseline with respect to all evaluation
metrics. Both tuned baselines perform worse than the manually selected weights used
for the manual baseline. This result suggests that optimizing for BLEU will not yield
the best translation system for cross-lingual retrieval. ROPE, again, deteriorates in all
metrics if only on levels 1 and 2 are used as a training signal. When ROPE is trained on
all levels, however, the highest overall scores are achieved. However, the difference to the
manual baseline is small. This points to the conclusion that ROPE shows promise, but
more training might help to achieve larger gains.
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Conclusions

This chapter has presented a case study where full supervision is available for end-to-end
translation, but where document meta-information is used to adapt an SMT model to
a different multilingual application with no explicit task-specific supervision. Document
meta-information in the form of cross-lingual citations between documents has been used
to simulate a downstream task loss for the task of cross-lingual patent prior art search.
In order to set up this task, the citation information from a large collection of Japanese-
English patent documents has been exploited to build a large-scale training and evaluation
set for simulating patent prior art search. A competitive baseline translation system has
also been trained, which uses available parallel training data from the patent domain.

A tailored retrieval-optimized version of the pairwise ranking perceptron algorithm, ROPE,
has been introduced, based on pairwise ranking optimizers for SMT. While the theoretic
changes to the algorithm are straightforward, employing the algorithm with a retrieval
metric instead of a translation quality metric requires solutions for two issues related to
the task. The first issue, the high computational complexity of retrieval-based scoring, was
solved by sampling a small set of documents from the document collection. The second
issue, the use of multi-sentence queries, was solved by treating queries as a variably-sized
minibatch, where an update is only computed after scoring the entire query, and by using
the Viterbi context for scoring individual sentences in a query.

The choice of features and hyperparameters for ROPE have been motivated by analyzing
oracles found in 𝑘-best lists generated by our baseline systems. Unsurprisingly, increasing
the number of generated hypotheses or the size of the search space, has produced better
oracles. A bag-of-words based filtering scheme for hypotheses has also produced more
diverse hypotheses, leading to a further jump in oracle performance. We finally presented
an example were the translation of a single word was responsible for a significant jump
in NDCG score. This motivated our decision to include sparse lexicalized features in our
system.

ROPE has been tested in a proof-of-concept evaluation on a training set of 200 queries.
Even with this small training set, numeric improvements with respect to all retrieval met-
rics over the baselines have been observed, showing the promise of retrieval-optimized
training for query translation. When comparing retrieval performance of different base-
lines, the baselines optimized for translation quality are not unequivocally better than
the baseline with manually set weights. This result suggests that tuning for translation
quality does not necessarily improve retrieval performance. However, it was essential for
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good performance to include family patents in the training sets used with ROPE. This
result suggests that ensuring good translation quality still matters for query translation.

The improvements achieved with ROPE have been smaller than in other recent work on
cross-lingual patent retrieval, which pursues a more integrated approach to patent transla-
tion (Hieber & Riezler, 2015). However, this approach leads to an increase in complexity at
test time, as the translation model’s search space is used for scoring documents in retrieval,
requiring 𝐷 decoding runs per query in the worst case. With our approach, complexity
is high during training as translation hypotheses have to be evaluated by conducting a
retrieval step, but, as the approach is agnostic to the retrieval system, complexity at
test time is reduced to decoding the search query once and running efficient monolingual
retrieval.

Applicability to Neural Machine Translation (NMT). While our experiments have been
conducted using an SMT system, ROPE itself is easily adaptable to an NMT system. As
NMT systems use left-to-right beam search for translation, generating 𝒦(𝑥) is straight-
forward. Equation 4.1 can be replaced by the more general

𝐿𝑝𝑒𝑟𝑐_𝑟𝑎𝑛𝑘 = ∑
(𝑦,𝑦′)∈𝒫(𝑥)

max (0, 𝑠𝑤(𝑥, 𝑦′) − 𝑠𝑤(𝑥, 𝑦)) , (4.2)

where 𝑠𝑤(𝑥, 𝑦) is the score assigned to translation 𝑦, given input 𝑥 by a neural network
with parameters 𝑤. The generation of preference pairs (𝑦, 𝑦′) only uses the retrieval scoring
and is thus independent of the translation model.
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CHAPTER 5

Bipolar Ramp Loss for Learning from Weak and Negative Supervision

Document-level links can serve as a weak surrogate training signal when strong supervision
from parallel data is not available. We have shown this for patent query translation,
where document-level links can be used to simulate a downstream application. But could
cross-lingual document-level links also be used as a weak supervision signal for end-to-
end translation? This chapter presents a case study where in-domain full supervision
is unavailable, but where a large bilingual in-domain document collection with a cross-
lingual link structure exists. Our goal is to utilize this weak in-domain supervision directly
to adapt an out-of-domain system to the target domain. We employ a structured ramp
loss objective, which promotes a hope translation and demotes a fear translation using
the prediction of a pre-trained model along with an external metric, which incorporates
weak supervision from document-level links. By updating towards a hope output and not
towards a reference, structured ramp loss is particularly well-suited to a weak supervision
scenario. By including the model prediction and the external metric in selecting the hope
and fear output, the objective allows us to trade off between the model’s predictions and
an external metric. It also lets us strengthen the supervision signal by including negative
supervision from irrelevant documents. The characteristic of deliberately selecting positive
and negative outputs to promote and demote sets the structured ramp loss apart from
other objectives. We refer to an objective, which has this ability, as “bipolar”.
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This chapter studies the translation of articles from Wikipedia1 as an example scenario.
Wikipedia is a large, publicly available resource, which contains stronger and weaker cross-
lingual links. As articles across languages are being edited independently, Wikipedia is,
at best, a comparable data set, making our weak supervision scenario plausible. Better
automatic translation of Wikipedia articles is desirable, as it aids the propagation of
knowledge across languages. While we focus on Wikipedia, there are many other scenarios
where a cross-lingual link structure in a large multilingual collection could be exploited:
Patent documents are linked by citations; social media posts are linked by a user network
or by user-generated tags; a product taxonomy can be used to infer stronger or weaker
links for product descriptions or reviews in e-commerce data. Unlike previous chapters
where the solutions are tailored to a specific scenario, this study aims to provide a more
general approach, which is applicable across data sets. Hence, no information specific to
only Wikipedia is included in the approaches.

Given the above scenario and a general, model-agnostic ramp loss framework for learning
from document-level links, we spell out approaches for statistical and neural machine
translation (SMT/NMT) models. For SMT, we investigate the potential of different link
strengths for tuning sparse lexicalized features. A loss-augmented inference method is
described, which directly incorporates the external metric into the candidate generation
step and therefore leads to more diverse hope and fear outputs. This method is compared
to a metric-agnostic approximation of the search space via 𝑘-best lists. In order to learn
from weaker links, a weighted sampling strategy is introduced. This strategy makes use
of unsupervised cross-lingual document similarity to boost the sampling of documents
with higher similarity. Both loss-augmented inference and weighted sampling are found
to be crucial for successful learning. For NMT, the focus is on investigating the potential
of combined positive and negative supervision from relevant and irrelevant documents
in this extremely weak supervision scenario. Several versions of the ramp loss, which
incorporate either only positive, only negative, or both types of supervision, are evaluated
experimentally. In line with prior work, these objectives are compared to minimum risk
training. Experiments show that for both ramp loss and minimum risk training, it is
crucial to include positive and negative supervision. Bipolar ramp loss, which intelligently
selects a specific positive output to promote and a specific negative output to demote,
is found to be superior to minimum risk training, which computes an expectation over a
sample of outputs. As structured ramp loss has not been applied to NMT before, we also
conduct an experiment, which compare ramp loss and minimum risk training in a fully
supervised setting, where we are able to confirm the superiority of bipolar ramp loss.

1https://en.wikipedia.org
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5.1 Related Work

The chapter makes the following contributions: (1) Bipolar structured ramp loss objectives
for a weak supervision scenario, where supervision is provided via document-level links,
including the definition of a new external metric, which can take into account positive
and negative feedback. (2) A learning procedure and evaluation based on this loss in an
SMT system using loss-augmented inference, large-scale parallel training and weighted
sampling. (3) Transfer of the bipolar ramp loss to a neural sequence-to-sequence model
and comprehensive analysis of different ramp loss variants in comparison to minimum
risk training in weakly supervised and fully supervised scenarios. To our knowledge, we
are the first to apply this objective to neural machine translation. (4) The definition of
a weakly supervised Wikipedia translation task, along with the construction of a small
in-domain evaluation set from automatically aligned sentences and an analysis of the
potential of extracting parallel data depending on the strength of document-level links. All
contributions were made by the author after consultation with the supervisor of this thesis.
The experiments build on the WikiCLIR data set created by Schamoni, Hieber, Sokolov,
and Riezler (2014). The approach and experiments with an SMT system were published
in Jehl and Riezler (2016). The work on NMT is also included in Jehl et al. (2018) (under
submission). The general, model- and metric-agnostic ramp loss formulation, as well as
the token-level variant of the ramp loss evaluated in the NMT experiments, were both
first suggested by a co-author of this work.

The chapter is organized as follows: Section 5.1 discusses related work. Section 5.2 contains
a model-agnostic definition of the structured ramp loss and its transfer to the weakly
supervised setting. Section 5.3 describes the Wikipedia data set and its potential for
parallel data extraction, and describes the construction of the evaluation data. Section
5.4 describes how to tune sparse lexicalized feature weights using structured ramp loss with
weak supervision from document-level links for a hierarchical phrase-based system, and
reports experimental results on Wikipedia. Section 5.5 describes ramp loss variants and
the MRT baseline for NMT in the weakly supervised scenario and presents experimental
results on the Wikipedia task. Section 5.6 describes our fully supervised NMT experiment.

5.1 Related Work

Our learning objective is a modified version of the structured ramp loss objective. The
ramp loss was originally proposed for binary classification by Collobert, Sinz, Weston, and
Bottou (2006) as an alternative to hinge loss. Chapelle, Do, Teo, Le, and Smola (2009)
then adapted it to structured prediction. For linear models, ramp loss has been shown to be
consistent, and learning can be easily implemented using a perceptron-like update (Hazan,
Keshet, & McAllester, 2010). Gimpel and Smith (2012) and Chiang (2012) apply ramp
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5 Bipolar Ramp Loss for Learning from Weak and Negative Supervision

loss objectives for SMT tuning under full supervision. Gimpel and Smith (2012) compare
known loss functions in a structured ramp loss framework to several ramp loss formulations.
Running approximate loss-augmented inference over a translation lattice or forest, as we
describe for weakly supervised SMT, has also been explored for full supervision by Tromble,
Kumar, Och, and Macherey (2008) and Chiang (2012). We apply structured ramp loss to
weakly supervised SMT, and, to our knowledge, are the first to apply it to NMT. Most
previous approaches to training neural translation models with sequence-level objectives
and feedback from external metrics has focused on minimum risk training (MRT) (S. Shen
et al., 2016) or approaches (Ranzato, Chopra, Auli, & Zaremba, 2016, inter alia) based
on REINFORCE (Williams, 1992). Edunov, Ott, Auli, Grangier, and Ranzato (2018)
compare MRT to other classical structured prediction losses, which they lift to a fully
supervised neural machine translation setting, and find MRT to perform best. However,
their best-performing setup relies on interpolation with a token-level maximum likelihood
objective, which is not applicable in our weak supervision scenario. Nevertheless, we
compare our structured ramp loss objectives to MRT.

There are different ways to use large cross-lingually linked document collections for adap-
tation: Monolingual language model adaptation for SMT ignores cross-lingual links, but
uses the target side of the collection (see e.g. Koehn et al. (2007) or Foster and Kuhn
(2007)). Cross-lingual links have also been used to filter the multilingual collection for
sentence-parallel data. Besides our work in Chapter 3, Munteanu and Marcu (2005) ex-
tract parallel sentences from online news, Smith et al. (2013) filter the Common Crawl,
and Wołk and Marasek (2015) describe an approach for finding parallelism in Wikipedia.
Our aim in this chapter is not to replace these methods but rather to provide an approach,
which can be used with less strongly linked documents, as well as in combination with
these other methods. For SMT, we experimentally test different strengths of links between
document, and analyze what strength is required to extract parallel data from Wikipedia.

5.2 Structured Ramp Loss

The structured ramp loss aims at promoting a good hope output 𝑦+ and demoting a bad
fear output 𝑦−. We use the following general definition of the ramp loss

𝐿𝑅𝐴𝑀𝑃 = 1
𝑀

𝑀
∑

𝑚=1
−𝑠𝑤(𝑦+

𝑚, 𝑥𝑚) + 𝑠𝑤(𝑦−
𝑚, 𝑥𝑚) , (5.1)

where 𝑠𝑤(𝑥, 𝑦) is the scoring function defined by the translation model under parameters
𝑤. The loss is averaged over a minibatch of 𝑀 inputs. Different definitions of 𝑦+ and 𝑦−

then give rise to different concrete loss functions. 𝑦+ and 𝑦− are defined with respect to
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the scoring function and a metric 𝛿(𝑦), which measures the quality of 𝑦 with respect to
external supervision. Ramp loss is particularly well-suited to a weak supervision setting
for three reasons. First, it does not require a gold standard reference translation to update
towards.2 Second, by incorporating both the model prediction and the external metric
in the selection of 𝑦+ and 𝑦−, it further allows to trade off between both scores. This
is especially useful if the external metric is unreliable. Third, and most importantly, it
not only selects a particular positive translation 𝑦+ to update towards, but also selects
a particular negative translation 𝑦− to move away from. This property, which we call
“bipolar”, allows us to also include negative feedback, which can be a useful supplement
for a weak positive supervision signal.

5.2.1 Fully Supervised Setting

For the sake of clarity, we first define the structured ramp loss for a fully supervised setting,
before describing our adaptations for the weakly supervised setting. In a fully supervised
translation task, we have access to one or more gold standard reference translations 𝑦∗ for
each training input 𝑥. We can then use a smoothed per-sentence approximation of BLEU
as our metric 𝛿(𝑦). We refer to this metric as BLEU+1(𝑦, 𝑦∗). We then define 𝑦+ and 𝑦−

as
𝑦+ = argmax

𝑦
𝑠𝑤(𝑦, 𝑥) − 𝛼(1 − BLEU+1(𝑦, 𝑦∗)) (5.2)

and
𝑦− = argmax

𝑦
𝑠𝑤(𝑦, 𝑥) + 𝛼(1 − BLEU+1(𝑦, 𝑦∗)) . (5.3)

This version of the structured ramp loss was also applied to fully supervised SMT by
Gimpel and Smith (2012) and Chiang (2012). Note that the per-sentence BLEU metric
is converted into a cost function by subtracting it from 1. We follow Gimpel and Smith
(2012) in including the non-negative scaling parameter 𝛼, which controls the importance
of the metric, compared to the model score.

