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Time-of-day of blood-feeding: effects 
on mosquito life history and malaria 
transmission
Aidan J. O’Donnell1* , Samuel S. C. Rund2 and Sarah E. Reece1

Abstract 

Background: Biological rhythms allow organisms to compartmentalise and coordinate behaviours, physiologies, and 
cellular processes with the predictable daily rhythms of their environment. There is increasing recognition that the 
biological rhythms of mosquitoes that vector parasites are important for global health. For example, whether per-
turbations in blood foraging rhythms as a consequence of vector control measures can undermine disease control. 
To address this, we explore the impacts of altered timing of blood-feeding on mosquito life history traits and malaria 
transmission.

Methods: We present three experiments in which Anopheles stephensi mosquitoes were fed in the morning or 
evening on blood that had different qualities, including: (i) chemical-induced or (ii) Plasmodium chabaudi infection-
induced anaemia; (iii) Plasmodium berghei infection but no anaemia; or (iv) stemming from hosts at different times of 
day. We then compared whether time-of-day variation in blood meal characteristics influences mosquito fitness prox-
ies relating to survival and reproduction, and malaria transmission proxies.

Results: Mosquito lifespan is not influenced by the time-of-day they received a blood meal, but several reproductive 
metrics are affected, depending on other blood characteristics. Overall, our data suggest that receiving a blood meal 
in the morning makes mosquitoes more likely to lay eggs, lay slightly sooner and have a larger clutch size. In keeping 
with previous work, P. berghei infection reduces mosquito lifespan and the likelihood of laying eggs, but time-of-day 
of blood-feeding does not impact upon these metrics nor on transmission of this parasite.

Conclusion: The time-of-day of blood-feeding does not appear to have major consequences for mosquito fitness or 
transmission of asynchronous malaria species. If our results from a laboratory colony of mosquitoes living in benign 
conditions hold for wild mosquitoes, it suggests that mosquitoes have sufficient flexibility in their physiology to cope 
with changes in biting time induced by evading insecticide-treated bed nets. Future work should consider the impact 
of multiple feeding cycles and the abiotic stresses imposed by the need to forage for blood during times of day when 
hosts are not protected by bed nets.

Keywords: Biological rhythm, Circadian rhythm, Fitness, Reproduction, Survival, Fecundity, Plasmodium berghei, 
Plasmodium chabaudi, Anopheles stephensi
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Background
Daily rhythms are a ubiquitous feature of life [1]. For 
example, circadian clocks are thought to enable organ-
isms to coordinate with environmental periodicity in 
factors such as light/dark, humidity, UV exposure [2]. 
Interactions with predators, prey and hosts (in the case 
of parasites) also follow daily rhythms [3–5]. How daily 
rhythms, whether they are clock-controlled or direct 
responses to rhythmic environmental cues, shape, and 
are shaped by interactions between organisms is poorly 
understood. We address this by examining the conse-
quences of daily rhythms in the interactions between 
vectors, their hosts, and their parasites. Specifically, we 
ask how the time-of-day that mosquitoes blood feed 
combines with the timing (phase) of rhythms in hosts 
and with malaria infection to shape vector fitness and 
disease transmission. Given reports that some mosquito 
populations have altered the time-of-day they bite (likely 
in response to the use of insecticide-treated bed nets) 
[6–13], exploring the consequences of perturbed blood 
foraging rhythms for mosquito fitness and malaria trans-
mission is urgently required.

Mosquitoes exhibit periodicity in many fitness deter-
mining activities, including sugar feeding, the formation 
of mating swarms, insecticide resistance and blood-feed-
ing [14, 15]. In keeping with this, ~ 20% of the Anopheles 
gambiae genome is expressed in patterns following daily 
rhythms [16]. Thus, the circadian clock enables mosqui-
toes to coordinate the timing of the physiological, cellular 
and molecular processes that underpin behaviours, with 
rhythms in the abiotic environment and/or other internal 
processes [2, 17]. For example, Anopheline mosquitoes 
are primarily night-biters [15, 18, 19] and processes asso-
ciated with being active and foraging at night, including 
glycolysis, energy sensing and nutrient mobilization are 
upregulated in concert [16, 20]. Many genes, however, are 
not clock-regulated but still follow daily rhythms (includ-
ing some An. gambiae odorant-binding proteins) and are 
driven by a direct response to light or dark [21]. Indeed 
in both An. gambiae and Aedes aegypti, more rhyth-
mic genes are detected under light:dark conditions than 
dark:dark conditions [21, 22].

A key benefit of clock-control is that organisms can 
anticipate dawn/dusk and prepare in advance by up- or 
downregulating physiological processes. For example, 
processes required to cope with a blood meal are upreg-
ulated in the mosquito’s active phase (night time for 
Anopheles sp.) [14, 16]. This includes catalase and other 
factors used to detoxify reactive oxygen species (ROS) 
generated as a product of blood (heme) digestion, and 
members of the V-ATPase complex which drive water 
excretion to minimise the 3-fold increase in volume that 
a blood meal brings [23, 24]. Exposure to ROS increases 

mortality and reduces clutch size of mosquitoes [23, 25, 
26]. Further, as a consequence of the detoxification of 
blood meal induced ROS, there is a proliferation of mos-
quito gut microbiota [27] which have complex interac-
tions with parasite infection [28] that may vary in line 
with time-of-day a blood meal is taken. In addition to 
rhythms in processes associated with foraging, the activi-
ties and locations of immune effectors cycle throughout 
the day. For example, immune defences are upregulated 
during the day in diurnal insects, such as Drosophila [29, 
30]. Whether immune defences peak at night in noc-
turnal mosquitoes is unknown but some immune genes 
implicated in interactions with malaria parasites are 
expressed with circadian rhythms [16]. How circadian 
rhythms in insect immune defences relate to protection 
from infection or the severity of disease is unclear. For 
instance, Drosophila challenged with Pseudomonas aer-
uginosa at night are more likely to survive the infection 
than those challenged in the day. However, perturbation 
of clock genes to generate arrhythmic mutant flies can 
result in both decreased survival or enhanced survival 
depending on the specific genes modified [31]. Further, 
there are complex consequences of challenging An. ste-
phensi with E. coli or the malaria parasite P. chabaudi at 
different times of day [32, 33].

