

Edinburgh Research Explorer

Wide-Coverage Neural A* Parsing for Minimalist Grammars
Citation for published version:
Torr, J, Stanojevic, M, Steedman, M & Cohen, S 2019, Wide-Coverage Neural A* Parsing for Minimalist
Grammars. in A Korhonen, D Traum & L Màrquez (eds), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). vol. 1, P19-1238, ACL Anthology,
Florence, Italy, pp. 2486–2505, 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, 28/07/19.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

https://www.research.ed.ac.uk/portal/en/publications/widecoverage-neural-a-parsing-for-minimalist-grammars(4cbfe4d1-1bda-41eb-84d5-153483d0e5ac).html

Wide-Coverage Neural A* Parsing for Minimalist Grammars

John Torr Miloš Stanojević Mark Steedman Shay B. Cohen

School of Informatics
University of Edinburgh

11 Crichton Street, Edinburgh, UK
john.torr@cantab.net m.stanojevic@ed.ac.uk
steedman@inf.ed.ac.uk scohen@inf.ed.ac.uk

Abstract
Minimalist Grammars (Stabler, 1997) are a
computationally oriented, and rigorous for-
malization of many aspects of Chomsky’s
(1995) Minimalist Program. This paper
presents the first ever application of this for-
malism to the task of realistic wide-coverage
parsing. The parser uses a linguistically ex-
pressive yet highly constrained grammar to-
gether with an adaptation of the A* search al-
gorithm currently used in CCG parsing (Lewis
and Steedman, 2014; Lewis et al., 2016), with
supertag probabilities provided by a bi-LSTM
neural network supertagger trained on MG-
bank, a corpus of MG derivation trees. We
report on some promising initial experimental
results for overall dependency recovery as well
as on the recovery of certain unbounded long
distance dependencies. Finally, although like
other MG parsers, ours has a high order poly-
nomial worst case time complexity, we show
that in practice its expected time complexity is
O(n3). The parser is publicly available.1

1 Introduction

Parsers based on linguistically expressive for-
malisms, such as Head-Driven Phrase Structure
Grammar (HPSG; Pollard and Sag 1994) and
Combinatory Categorial Grammar (CCG; Steed-
man 1996), have been shown to be more ef-
fective than those using shallower finite state
or context free grammars at recovering certain
unbounded long-distance dependencies (Rimell
et al., 2009; Nivre et al., 2010) which are of-
ten vital for tasks like open domain question an-
swering. Furthermore, as proven independently
by Huybregts (1984) and Shieber (1985), some
languages exhibit constructions which are beyond
even the weak generative capacity of any con-
text free grammar. The investigation of parsing

1https://github.com/mgparsing/astar_
mg_parser

systems based on more powerful (mildly) context
sensitive formalisms has therefore been a very ac-
tive area of research within the field of computa-
tional psycholinguistics over the past 35 years or
so (see, e.g., Joshi (1985, 1990); Steedman (2000);
Hale (2011); Stabler (2013); Rambow and Joshi
(2015); Stanojević and Stabler (2018)).

Another linguistically expressive grammatical
framework is Transformational Grammar (Chom-
sky, 1957, 1965, 1981), whose latest incarnation is
the Minimalist Program (MP; Chomsky 1995). A
defining property of MP is that constituents move.
For example, in 1a below, what moves to the left
periphery of the clause from a deep subject po-
sition and will therefore be interpreted as the se-
mantic AGENT of eat; in 1b, meanwhile, it moves
from the deep object position and so is interpreted
instead as the semantic PATIENT.

(1) a. Whati do you think ti eats mice?
b. Whati do you think mice eat ti?

MP continues to dominate much of theoreti-
cal syntax, and Stabler’s (1997) rigorous formal-
isation has proven a popular choice for inves-
tigations into human sentence processing (Hale,
2003; Kobele et al., 2013; Stabler, 2013; Graf and
Marcinek, 2014; Graf et al., 2015; Gerth, 2015;
Stanojević and Stabler, 2018). On the other hand,
this TG has enjoyed far less popularity within
computational linguistics more generally,2 which
is unfortunate given that it is arguably the most
extensively developed syntactic theory across the
greatest number of languages, many of which are
otherwise under-resourced. Conversely, the pro-
cess of constructing large grammar fragments and
subjecting these to computational testing can have
a salutary impact on the theory itself, forcing

2For an anti-Chomskyan perspective on why this discon-
nect came about, see Pullum (2009).

choices between competing analyses of the same
construction, and exposing incompatibilities be-
tween analyses of different constructions, along
with areas of over- and undergeneration which
may otherwise go unnoticed (Bierwisch, 1963;
Abney, 1996).