Gimpel and Smith (2012) use a concave-convex batch procedure to train their model
with structured ramp loss. As batch training is inefficient for larger training sets, we
instead follow (Hazan et al., 2010) and (Chiang, 2012) and use a perceptron-like online
learning procedure using stochastic sub-gradient descent. Algorithm 3 on page 76shows
the general training procedure, which is independent of the translation model and the

2Coincidentally, this property of the ramp loss is useful for SMT tuning in general. In an SMT model,
an external reference can often not be generated by the model, and therefore, computing a feature
representation of such a reference is not possible. For other objectives, which require a feature repre-
sentation of the reference, a common strategy is to resort to using a surrogate pseudo-reference, which
can be generated by the model. For ramp loss, the issue does not arise at all.
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5 Bipolar Ramp Loss for Learning from Weak and Negative Supervision

Algorithm 3 Ramp Loss Training
Require: training set 𝑋, 𝑌 ; minibatch size 𝑀 , initial parameters 𝑤, learning rate 𝜂

1: while stopping criterion not met do
2: {𝑥𝑚, 𝑦∗

𝑚}𝑀
𝑚=1 ← sample minibatch of size 𝑀

3: 𝐵 ← ∅ ▷ initialize new minibatch
4: for 𝑚 = 1 … 𝑀 do
5: Obtain 𝑦+

𝑚 as specified by ramp loss function
6: Obtain 𝑦−

𝑚 as specified by ramp loss function
7: 𝐵 += {(𝑥𝑚, 𝑦+

𝑚), (𝑥𝑚, 𝑦−
𝑚)} ▷ add 𝑦+ and 𝑦− to minibatch

8: end for
9: 𝑤 ← 𝑤 + 𝜂 1

𝑀 ∑𝑀
𝑚=1 ∇𝑤𝑠𝑤(𝑦+

𝑚, 𝑥𝑚) − ∇𝑤𝑠𝑤(𝑦−
𝑚, 𝑥𝑚)

10: end while

specific loss function, in a minibatch version. An online version can be obtained by setting
the minibatch size 𝑀 to 1.

In machine translation, search for 𝑦+ and 𝑦− in the space of all possible outputs 𝒴(𝑥) has
to be approximated as the output space is too large. This is often done by restricting
search to a candidate set 𝒦(𝑥) of 𝑘-best hypotheses under the current model.

5.2.2 Weakly Supervised Setting

In the weakly supervised scenario considered here, an out-of-domain model is to be adapted
to a target domain without access to gold standard references in the target domain. The
weak supervision comes from relevance information provided by cross-lingual document-
level links, such that we can obtain for each input 𝑥 a set of relevant target documents
𝐷+(𝑥). The search for 𝑦+ and 𝑦− is then guided by a relevant document 𝑑+ sampled from
𝐷+(𝑥). Unlike a reference translation, a relevant document is an imperfect label. Guiding
the translation model to reproduce 𝑑+ would not generate good translations. We construct
a more informative supervision signal by additionally sampling an irrelevant document 𝑑−

from a set of contrast documents in the target language. For each input 𝑥, we then obtain
a pair (𝑑+, 𝑑−) as our weak supervision signal.

Computing a BLEU score between a translation 𝑦 and a document 𝑑 does not make sense.
We therefore define two new metrics with respect to the weak supervision:

1. 𝛿1(𝑦, 𝑑) computes how well a translation matches a single document 𝑑.

2. 𝛿2(𝑦, 𝑑+, 𝑑−) computes how well a translation differentiates between a document
pair.
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5.2 Structured Ramp Loss

We first define 𝛿1(𝑦, 𝑑). This metric should evaluate how closely an output matches this
document, while still ensuring that the output has the correct length. It should also be
similar to the BLEU score, which will be ultimately used for evaluation. We define 𝛿1(𝑦, 𝑑)
as the average 𝑛-gram precision between an output and a document.

𝛿1(𝑦, 𝑑) = 1
𝑁

𝑁
∑
𝑛=1

∑𝑢𝑛
𝑐(𝑢𝑛, 𝑦) ⋅ 𝟙𝑢𝑛∈𝑑

∑𝑢𝑛
𝑐(𝑢𝑛, 𝑦) ⋅ 𝐵𝑃 , (5.4)

where 𝑢𝑛 are the 𝑛-grams present in 𝑦, 𝑐() counts the occurrences of an 𝑛-gram in 𝑦 and 𝑁
is the maximum order of 𝑛-grams used. 𝟙𝑢𝑛∈𝑑 returns 1 if 𝑢𝑛 is present in document 𝑑 and
0 otherwise. 𝐵𝑃 is a brevity penalty controlling the length of the translation, |𝑦|. Since we
cannot use the reference length, we use the source length as reference length |𝑥|, multiplied
by an average source-target length factor 𝑟, which can be empirically determined on the
training set. The brevity penalty is then defined as

𝐵𝑃 = min(1, 𝑟 ⋅ |𝑦|
|𝑥| ) .

𝛿2(𝑦, 𝑑+, 𝑑−) is defined as the difference between 𝛿1(𝑦, 𝑑+) and 𝛿1(𝑦, 𝑑−), subject to a linear
transformation to allow values to lie between 0 and 1:

𝛿2(𝑦, 𝑑+, 𝑑−) = 0.5 ⋅ (𝛿1(𝑦, 𝑑+) − 𝛿1(𝑦, 𝑑−) + 1) . (5.5)

Our intuition behind this metric is that it should measure how well a translation differenti-
ates between the relevant and irrelevant document, leading to domain-specific translations
being weighted higher than domain-agnostic translations.

We are now equipped to define our concrete ramp losses for the weakly supervised case.
Using 𝛿1, we define 𝑦+ analogously to the full supervision task as

𝑦+
𝛿1

= argmax
𝑦

𝑠𝑤(𝑦, 𝑥) − 𝛼(1 − 𝛿1(𝑦, 𝑑+)) . (5.6)

𝑦+
𝛿1

only includes 𝑑+, hence we would like to define 𝑦−
𝛿1

in such a way that it includes
𝑑−. As 𝑑− is a source of negative supervision, we propose to use as 𝑦−

𝛿1
a translation that

matches 𝑑− well. We define 𝑦−
𝛿1

as

𝑦−
𝛿1

= argmax
𝑦

𝑠𝑤(𝑦, 𝑥) − 𝛼(1 − 𝛿1(𝑦, 𝑑−)) . (5.7)
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Algorithm 4 Ramp Loss Training with Weak Supervision
Require: Inputs 𝑋 with relevant documents 𝐷+(𝑥) for all 𝑥 ∈ 𝑋

1: Contrast document collection 𝐷−

2: Minibatch size 𝑀 , learning rate 𝜂, initial weights 𝑤
3: while stopping criterion not met do
4: {𝑥𝑚}𝑀

𝑖=1 ← sample minibatch of size 𝑀
5: 𝐵 ← ∅ ▷ initialize new minibatch
6: for 𝑚 = 1 … 𝑀 do
7: Sample 𝑑+ from 𝐷+(𝑥𝑚) and 𝑑− from 𝐷−

8: Obtain 𝑦+
𝑚 as specified by loss function

9: Obtain 𝑦−
𝑚 as specified by loss function

10: 𝐵 += {(𝑥𝑚, 𝑦+
𝑚), (𝑥𝑚, 𝑦−

𝑚)} ▷ add 𝑦+ and 𝑦− to minibatch
11: end for
12: 𝑤 ← 𝑤 + 𝜂 1

𝑀 ∑𝑀
𝑚=1 ∇𝑤𝑠𝑤(𝑦+, 𝑥𝑚) − ∇𝑤𝑠𝑤(𝑦−

𝑚, 𝑥𝑚)
13: end while

Note that unlike the supervised case, the cost is still subtracted from the model score.
As 𝛿2 already includes 𝑑−, using this metric we can define 𝑦+ and 𝑦− analogously to the
supervised case as

𝑦+
𝛿2

= argmax
𝑦

𝑠𝑤(𝑦, 𝑥) − 𝛼(1 − 𝛿2(𝑦, 𝑑+, 𝑑−)) (5.8)

and
𝑦+

𝛿2
= argmax

𝑦
𝑠𝑤(𝑦, 𝑥) + 𝛼(1 − 𝛿2(𝑦, 𝑑+, 𝑑−)) . (5.9)

Algorithm 4 shows the adapted training algorithm in the weak supervision setup. The
main difference to Algorithm 3 is line 5, where the weak supervision signal is sampled
from the relevant documents and contrast documents.

5.3 Experimental Setup and Data Analysis

We apply our approach to the task of translating Wikipedia entries. Being able to au-
tomatically translate Wikipedia entries would allow the proliferation of knowledge across
more languages by providing a starting point for editors if an article already exists in
another language. It could also be used to augment existing articles with missing parts
translated from another language. We choose Wikipedia, because it fits our envisaged
scenario perfectly: It is a large multilingual collection containing document-level cross-
lingual links, and there are no parallel data available for this task. Wikipedia is internally
structured by interlanguage links and inter-article links. Interlanguage links connect arti-
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cles on the same topic across languages. While entries connected by these links often have
the same subject, they are not necessarily parallel. Nonetheless, these connections provide
a good starting point for automatic parallel data extraction. Inter-article links connect
articles in the same language. These articles can be closer or more distantly related, but
they do not have the same subject. It is not clear whether these articles contain any par-
allel data. In this work, we focus on interlanguage and inter-article links, but additional
link structure could also be extracted from images embedded in text or the categorization
of articles.

We use the German-English WikiCLIR collection by Schamoni et al. (2014)3, along with
their definition of cross-lingual relevance levels: A target language document is highly
relevant to a source document if there exists an interlanguage link between the source
and target document. WikiCLIR calls this the mate relation. A target document is
weakly relevant to a source document, if there exists a bidirectional link between the
source-document’s cross-lingual mate and the target document. A bidirectional link exists
between two documents, if both reference each other via an inter-article link. WikiCLIR
calls this the link relation. The corpus contains a total of 225,294 mate relations with one
average mate per English document, and over 1.7 million link relations, with on average
8.5 links per English document. The search queries provided in WikiCLIR are designed for
a cross-lingual retrieval task. They are truncated to the first 200 words of a document, and
words occuring in the article title have been removed. As our task is article translation,
we use the full Wikipedia documents rather than the truncated queries.

We use the linked Wikipedia data to run an automated pseudo-parallel data extractor.
We do this for three purposes: First, to identify nearly parallel document pairs for the
construction of an in-domain evaluation set without having to rely on manual transla-
tion. Second, to examine whether the mate and link relation provide a strong enough
signal for extracting pseudo-parallel training data. Third, to compare our method to au-
tomatic parallel data extraction based on cross-lingual document-level links. We use the
modified yalign method described by Wołk and Marasek (2015) for pseudo-parallel data
extraction.4 We adapt their software to handle the WikiCLIR format. yalign requires a
bilingual dictionary with translation probabilities. Following Wołk and Marasek (2015),
we use a lexical translation table created from the IWSLT parallel training data5 as our
bilingual dictionary. We filter the dictionary for punctuation and numerals and discard
all entries whose lexical translation probability is smaller than 0.3. We run the sentence
aligner twice, using both the mate and link relation to align documents.

3cl.uni-heidelberg.de/wikiclir/
4github.com/krzwolk/yalign
5wit3.fbk.eu/
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not parallel
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not
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3.5%

(b) Parallelism in links

Figure 5.1 Sentence aligner precision for mates and links.

Figure 5.1 shows an analysis of yalign’s precision for the mate and link relations.For each
case, a sample of 200 automatically aligned sentence pairs was manually evaluated. The
sentence pairs were annotated using four categories: “parallel”, “almost parallel” – this
category contains sentence pairs that have strictly parallel segments, with other segments
missing from the aligned part, “similar” – for sentence pairs that have similar content or
wording but are not strictly parallel –, and “not parallel”. While 65.5% of sentence pairs
from the mate relation are similar or parallel, the link relation yields only 3.5% similar
sentence pairs. We conclude that the bidirectional link relation is too weak to extract
useful pseudo-parallel data.

To gain an idea of the yield of the aligner, we also look at the number of sentence pairs that
were extracted from the paired documents. Figure 5.2 shows the frequency histogram of
the number of extracted lines per document pair for document pairs with a mate relation.
For most document pairs, only a single sentence pair was extracted. However, there were
a few pairs that yielded several hundred pseudo-parallel sentence pairs. In total, 533,516
sentence pairs were extracted.

To construct our in-domain evaluation data, we sorted all automatically aligned documents
by the number of aligned sentences up to a limit of 10,000 sentences. We then selected eight
document pairs, discarding other document pairs which appeared to have been machine-
translated, only contained few parallel sentences, or consisted of lists of proper names. We
manually corrected sentence splitting errors in the selected documents, and removed image
captions and references. We split the documents into two groups of four, making sure to
keep the sets topically diverse. Table 5.1 shows the two sets of extracted documents. They
are similar in length (1,712 sentences for Wiki1, 1,526 sentence for Wiki2), and contain
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Figure 5.2 Number of documents (y-axis, on log-scale) from which 𝑛 lines were extracted
(x-axis).

set total
sentences

parallel
sentences

article title

Wiki1

323 285 “Polish culture during World War II”
710 677 “Black-figure pottery”
457 375 “Ulm Hauptbahnhof ”
587 375 “Characters of Carnivàle”

Wiki2

360 268 “J-pop”
501 388 “Schüttorf ”
549 438 “Military history of Australia during World War II”
676 432 “Arab citizens of Israel”

Table 5.1 Wikipedia development and test documents.
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a considerable percentage of parallel sentences. We used Wiki1 as heldout validation set,
and Wiki2 for testing.

5.4 Exploring Relevance Levels and Combined Adaptation Methods
for SMT

5.4.1 Objective and Implementation

We assume a log-linear translation model, where each output sequence 𝑦 is associated with
a latent derivation ℎ. A triple of input sequence 𝑥, translation 𝑦, and latent derivation
ℎ is represented by a feature vector 𝜙(𝑥, 𝑦, ℎ), which is weighted by a weight vector w of
equal length. The model score of a translation 𝑦 yielded by a derivation ℎ is computed as

𝑠𝑤(𝑥, 𝑦, ℎ) ∶= exp(w⊤𝜙(𝑥, 𝑦, ℎ))
∑𝑦′,ℎ′ exp(w⊤𝜙(𝑥, 𝑦′, ℎ′)) ∝ w⊤𝜙(𝑥, 𝑦, ℎ) .