Given the potential for circadian rhythms to influence 
the ability of mosquitoes to cope with a blood meal and 
with parasites, the time-of-day that mosquitoes forage 
has implications for both mosquito fitness and disease 
transmission. These consequences are likely to be com-
plex [14]. If feeding in the daytime means that mosqui-
toes are less able to cope with the osmotic and oxidative 
costs of blood, their fecundity and survival should suffer. 
Indeed, mosquitoes in poor condition as a consequence 
of feeding in the day may have compromised immune 
defence and this might explain recent observations 
that day-fed An. stephensi harbour higher densities of 
P. chabaudi than night-fed mosquitoes (although para-
site rhythms also mediate this effect) [33]. Alternatively, 
ROS is a key player in insect immune responses and so, if 
day-fed mosquitoes do not manage their ROS efficiently, 
they may suffer collateral damage but also benefit from 
enhanced parasite defence. Furthermore, it is also neces-
sary to recognise that mosquitoes feed on hosts that have 
their own circadian rhythms [14]. This includes rhythms 
in red blood cell composition and density, hematocrit, 
amino acid composition and immune effectors [34–39]. 
Thus, rhythms in the composition of mammalian blood 
could exacerbate (or reduce) the effects of a daytime 
blood meal on mosquito survival and fecundity.

Clearly, predicting the net effects of how host rhythms 
and vector rhythms interact to shape malaria transmis-
sion is challenging but important. Such interactions 
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could shape the probability and intensity of infection in 
mosquitoes as well as mosquito population dynamics. 
Here, three experiments are described that probe the 
consequences, under a variety of scenarios, of time-of-
day-specific blood-feeding for proxies estimating the fit-
ness of mosquitoes and malaria parasites. The aims are 
to determine: (i) if the timing of a blood meal affects 
mosquito survival and fecundity; (ii) whether the effects 
of time-of-day are exacerbated by other characteristics 
of host blood or malaria infection; and (iii) the conse-
quences of blood-feeding at different times of day for 
malaria transmission.

Methods
All experiments examine metrics of mosquito fecundity 
and lifespan in response to perturbing the time-of-day 
(morning) or (evening) that mosquitoes receive a blood 
meal, but differ in the following respects. The first experi-
ment (“blood quality and host time”, Fig. 1a) includes the 
effects of both host time-of-day and feeding on blood 
from anaemic versus control mice. To further probe a role 
for blood quality, the second experiment (“blood quality”, 
Fig. 1b) uses a different approach to examine the effects 
of feeding on anaemic blood but does not consider host 
time-of-day. The third experiment (“infection,” Fig.  1c) 
focuses on Plasmodium berghei infection of mosquitoes.

Mice
For all experiments, hosts were 10–12-week-old MF1 
male mice housed at 21  °C with ad libitum food and 
drinking water supplemented with 0.05% para-amin-
obenzoic acid (to supplement parasite growth). Mice 
were housed in groups of five in either 12:12 light:dark 
(LD; lights on at 07:00 GMT, lights off at 19:00 GMT) 
or inverted dark:light photocycle (DL; lights on at 19:00 
GMT, lights off at 07:00 GMT) depending on the experi-
ment. Mice were entrained to their respective light 
schedules for at least 21  days prior to mosquito blood 
feeds. Prior to donating a blood meal, each mouse was 
anaesthetized (17% Dormitor, 13% Vetelar, 70% PBS 
administered at 4 µl/g) and then exposed to a single cage 
of mosquitoes.

Mosquitoes
All Anopheles stephensi mosquitoes were maintained 
under standard insectary conditions of 27 ± 1  °C, 70% 
relative humidity and a 12:12 light:dark photocycle, with 
lights on at 07:00 GMT (ZT0) and lights off at 19:00 
GMT (ZT12) (ZT0, Zeitgeber Time 0, is defined as time 
of lights on). Larvae were reared at a density of ~ 250 lar-
vae per 1.5  l of distilled water. Between 12 and 14  days 
after hatching, pupae were transferred to emergence 
cages in incubators (27 ± 1 °C, 60 ± 5% relative humidity) 

with one-hour light ramping to simulate a dawn (starting 
at 07:00 GMT; ZT0) and dusk (19:00 GMT; ZT12). Mos-
quitoes were supplied with ad libitum access to 10% fruc-
tose solution supplemented with 0.05% paraminobenzoic 
acid. In the second experiment only, mosquitoes were 
treated with antibiotics (0.05% gentamicin) adminis-
tered via their fructose solution 4–5  days before blood 
meals. For all experiments, female mosquitoes were ran-
domly selected from 3–4 emergence cages, transferred 
to 2  l holding cages and starved of fructose solution for 
24  h before their blood meals. Cages contained 15–85 
mosquitoes (depending on the sampling regime of each 
experiment). Regardless of mosquito number, all mosqui-
toes were able to blood feed until satiated. For all feeds, 
each cage of females was exposed to an anaesthetized 
mouse for 30 min in a light setting that matched the mos-
quito time-of-day (i.e. morning-fed mosquitoes were fed 
during lights on and evening feeds were performed under 
dim red light). Unfed females were removed from the 
cages (< 5 per cage in all cases). After feeding, mosquitoes 
were housed in incubators at temperatures of either 20.5 
or 26.0 °C (± 0.5 °C), depending on the experiment.