The received wisdom within NLP is that
TG/MP is too complex and insufficiently formal-
ized to be applied to realistic parsing tasks. This
assumption prompted Sproat and Lappin (2005)
to issue a challenge to the Minimalist community
which has hitherto gone unanswered: to construct
a wide-coverage statistical parser trained in a su-
pervised fashion and exhibiting comparable per-
formance to other state-of-the-art parsers. This
paper is the first to address this challenge, intro-
ducing the first ever wide-coverage parser in the
Minimalist (and arguably the entire TG) tradition,
along with some promising initial experimental re-
sults. The parser is equipped with a linguistically
expressive, wide-coverage grammar based on an
extended version of Stabler’s (1997) Minimalist
Grammars (MG) formalism, which is a rigorously
formal, computationally oriented and polynomi-
ally parseable interpretation of mainstream MP
that is weakly equivalent to Multiple Context Free
Grammars (MCFG; Seki et al. 1991). The parser
itself is an adaptation of a highly efficient A* CCG
parsing algorithm (Lewis and Steedman, 2014;
Lewis et al., 2016) with a bi-LSTM model trained
on MGbank, an MG version of the Penn Treebank
currently under development.

2 Background

Beginning in the 1960s, a number of parsers were
developed which implemented aspects of the vari-
ous iterations of Chomskyan syntactic theory (e.g.
Petrick 1965; Zwicky et al. 1965; Woods 1970,
1973; Marcus 1980; Kuhns 1990; Fong 1991; Sta-
bler 1992; Fong and Ginsburg 2012), but these
systems either used toy grammars/lexicons or op-
erated over relatively closed domains.

Principar (Lin, 1993), and its descendent Mini-
par (Lin, 2001, 2003), are the only truly wide-
coverage parsers in the Chomskyan tradition of
which we are aware. Minipar incorporates MP’s
bare phrase structure and some of its economy
principles. It is also statistical, having been self-
trained on a 1GB corpus. However, while these
parsers model the phrase structure and locality
constraints of TG, they are not transformational:

movement is achieved by passing features up a
precompiled network of nodes representing a tree
from the site of the trace to the site of the an-
tecedent, with the latter merged directly into its
surface position, in the style of GPSG. Under
this approach, antecedents necessarily c-command
their traces (Lin, 1993, page 115), making these
parsers unsuitable for implementing MP analyses
involving remnant movement (see Stabler 1999).

2.1 MG parsers
A number of working parsers have been devel-
oped for Stablerian MGs, which do allow for
actual movement, including remnant movement.
What all working MG parsers (Harkema, 2001;
Hale, 2003; Stabler, 2013; Stanojević and Stabler,
2018) have until now shared in common is that
they are small-scale theoretical implementations
equipped only with toy lexicons/grammars. There
has been a limited amount of research into proba-
bilistic MG parsing, most notably in generative lo-
cally normalised models (Hale, 2003; Hunter and
Dyer, 2013). However, these works remain so far
untested owing to the unavailability, until very re-
cently, of any MG treebank for training and evalu-
ating models.

2.2 MGbank
MGbank (Torr, 2017, 2018) is a treebank of MG
derivation trees constructed in part manually by
hand-annotating a subset of PTB sentences and
in part automatically using a parser equipped with
the manually constructed grammar and guided by
the corresponding PTB and CCGbank (Hocken-
maier and Steedman, 2007) structures. The corpus
was continuously machine tested for over- and un-
dergeneration throughout its development. It cur-
rently covers over 463,000 words of the PTB, or
nearly 56% of its trees, with a lexicon of over
47,100 entries; the average sentence length in MG-
bank is 16.9 (vs 21.7 in the original PTB) and
the maximum sentence length is 50. The deriva-
tion trees produced by the parser were transduced
into Xbar and MG derived phrase structure trees,
which are also included in the treebank.

The MGbank grammar has been designed to
capture many long distance dependencies not in-
cluded in the original treebank, including the bind-
ing of reflexive/reciprocal anaphors and floating
quantifiers by their antecedents, the dependency
between the two subconstituents of a discontin-
uous quoted expression (“funny thing,” says the

kicker, “both these candidates are named Rudolph
Giuliani.”), the licensing of polarity items such as
anymore, anyway and much by interrogative and
negation heads, and the distributional dependency
between expletive there and an indefinite DP as-
sociate. All of these long distance dependencies,
along with those involved in control, raising, top-
icalization and wh movement, are integrated into
the grammar itself, obviating the need for sepa-
rate post-processing techniques to recover them
(Johnson, 2002; Cahill et al., 2004). The MG lex-
ical categories have also been annotated with over
100 fine-grained selectional and agreement restric-
tion features (e.g. +3SG, -NOM, +INF, MASC,
+INDEF, +FOR, MNR, +LOC, etc) to avoid many
instances of unwanted overgeneration.

Movement is clearly a very powerful operation.
However, it is constrained in MGbank using many
of the locality constraints proposed in the TG lit-
erature. These include not only Stabler’s (1997)
strict version of the Shortest Move Constraint, but
also a partially derelativized version (DSMC) in-
spired by Rizzi (1990), along with versions of
the specifier/adjunct island constraints, the right
roof constraint, complex NP constraint, coordinate
structure constraint, that-trace filter, Principle A of
Chomsky’s (1981) Binding Theory, and so on.