For the experiments in the weakly supervised scenario, the two variants of the ramp
loss described in Section 5.2 are explored. Table 5.2 lists the two variants, which we
call RAMP− and RAMP𝛿2

for weakly supervised SMT. Here, we use the cost functions
Δ1(𝑦, 𝑑+) and Δ2(𝑦, 𝑑+, 𝑑−) as shorthand for 𝛼(1 − 𝛿1(𝑦, 𝑑+)) and 𝛼(1 − 𝛿1(𝑦, 𝑑+, 𝑑−)),
respectively.

After obtaining the translations 𝑦+ and 𝑦− according to the ramp loss objective along with
the derivations ℎ+ and ℎ−, the stochastic subgradient update is computed as

w ← w + 𝜂(𝜙(𝑥, 𝑦+, ℎ+) − 𝜙(𝑥, 𝑦−, ℎ−)) .

We use a hierarchical phrase-based translation model as implemented in the cdec toolkit
(Dyer et al., 2010), which we augment by our implementation of the weakly supervised
ramp loss objectives. Below, we describe some details of our implementation.

Forest search. The process of finding hope and fear hypotheses is called loss-augmented
inference, as the model score is augmented by a loss function based on external performance
metrics. Loss-augmented inference is often conducted over the 𝑘-best outputs. We test
this approximation in our experiments. However, 𝑘-best lists cover only a very small
portion of the possible hypothesis space, and the external metric does not influence their
generation. We therefore implement forest search, a version of loss-augmented inference,
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Loss 𝑦+ 𝑦−

RAMP− argmax𝑦 𝑠𝑤(𝑦, ℎ, 𝑥) − Δ1(𝑦, 𝑑+) argmax𝑦 𝑠𝑤(𝑦, ℎ, 𝑥) − Δ1(𝑦, 𝑑−)
RAMP𝛿2

argmax𝑦 𝑠𝑤(𝑦, ℎ, 𝑥) − Δ2(𝑦, 𝑑+, 𝑑−) argmax𝑦 𝑠𝑤(𝑦, ℎ, 𝑥) + Δ2(𝑦, 𝑑+, 𝑑−)

Table 5.2 Configurations for 𝑦+ and 𝑦− for weakly supervised SMT adaptation.

which integrates an approximation of the external metric into the search for the model-best
hypothesis.

cdec takes a two-pass approach to decoding. In the first pass, an unpruned hypergraph
structure is built up from all potential parses of the input including only rule-local features.
In the second pass or rescoring pass, this hypergraph is scored with the non-local 𝑛-gram
language model via finite state intersection. As the language model requires storing the
previous 𝑛 − 1 words at each gap, copies need to be made for each hyperedge according
to different histories. Without pruning, this would cause the hypergraph to grow to
unmanageable size very quickly. This problem can be solved by cube pruning (Chiang,
2007), which rescores the hypergraph bottom-up, lazily computing only the most promising
candidates at each intersection step.

As our metric is based on 𝑛-gram precision, we make use of the fact that this information
is present locally in the rescored forest. By using a rule-local approximation of our metric,
which can be computed independently at each rescored edge, we can obtain 𝑦+ or 𝑦−

directly by running the Viterbi algorithm over the rescored hypergraph (see also Section
5 of Chiang (2012)). We approximate the sentence-level metric 𝛿1(𝑦, 𝑑), which computes
a macro-average over the 𝑛-gram precision in a translation by a localized version 𝛿1(𝑒, 𝑑)
which computes a micro-average over the 𝑛-gram precision at each hyperedge 𝑒. 𝛿2 is then
computed by combining 𝛿1(𝑒, 𝑑+) and 𝛿1(𝑒, 𝑑−) according to Equation 5.5.

The cost of traversing a hyperedge according to the metric 𝛿, Δ(𝑒), is then computed
by subtracting the metric from 1 and multiplying the result by the scaling factor 𝛼.
Finally, the global cost of a translation is computed by summing over the costs of all
hyperedges participating in the translation’s derivation. The hyperedges are annotated
with the localized metric during the rescoring pass over the translation forest, when the
language model intersection is computed. This ensures that derivations which have lower
cost, when searching for hope, or higher cost, when searching for fear, will not be pruned
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by cube pruning. Finally, running the Viterbi algorithm over the rescored forest, will then
find an approximation of:

argmax
𝑦,ℎ

∑
𝑒∈ℎ

(w⊤𝜙(𝑒) + 𝑤∆ ⋅ Δ(𝑒)) ,

where 𝑤∆ is a dummy weight that is set to 1 or −1, and is used to control whether
we search for hope or fear. Running forest search produces an overhead in complexity
compared to 𝑘-best search, as Δ(𝑒) needs to be computed for each edge, and forest re-
scoring and Viterbi search have to be run twice to search for hope and fear.

Sampling For each input 𝑥, we need to sample a document pair (𝑑+, 𝑑−). Our first
strategy is to randomly sample a pair. We also implement a second weighted sampling
strategy based on document similarity. For weighted sampling, our intuition is that a rel-
evant document 𝑑+ should be sampled with higher weight if it is more similar to the input
document. Similarity between an input document and a target document is measured by
an unsupervised cross-lingual document similarity metric. This metric is calculated by
computing document representations from bilingual word embeddings. The embeddings
are learned from the aligned parallel training corpus using the bilingual skipgram model
of T. Luong et al. (2015).6 Document representations are computed by averaging over all
word representations in the document, weighted by the inverse document frequencies of
the words. Cosine similarity is then used to measure similarity between the current source
document and all relevant documents. We use weighted reservoir sampling by Efraimidis
and Spirakis (2006) to sample a document weighted by its cosine similarity to the current
source document. The contrast document 𝑑− is drawn randomly from 𝐷−, but is re-drawn
if it has higher similarity to the input than 𝑑+.

Parallelization and Feature Selection In order to be able to train on thousands of doc-
uments, we use the parallelization method described in Algorithm 4 (IterSelSGD) of Simi-
aner et al. (2012). This method splits training data into shards, trains one epoch on each
shard and then applies feature selection by ℓ1/ℓ2 regularization before starting the next
epoch. While the method was originally applied with a pairwise ranking perceptron objec-
tive, it can be transferred to the online ramp loss training procedure (our Algorithm 4 on
page 78). Additionally, we add a regularization term, which prevents weights to stray too
far from the initial weight vector. This term is obtained by adding 𝐶 1

2|𝑋|‖(𝑤−𝑤0)2‖ to the
ramp loss objective, where 𝐶 is a hyperparameter controlling the amount of regularization.

6github.com/lmthang/bivec
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Pre-training and weight freezing As previously mentioned, document-level links can be
a much weaker source of supervision than parallel reference translations. In order to ensure
that the translation model continues to produce fluent translations, we first pre-train it on
out-of-domain parallel data and only use our in-domain data for fine tuning the model. In
the hierarchical phrase-based paradigm, we accomplish this fine tuning effect by freezing
the weights for the dense translation model features and only tuning weights for additional
sparse features, which emphasize individual rule shapes, as well as single word and phrase
pairings.

5.4.2 Experimental Setup

Our initial out-of-domain English-German translation system is trained on 2.1 million sen-
tence pairs (61/59 million English/German tokens) from the Europarl v7 corpus7 (Koehn,
2005), the News Commentary v10 corpus8, and the MultiUN v1 corpus9 (Eisele & Chen,
2010). Bidirectional word alignments are computed using MGIZA++10 and symmetrized
using the grow-diag-final-and heuristic (Koehn et al., 2003). A 4-gram count-based 𝑛-
gram language model is estimated from the target side of the training data using KenLM
(Heafield, Pouzyrevsky, Clark, & Koehn, 2013). All experiments use the hierarchical
phrase-based decoder cdec (Dyer et al., 2010). Hierarchical phrase rules are extracted
using cdec’s implementation of the suffix array extractor by (Lopez, 2007) with default
settings. Our baselines use 21 decoder features – 7 translation model features, 2 language
model features, 7 pass through features, 3 arity penalty features, word penalty and glue
rule count features –, which are implemented in cdec. Decoder feature weights are op-
timized on the WMT Newstest 2014 data set (3003 sentence pairs) using the pairwise
ranking optimizer dtrain11 (Simianer et al., 2012). We run dtrain for 15 epochs, with
the hyperparameters 𝑘-best size=100, loss-margin=1, and a learning rate of 1𝑒−5. The
final weights are averaged over all epochs.

Our method is trained on 10,000 input sentences sampled from the English WikiCLIR
documents. Each input sentence is annotated with a document identifier in order to
sample positive and negative examples. The relevant document collection includes all
German documents linked to an English document by a mate or link relation. For the
contrast documents we use the News Commentary corpus, which we split into documents.
In a pre-processing step, we extract 𝑛-grams up to order 3 from each document, which are

7statmt.org/europarl/
8statmt.org/wmt15/training-parallel-nc-v10.tgz
9euromatrixplus.net/multi-un/

10cs.cmu.edu/~qing/giza/
11The code is no longer being developed, but a legacy fork is available on https://github.com/pks/

cdec-dtrain-legacy.
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needed to calculate 𝑛-gram precision. Experiments with a larger training set of 200,000
input sentences have shown no significant improvement. All experiments use the baseline
weights for the 21 dense translation model features, learning only weights for additional
sparse features. We use sparse rule identifiers and rule source and target bigram features
as described in (Simianer et al., 2012), as well as lexical alignment features as described in
(Sokolov et al., 2013). All sparse feature functions are implemented in cdec. Parallelized
training is done on 10 shards, followed by an ℓ1/ℓ2 feature selection step which keeps at
most 100,000 features. We use a constant learning rate of 𝜂 = 1𝑒−4 and regularization
strength 𝐶 = 1. The ramp loss objective uses scaling factor 𝛼 = 10. Hyperparameters
were selected in preliminary experiments on the development set. Experiments are run for
up to 20 epochs, with early stopping being determined by performance on the in-domain
development set (Wiki1).

5.4.3 Experimental Results

All results are reported on the test set (Wiki2). Significance was determined by running
the multeval script12 (Clark et al., 2011). The main dimensions for experimental compar-
ison are the two ramp loss objectives RAMP− and RAMP𝛿2

, the different search variants
(forest and 𝑘-best) and the different link strengths (mate and link). For the link relation
we also compare random and weighted sampling strategies. We do not test weighted sam-
pling for experiments with mates only, as there is usually only one mate document 𝑑+ for
each input document. In this setting, only irrelevant documents are sampled.

Table 5.3 reports BLEU scores for applying variants of our approach to the unadapted
baseline model. Row 2 shows that for the SMT setup, searching only over the 𝑘-best list
is too restricted with no significant improvement over the baseline. Row 3, on the other
hand, which uses the same setting (RAMP𝛿2

with mate documents) but with forest search,
produces our best result with 0.6 points increase in BLEU. While RAMP− (row 4) still
improves over the baseline, it falls short of RAMP𝛿2

. Training on weaker supervision from
the link relation (rows 5-7), does not lead to the same increase in BLEU. Combining mates
and links still improves significantly over the baseline (row 5). But using only links does
not (row 6). This decrease in performance can be alleviated by using weighted sampling
(row 7), which produces a significant increase by 0.3 BLEU points over the baseline.

Figure 5.3 shows learning curves over epochs on the in-domain heldout data for train-
ing on mates and links (both with random sampling). Both experiments show gradual

12https://github.com/jhclark/multeval
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search method levels sampling method BLEU Δ

1 baseline - - - 12.46
2 RAMP𝛿2

𝑘-best mates random 12.57 +0.11
3 RAMP𝛿2

forest mates random 13.05 +0.59
4 RAMP− forest mates random 12.81 +0.34
5 RAMP𝛿2

forest mates+links random 12.85 +0.38
6 RAMP𝛿2

forest links random 12.67 +0.21
7 RAMP𝛿2

forest links weighted 12.77 +0.31

Table 5.3 Result with an out-of-domain baseline for different ramp loss variants, rele-
vance levels, search methods and sampling methods. Boldfaced results are significantly
better than the baseline at a significance level of 0.05.
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Figure 5.3 Performance on heldout set Wiki1 for mates and links.

improvements up to epoch 10-12 with declining results after that. The decline probably
occurs due to overfitting.

Combining adaptation approaches As mentioned in the introduction of this chapter, our
approach can be integrated with other methods for adaptation from non-parallel data. We
first build an adapted language model by sampling 500,000 sentences from the German
Wikipedia data, which we add to the out-of-domain language model data. Experiments
using an additional Wikipedia language model are marked by +wiki-lm. We then adapt
the translation model by adding pseudo-parallel Wikipedia data extracted by yalign (see
Section 5.3) to our baseline training data and re-training the translation model. Experi-
ments using an adapted translation model are marked as +wiki-tm. Both adapted models
are then combined with our approach using the best configuration from the unadapted
experiments above (row 3 in Table 5.3). Experiments using biploar ramp loss training
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Experiment BLEU Δ

baseline +wiki-lm 13.62
+wiki-ramp 13.93 +0.31

baseline +wiki-lm +wiki-tm 14.96
+wiki-ramp 15.17 +0.21

Table 5.4 Results for combining different adaptation methods. * indicates a significant
difference to the adapted baseline at a significance level of 𝑝 = 0.05.

on Wikipedia are marked as +wiki-ramp. Table 5.4 shows results for all adaptation ap-
proaches. Both language model and translation model adaptation boost performance
significantly. The good performance of TM adaptation leads to the conclusion that if
there is a strong signal for potential parallelism like in the Wikipedia data, automatic
pseudo-parallel data extraction works well. In both experiments, our method is able to
produce an additional small, yet significant, gain over the adapted model, showing that
additional information can be learned from the relevance signal.