Experimental designs
Experiment 1: blood quality and host time
Mosquito cages were randomly assigned to receive a 
blood meal in their morning 09:00 GMT (ZT2) or even-
ing 21:00 GMT (ZT14). These feed times are analo-
gous to the mosquito resting period (morning) or active 
period (evening) as evident from wild caught and labo-
ratory-based studies (Fig. 2, [40–42]). Within each feed-
ing time, cages were allocated to a further four groups, 
based on host treatment (anaemic or control mice) and 
host time-of-day [morning mice (ZT2) or evening mice 
(ZT14)]. The availability of mice experiencing their 
morning or evening to feed to mosquitoes in their morn-
ing or evening was achieved by housing mice in room 
with LD and DL lighting schedules. This resulted in an 
experiment with a 2 × 2 × 2 design: eight groups varying 
by feed time (morning/evening), host blood treatment 
(anaemic/control), and host time (morning/evening) 
(Fig. 1a). Note, this is the only experiment that perturbs 
host time-of-day.

Anaemia was induced in half of the mice by intraperi-
toneal injection of 125 mg/kg of phenylhydrazine 3 days 
before feeding to mosquitoes. The control mice received 
a sham injection of 100  µl PBS. On the day of feeding, 
red blood cell (RBC) counts (×109  ml−1) for control 
mice (7.48 ± 0.13 SE) were almost 2-fold higher than for 
phenylhydrazine treated hosts (3.80 ± 0.12 SE; t = 21.27, 
df = 45.67, P < 0.001). Each cage contained 50 mosquitoes 
and each of the 8 treatment groups contained 6 cages. On 
day 2 post-blood meal (PBM), mosquitoes were allocated 
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Fig. 1 Experimental designs. For all experiments, groups of mosquitoes differ by the time-of-day they received a blood meal. Each experiment 
probed the effects of further perturbations of host blood: including chemically induced anaemia and host time-of-day (Experiment 1, a); malaria 
infection induced anaemia (Experiment 2, b); and malaria infection of mosquitoes (Experiment 3, c)
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to individual housing (50 ml falcon tubes with ad libitum 
access to 10% glucose solution via a 1.5 ml microcentri-
fuge tube feeder). Fecundity and mortality were tracked 
for 20 mosquitoes from each cage (960 total). Each female 
was given a 30 mm diameter Petri dish lined with filter 
paper and 3 mm depth of distilled water as an oviposition 
habitat. Mosquitoes were checked daily and if eggs were 
present, the egg dish was replaced. Egg bowls were pho-
tographed at the time of removal (for clutch size counts) 
incubated for 6 days and then photographed again so that 
all hatched larvae (alive and dead) could be counted (to 
estimate hatch rate). For all females (that did or did not 
lay) egg bowls were removed on day 9 PBM.

Additionally, the volume and density of blood meals 
were estimated for 10 randomly chosen mosquitoes from 
each cage (480 total) 2 hours after their blood meal. The 
right wing of each mosquito was photographed, and the 
abdomen removed and homogenised in 500 µl drabkins 
solution for ~ 30  min [43]. Samples were split into two 
200  µl sub-samples and optical density (OD) read by a 
spectrophotometer at 540  nm (each mosquito was read 
in duplicate, and an average taken). To generate control 
series for each cage, 8 µl of blood was removed from each 
mouse used to feed mosquitoes at the time of feeding 
and used to generate 4  µl, 1  µl, 0.8  µl and 0.4  µl stand-
ards. Host RBC density readings (cells per µl) were also 
obtained at the time of feeding to calculate the RBC den-
sity of the blood meal. Wing length was obtained from 
the photographs, converted to mm and used to control 
for any potential differences in blood meal volume and 
density due to variation in body size (using the software 
package ImageJ [44]).

Experiment 2: blood quality
Here, instead of phenylhydrazine treatment, blood qual-
ity was perturbed by using malaria infection to gener-
ate anaemia. Mosquito cages were randomly assigned 
to morning 09:00 GMT (ZT2) or evening 21:00 GMT 
(ZT14) feed times. At each feeding time, half the cages 
were exposed to anaemic or (uninfected) control mice. 
This resulted in an experiment with a 2 × 2 design: four 
groups varying by the timing of their blood meal (morn-
ing/evening) and blood treatment (anaemic/control) 
(Fig.  1b). Note, host time-of-day was standardised by 
housing mice in two rooms with inverted light schedules 
(DL and LD), enabling both the morning- and evening-
fed mosquitoes to feed on hosts experiencing their even-
ing (host ZT14). Six cages were fed, at each time point, 
on control mice and nine cages, at each time point, on 
anaemic mice. Each cage exposed to control mice con-
tained 15 mosquitoes and each cage exposed to anaemic 
mice contained 20 mosquitoes. Mortality was tracked as 
for Experiment 1 (but for 10 individuals per cage; 300 
total) and egg dishes were provided until day 14 PBM.

All feeds occurred on mice at day 11 post-infection (PI) 
after infection with 1 × 106 P. chabaudi CR parasitized 
RBCs or sham infection (controls; 100  µl PBS). Plas-
modium chabaudi has a synchronous asexual cycle so 
donor mice were used from each room (DL and LD) to 
ensure that all hosts were infected with rings (i.e. para-
site and host rhythms were phase matched; [45]). By 
day 11 PI, significant anaemia had occurred (mean RBC 
density × 109  ml−1: Control = 7.88 (± 0.16 SE), anae-
mic = 4.44 (± 0.10 SE); t = 18.77, df = 19.28, P < 0.001) 
and hosts were mounting strong immune responses, 

12 24/012 24/0 12 24/0

ytivitca thgilF

Zeitgeber Time (ZT)

Morning 
feed

Evening 
feed

Fig. 2 Blood feed timing. Daily flight activity of lab reared An. stephensi mated females (modified from [42]) showing that mosquito flight activity 
peaks after dusk (ZT12) with a second smaller peak before dawn (ZT0). Wild-caught mosquitoes also show this pattern, with slight variations to the 
size of the dusk peak depending on monsoon season [40, 41]. Shading represents timing of morning (orange) and evening (grey) blood meals in 
experiments 1–3. This placed the evening feeds during the mosquito’s active period and the morning feeds during the mosquito’s rest period
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so the parasite was not able to establish an infection in 
mosquitoes (parasite mating is very vulnerable to sub-
optimal conditions in the blood meal [46]). Thus, mos-
quitoes received poor quality blood as a result of a more 
ecologically realistic perturbation than PHZ, without the 
confounding effects of becoming infected themselves. 
This was verified by examining 10 randomly selected 
mosquitoes from each cage exposed to anaemic mice on 
day 14 PBM. Specifically, the midgut of each mosquito 
was dissected, stained for two minutes in 0.5% mercu-
rochrome, washed in PBS and total oocysts per midgut 
were counted via microscopy. No oocysts were detected.