To summarize, for SMT we test the ramp loss objectives RAMP𝛿2
and RAMP− to train

sparse lexicalized features for adapting an out-of-domain model to a new domain with-
out supervision from parallel references. Forest search, an approximate loss-augmented
inference over the entire hypothesis space, is proposed in order to find more diverse hope
and fear hypotheses. Parallelized training is applied to scale training to larger data sets,
especially considering the added complexity of forest search. This training setup also
introduces regularization via ℓ1/ℓ2 feature selection. Furthermore, weighted sampling
by document similarity is introduced to inform supervision from weaker links. Experi-
mentally, we find significant improvements over an unadapted baseline when using forest
search and the stronger mate relation. Both ramp loss objectives produce significant gains,
with RAMP𝛿2

slightly outperforming RAMP−. With weighted sampling, significant gains
have also been produce by using only the weaker document links. Our best approach still
leads to small improvements on top of language model or translation model adaptation.
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5.5 Exploring the Impact of Negative Supervision for Weakly
Supervised NMT Adaptation

We now study the performance of the structured ramp loss for neural machine translation
(NMT) in the same weak supervision scenario as above (see Section 5.3). NMT systems
are normally trained by a token-level maximum likelihood estimation (MLE) objective.
But the in-domain supervision available in our scenario is much weaker and cannot be
broken down to the token level. We therefore again employ the structured ramp loss to
incorporate sequence-level feedback. We also again take advantage of the structured ramp
loss’s property of deliberately selecting a good output to promote and a bad output to
demote, rather than only promoting a good output without differentiating between the
other outputs or computing an expectation over all outputs. We refer to this property
of the structured ramp loss as “bipolar”. We take this bipolar principle one step further
by incorporating positive and negative supervision when selecting 𝑦+ and 𝑦−. The NMT
experiments conducted here focus on evaluating the contribution of weak positive and
negative supervision via a bipolar objective. We therefore evaluate not only the neural
equivalent of RAMP− and RAMP𝛿2

, but other versions of the structured ramp loss. We
also compare the performance of structured ramp loss to minimum risk training.

5.5.1 Objectives

For NMT, the score 𝑠𝑤(𝑦, 𝑥) for an output 𝑦 is defined as the likelihood of 𝑦, 𝑝𝑤(𝑦|𝑥).
This likelihood is the product of the token-level probabilities at each step 𝑗 as emitted by a
recurrent encoder-decoder model with attention (Bahdanau et al., 2015) under parameters
𝑤:

𝑠𝑤(𝑦, 𝑥) = 𝑝𝑤(𝑦 ∣ 𝑥) =
𝐽

∏
𝑗=1

𝑝𝑤(𝑦𝑗 ∣ 𝑦<𝑗, 𝑥) ,

where 𝑦<𝑗 refers to the first 𝑗 − 1 tokens in 𝑦.

Maximum likelihood. With full supervision from reference translations 𝑦∗, the model is
trained using the following maximum likelihood objective

𝐿𝑀𝐿𝐸 = − 1
𝑀

𝑀
∑

𝑚=1

𝐽
∑
𝑗=1

log 𝑝𝑤(𝑦∗
𝑚,𝑗 ∣ 𝑦∗

𝑚,<𝑗, 𝑥𝑚) . (5.10)

This objective computes an average over minibatches of 𝑀 inputs. 𝑦∗
𝑚,<𝑗 refers to the

first 𝑗 −1 tokens in the reference. In our weakly supervised scenario there are no reference
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translations available, precluding us from applying MLE training. Instead, we turn to
sequence-level objectives which incorporate weak supervision via an external sentence-
level metric.

Structured ramp loss. The ramp losses used in the NMT experiments are again exempli-
fications of the general ramp loss objective in Equation 5.1. Table 5.5 shows the different
definitions for 𝑦+ and 𝑦−. RAMP− and RAMP𝛿2

are defined analogously to the SMT
setup, with the same metrics 𝛿1 and 𝛿2. We again use the the cost functions Δ1(𝑦, 𝑑+)
and Δ2(𝑦, 𝑑+, 𝑑−) as shorthand for 𝛼(1 − 𝛿1(𝑦, 𝑑+)) and 𝛼(1 − 𝛿1(𝑦, 𝑑+, 𝑑−)), respectively.
As the main interest of the NMT experiments lies in evaluating the contribution of the
negative supervision from 𝑑−, three additional ramp loss versions are explored experimen-
tally. First, RAMP is the classical ramp loss objective as defined for structured prediction
by Gimpel and Smith (2012) and Chiang (2012), obtained by simply replacing the BLEU
metric with 𝛿1(𝑦, 𝑑+). RAMP2 corresponds to Gimpel and Smith (2012)’s equation 7,
where the model-best hypothesis ̂𝑦 is used as 𝑦−. Both RAMP and RAMP2 only use
positive in-domain supervision from 𝑑+. RAMP1− is an adapted version of Gimpel and
Smith (2012)’s equation 6, where the model-best hypothesis ̂𝑦 is used as 𝑦+ and updated
against a fear hypothesis. In analogy to RAMP−, we use the hope hypothesis with respect
to 𝑑− as 𝑦− in our version of this objective. RAMP1− only uses in-domain supervision
from 𝑑−.

In addition to the sequence-level ramp loss objectives, we also test a token-level ramp loss
objective, which only assigns rewards to tokens that differ between 𝑦+ and 𝑦−

𝐿𝑅𝐴𝑀𝑃−𝑇 = 1
𝑀

𝑀
∑

𝑚=1
−

𝐽
∑
𝑗=1

𝜏+
𝑚,𝑗 log 𝑝𝑤(𝑦+

𝑚,𝑗 ∣ 𝑦+
𝑚,<𝑗, 𝑥𝑚)

+
𝐽

∑
𝑗=1

𝜏−
𝑚,𝑗 log 𝑝𝑤(𝑦−

𝑚,𝑗 ∣ 𝑦−
𝑚,<𝑗, 𝑥𝑚) ,

(5.11)

where

𝜏+
𝑚,𝑗 =

⎧{
⎨{⎩

0 if 𝑦+
𝑚 ∈ 𝑦−

𝑚

1 otherwise

and

𝜏−
𝑚,𝑗 =

⎧{
⎨{⎩

0 if 𝑦−
𝑚 ∈ 𝑦+

𝑚

−1 otherwise .

This objective was proposed by the co-author of Jehl et al. (2018). The contribution of
this thesis lies in its application to the weakly supervised MT scenario.
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Loss 𝑦+ 𝑦−

RAMP argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ1(𝑦, 𝑑+) argmax𝑦 𝑠𝑤(𝑦, 𝑥) + Δ1(𝑦, 𝑑+)
RAMP− argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ1(𝑦, 𝑑+) argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ1(𝑦, 𝑑−)
RAMP1− ̂𝑦 argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ1(𝑦, 𝑑−)
RAMP2 argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ1(𝑦, 𝑑+) ̂𝑦
RAMP𝛿2

argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ2(𝑦, 𝑑+, 𝑑−) argmax𝑦 𝑠𝑤(𝑦, 𝑥) + Δ2(𝑦, 𝑑+, 𝑑−)

Table 5.5 Configurations for 𝑦+ and 𝑦− for weakly supervised MT adaptation. ̂𝑦 is the
highest-probability model output. The argmax𝑦 is taken over the 𝑘-best list 𝒦(𝑥), which
we omit due to space constraints.

Minimum risk training. For sequence-level, metric-augmented training of NMT systems,
the most successful method to date has been minimum risk training (MRT) (Edunov et
al., 2018; S. Shen et al., 2016). We therefore compare our ramp loss objectives with
MRT. The MRT objective minimizes the expected risk of the output distribution, which
is approximated by sampling from the output space. We use the following objective:

𝐿𝑀𝑅𝑇 =
𝑆

∑
𝑠=1

𝑝𝑤(𝑦𝑠|𝑥) ⋅ (𝛿(𝑦𝑠) − 𝑏(𝑥)) , (5.12)

where 𝑆 is the number of samples drawn to approximate the output space and 𝛿(𝑦𝑠) is the
reward for output 𝑦𝑠. Further, a baseline 𝑏(𝑥) average reward computed over 𝑆′ sampled
outputs can be subtracted from the model distribution for more stability in training, with

𝑏(𝑥) = 1
𝑆′

𝑆′

∑
𝑠′=1

𝛿(𝑦𝑠′) .

We test two variants of MRT. MRT𝛿1
uses the metric 𝛿1(𝑦, 𝑑+) as reward function. This

objective only uses supervision from 𝑑+. MRT𝛿2
uses 𝛿2(𝑦, 𝑑+, 𝑑−) as reward function.

The metric allows us to include positive and negative supervision in the MRT objective.

The objectives are implemented in the neural sequence-to-sequence toolkit Nematus (Sen-
nrich et al., 2017). This toolkit implements the recurrent neural encoder-decoder archi-
tecture with attention, as well as the MLE and MRT objectives. We extend the toolkit
by the ramp loss objectives and the metrics 𝛿1 and 𝛿2. We approximate the search for 𝑦+

and 𝑦− over the output space 𝒴(𝑥) by a 𝑘-best list 𝒦(𝑥).
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5.5.2 Experimental Setup

The baseline out-of-domain model is trained on the same data as the SMT baseline,
using 2.1M sentences from Europarl, News Commentary, and the MultiUN corpus (see
Section 5.4). Training progress is measured on 7,000 heldout sentences that are randomly
sampled from the training data. All input data are split into subword units using byte-pair
encodings (Sennrich et al., 2016c) with 30,000 merge operations. Sentences longer than
80 words are filtered from the training data. The baseline model uses 500-dimensional
word embeddings and hidden layer dimension of 1,024. Encoder and decoder use GRU
units (Cho et al., 2014). The baseline is trained using the MLE objective and AdaDelta
(Zeiler, 2012) using minibatch size 𝑀 = 64. Dropout (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014) is applied for regularization with a dropout rate of 0.2
for embedding and hidden layers and 0.1 for source and target layers. The baseline is
validated every 2,500 updates. As training did not reach the stopping criterion for a long
time, but BLEU scores on heldout also had not increased for a long time either, training
was stopped manually. We use the baseline model at iteration 650,000 (after 20 epochs)
as an input to our tuning method.

Our adaptation experiments use the same training and evaluation data as Section 5.4.
Hyperparameters are selected on the development set. For structured ramp loss, we use
SGD with a learning rate of 0.005 and no dropout. We use minibatch size 𝑀 = 40, 𝛼 is set
to 10. The 𝑘-best list size is set to 16. Results are validated every 200 updates. For MRT,
we use SGD with a learning rate of 0.05 and no dropout. We use sampling size 𝑆 = 16 and
compute the baseline over 10 samples. As all samples have to be considered in the update
and thus loaded into GPU RAM, an update is made after each input for MRT training.
Progress on the development set is evaluated every 8,000 updates to match the validation
frequency of the structured ramp loss. The stopping point is determined by the BLEU
score on the development set. We report scores computed with Moses’ multi-bleu.perl
on tokenized, truecased output. Each experiment is run two times and results are averaged
over the runs.

5.5.3 Experimental Results

Table 5.6 shows results for the different ramp loss versions. The losses RAMP, RAMP1−

and RAMP2 in rows 2, 3 and 4 perform worse than the baseline. These losses do not
incorporate both positive and negative supervision, but use supervision either only from
𝑑+ (RAMP and RAMP2) or only from 𝑑− (RAMP1−). RAMP performed worst, an
observation which we explain by the extremely weak signal from relevant documents.
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𝑀 % BLEU Δ

1 baseline 64 15.59
2 RAMP 40 15.03 ±0.01 − 0.56
3 RAMP1− 40 15.12 ±0.02 − 0.47
4 RAMP2 40 15.19 ±0.01 − 0.40
5 MRT𝛿1

1 15.37 ±0.04 − 0.22
6 MRT𝛿2

1 15.70 ±0.04 + 0.11
7 RAMP− 40 15.85 ±0.02 + 0.26
8 RAMP𝛿2

40 15.86 ±0.04 + 0.27
9 RAMP−-T 40 16.03∗±0.02 + 0.44
10 RAMP𝛿2

-T 40 15.84 ±0.02 + 0.25

Table 5.6 BLEU scores for weakly supervised MT experiments. Boldfaced results are
significantly better than the baseline at 𝑝 < 0.05. The ∗ (line 9) marks a significant
difference over the corresponding RAMP− objective (line 7).

Trying to perfectly re-create 𝑑+ will not lead to good translations. Looking at the MRT
experiments (rows 5 and 6), MRT𝛿1

also causes a deterioration in BLEU compared to the
baseline. This loss function also computes the reward only according to 𝑑+. MRT𝛿2

, on the
other hand, shows a nominal improvement over the baseline. This objective incorporates
bipolar supervision by using 𝛿2 as its metric. RAMP− and RAMP𝛿2

also incorporate
bipolar supervision. Both of these objectives are able to significantly outperform the
baseline. This result shows that bipolar feedback is crucial for success when learning from
weak supervision. Further, the ramp loss is superior to MRT at learning from bipolar
supervision, because, unlike MRT, which uses random samples, the ramp loss intelligently
selects specific positive and negative outputs to encourage or discourage. Both objectives
perform at the same level, showing that in the setup investigated here it does not matter
how the bipolar supervision is integrated. Finally, RAMP−-T, the token-level version
of RAMP−, adds another significant improvement. This result shows that token-level
updates are helpful in this weak supervision scenario.

To summarize, only objectives which take into account bipolar feedback are able to im-
prove over the baseline, while objectives which fail to do so have a deteriorating effect on
translation quality. This observation holds both for ramp loss and minimum risk training.
For ramp loss, it is irrelevant whether the positive and negative supervision is incorpo-
rated through the metric ( RAMP𝛿2

) or the objective (RAMP−). Using a bipolar ramp
loss objective outperforms minimum risk training. The best result is achieved using the
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5 Bipolar Ramp Loss for Learning from Weak and Negative Supervision

Loss 𝑦+ 𝑦−

RAMP argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ(𝑦, 𝑦∗) argmax𝑦 𝑠𝑤(𝑦, 𝑥) + Δ(𝑦, 𝑦∗)
RAMP1 ̂𝑦 argmax𝑦 𝑠𝑤(𝑦, 𝑥) + Δ(𝑦, 𝑦∗)
RAMP2 argmax𝑦 𝑠𝑤(𝑦, 𝑥) − Δ(𝑦, 𝑦∗) ̂𝑦
PERC1 𝑦∗ ̂𝑦
PERC2 argmax𝑦 BLEU+1(𝑦, 𝑦∗) ̂𝑦

Table 5.7 Configurations for 𝑦+ and 𝑦− for fully supervised MT. ̂𝑦 is the highest-
probability model output, 𝑦∗ is a gold standard reference. The argmax𝑦 is taken over
the 𝑘-best list 𝒦(𝑥), which we omit due to space constraints.

token-level version of RAMP−. While the overall improvements are small, an evaluation
of the same objectives on a weakly supervised semantic parsing task has yielded a similar
ranking of objectives with larger gains, showing the general validity of the bipolar principle
for weakly supervised scenarios. The semantic parsing experiments are described in Jehl
et al. (2018). We surmise that the larger improvements in semantic parsing are possible,
because the available weak supervision - gold answers for natural language questions - is
stronger than in our case.

5.6 Comparing Structured Ramp Loss to Other Objectives for Fully
Supervised NMT

While our work focuses on weakly supervised tasks, we are also the first to investigate
structured ramp loss for NMT. We therefore also conduct experiments using a fully super-
vised MT task. These experiments are motivated on the one hand by lifting the findings
of Gimpel and Smith (2012) to the neural MT paradigm, and on the other hand to ex-
pand the work by Edunov et al. (2018) on applying classical structured prediction losses
to neural MT.

5.6.1 Objectives

For fully supervised MT, we assume access to one or more reference translations 𝑦∗ for
each input 𝑥. The reward BLEU+1(𝑦, 𝑦∗) is a per-sentence approximation of the BLEU
score.13 Table 5.7 shows the different losses for 𝑦+ and 𝑦−. RAMP, RAMP1, and RAMP2

13We use the BLEU score with add-1 smoothing for 𝑛 > 1 as proposed by B. Chen and Cherry (2014).
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are defined analogously to the ramp loss variants proposed by Gimpel and Smith (2012).
RAMP is a bipolar objective, which encourages a hope output, which has a high probability
according to the model and high BLEU+1, while discouraging a fear output, which has
high probability according to the model and low BLEU+1. This objective is also used
by Chiang (2012). RAMP1 replaces the hope output with the model-best translation ̂𝑦,
while RAMP2 replaces the fear with ̂𝑦. Like in the weakly supervised setting, the external
metric is again subtracted from 1 and scaled by a hyperparameter 𝛼 > 0 to obtain a cost
function Δ(𝑦, 𝑦∗) = 𝛼(1 − BLEU+1(𝑦, 𝑦∗)).

Gimpel and Smith (2012) also include the perceptron loss in their analysis. PERC1 is a
re-formulation of the Collins perceptron (Collins, 2002) where the reference is used as 𝑦+

and ̂𝑦 is used as 𝑦−. A comparison with PERC1 is not possible for the weakly supervised
tasks in the previous sections, as gold structures are not available for these tasks. With
neural MT and subword methods we are able to compute this loss for any reference without
running into the problem of reachability that was faced by phrase-based MT (Liang et al.,
2006). However, using sequence-level training towards a reference can lead to degenerate
solutions where the model gives low probability to all its predictions (S. Shen et al., 2016).
PERC2 addresses this problem by replacing 𝑦∗ by a surrogate translation which achieves
the highest BLEU+1 score in 𝒦(𝑥). This approach is also used by Edunov et al. (2018)
for the loss functions which require an oracle. PERC1 corresponds to Equation 9, PERC2
to Equation 10 of (Gimpel & Smith, 2012).

5.6.2 Experimental Setup

We conduct experiments on the IWSLT 2014 German-English task, which is based on
Cettolo et al. (2012) in the same way as Edunov et al. (2018). The training set contains
160K sentence pairs. We set the maximum sentence length to 50 and use BPE with
14,000 merge operations. Edunov et al. (2018) sample 7K sentences from the training set
as heldout data. We do the same, but only use 1/10th of the data as heldout set to be
able to validate often without having to wait long. Our baseline system is a BiLSTM
encoder-decoder with attention. Word embedding and hidden layer dimensions are set
to 256. We use batches of 64 sentences for baseline training and batches of 40 inputs
for training RAMP and PERC variants. MRT makes an update after each input using
all sampled outputs and resulting in a batch size of 1. All experiments use dropout for
regularization, with dropout probability set to 0.2 for embedding and hidden layers and
to 0.1 for source and target layers. During MLE-training, the model is validated every
2500 updates and training is stopped if the MLE loss on the heldout set worsens for 10
consecutive validations.
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For metric-augmented training, we use SGD for optimization with learning rates optimized
on the development set. Ramp losses and PERC2 use a 𝑘-best list of size 16. For ramp
loss training, we set 𝛼 = 10. RAMP and PERC variants both use a learning rate of 0.001.
A new 𝑘-best list is generated for each input using the current model parameters. We
compare ramp loss to MRT as described above. For MRT, we use SGD with a learning
rate of 0.01 and set 𝑆 = 16 and 𝑆′ = 10. As Edunov et al. (2018) observe beam search
to work better than sampling for MRT, we also run an experiment in this configuration,
but find no difference between results. As beam search runs significantly slower, we only
report the experiments which use sampling. The model is validated on the development
set after every 200 updates for experiments with batch size 40 and after 8,000 updates
for MRT experiments with batch size 1. The stopping point is determined by the BLEU
score on the heldout set after 25 validations. As we are training on the same data as the
baseline, we also apply dropout during ramp loss training to prevent overfitting. BLEU
scores are computed with Moses’ multi-bleu.perl on tokenized, truecased output. Each
experiment is run 3 times and results are averaged over the runs.

5.6.3 Experimental Results

Table 5.8 shows experimental results for the different training losses. All experiments,
except for PERC1 (row 3), yield improvements over the baseline, confirming that sequence-
level losses which update towards the reference can lead to degenerate solutions. For
MRT (row 2), our findings show similar performance to the initial experiments reported
by Edunov et al. (2018) who gain 0.24 BLEU points on the same test set.14 PERC2 (row
4) and RAMP2 (row 6) improve over the baseline and PERC1, but perform on a par with
MRT and each other. Both RAMP (row 7) and RAMP1 (row 5) are able to outperform
MRT, PERC2 and RAMP2, with the bipolar objective RAMP also outperforming RAMP1
by a narrow margin. The main difference between RAMP and RAMP1, compared to
PERC2 and RAMP2, is the fact that the latter objectives use ̂𝑦 as 𝑦−, while the former
use a fear translation with high probability and low BLEU+1. We surmise that for this
fully supervised task, selecting a 𝑦− which has some known negative characteristics is
more important for success than finding a good 𝑦+. RAMP, which fulfills both criteria,
still outperforms RAMP2. This result re-confirms the superiority of bipolar objectives
compared to non-bipolar ones. While still improving over the baseline, token-level ramp
loss RAMP-T (row 8) is outperformed by RAMP by a small margin. This result suggests
that when employing a metric-augmented objective on top of an MLE-trained model in a
full supervision scenario without domain shift, there is little room for improvement from
14See their Table 2. Using interpolation with the MLE objective, Edunov et al. (2018) achieve +0.7 BLEU

points, but as we are only interested in the effect of the sequence-level loss functions, we look at these
losses in isolation.
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𝑀 % BLEU Δ

1 baseline 64 31.99
2 MRT 1 32.17 ± 0.02 + 0.18
3 PERC1 40 31.91 ± 0.02 − 0.08
4 PERC2 40 32.22 ± 0.03 + 0.23
5 RAMP1 40 32.36∗ ± 0.05 + 0.37
6 RAMP2 40 32.19 ± 0.01 + 0.20
7 RAMP 40 32.44∗∗ ± 0.00 + 0.45
8 RAMP-T 40 32.33∗ ± 0.00 + 0.34

Table 5.8 BLEU scores for fully supervised MT experiments. Boldfaced results are
significantly better than the baseline at 𝑝 < 0.01 according to multeval (Clark et al.,
2011). ∗ marks a significant difference to MRT and PERC2, and ∗∗ marks a significant
difference to RAMP1.

token-level supervision, while gains can still be obtained from additional sequence-level
information captured by the external metric, such as information about the sequence
length.

To summarize, our findings on a fully supervised task show the same small margin for
improvement as Edunov et al. (2018), without any further tuning of performance, e.g. by
interpolation with the MLE objective. Bipolar RAMP is found to outperform the other
losses. This observation is also consistent with the results by Gimpel and Smith (2012)
for phrase-based MT. We conclude that for fully supervised MT, deliberately selecting a
hope and fear translation is beneficial.

Conclusions

This chapter has examined the potential of structured ramp loss objectives for learning
from weak and negative supervision. Ramp loss has been selected because of its potential
to deliberately select positive and negative outputs to encourage and discourage, rather
than averaging over a sample of outputs or promoting a reference structure, which may not
be available in the weakly supervised case. We have called this characteristic “bipolar”.
The bipolar nature of the ramp loss also allows to incorporate both positive and negative
supervision. In our scenario of adapting a translation system to a new domain using only
supervision from cross-lingual document-level links, we have paired positive supervision
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from relevant documents with negative supervision from irrelevant documents to obtain a
more reliable signal. We proposed adapted bipolar ramp loss, which allow the model to
take into account both sources of supervision. Negative supervision is integrated into the
objective either directly, by modifying the definition of 𝑦−, or indirectly, via the new 𝛿2
metric.

We have defined a new Wikipedia task, including a small development and test set. A
small manual evaluation shows that while the stronger cross-lingual mate relation between
articles can also be used for pseudo-parallel data extraction, the weaker link relation does
not produce any parallel data.

Experiments using an SMT system have focused on learning sparse lexicalized features
from links of different strength. Using forest search instead of a 𝑘-best approximation was
vital to the experimental success, leading to significant gains over the baseline when using
bipolar ramp loss with stronger cross-lingual links. As expected, learning was found to be
slower and less successful when using supervision only from weak links, but by employing
a weighted sampling scheme based on unsupervised document similarity, significant gains
could be obtained. Finally, we showed that small gains still persisted when our approach
was combined with traditional adaptation methods.

For NMT, experiments focused on exploring the significance of the bipolar principle and
the contribution of positive and negative supervision. Five different ramp loss versions
were tested on the weakly supervised task. Structured ramp loss was further compared to
two variants of minimum risk training, one of which incorporated positive and negative
supervision by using the 𝛿2 metric as a reward function. Results showed that positive
and negative supervision was crucial to the experimental success, both for minimum risk
training and ramp loss. The best result was obtained by using a token-level version of
bipolar ramp loss with the 𝛿1 metric.

The importance of the bipolar principle was further confirmed in a fully supervised NMT
experiment, which lifted the structured prediction losses suggested by Gimpel and Smith
(2012) to NMT and featured the first use of structured ramp loss for NMT.
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CHAPTER 6

Document Metadata as Side Constraints for Fully Supervised Translation

So far, we have considered document meta-information as a source of supervision for tasks
where full supervision is not available. But could document meta-information also be
useful as an additional supervision signal on top of full supervision? This chapter proposes
to integrate document meta-information into a fully supervised machine translation (MT)
system as side constraints. We use the term “side constraints” to mean information that is
not present in a source string, but can influence translation choice in the target string. This
follows the definition of the term by Sennrich, Haddow, and Birch (2016a) who explore
politeness as a side constraint for translation.

Patent translation lends itself particularly well to our endeavor since patent documents are
annotated with rich metadata containing different types of information, from hierarchi-
cal categorization to information about individual inventors. We are interested in seeing
whether patent translation can be improved by leveraging this metadata and if so, which
kind of metadata and which model integration is most useful. For example, patent docu-
ments are categorized according to their topic. Depending on the overall topic, different
translation choices can be required, and the correct choice will not always be apparent
from the sentence context. By providing the categorization information to the translation
model as a side constraint, we enable the model to select the correct translation, given the
constraint.
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First, we define side constraints for a statistical machine translation (SMT) system. We
use the metadata to inform phrase selection by adding phrase-level side constraint match
features to the SMT system. These features reflect the amount of matching metadata
between an input document and the training documents that a phrase pair was extracted
from. In order to combat sparsity, different feature aggregation methods are introduced.
Further, a TFIDF-based weighting scheme is defined to better distinguish the importance
of different metadata. We evaluate the features along with the aggregation and weighting
schemes and perform an ablation for different feature categories on Japanese-English and
German-English patent translation tasks. Second, we train a neural machine translation
(NMT) system for both patent translation tasks, as NMT has been shown to surpass
SMT on many translation tasks. We present two approaches to source-side integration
of side constraints for neural patent translation, as word-attached and sentence-attached
side constraints. We adapt these approaches to accommodate multi-category, multi-valued
metadata. We then again perform an experimental evaluation of the different approaches
and different categories.

The main contributions presented in this chapter are: (1) A method for an SMT system
to capture matching document metadata between a test document and phrase pairs in the
translation model via side constraint match features. (2) Adaptation of two methods by
Kobus, Crego, and Senellart (2017) for passing document metadata to an NMT system
via sentence-attached and word-attached side constraints. (3) An in-depth evaluation of
all proposed methods on patent translation for two language pairs (Japanese-English and
German-English), along with a comparison of SMT and NMT performance on the task.
All contributions were made by the author after consultation with the supervisor of this
thesis. An earlier version of this work was published as Jehl and Riezler (2018). Note
that this chapter includes a different and much more comprehensive evaluation of the
SMT features, leading to slightly divergent results compared to the publication, where
no improvements over the baseline were found. The more comprehensive experiments
reported here show indeed modest improvements for Japanese-English patent translation.

The remainder of the chapter is organized as follows: Related work is reviewed in Section
6.1. Section 6.2 contains the general problem and task definitions. Section 6.3 describes
the approach to integrating metadata as side constraints into an SMT system and presents
experimental results. Section 6.4 describes two approaches to integrating metadata as side
constraints into an NMT system and presents experimental results.
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6.1 Related Work

6.1 Related Work

For SMT, Niehues and Waibel (2010) and Bisazza, Ruiz, and Federico (2011) both modify
the phrase table to include corpus identifiers or binary in-domain/out-of-domain markers,
which they find beneficial for domain adaptation. However, they do not use more fine-
grained information. For phrase-based patent translation, Wäschle and Riezler (2012b)
use patent section labels to partition training data for multi-task learning, but do not
look into the more fine-grained classification information. Khadivi, Wilken, Dahlmann,
and Matusov (2017) investigate integrating category information into a hybrid SMT/NMT
system using sparse features. Their approach resembles our SMT features, but they only
use six product categories, whereas we have thousands of different annotations, requiring
aggregation and weighting to make features more robust.

Our work on NMT is inspired by the work of Kobus et al. (2017) on multi-domain adapta-
tion. This work uses the domain label as a side constraint for translation in a multi-domain
setup: A combined NMT model is trained on subcorpora from different domains, and each
training sentence is marked with its subcorpus information. Test data come from one of
the known domains and are marked in the same way. We take the idea of using sentence-
attached and word-attached source side features to represent side constraints from this
paper and modify it to fit our scenario of multi-category, multi-valued patent annotations.
Kobus et al. (2017) observed no improvements for sentence-attached features, but saw an
improvement of 0.8% BLEU for word-attached features when testing on all but the largest
subdomain.

Incorporating side constraints via sentence-attached features has also been applied in other
work: Originally, this method was proposed by Sennrich et al. (2016a) to model polite-
ness as a side constraint. Johnson et al. (2016) have used it to indicate the desired target
language for multilingual NMT. Chu et al. (2017) apply it to neural domain adaptation
in combination with fine tuning methods (M.-T. Luong & Manning, 2015). Passing ad-
ditional information to a neural network via word-attached features was first introduced
by Collobert et al. (2011) as a way to add linguistic annotation for various NLP tasks
using feed-forward and convolutional networks. Sennrich and Haddow (2016) transferred
this idea to neural translation models. The word-attached features used by Kobus et al.
(2017) were first presented by Crego et al. (2016), where they were used to encode case
information.