Experiment 3: infection
Mosquito cages were randomly assigned to four groups. 
Two groups received their blood meal in the morning 
10:00 GMT (morning, ZT3) and the others were fed in 
the evening at 20:00 GMT (evening, ZT13). At each feed 
time, half of the cages were exposed to Plasmodium 
berghei infected mice or naïve (uninfected) control mice. 
This resulted in an experiment with a 2 × 2 design: four 
groups varying by the timing of their blood meal (morn-
ing/evening) and blood treatment (infected/uninfected) 
(Fig.  1c). Note that time-of-day for parasites/hosts and 
mosquitoes is synonymous; morning-fed mosquitoes 
received blood from hosts also experiencing their morn-
ing, and vice versa for evening-fed mosquitoes. At each 
time point, six cages were fed on infected mice and four 
fed cages on uninfected mice.

All feeds occurred on mice at day 6 PI after inocula-
tion with 1 × 105 P. berghei parasitized RBCs or sham 

infection (controls; 100  µl PBS). Infections (and sham 
injections) were staggered by 10 h to ensure that morn-
ing- and evening-fed mosquitoes were exposed to 
infections of the same age (144 h). Plasmodium berghei 
was chosen because its asexual cycle is asynchronous, 
ensuring that morning- and evening-fed mosquitoes 
did not receive significantly different stage distributions 
of asexual parasites (feed time:parasite stage; χ2

4 = 1.28, 
P = 0.29; Fig.  3a) or gametocyte densities/ages (mean 
gametocyte density × 107  ml−1: morning = 3.93 
(± 0.14 SE), evening = 3.80 (± 0.1 SE); t = 0.77, df = 10, 
P = 0.46; Fig.  3b). On day 6 PI, P. berghei had not sig-
nificantly reduced the RBC density of hosts (mean 
RBC density × 109  ml−1: Control = 8.17 (± 0.08 
SE), Infected = 7.85 (± 0.18 SE); t = 1.64, df = 14.71, 
P = 0.12).

At the time of feeding, each cage contained 85 mos-
quitoes. After the blood meal, 15 mosquitoes from 
cages fed on infected mice were removed (180 total) 
and used to monitor oocyst prevalence and density 
as for Experiment 2. To track mosquito fecundity and 
mortality, a subset of 15 randomly selected females 
were removed from each cage (300 total) 2  days PBM 
and housed individually in 200 ml cups with ad libitum 
access to 10% fructose solution. On day 3 PBM, each 
female was given a 30  mm diameter Petri dish lined 
with filter paper and 3  mm depth of distilled water 
as an oviposition habitat. Mosquitoes were checked 
daily until death, if eggs were present the egg dish was 
replaced (up until day 21 PBM).
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Fig. 3 Composition of P. berghei parasites in mice used to infect mosquitoes in experiment 3. Shown are the means ± SE parasite stage proportions 
(a) and gametocyte density (b) from infected hosts used for blood meals. Donors were sampled at the time of blood meals either in the morning 
(AM; 10:00 GMT; ZT3) or evening (PM; 20:00 GMT; ZT13) (n = 6)
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Data analysis
R version 2.6.1 [47] was used for all analyses. Model 
simplification was carried out by stepwise deletion of 
the least significant term and only minimal models are 
reported. Measurements made from mice at the time of 
feeding (red blood cell counts and parasite stage com-
position and densities), and time-of-day differences 
in infection load for mosquitoes were analysed with 
Studentʼs t-test. Mosquito fecundity metrics, proportion 
of females that laid and hatch rate, were analysed using 
generalised linear mixed-effects models with binomial 
error structures. Clutch size and blood meal measures 
were analysed using linear mixed effect models. In both 
types of linear models, identity of the mosquito cage 
was included as a random effect. All models met model 
assumptions: independence of data points, normality 
of residuals and homogeneity of variances (confirmed 
through assessing the model plots, the Shapiro–Wilk test 
and Bartlett’s test). Cox proportional hazard models with 
mosquito identity nested within cage as random effects 
(frailty model) were used to estimate the effects of feed 
time and host blood manipulations on the time taken to 
lay and lifespan (coxme package in R [48]). All Cox mod-
els model met the proportional hazards assumptions 
based on Schoenfeld’s residuals (evaluated using the ‘cox.
zph’ function R; P > 0.1 for all variables). Clutch size of 
mosquitoes that laid and its interactions with experimen-
tal treatments was also controlled for because the data 
indicated considerable heterogeneity in clutch size, and 
trade-offs between survival and reproduction have been 
reported [49, 50] and may depend on resource availabil-
ity, which may vary as a consequence of perturbations of 
blood quality. For this reason, mosquitoes that did not lay 
eggs were excluded from time to lay, clutch size and lifes-
pan analyses. For all analyses, main effects and two-way 
interactions were investigated.

Results
We carried out three experiments to determine how the 
timing of receiving a blood meal affects aspects of mos-
quito survival and fecundity, and whether qualities of 
host blood or malaria infection modulate the effects of 
the time-of-day that mosquitoes feed.