The idea of leveraging document meta-information as a side constraint for translation
was recently investigated by W. Chen, Matusov, Khadivi, and Peter (2016). They focus
on integrating product category information for translation of product descriptions in
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e-commerce, and also apply their method to online lecture translation (Cettolo et al.,
2012), where the lectures are annotated with topic keywords. They also experimented
with attaching document information as an artificial token to the source sentence, but
found no gains for this method. They then propose to integrate topic information on
the target side by including it as an additional read-out layer in the decoder before the
softmax layer. This method improved e-commerce data translation by 1.4% BLEU and
lecture translation by 0.3% BLEU.

6.2 Task

6.2.1 General Task Definition

In our scenario, weak supervision from document meta-information is available alongside
strong supervision from parallel data. Given a source input 𝑥 = 𝑥1, 𝑥2, … , 𝑥|𝑥|, we assume
that we can obtain a set of side constraints 𝑆(𝑥) from metadata of the source document
𝑑 containing 𝑥. Our goal is to learn a parameterized function 𝑠𝑤(𝑦, 𝑥, 𝑆(𝑥)), which allows
us to run inference as follows:

̂𝑦 = argmax
𝑦

𝑠[𝑤,𝑤𝑆](𝑦, 𝑥, 𝑆(𝑥)) , (6.1)

where [𝑤, 𝑤𝑆] indicates that using side constraints may require additional parameters
related to the document information. In a log-linear SMT model, we define side constraint
match features, which require additional weights. In the case of NMT, the necessity of
adding parameters depends on the approach to integrating side constraints, as will be
discussed in Section 6.4.

6.2.2 Side Constraints from Patent Metadata

Figure 6.1 shows the first page of an example patent. This page contains the patent’s ab-
stract and metadata. There are different metadata categories, as marked by the different
item numbers in parentheses. Metadata include the application and disclosure dates (items
22 and 43), the classification according to the hierarchical International Patent Classifica-
tion system1 (item 51), the company filing the patent (item 71) and the inventors (item
72). In our example, the inventors are “Ralf Schuler” and “Uwe Tellermann”, the com-
pany filing the patent is “Robert Bosch GmbH”, and the IPC classifications are “B60K

1see wipo.int/classifications/ipc/en/, Sep 01, 2018.
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6.2 Task

Figure 6.1 The title page of a patent document from the German Patent and Trade
Mark Office (DPMA). The pre-amble contains information about the patent’s date of
application, the inventors and filing company and the IPC classification.

B Section Performing Operations, Transporting

B60 Class Vehicles in General

B60K Subclass Arrangement or Mounting of Propulsion Units in
Vehicles (…)

Table 6.1 IPC classification example.

6/387” and “B60K 6/48”. Note that there are multiple classifications and inventors. The
classification number encodes a hierarchical classification, whose levels can be obtained by
truncating the string to a fixed number of positions. The first letter (“B”) indicates the
patent section, the first three letters (“B60”) indicate the patent class and the first four
letters (“B60K”) indicate the patent subclass. The hierarchy is illustrated in Table 6.1.
The digits in subsequent positions indicate an even more fine-grained classification.
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Our experiments use up to five types of side constraints extracted from patent metadata.
The first three types of constraints concern the patent classification. Patents are classified
by their subject matter as belonging to one or more of 8 different sections (A-H). The
sections are divided into 130 classes and 639 subclasses. The hierarchy branches out
further, but we only use at most the top three hierarchy levels to avoid running into
sparsity issues. We refer to these constraints as IPC1 (patent section), IPC2 (patent class)
and IPC3 (patent subclass). The fourth and fifth type of constraint considered in this
work are the filing company, abbreviated as COMP, and the inventors, that we abbreviate
by INV. Since each patent can be assigned to more than one section, class and subclass,
and be filed by more than one company or inventor, side constraints need to be integrated
into a translation in a way which allows multiple values for each constraint.

6.2.3 Data

Experiments are run on Japanese-English and German-English patent translation task.
We train Japanese-English models on the NTCIR-7 Patent Translation training set2

(Utiyama & Isahara, 2007). We use the NTCIR-8 development and test sets for develop-
ment, and the NTCIR-9 intrinsic evaluation set for testing. Table 6.2 contains information
about the data sets. Japanese data is segmented using MeCab3. For German-English, we
use the abstracts section of the PatTR corpus (Wäschle & Riezler, 2012a). Patents pub-
lished before 2008 are used for training. Development, devtest and test set contain about
2,000 sentences each and are randomly selected from the remaining patents. Sentences
from the same document are always assigned to the same set. We apply a length-ratio
based filter to the test set prior to evaluation to filter out noise from automatic sentence
alignment, which was used to create the PatTR corpus (see Wäschle and Riezler (2012a)).
Table 6.3 contains information about the data sets. All English data is tokenized and
true-cased using the Moses toolkit4.

6.3 Side Constraints for SMT

In phrase-based translation, we want to use side constraints from document metadata to
influence phrase selection. Given an input document with metadata, the model should
prefer translations that have been extracted from patents with similar metadata. For ex-
ample, the polysemous German word “Speicher” translates into “memory”, “storage” or

2research.nii.ac.jp/ntcir/permission/ntcir-7/perm-en-PATMT.html
3taku910.github.io/mecab/
4github.com/moses-smt/mosesdecoder
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6.3 Side Constraints for SMT

Data set Origin # sentence pairs # documents

train NTCIR-7 train 1,798,571 51,040
dev NTCIR-8 pat-dev-2006-2007 2,000 115
devtest NTCIR-8 Test Intrinsic 1,251 114
test NTCIR-9 Test Intrinsic 2,001 417

Table 6.2 Data sets used in Japanese-English translation.

Data set Origin # sentence pairs # documents

train PatTR abstracts before 2008 694,609 280,009
dev PatTR abstracts since 2008 2,000 899
devtest PatTR abstracts since 2008 2,001 864
test (filtered) PatTR abstracts since 2008 1,716 724

Table 6.3 Data sets used in German-English translation.

“reservoir”.5 “memory”, but not “reservoir”, occurred in patent classes related to com-
puting, which belong to IPC section G, physics. On the contrary, “reservoir”, but not
“memory”, occurred in patent class F24, Heating; Ranges; Ventilating. In this case,
patent section and class provide clues for selecting the correct translation. When translat-
ing a new patent document categorized as F24, “reservoir” should therefore be preferred
over “memory”. The presented side constraint match features quantify to what degree the
annotations of the current input document match the annotations of the documents that
a phrase pair was extracted from. These features allow the model to give more weight
to phrases with matching annotations. We first specify our approach to these features,
before we present an experimental evaluation.

6.3.1 Side Constraint Match Features

We propose to capture side constraints via side constraint match features defined between
side constraints of a phrase pair ̄𝑥, ̄𝑦 and an of an input 𝑥. With these additional features,
the translation model score is computed as

𝑠𝑤(𝑥, 𝑦) = max
ℎ

∑
{�̄�,�̄�∈ℎ}

w⊤𝜙( ̄𝑥, ̄𝑦) + w⊤
𝑚𝑎𝑡𝑐ℎ𝜙𝑚𝑎𝑡𝑐ℎ(𝑆( ̄𝑥, ̄𝑦), 𝑆(𝑥)) ,

5These examples were found in the phrase table and do not represent all meanings of “Speicher”.
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Algorithm 5 Extraction of raw overlap features
1: At training time:
2: for all phrase pairs ̄𝑥, ̄𝑦 do
3: 𝑆( ̄𝑥, ̄𝑦) ← Union(Lookup(𝑥)) for all training pairs 𝑥, 𝑦 containing ̄𝑥, ̄𝑦
4: end for
5:
6: At test time:
7: Obtain test input 𝑥
8: 𝑆(𝑥) ← Lookup(𝑥)
9: for all phrase pairs ̄𝑥, ̄𝑦 such that ̄𝑥 ∈ 𝑥 do

10: 𝜙𝑚𝑎𝑡𝑐ℎ(𝑆( ̄𝑥, ̄𝑦), 𝑆(𝑥)) ← Aggregate(Intersect(𝑆( ̄𝑥, ̄𝑦), 𝑆(𝑥)))
11: end for

where w𝑚𝑎𝑡𝑐ℎ are additional feature weights, which can be trained on the heldout set
along with the other feature weights.

Given a phrase pair ̄𝑥, ̄𝑦, the phrase pair side constraints 𝑆( ̄𝑥, ̄𝑦) are computed as the union
over the side constraints of all training sentences that contain ̄𝑥, ̄𝑦. The side constraint
match features are then computed by taking the intersection between the side constraints
for test input 𝑥, 𝑆(𝑥), and the phrase pair side constraints 𝑆( ̄𝑥, ̄𝑦). Algorithm 5 shows the
feature extraction process. Lines 2-4 show the extraction of phrase pair side constraints
at training time. The Lookup procedure maps the sentence identifier of an input 𝑥 to
the side constraints extracted from the document-level metadata of the patent document
containing 𝑥. Lines 7-11 then contain the extraction of the side constraint match features
at test time. Side constraints for input 𝑥 are obtained via Lookup, and the intersection
is computed for each phrase pair in 𝑥. The new features are dynamic features, as they
depend on the input document side constraints, whose values are only obtained at test
time. The final feature values are computed by intersecting 𝑆(𝑥) with 𝑆( ̄𝑥, ̄𝑦), and feeding
the intersection to an aggregation procedure aggregate. Below, we motivate the need
for feature aggregation and describe different aggregation schemes.

We propose three different ways of aggregating matching side constraints: no aggregation,
aggregation by category and aggregation by sum. More aggregation produces fewer, more
general features, while no aggregation allows the model to capture specific information,
but can lead to sparsity issues. When doing no aggregation, each matching side constraint
is treated as a separate binary feature. This method produces sparse, fine-grained features.
However, the model will only learn weights for annotations it has seen during tuning. If
the tuning set only contains few documents, few annotation features will be learned. The
maximum number of features added by this method is equal to the number of different
annotations present in the training data. We use aggregation by category to define more
general features. This method aggregates all side constraints belonging to the same type
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– COMP, INV, IPC1, IPC2, IPC3 – in one single feature by summing over all side
constraint matches in this category. For example, if a test document has three inventors,
and a phrase was found in documents from two of the same inventors, this phrase will
be annotated with the feature INVMatch=2. Aggregating by category allows the model to
differentiate between types of side constraints, while avoiding the sparsity issues arising
without aggregation. This method of aggregation always adds 𝐹 features to the model,
where 𝐹 is the number of categories. Finally, aggregation by sum, is the most aggressive
aggregation scheme. This method sums over all side constraint matches, adding only a
single additional feature to the model. For example, if a phrase pair and an input document
have two matching inventors and a matching IPC section, the phrase would be annotated
with MatchSum=3.

The features we have defined so far capture whether a phrase pair shares the same side
constraints as an unseen document. One weakness of this approach lies in its potential
bias for more common phrases. Phrases that occur in more documents are more likely
to have more matching side constraints. However, a phrase pair occuring frequently,
but only within a single IPC class, for example, could be crucial for producing a correct
translation for inputs from this class, but would only receive low aggregated match counts.
We counter this weakness by introducing a weighting scheme inspired by term frequency
- inverse document frequency (TFIDF) weighting. Originally, TFIDF weighting has been
designed to weight individual terms for information retrieval: Terms are given high weight
if they occur frequently in few documents. In our case, the weighting scheme should
assign more weight to a phrase pair with respect to a side constraint, if the phrase pair is
strongly associated with this side constraint. Less weight should be assigned to a phrase
pair with respect to a side constraint, if this phrase pair also occurs with many other
side constraints. We therefore define documents by the side constraints, e.g., the patent
class or the name of the inventor. The terms are phrase pairs occurring in patents with
this side constraint. Note that as one patent can have multiple side constraints, the same
phrase pair occurrence can be assigned to more than one “document”. In this regard our
approach differs from classical TFIDF, where each term occurrence is assigned to exactly
one document. The idea of using a TFIDF weighting scheme is inspired by the vector
space adaptation model of B. Chen et al. (2013), who apply TFIDF weighting to measure
the importance of phrase pairs with respect to different corpora for domain adaptation.
In our setting, the term frequency TF of a phrase pair ̄𝑥, ̄𝑦 with respect to a given side
constraint 𝑠𝑖 ∈ 𝑆( ̄𝑥, ̄𝑦) is computed as follows:

TF( ̄𝑥, ̄𝑦; 𝑠𝑖) = count( ̄𝑥, ̄𝑦; 𝑠𝑖)
max�̄�′,�̄�′(count( ̄𝑥′, ̄𝑦′; 𝑠𝑖)) ,
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using maximum TF-normalization (Manning et al., 2008, Section 6). The inverse docu-
ment frequency IDF of ̄𝑥, ̄𝑦 is:

IDF( ̄𝑥, ̄𝑦) = log
𝑁

DF( ̄𝑥, ̄𝑦) + 𝛽 ,

where the document frequency DF( ̄𝑥, ̄𝑦) is the number of side constraints ̄𝑥, ̄𝑦 occurs with,
and 𝑁 is the total number of side constraints. 𝛽 is a smoothing parameter to avoid
zero-values if DF( ̄𝑥, ̄𝑦) = 𝑁 . The TFIDF weight of ̄𝑥, ̄𝑦 is then computed as

TFIDF( ̄𝑥, ̄𝑦; 𝑠𝑖) = TF( ̄𝑥, ̄𝑦; 𝑠𝑖) ⋅ IDF( ̄𝑥, ̄𝑦) .

As an illustration, Figure 6.2 shows the 5 patent classes with the highest TFIDF weights for
three translation options for “Speicher”. We can see that “storage” has highest weight in
classes concerning physical storage, while “memory” ranks highest in classes on computing
and electronics. Both options are relevant for class G11, “information storage”. For
“reservoir”, the top-ranked classes concern heating, thermal insulation and liquids.

Combining the variants described above, we conduct four sets of experiments:

(1) single: Sparse binary match features without aggregation or weighting.

(2) single weighted: Sparse match features with TFIDF weighting.

(3) aggregated: Binary match features from setup (1), either aggregated by side con-
straint type, or by summing over all matches.