Experiment 1: blood quality and host time
This experiment (Fig. 1a) recognises that hosts have cir-
cadian rhythms in blood composition and was designed 
to address if host time-of-day and blood quality (chemical 
induced anaemia) interact with mosquito feeding time-
of-day to shape the following parameters (see Table 1 for 
a summary).

Blood meal: volume and density
There was no significant effect of feed time (χ2

7 = 1.02, 
P = 0.31), host time (χ2

5 = 0.01, P = 0.91), or their inter-
action (χ2

9 = 0.40, P = 0.53) on the volume of the blood 
meal. The effect of host blood quality was not significantly 
influenced by interactions with feed time (χ2

8 = 0.75, 
P = 0.39) or host time (χ2

6 = 2.29, P = 0.13). However, 
mosquitoes that fed on anaemic hosts took up a greater 
volume of blood than those that fed on control hosts 
(mean ± SE blood meal volume (µl) per mm wing length: 
control = 0.26 ± 0.01), anaemic = 0.33 ± 0.01; χ2

4 = 17.90, 
P < 0.0001; Fig. 4a). There was also a borderline significant 
interaction between host time and host blood quality on 
the RBC density of the blood meal (χ2

6 = 4.30, P = 0.038; 
Fig. 4b). Specifically, mosquitoes that fed on control hosts 
consumed more RBCs than those that fed on anaemic 
hosts, especially when fed on hosts that experienced 
their morning (mean ± SE × 106; control hosts: morn-
ing = 2.11 ± 0.94, evening = 1.77 ± 0.75; anaemic hosts: 
morning = 1.24 ± 0.54, evening = 1.29 ± 0.60). There was 
no significant effect of feed time (χ2

7 = 0.66, P = 0.42), 
nor its interactions with host blood quality (χ2

9 = 0.65, 
P = 0.42) or host time (χ2

8 = 3.25, P = 0.07) on the RBC of 
the blood meal.

Reproduction: proportion laid
Neither host blood quality (χ2

5 = 1.60, P = 0.21), host 
time (χ2

4 = 2.44, P = 0.12), or their interaction (χ2
8 = 0.02, 

P = 0.89) significantly affected the probability each mos-
quito laid. However, feed time did matter, with mosqui-
toes that fed in the morning more likely to lay than those 
that fed in the evening (mean ± SE proportion of females 
that laid: morning = 0.82 ± 0.02, evening = 0.65 ± 0.02; 
χ2

3 = 27.56, P < 0.0001; Fig.  5a). However, feed time did 
not significantly interact with either host blood quality 
(χ2

6 = 0.41, P = 0.52) or host time (χ2
7 = 0.05, P = 0.83).

Reproduction: time to lay
For mosquitoes that laid, neither host blood qual-
ity (z = 0.73, P = 0.47) or host time (z = 0.95, P = 0.34) 
influenced the time it took mosquitoes to lay eggs. Feed 
time did have an effect with mosquitoes that fed in the 
morning laying sooner than those that fed in the even-
ing (mean ± SE days taken to lay since egg bowls were 
provided: morning = 1.15 ± 0.03, evening = 1.44 ± 0.04; 
evening:morning HR = 0.64 ± 0.08, z = − 5.35, P < 0.001; 
Fig. 5a).

Reproduction: clutch size
Clutch size was shaped by a borderline interaction 
between feed time and host blood quality (χ2

6 = 4.13, 
P = 0.042; Fig.  5b). Mosquitoes fed on control mice had 
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higher clutch sizes than those that fed on anaemic hosts, 
and this difference was greatest when mosquitoes fed in 
the morning (mean ± SE clutch size: morning-fed: con-
trol hosts = 65.57 ± 1.77, anaemic hosts = 51.06 ± 1.70; 
evening-fed: control hosts = 61.88 ± 1.97, anaemic 
hosts = 55 ± 2.09). There was also a non-significant ten-
dency for mosquitoes that fed on hosts experiencing 
their morning to have higher clutch size (mean ± SE 
clutch size: morning hosts = 56.36 ± 1.37, evening 
hosts = 59.99 ± 1.34; χ2

7 = 3.70, P = 0.054). However, 
this trend for an effect of host time was not modulated 

by feed time (χ2
8 = 3.06, P = 0.08) or host blood quality 

(χ2
9 = 0.03, P = 0.87).

Reproduction: hatch rate
Neither host blood quality (χ2

4 = 0.12, P = 0.73) or host 
time (χ2

6 = 0.02, P = 0.89) or their interaction (χ2
8 = 0.10, 

P = 0.75) influenced egg hatch rate. Likewise, there was 
no significant influence of feed time (χ2

3 = 1.31, P = 0.25) 
and its interactions with host blood quality (χ2

5 = 2.12, 
P = 0.15) and host time (χ2

7 = 0.40, P = 0.53). Mean hatch 
rate for all clutches was 0.69 (± 0.01 SE).

Table 1 Summary of statistical results for analyses in Experiment 1, Experiment 2 and Experiment 3

Notes: Terms that significantly affected the mosquito fitness metric in question are highlighted in italics. Interactions between terms are indicated by ‘:’ and main 
effects are not included for terms involved in significant interactions

Fitness metric Statistical results for each term in model

Experiment 1

Blood meal volume Sig: Blood quality

Non-Sig: Feed time:host time; Feed time:blood quality; Host time:blood quality; Feed time; Host time

Blood meal density Sig: Host time:blood quality

Non-Sig: Feed time:host time; Feed time:blood quality; Feed time

Proportion laid Sig: Feed time

Non-Sig: Host time:blood quality; Feed time:host time; Feed time:blood quality; Host time; Blood quality

Time to lay Sig: Feed time

Non-Sig: Host time; Blood quality

Clutch size Sig: Feed time:blood quality

Non-sig: Feed time:host time; Host time:blood quality; Host time

Hatch rate Sig: na

Non-sig: Feed time:host time; Feed time:blood quality; Host time:blood quality; Feed time; Host time; Blood quality

Lifespan Sig: na

Non-sig: Host time; Feed time; Blood quality

Experiment 2

Proportion laid Sig: na

Non-Sig: Feed time:blood quality; Blood quality; Feed time

Time to lay Sig: na

Non-Sig: Feed time:blood quality; Blood quality; Feed time

Clutch size Sig: Blood quality

Non-sig: Feed time:blood quality; Feed time

Lifespan Sig: na

Non-sig: Feed time; Blood quality

Experiment 3

Malaria prevalence & intensity Sig: Infected/uninfected blood

Non-Sig: Feed time

Proportion laid Sig: Infection status

Non-Sig: Infection status:feed time; Feed time

Time to lay Sig: Infection status

Non-Sig: Infection status:feed time; Feed time

Clutch size Sig: na

Non-sig: Infection status:feed time; Feed time; Infection status

Lifespan Sig: Infection status

Non-sig: Feed time
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Lifespan
For mosquitoes that laid, neither host blood quality 
(z = 0.28, P = 0.78), host time (z = 0.75, P = 0.45) or feed 
time (z = − 0.10, P = 0.92) significantly influenced mor-
tality rate (Fig. 5c–d). Clutch size was negatively associ-
ated with survival hazard (clutch HR = 0.996, z = − 2.54, 
P = 0.011), with smaller clutches (< 60 eggs) associated 
with a greater hazard than larger clutches (> 60 eggs). The 
median lifespan for all mosquitoes (that laid) was 13 days 
post-blood meal.

Experiment 2: blood quality
Experiment 1 suggested that blood quality and mosquito 
time-of-day of feeding shaped some mosquito reproduc-
tive measures (tendency to lay and clutch size). Experi-
ment 2 (Fig.  1b) further investigated time-of-day of 
feeding and blood quality by using P. chabaudi malaria 
infection to generate anaemia (see Table  1 for a sum-
mary). Host time-of-day was not investigated further 
because Experiment 1 revealed that it did not signifi-
cantly shape mosquito reproduction or lifespan (host 
time-of-day only remained in an interaction with border-
line significance for blood meal density).

Reproduction: proportion laid
Neither host blood quality (χ2

4 = 0.73, P = 0.39), feed time 
(χ2

3 = 1.59, P = 0.21) nor their interaction (χ2
5 = 1.07, 

P = 0.30) significantly influenced the proportion of 
females that laid (Fig.  6a). The mean proportion of 
females that laid per cage was 0.48 (± 0.04 SE).

Reproduction: time to lay
For mosquitoes that laid, neither host blood treatment 
(z = 0.52, P = 0.60), feed time (z = 0.99, P = 0.32) nor their 
interaction (z = 0.74, P = 0.46) significantly affected the 

time taken to lay (Fig. 6a). The average number of days to 
lay since eggs bowls were provided was 2.63 (± 0.17 SE).

Reproduction: clutch size
Host blood quality significantly affected clutch size, with 
mosquitoes fed on control blood laying larger clutches 
than mosquitoes that received anaemic blood (mean ± SE 
clutch size: control hosts = 90.36 ± 5.06, anaemic 
hosts = 66.41 ± 3.06; χ2

4 = 8.62, P = 0.003; Fig.  6b). Feed 
time did not influence clutch size (χ2

5 = 1.84, P = 0.17) or 
modulate the effect of blood quality (χ2

6 = 1.81, P = 0.18).

Lifespan
For mosquitoes that laid, neither host blood quality 
(z = 1.05, P = 0.29), feed time (z = − 0.98, P = 0.33) or 
clutch size (z = − 1.81, P = 0.07) influenced mortality 
rates (Fig.  6c). The median lifespan was 39 days post-
blood meal.

Experiment 3: infection
Having investigated blood quality and host time-of-day 
in the previous experiments, we switched focus to con-
sider the effects of malaria infection by feeding mos-
quitoes on blood with infectious P. berghei parasites at 
different times of day (Fig.  1c and Table  1). In addition 
to the effects on mosquito reproduction and lifespan, the 
performance of parasites was also examined.

Parasites
No mosquitoes that fed on control hosts became infected 
but 94 (± 2%) mosquitoes that fed on infected hosts 
contained oocysts. Within mosquitoes fed on infected 
hosts, feed time did not influence infection prevalence 
(t(10) = 0.598, P = 0.56; Fig. 7a) or the intensity of infection 
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(mean ± SE oocysts = 171.3 ± 9.84; t(178) = − 1.442, 
P = 0.15; Fig. 7b).

Reproduction: proportion laid
A significantly greater proportion of uninfected than 
infected mosquitoes laid eggs (mean ± SE proportion 
laid: uninfected = 0.59 ± 0.04, infected = 0.44 ± 0.04; 
χ2

3 = 5.44, P = 0.0197; Fig. 8a). The influence of infection 
was not modulated by feed time (χ2

5 = 0.009, P = 0.93) but 
there was a trend in which mosquitoes fed in the morning 
were more likely to lay (mean ± SE morning = 0.56 ± 0.04, 
evening = 0.44 ± 0.05; χ2

4 = 3.66, P = 0.056; Fig. 8a).

Reproduction: time to lay
For mosquitoes that laid, those that were infected 
laid two days sooner than uninfected individuals 
and at any time point, were ~ 70% more likely to lay 

(mean ± SE days taken to lay since egg bowls were pro-
vided: uninfected = 6.88 ± 0.48, infected = 5.05 ± 0.35; 
infected:uninfected Hazard Ratio (HR) = 1.71 (± 0.171, 
z = 3.12, P = 0.002; Fig.  8a). Neither the interaction 
between infection status and feed time (z = 0.28, P = 0.78) 
nor feed time alone (z = − 1.82, P = 0.07) influenced time 
to lay.