(4) aggregated weighted: Weighted match features from setup (2), either aggregated
by side constraint type, or by summing over all matches.
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Top IPC classes for “storage”

F17, storing or distributing gases or liquids

E03, water supply; sewerage

F24, heating; ranges; ventilating

G11, information storage

E02, hydraulic engineering; foundations; soil-shifting

Top IPC classes “memory”

G06, computing; calculating; counting

H04, electric communication technique

G11, information storage

G05, controlling; regulating

G01, measuring; testing

Top IPC classes for “reservoir”

F24, heating; ranges; ventilating

F16, engineering elements or units; general measures for producing
and maintaining effective functioning of machines or installations;
thermal insulation in general

F03, machines or engines for liquids; wind, spring, or weight motors;
producing mechanical power or a reactive propulsive thrust, not oth-
erwise provided for

F02, combustion engines; hot-gas or combustion-product engine plants

E05, locks; keys; window or door fittings; safes

Figure 6.2 Most highly relevant patent classes for translation options for “Speicher”.
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6.3.2 Experimental Evaluation

We train Japanese-English and German-English patent translation systems using the data
sets as described in Section 6.2. All SMT experiments use the cdec toolkit (Dyer et al.,
2010) for training and decoding. The baseline uses 21 built-in dense features, consisting
of five translation model features, seven pass through features, two singleton features, one
glue rule feature, one word penalty, three arity penalty features, and two language model
features. We use a single 5-gram language model built with KenLM (Heafield et al.,
2013) from the target side portion of the training data. For all experiments, we use the
dtrain pairwise ranking optimizer (Simianer et al., 2012) to learn feature weights on the
development set. We run dtrain with 𝑘-best size = 100, learning rate = 1𝑒−7 and loss
margin = 1 for 15 epochs and obtain final weights by averaging over all epochs. Cube
pruning with a pop-limit of 200 is used for tuning and evaluation. We conduct feature
ablations for the different types of side constraints on the devtest set. For each experiment
group described above, we perform an ablation for the five side constraint types described
in Section 6.2: Company (COMP), inventor (INV), IPC section (IPC1), class (IPC2), and
subclass (IPC3). We test each constraint type on its own, as well as the combination of
all constraint types. The best performing configuration within each experiment group is
then evaluated on the test set. Performance is evaluated according to the BLEU score
(Papineni et al., 2002). BLEU scores, as well as significance tests, were computed using
the MultEval tool (Clark et al., 2011) with tokenized, lowercased input.

Figure 6.3 shows the results of the feature ablation on the devtest set for the Japanese-
English task. The single features without weighting perform worst overall, with only
IPC1 and all experiments outperforming the baseline. This result shows that apart from
IPC1 constraints, where only eight different labels are possible, other types of constraints
could be too sparse for reliable weight estimation from a small development set of 2000
sentences when binary features are used. This is especially notable for the INV constraints
which even decreases performance. The single weighted setting improves in performance
for COMP, IPC2 and IPC3 constraints, showing that the added information by weighting
is helpful. For the aggregated features without weighting, we see an increase over the
baseline for all constraints with the largest increase for COMP and INV constraints. This
result indicates that aggregating constraints leads to more helpful features by reducing
sparsity. The aggregated weighted experiments achieved the best performance overall
by either summing over all weighted match features or by using only the weighted IPC2
constraints. As in the single weighted setting, we observe that weighting is more helpful
for more fine-grained IPC constraints. However, unlike the single weighted setting,
the features using IPC3 constraints actually deteriorated over the baseline. Table 6.4
shows BLEU scores on the test set for the best configuration in each experimental setting.
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Figure 6.3 Devtest results for different configurations on Japanese-English patent trans-
lation. The horizontal line marks the baseline at 27.33% BLEU.

The improvements observed on the devtest set carry over to the test set, with the best
configuration – aggregated weighted IPC2 constraints – increasing the BLEU score by
0.6 BLEU points over the baseline.

setting constraint % BLEU devtest % BLEU test Δ test

baseline 27.3 26.2
1 single IPC1 27.7 26.3 +0.1
2 single weighted IPC3 27.8 26.5 +0.3
3 aggregated COMP 27.9 26.7 +0.5
4 aggregated weighted IPC2 28.1 26.8 +0.6

Table 6.4 Test results for best experiments in each category on Japanese-English task.
Results on devtest are shown for comparison. Boldface marks a significant improvement
over the baseline.
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Figure 6.4 Feature ablations for different experiment settings on German-English patent
translation. The horizontal line marks the baseline at 40.68% BLEU.

setting constraint % BLEU devtest % BLEU test Δ test

baseline 40.7 43.1
1 single INV 40.8 43.1 +0.0
2 single weighted INV 40.8 43.0 +0.0
3 aggregated INV 40.8 43.0 −0.1
4 aggregated weighted IPC2 40.9 43.0 −0.1

Table 6.5 Test results for best experiments in each category on German-English task.
Results on devtest are shown for comparison. Boldface marks a significant improvement
over the baseline.
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Figure 6.4 shows the ablation experiments for the German-English system. For German-
English, all results are very close to the baseline with very small differences between
runs. Unlike the Japanese experiments, the INV constraints produce a small gain for the
single, single weighted and aggregated settings. The largest overall gain is obtained
with IPC2 constraints in the aggregated weighted setting. This result matches the
Japanese experiments. Table 6.5 reports test results for the best-performing configurations
on German-English. However, the gains on devtest are very small at only 0.1 to 0.2 BLEU
points over the baseline and do not carry over to the test set.

Comparing both language pairs, we observe different patterns in the single and single
weighted experiments. For example, the INV constraints hurt performance for Japanese-
English in the single setup, while it produces small gains for German-English. This
indicates that the success of sparse features from side constraints is very dependent on
the data conditions. On the other hand, IPC1 constraints work best for Japanese-English
in the single setup, but perform below the baseline for German-English. The results are
most consistent for the aggregated weighted setup, where IPC2 constraints perform best
overall in both language pairs. This points towards larger robustness of those features.
Overall, results for German-English are very close to the baseline, while for Japanese-
English there are improvements of up to 0.8 BLEU points on the devtest set. One potential
explanation for the greater success on the Japanese-English task could be the lower overall
performance of the Japanese-English system in terms of BLEU score, where the German-
English baseline system is very strong already. A possible explanation for this performance
gap could be the enhanced difficulty of Japanese-English translation due to word order
differences. These differences are difficult to model, even for a hierarchical SMT system.
This is particularly true for patent translation, where sentences tend to be very long and
complex with dependencies ranging over larger spans than can be captured by SCFG rules,
given the necessary constraints to make rule extraction computationally tractable.

To summarize, adding side constraint match features to an SMT system leads to mixed
results. Ablation experiments on the devtest set show that feature aggregation by cate-
gory in combination with TFIDF-weighting produces the largest gains over the baseline
when IPC2 constraints are used. For Japanese-English, this configuration also produces
a significant improvement of +0.6 BLEU points on the test set. For German-English, no
significant improvements are observed on the test set. We surmise that this difference is
due to the strong baseline for German-English.
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6.4 Side Constraints for NMT

Since 2014, neural machine translation (NMT) has become the state of the art in machine
translation (Jean et al., 2015; M.-T. Luong & Manning, 2015). We hypothesize that
NMT is well-suited to the integration of document meta-information. Since the model
works on sentence representations, it can decide whether or not to pay attention to this
information for each particular translation in context. What is more, side constraints
could be highly correlated, such as patent class and subclass information. Deep models
are capable of learning these correlations. Inspired by Kobus et al. (2017), two ways of
integrating document information as side constraints into a neural machine translation
system are explored: (1) by attaching side constraints as special tokens to the source
sentence, and (2) by attaching side constraints as tags to each source word. We consider
for both methods the need to handle multiple side constraints with multiple values for
each constraint. We then show experimentally that side constraints can improve a neural
patent translation system.

6.4.1 Sentence- and Word-attached Side Constraints

Our first method integrates side constraints by encoding them as special tokens that are
attached at the beginning or end of a source sentence, or in both positions. Since the
method has to be able to handle multiple values for each type of constraint, each value is
appended to the sentence in alphabetical order. For example, if a patent document has
been assigned to IPC sections B and C, the marked up input could look as follows:

<IPC1:B> <IPC1:C> in die Matrix sind Verstärkungsfasern (5, 6, 7)
eingebettet. <IPC1:B> <IPC1:C>

The advantages of this approach are its simplicity and efficiency, as it does not require
any changes in the translation model. It also allows the model to learn to pay attention
to the special token as needed. Further, the number of model parameters also does not
change if vocabulary size remains the same. Previous work has differed on the attachment
position, leading us to run experiments for attaching at the front, back, or both front and
back of a sentence.

Our second method integrates side constraints by attaching them to each source word, as
shown in the example below:

in|IPC1:B die|IPC1:B Matrix|IPC1:B sind|IPC1:B …
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Note that in our case, every word can have more than one side constraint attached to it.
Side constraints are encoded as 𝐹 word-attached features where each feature represents
one type of side constraints (e.g., IPC1, IPC2 etc.). For each side constraint feature,
a vector representation s𝑓, 𝑓 = 1 … 𝐹 is constructed and appended to the input word
embedding x𝑗, leading to the following equation for updating the hidden RNN encoder
state:6

h𝑒𝑛𝑐
𝑗 = tanh(W𝑒𝑛𝑐([x𝑗, s1, … , s𝐹 ]) + U𝑒𝑛𝑐h𝑒𝑛𝑐

𝑗−1 ) ,

where W𝑒𝑛𝑐 and U𝑒𝑛𝑐 are the hidden layer parameters, h𝑒𝑛𝑐
𝑗−1 is the previous hidden state,

and [v1, v2, …] signifies vector concatenation. Note that s𝑓 is identical for each token in a
document 𝑑. Each side constraint feature represents all side constraints belonging to type
𝑓 , e.g. all IPC1 constraints. We write individual constraints as 𝑠𝑓,𝑘.

For constructing s𝑓, we could either use a sparse vector representation, as is done by
Kobus et al. (2017) for multi-domain adaptation, or a dense “feature embedding”, as is
done by Sennrich and Haddow (2016) to encode token-level linguistic annotation. We
choose the dense approach, as a sparse representation requires the length of s𝑓 to match
the number of values for the 𝑓-th feature. In our setting, some side constraint types have
thousands of possible values, which will become unwieldy for the recurrent model. The
dense representation is computed by looking up the row corresponding to a particular side
constraint in an embedding matrix, which is trained along with the model. This is much
more efficient than computing a full matrix vector multiplication. For constraint 𝑠𝑓,𝑘, the
lookup operation is

E𝑓[ ⋅, 𝑠𝑓,𝑘] ,

where E𝑓 ∈ R|𝑒𝑚𝑏|×|𝑉𝑓 | is an embedding matrix for side constraint feature 𝑓 , and M[⋅, 𝑛]
designates column-wise lookup in matrix M.

This description has not yet specified how to handle multiple side constraints 𝑠𝑓,1 … 𝑠𝑓,𝑘
for one feature. This occurs, for example, if a patent document belongs to more than one
IPC class. Treating those side constraints as separate features would ignore the fact that
they belong to the same side constraint type. We solve this issue by looking up all side
constraints of the same type in the same embedding matrix E𝑓 and summing over the
embeddings as

s𝑓 =
𝐾𝑓

∑
𝑘=1

E𝑓[ ⋅, 𝑠𝑓,𝑘] .

For efficiency reasons, we restrict the number of possible side constraints per side constraint
feature, 𝐾𝑓, to a fixed size, which is selected by the experimenter.

6We omit bias terms and bidirectional RNNs here for the sake of readability.
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Compared to sentence-attached side constraints as proposed above, the word-attached ap-
proach provides a more straightforward solution for combining multiple side constraints -
by first aggregating all side constraints belonging to the same feature and then concate-
nating the aggregated embeddings. For the sentence-attached approach, there is no clear
way how to aggregate individual side constraints, making it difficult to incorporate a large
number of them. The concatenated embeddings also allow to model correlations between
side constraints. The disadvantages of this method are an increase in computational com-
plexity caused by additional lookup operations and vector concatenation and, if the token
embedding x𝑗 remains unchanged, an increase in parameters.

6.4.2 Experimental Evaluation

Experimental Setup. We use the Nematus NMT system7 (Sennrich et al., 2017) to
train a recurrent encoder-decoder network with attention (Bahdanau et al., 2015). After
pre-processing, we train a subword model using Byte Pair Encoding (BPE) (Sennrich
et al., 2016c) with 29,500 merge operations on the training set. For training, we only
keep sentences up to length 80. Unless specified otherwise we use 500-dimensional word
embeddings and a single-layer encoder and decoder with 1,024 hidden units each. All
models are trained using cross entropy loss. ADADELTA (Zeiler, 2012) is employed for
optimization on minibatches of 80 sentences. Gradients are re-normalized if their L2 norm
exceeds a threshold of 1.0. Training is stopped if cross entropy does not decrease for 10
validations. Results are reported on the model with lowest cross entropy. BLEU score
and significance tests are computed using MultEval Clark et al. (2011).

As models with side constraints have to be trained from scratch, performing an ablation
like in Section 6.3 would take months with limited GPU resources available. We therefore
only explore IPC1, IPC2 and COMP constraints, which have been more successful in the
SMT experiments. For the sentence-attached side constraints, we experiment with IPC
section (IPC1) and class (IPC2) constraints, as well as COMP for Japanese-English. We
consider attachment at the front, back, or front+back of the source sentence. For the
word-attached side constraints we combine IPC section and class constraints (IPC1+IPC2).
The hyperparameters 𝐾𝑓 are determined by the distribution of the number of values for
each side constraint in the training documents. 𝐾𝑓 is chosen to ensure that less than 5%
of training documents have more than 𝐾𝑓 side constraints of type 𝑓 . If a document has
more side constraints of type 𝑓 , a subset of size 𝐾𝑓 is sampled randomly. For documents
with fewer side constraints of type 𝑓 , empty values are marked by an extra dummy token.
For IPC1, we set 𝐾 = 2, for IPC2, 𝐾 = 3. The embedding dimensions are set to 5 for IPC1

7github.com/EdinburghNLP/nematus
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setting constraint % BLEU Δ BLEU

1 baseline 36.9
sentence-attached

2 front IPC1 37.4 +0.5
3 back IPC1 37.5 +0.6
4 front+back IPC1 37.6 +0.7
5 front IPC2 37.2 +0.3
6 front COMP 37.0 +0.1

word-attached
7 𝐾 = {2, 3} IPC1,IPC2 37.2 +0.3

Table 6.6 Japanese-English translation results. Boldface marks a significant improve-
ments over the NMT baseline at 𝑝 ≤ 0.05.

and 20 for IPC2. Embedding sizes are chosen to reflect the fact that IPC2 has over an
order of magnitude more different annotations than IPC1. In order to avoid improvements
from merely increasing the number of parameters, we use 475-dimensional source word
embeddings when testing word-attached side constraints. The concatenated embedding
vectors then have the same length (500) as the original word embedding vectors.