Reproduction: clutch size
Neither host blood treatment (χ2

4 = 0.59, P = 0.44), feed 
time (χ2

5 = 0.07, P = 0.79) nor their interaction (χ2
6 = 0.30, 

P = 0.59) significantly influenced clutch size (Fig.  8b). 
Females laid an average of 98 (± 2.6 SE) eggs per clutch.

Lifespan
For mosquitoes that laid, infection had a negative effect 
on lifespan with infected mosquitoes dying sooner than 
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uninfected mosquitoes (median lifespan: infected = 21 
days, uninfected = 24  days). Further, infected mos-
quitoes had a ~ 50% higher overall hazard of dying 
(infected:uninfected HR = 1.53 (± 0.178 SE), z = 2.4, 
P = 0.016; Fig. 8c). Neither feed time (z = − 0.98, P = 0.33) 
nor clutch size (z = − 0.56, P = 0.57) influenced lifespan.

Discussion
Here, we examine whether the fitness of female An. ste-
phensi mosquitoes is affected by the time-of-day they 
receive a blood meal, either directly or through interac-
tions with perturbations of blood quality and malaria 
infection. Specifically, we compared mosquitoes fed on 
control or anaemic hosts (using two different manipula-
tions of anaemia) in which host time-of-day also varied, 
and whether mosquitoes were uninfected or infected 
with P. berghei malaria. The results of the three experi-
ments are summarised in Table 2 from the perspective of 
the mosquitoes’ time-of-day of feeding. Overall, we found 
few effects of time-of-day of feeding. First, morning-fed 
mosquitoes appeared > 25% more likely to lay than even-
ing-fed (Figs. 5a, 6a, 8a). Secondly, in response to chemi-
cally induced anaemia, morning-fed mosquitoes laid 0.3 
of a day sooner (Fig. 5a) and produced ~ 15 (30%) more 
eggs than evening-fed mosquitoes (Fig.  5b). However, 
time-of-day of feeding did not substantially influence lon-
gevity of mosquitoes or the prevalence and intensity of P. 
berghei infection (Fig. 7). We also found mixed results for 
the other variables manipulated in the experiments. Host 
time-of-day did not influence any of the mosquito fitness 
metrics we measured. The effects of blood quality were 
similar across both of the experiments in which it was 
perturbed (Experiments 1 and 2); only clutch size varied 
in response, in which mosquitoes fed on anaemic blood 
laid ~ 20 (~ 22%) fewer eggs (Figs. 5b, 6b). Infection sta-
tus also correlated with fitness metrics; infected mosqui-
toes had shorter lifespans (21  days post-blood meal for 

infected vs 24 days for uninfected; Fig. 8c), were less likely 
to lay eggs (44% vs 60% laid) and laid sooner (~2  days) 
than uninfected mosquitoes (Fig. 8a).

We expected that mosquitoes receiving a blood meal 
at an unexpected time-of-day (i.e. morning) would expe-
rience fitness costs in the form of reduced lifespan and/
or loss of reproduction. However, we found no effect on 
lifespan and the effects on reproduction were not consist-
ent with costs; a higher probability of laying eggs and a 
modest increase in fecundity appear to be fitness benefits 
from morning feeding (Table  2). Laying sooner may be 
a fitness cost if it results in poor quality eggs or trade-
off against immune defence [51]. However, we found 
no evidence of a quantity-quality reproductive trade-off 
because eggs from females in all groups (Experiment 
1) hatched at a similar rate. In Experiments 2 and 3 we 
saw little difference between morning- and evening-fed 
mosquitoes in the time taken to lay despite the 10-hour 
‘head-start’ of morning-fed mosquitoes. If egg matura-
tion takes a fixed window of time since feeding, this sug-
gests morning-fed mosquitoes are deliberately delaying 
their oviposition or waiting until the next ‘gate’ to ovi-
posit if oviposition is clock-controlled. Mark-recapture 
studies with wild An. farauti show that an earlier feed 
time is associated with irregularities in oviposition cycle, 
sometimes lengthening or shortening by a day [52–54]. 
This demonstrates flexibility in the day of oviposition 
post-blood meal, but whether there is additional flexibil-
ity for time-of-day requires further investigation [55, 56]. 
Given daily mortality risk for mosquitoes (estimated to 
be around 10% for An. gambiae [57]), intuition suggests it 
would be adaptive to lay as soon as they are able.

A lack of costs of morning feeding could have several 
non-mutually exclusive explanations. First, costs were 
expected because the expression of numerous genes 
involved in processes required to neutralise the ROS 
produced by blood digestion is rhythmic [16]. However, 

Table 2 Summary of statistically significant effects of the time-of-day that mosquitoes blood feed on life history traits

Abbreviation: na, not available

Experiment 1: “Blood quality & host time” Experiment 2: “Blood quality” Experiment 3: “Infection”

Infection prevalence & intensity na na No effect of feed time

Proportion laid Morning-fed are ~ 26% more likely to lay than 
evening-fed

No effect of feed time Morning-fed are possibly ~ 27% 
more likely to lay than evening 
fed (P = 0.056)

Time to lay Morning-fed are ~ 1.5 times more likely to lay 
each day than evening-fed

No effect of feed time No effect of feed time

Clutch size Higher if fed on control (non-anaemic) blood in 
the morning (30% more eggs)