Experimental Results. Table 6.6 shows results for Japanese-English neural patent trans-
lation. Switching to a neural machine translation model leads to a striking improvement
in BLEU of about 10 points compared to the SMT experiments in Section 6.3. This is
most likely due to the neural model’s superior ability to deal with differences in word order
between the two languages. These differences create long-range dependencies, which could
be exasperated by the long, complex sentences common in the patent domain. Sentence-
attached IPC1 constraints produce a small, significant, improvement over the NMT base-
line (+0.7% BLEU), when attached at the front+back of the sentence or at the back
of the sentence. Sentence-attached constraints (IPC1, IPC2, COMP) at the front of
the sentence do not improve significantly over the baseline. Word-attached constraints
(IPC1+IPC2) also do not improve the baseline significantly.

Table 6.7 shows results for German-English patent translation. For this language pair,
baseline performance is on a par with SMT. This points to SMT being well-suited to
patent translation when there is no large difference in word order. We surmise that the
formulaic nature of patent language along with the absence of named entities and the
large amount of available training data play a role in this result. Using document infor-
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setting constraint % BLEU Δ BLEU

1 baseline 42.5
sentence-attached

2 front IPC1 43.5 +1.0
3 back IPC1 43.2 +0.7
4 front+back IPC1 42.7 +0.2
5 front+back IPC2 43.9 +1.4

word-attached
6 𝐾 = {2, 3} IPC1,IPC2 43.5 +1.0

Table 6.7 German-English translation results. Boldface marks a significant improve-
ment over the NMT baseline at 𝑝 ≤ 0.05.

mation as side constraints produces larger improvements over the NMT baseline than for
Japanese-English. Sentence-attached IPC1 constraints at the front of the sentence im-
prove the NMT baseline significantly (+1% BLEU). Sentence-attached IPC2 constraints
at the front and back also produce a significant improvement (+1.4% BLEU). Word-
attached constraints lead to a significant improvement of +1% BLEU, but do not outper-
form sentence-attached side constraints. These results differ from previous work, where
sentence-attached domain or topic labels have produced no gains.8

When comparing attachment location for sentence-attached IPC1 constraints, Japanese-
English experiments show improvements for attachment at the back and front+back.
For German-English, on the other hand, attachment at the front produces better BLEU
scores than attachment at the back, and front+back is worst. We can conclude from
our experiments that there is no general recommendation on which attachment location
is best and that it is worth experimenting with different attachment locations.

Table 6.8 shows example input sentences from the German-English test set and their trans-
lations by different models. In Example 1, the NMT model with side constraints correctly
translated the German word “Kupplung” as “clutch”, which was incorrectly translated as
“coupling” by the SMT and NMT baseline. The correct phrase translation for “elektrischen
Maschine”, “electric machine”, was also only selected by the model with side constraints.
In Example 2, the correct translation “impact plates” for German “Prallplatten” was
produced by all NMT models. However, the word “Wasserschleiers” was only translated
correctly as “water curtain” by the model with side constraints. It was passed through the

8We performed an experiment combining sentence- and word-attached constraints but did not see addi-
tional gains.
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Example 1

Source (…) mit einer Kupplung ( 8 ) , die den Verbrennungsmotor ( 2 )
auswählbar vollständig mit der elektrischen Maschine ( 10 ) selektiv
verbindet (…)

SMT
baseline

(…) with a coupling ( 8 ) , the internal combustion engine ( 2 ) can be
completely selectively connects with the electrical machine ( 10 )

NMT
baseline

(…) comprising a coupling ( 8 ) which can be selectively connected to
the electric motor ( 10 ) (…)

IPC1 front (…) comprising a clutch ( 8 ) which selectively connects the internal
combustion engine ( 2 ) to the electric machine ( 10 ) (…)

Reference (…) having a clutch ( 8 ) which selectively connects the internal com-
bustion engine ( 2 ) completely to the electric machine ( 10 ) (…)

Example 2

Source Sie weist (…) Prallplatten ( 531 ) auf zur Erzeugung eines flächigen
Wasserschleiers ( 25 ) zumindest im oberen Bereich der Dampfk-
abine (…)

SMT
baseline

it has (…) deflector plates ( 531 ) for generating a flat wasserschleiers (
25 ) at least in the upper region of the cubicle (…)

NMT
baseline

(…) impact plates ( 531 ) , at least in the upper region of the steam
booth (…)

IPC1 front (…) it has (…) impact plates ( 531 ) for producing a flat water curtain
( 25 ) at least in the upper region of the steam cabin (…)

Reference (…) said steam cabin comprises (…) impact plates ( 531 ) for producing
a flat water curtain ( 25 ) at least in the upper area of the steam cabin
. (…)

Table 6.8 Examples for German-English translation. Bold-faced portions highlight
correct translations. Incorrect translations are underlined.
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6 Document Metadata as Side Constraints for Fully Supervised Translation

decoder in SMT and omitted entirely by the NMT baseline. The NMT model with side
constraints also selected the correct translation “steam cabin” for German “Dampfkabine”,
where SMT produced “cubicle” and the NMT baseline produced “steam booth”.

Conclusions

In this chapter we have investigated the usefulness of document meta-information as a
means to inject knowledge about the document context into a fully supervised scenario.
More specifically, document metadata are integrated into a translation model via source
side constraints, which contain information that is not explicit in the source sentence but
may be relevant to the target translation. The side constraints were evaluated on patent
translation, as patents contain rich document metadata. Experiments were conducted for
Japanese-English and German-English patent translation. Side constraints were defined
from five metadata categories – patent section, class, subclass, inventor and company,
where a patent could be annotated with more than one value from each of these categories.

For SMT, we proposed phrase-level side constraint match features, along with two aggre-
gation strategies and a TFIDF-inspired weighting scheme. The weighting scheme assigns
different weights to side constraint matches, depending how important a phrase is with
respect to a side constraint. The side constraints were evaluated individually and in com-
bination, with and without aggregation and weighting. Models using the aggregated
weighted setting were found to be most promising with a significant improvement on the
Japanese-English translation task for the best-performing setup using the IPC2 constraint.

We then moved to an NMT system, taking into account the superior performance of neural
sequence-to-sequence models on many translation tasks. The experiments confirmed the
superiority of NMT for Japanese-English patent translation, showing impressive gains of
almost 10% BLEU over the SMT baseline. For German-English patent translation, we
found the two systems performing on par - showing that SMT can handle patent translation
well if source and target language do not differ much in word order. For NMT, we proposed
two methods of integrating side constraints, which are inspired by previous work on multi-
domain adaptation: as sentence-attached tokens or word-attached features. Sentence-
attached side constraints are very easy to implement and do not require additional model
parameters, while word-attached features are better at combining different side constraints.
For word-attached features we devised a method to handle multiple side constraints of the
same type by summing over individual embeddings from a joint embedding matrix. We
evaluated sentence- and word-attached side constraints, and found modest improvements
for Japanese-English with sentence-attached IPC1 constraints. For German-English we
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observed larger improvements with the highest improvement of 1.4% BLEU achieved by
sentence-attached IPC2 constraints. Word-attached side constraint features also produced
a significant improvement of 1 BLEU point.As for the attachment location of sentence-
attached features, we found that results varied between the two translation tasks, showing
the need for careful experimentation with these features. Comparing SMT and NMT
we conclude that NMT is better-suited for integrating side constraints, especially in the
German-English task where no improvements were observed in the SMT system.

While this chapter has explored side constraints for patent translation, the presented
approaches are not restricted to patent translation, but could also be applied to other
domains where suitable document meta-information is available, such as e-commerce.
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CHAPTER 7

Summary and Concluding Remarks

Even though significant progress has been made in machine translation, two issues limit
its potential: First, machine translation relies on supervision from sentence-parallel data.
Second, machine translation in its current setup only takes into account sentence-level
context. By requiring supervision from sentence-parallel data, performance degrades in
low-resource conditions. By ignoring the document context, translation quality is limited,
as some ambiguities cannot be resolved, even with human-level translation quality.

This thesis has aimed to contribute towards the solution of both issues by integrating doc-
ument meta-information into data-driven machine translation. Such information exists in
many multilingual data collections, but is rarely used in machine translation. Our intu-
ition has been that the first issue can be addressed by using document meta-information
as a source of weak supervision in low-resource settings, compensating to some extent for
the lack of supervision from parallel data. Further, that the second issue can be addressed
by using weak supervision from document meta-information to supplement full sentence-
level supervision with document-level context. We have explored these intuitions in four
cumulatively conducted case studies where data-driven machine translation was improved
by incorporating document meta-information as weak supervision. Below, we summarize
the findings of each case study and draw general conclusions.
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Our first case study concerned topically constrained Arabic-English Twitter translation. In
this scenario no in-domain supervision is available. Document meta-information from user-
generated hashtags was used to identify topically relevant messages and to automatically
extract in-domain pseudo-parallel data using a cross-lingual information retrieval (CLIR)
model. The shortness of the messages due to the character limit allowed us to treat them
as single sentences and integrate pseudo-parallel message pairs directly into a statistical
machine translation (SMT) system without performing an additional sentence alignment
step. By applying a simple, bold alignment strategy to these noisy pairs, and combining the
extracted phrases with an out-of-domain phrase table, we were able to significantly improve
performance on a crowd-sourced test set. Further analysis showed a large reduction in out-
of-vocabulary words. Our work was the first to apply CLIR techniques for the extraction of
pseudo-parallel data to the Twitter domain. Document meta-information was leveraged
in a novel way and even though the extracted pairs were noisy, using a simple, bold
alignment strategy produced much better results than more sophisticated, but conservative
approaches to extracting phrases from the aligned pairs.

Our second study examined the case where translations were generated for use in a down-
stream task, which has different requirements from end-to-end translation. For our exam-
ple task, cross-lingual patent prior art search, supervision in the form of task-appropriate
query translations was not available. We therefore used document meta-information in the
form of cross-lingual patent citations to simulate a task loss. This loss was then used in a
pairwise ranking algorithm to tune sparse and dense feature weights of an SMT system for
the task of cross-lingual patent retrieval. In experiments our method performed numer-
ically better according to various CLIR metrics than systems with manually set weights
or weights adapted for translation quality.

In our third study, we considered a setup for end-to-end translation under extremely weak
supervision. We conducted domain adaptation experiments where no in-domain parallel
data was available, using Wikipedia translation as our example task. Supervision was only
available from document-level links of stronger or weaker relevance. We presented bipo-
lar structured ramp loss training objectives, which take into account both weak positive
supervision from relevant documents and negative supervision in the form of irrelevant
documents. We also defined two new reward metrics for the specific weak supervision
setup. For SMT, we successfully trained sparse lexicalized in-domain features using our
new objectives and metric. We investigated the difference between stronger and weaker
links, as well as the difference between loss-augmented inference and inference over 𝑘-best
lists. We found that even weaker links provided helpful supervision, although stronger
links produced better results. We also found loss-augmented inference over the trans-
lation forest to be necessary for successful learning. Finally, we showed improvements
even over a strong adapted baseline. We then lifted our approach to the neural machine

124



translation (NMT) paradigm, focusing on comparing bipolar variants of the ramp loss
to non-bipolar ones and on measuring the contribution of negative supervision. In the
weakly supervised scenario, we demonstrated that gains over the unadapted system were
only obtained when using a bipolar objective which incorporated both positive and neg-
ative supervision, while the objectives using only positive or only negative supervision
failed to learn. This finding was also confirmed for a minimum risk training objective. We
further confirmed the success of ramp loss on a fully supervised translation task.

Our final case study returned to the patent translation setup where supervision from
sentence-parallel data is available. In this study we incorporated document metadata as
side constraints on top of the sentence-level supervision from parallel data. These side
constraints allowed us to include information about the document context. We studied
the performance of both SMT and NMT systems on a patent translation task. For SMT,
we integrated side constraints as additional phrase features. We experimented with differ-
ent aggregation and weighting schemes for the phrase features and performed an ablation
of different feature groups. We found modest improvements for Japanese-English patent
translation. For NMT, side constraints were implemented both as special tokens attached
to the source sentence, and as tags attached to the source words. We devised a method
for efficiently learning dense representations for word-attached side constraints belong-
ing to the same constraint category. Our experiments showed improvements for both
German-English and Japanese-English patent translation, with the sentence-attached to-
kens outperforming the word-attached tags.

To summarize, in this thesis, we have cumulatively conducted four case studies which
successfully made use of document meta-information as weak supervision for data-driven
machine translation. We have shown success on tasks as diverse as Twitter translation
and patent prior art search. We have identified not only document metadata, but also
document citations, document-level links and other document characteristics as useful
information. The information has been incorporated into machine translation systems in
several ways: First, indirectly, via pseudo-parallel data or as a downstream task simulation.
Second, directly, via a substitute training objective in an incomplete supervision scenario
or in the form of source side constraints, which allow the model to take into account
document context information. As the indirect methods are agnostic to the translation
system, we have only presented findings using the SMT paradigms. For the direct ways, we
have adapted the approaches originally designed for SMT to the NMT paradigm, taking
into account the differences between both paradigms.

Our work set out to leverage document meta-information to address two issues of data-
driven machine translation: First, its reliance on parallel data, leading to translation
quality decay in low-resource domains, and second, its focus on the sentence level, lead-
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ing to translation quality restrictions even at human performance levels. We have con-
tributed to the first issue by (a) leveraging document meta-information for obtaining
pseudo-parallel in-domain training data and (b) by using weak supervision from document
meta-information directly in a weakly supervised training objective, either via simulating
a downstream task loss or as a direct replacement for reference translations. Approach
(a) was very successful on the investigated task, while approach (b) produced smaller
improvements. However, (a) was designed with a specific task in mind, incorporating
characteristics of the data set, and could not easily be transferred to any other domain.
Approach (b), on the other hand, is generally applicable where document-level links exist
and, for SMT, also explicitly shows the success of using even very weak sources of supervi-
sion. It also makes apparent the interesting principle that negative supervision is helpful
in a weak supervision scenario. Finally, both approaches are orthogonal and could be
combined for further gains, as we demonstrated for SMT on Wikipedia translation. We
have addressed the second issue by proposing to pass document meta-information to the
translation model as side constraints. Experimentally, we have shown the success of these
constraints for neural patent translation on top of fully supervised training. Orthogonally
to our work, recent work has also tackled these issues, but has focused on weak supervision
from textual information rather than from meta-information, leaving an investigation of
the benefits of combining both research directions as a promising future outlook.
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