No effect of feed time No effect of feed time

Hatch rate No effect of feed time na na

Blood meal volume & density No effect of feed time na na

Survival No effect of feed time No effect of feed time No effect of feed time
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transcriptional circadian phases do not always reflect 
protein abundance rhythms [58, 59]. Nine of the 12 
V-ATPase subunits of the vesicular type H+ ATPase 
(V-ATPase), which is associated with maintaining 
osmotic balance during the increase in volume result-
ing from a blood meal, are rhythmic at the protein level 
(peaking at dusk in An. gambiae [16]). This has led to the 
suggestion that water excretion is compromised in mos-
quitoes feeding in the daytime and so, they should com-
pensate by taking smaller blood meals [14]. However, we 
found no evidence of feeding time-of-day affecting blood 
meal volume or density. Secondly, immune responses 
are suggested to be timed to defend against pathogens 
acquired during foraging [60]. However, for mosqui-
toes, there may be an acute need for immune control of 
the proliferation of gut microbiota that expand upon an 
influx of blood [61]. ROS favours pathogen defence and 
a combination of digestion-related and immune-related 
ROS might erode rhythmicity in ROS levels, or defences 
may be upregulated as a direct response to feeding, rather 
than in a time-of-day dependent manner. Thirdly, when 
only comparing two time points on a symmetrical curve, 
there is a risk of picking the same intercept as the curve 
ascends and descends (“shoulder problem”). However, 
this is unlikely to be the case in our experiments because 
mosquitoes were in their rest phase in morning feeds and 
their active phase in evening feeds [42]. Fourthly, if feed-
ing at the wrong time-of-day has only minor negative fit-
ness consequences, manipulating feeding time-of-day 
over multiple blood-feeding and oviposition cycles might 
be required to detect costs, or keeping mosquitoes in a 
more stressful and ecologically realistic manner.

Many nutrients and amino acids in the blood that are 
essential to mosquito egg development (e.g. isoleucine) 
[62] exhibit circadian periodicity [34–36] but we found 
no evidence that host time-of-day matters for mosqui-
toes feeding on either healthy or anaemic mice. Mice take 
their largest meal around lights off, and so, by carrying 
out feeds on mice several hours into their active versus 
rest phases the difference in blood meal composition due 
to metabolic processes should have been considerable. 
Perhaps these factors are not limiting at any point in their 
rhythms, especially for mosquitoes receiving blood from 
well-fed laboratory mice. Further work could consider 
investigating the role host time-of-day in more dramatic 
manipulations of blood composition, for example, during 
infection and under food-limited conditions.

Our perturbations of anaemia did affect mosquito 
reproduction; clutch size was reduced in mosquitoes 
feeding on anaemic blood. Inducing anaemia with phe-
nylhydrazine causes oxidative damage to red blood cells 
which are then cleared from circulation [63]. ROS dam-
ages mosquitoes [23, 25, 26], but by feeding mosquitoes 

three days after phenylhydrazine administration, the ROS 
it causes should have been neutralised. Thus, the main 
difference between blood from control and phenylhy-
drazine-treated mice is the age structure and density of 
RBC. Our data suggest that mosquitoes take up a larger 
volume of blood from phenylhydrazine-treated mice 
(perhaps facilitated by lower viscosity of anaemic blood 
[64]), but that this does not fully compensate and equal-
ise blood meal RBC densities to those from feeds on con-
trol mice (Fig. 4). There may be additional differences in 
blood quality between chemical- and infection-induced 
anaemia. However, given their similar impacts, the abil-
ity to garner fewer resources from anaemic blood could 
explain the reduction in clutch size we observed. This is 
supported by previously revealed positive correlations 
between haematin content of blood and clutch size [65, 
66]. Additionally, we found that hatch rate is a decreasing 
function with lay day (χ2

5 = 12.58, P < 0.001) but only in 
those mosquitoes that fed on anaemic hosts. This result 
is similar to that reported in infected mosquitoes [67] 
suggesting that this result may be an effect of blood qual-
ity rather than parasite infection.

Our results contrast with recent work showing that 
mosquitoesʼ blood-feeding in the daytime are more likely 
to become infected after feeding on P. chabaudi infected 
mice, although P. chabaudi oocyst burdens did not dif-
fer between feed times [33]. Compared to P. berghei, P. 
chabaudi generally transmits with far lower prevalence 
and burden, which may facilitate detection of subtle 
time-of-day effects. An alternative possibility is that mos-
quito time-of-day effects are driven by an interaction 
with parasite time-of-day and so, are only observed in 
infections with synchronously developing parasites such 
as P. chabaudi (in which a specific age of gametocytes 
is present in blood meals), or in asynchronous species 
such as P. relictum in which parasite abundance in the 
blood (rather than age) is rhythmic [68]. In contrast to 
the effects of our other perturbations in the experiments 
presented here, we found negative effects of infection on 
lifespan. Costs of malaria infection on mosquito lifes-
pan have been observed in other malaria model systems 
(reviewed in [69]) as well as an advancement of egg lay-
ing [67]. The advanced laying of infected mosquitoes may 
be a form of terminal investment because organisms with 
low survival prospects rush to reproduce before dying 
[70–73]. If our mosquitoes adopted terminal investment, 
it is necessary to explain why uninfected mosquitoes 
do not benefit from early reproduction. This could be 
because advancing reproduction also results in reduced 
clutch size (but we did not observe this), lower hatch 
rate (Experiment 1 suggests this does not occur either), 
trade-offs against anti-parasite immune responses, or 
reduces the probability or size of future clutches [74]. 
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Alternatively, mosquitoes may restrict essential lipid 
resources available to parasites by allocating them to eggs 
as quickly as possible [75] or since mounting an immune 
response is costly to fecundity, laying early may be a com-
promise for both fecundity and survival [76].

Conclusions
In summary, we found that taking a blood meal in the 
morning compared to the evening has no, or minor nega-
tive, effects on the fitness of mosquitoes, nor impacts 
upon on P. berghei malaria infection. If our results from 
a laboratory colony of mosquitoes living in benign condi-
tions hold for wild mosquitoes, it suggests that mosqui-
toes have sufficient flexibility in their physiology to cope 
with changes in biting time induced by evading insecti-
cide-treated bed nets. Future work should consider the 
impact of multiple feeding cycles and the abiotic stresses 
imposed by the need to forage for blood when hosts are 
not protected by bed nets.
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