3 Minimalist Grammars

Our parser uses the MG formalism described in
Torr and Stabler (2016; henceforth T&S) and Torr
(2018, 2019). Here we give only a brief overview.
MGs are strongly lexicalised, with ordered fea-
ture sequences on lexical categories determining
both the subcategorization frames of words and
the movement operations which must apply. There
are four basic types of structure building features:
=x/x= selectors and x selectees, and +f licensors
and -f licensees. Selectors and selectees trigger
Merge operations, with x= indicating rightward
selection and =x leftward selection (similar to the
forward and backward slash notation in CCG).
Licensors and licensees trigger Move operations.
Except for a single c selectee at the root of the
tree, all features entering the derivation must be
checked and deleted by applying one of a small
set of (here, around 45) abstract binary Merge and
unary Move rules; these rules concatenate and re-
order expressions’ string components.

Consider the following MG lexicon.

✏, they, ✏ :: d
✏, saw, ✏ :: d= =d v
✏, who, ✏ :: d -wh
✏, [int], ✏ :: v= +WH

Each entry consists of a string component, fol-
lowed by a type separator,3 followed by a se-
quence of syntactic features. The epsilons repre-
sent empty strings and are slots for left and right
dependent strings to be merged into.4 Strings en-
closed in square brackets are also empty, and ap-
pear in this form at the lexical level only simply
to make the trees easier to read. Figure 1 shows
the MG derivation tree for the embedded ques-
tion who they saw, along with its corresponding
phrase structure tree, in which � indicates a po-
sition from which a phrase has moved; the leaf
nodes of the derivation tree are lexical items while
the final surface string appears at the root node;
binary nodes represent the result of a Merge op-
eration while unary nodes represent the result of
a Move operation. The interesting step occurs at
the lowest binary node: because who has a -wh li-
censee still to check, its string is not merged into
the right ✏ (complement) slot of saw when these
two items are Merged; instead, it is kept in a sepa-
rate moving chain until its -wh feature is checked
by the +WH of [int] via an application of Move.

4 The Parser

Our parser uses an adaptation of the A* search al-
gorithm for CCG presented in Lewis and Steed-
man (2014) (henceforth, L&S). In this section we
first review that algorithm, before going on to
show how it was adapted to the MG formalism.

4.1 A* CCG parsing
Combinatory Categorial Grammar (CCG; Steed-
man 2000) is another linguistically expressive for-
malism capable of recovering unbounded long dis-
tance dependencies. Like MG, CCG is strongly
lexicalised, with a large lexical category set and a
small set of abstract combinatory rules, the most
basic of which is forward/backward application
(equivalent to MG’s Merge). Categories are either
basic (NP, S, etc) or functional. The functional
categories determine the subcategorization frame
of the words they label. For example, the category

3:: is used for lexical items, and : for derived items.
4Heads are kept separate from their left and right depen-

dents to allow for head movement operations (Stabler, 2001)

who, ✏, they saw : c

✏, ✏, they saw : +WH c, who : -wh

they, saw, ✏ : v, who : -wh

✏, saw, ✏ : =d v, who : -wh

✏, who, ✏ :: d -wh✏, saw, ✏ :: d= =d v

✏, they, ✏ :: d

✏, [int], ✏ :: v= +WH c

CP

C0

VP

V0

�iV
saw

D
they

C
[int]

Di

who

Figure 1: MG derivation tree (left) and phrase structure tree (right) for the embedded question who they saw. The derivation
has been simplified for ease of exposition by removing case and head movements, as well as the null tense and light verb heads.

for a transitive verb is (S\NP)/NP, which says that
this word must combine with an (object) NP on its
right (indicated by the forward slash), which will
yield a category which must combine with a sec-
ond (subject) NP on its left (indicated by the back-
ward slash). In place of movement, CCG uses type
raising and function composition rules to capture
unbounded long distance dependencies.

CCG already has a very well-established re-
search tradition in wide-coverage parsing (see,
e.g., Hockenmaier and Steedman (2002), Clark
and Curran (2007b), Lewis and Steedman (2014),
Xu (2016), Lewis et al. (2016), Wu et al. (2017)).
A key advancement in CCG parsing that enabled
it to become efficient enough to support large-
scale NLP tasks was the introduction of Marko-
vian supertagging techniques in Clark and Cur-
ran (2007b) that were borrowed from Lexicalised
Tree Adjoining Grammar (LTAG; (Bangalore and
Joshi, 1999)). Because the supertags predetermine
much of the combinatorics, supertagging is some-
times referred to as ‘almost parsing’.

Inspired by the A* algorithm for PCFGs of
Klein and Manning (2003), L&S present a simple
yet highly effective CCG parsing model which is
factored over the probabilities assigned by the lex-
ical supertagger alone, with no explicit model of
the derivation at all. This approach is highly effi-
cient and avoids the need for aggressively pruning
the search space, which degraded the performance
of earlier CKY CCG parsers. Instead, the parser
considers the complete distribution of the 425
most commonly occurring CCG lexical categories
for each word. The supertagger was originally
a unigram log-linear classifier, but Lewis et al.
(2016) greatly enhanced its accuracy by exchang-
ing this for a stacked bi-LSTM neural model.

The key difference between A* and CKY CCG
parsing is the fact that A* uses search heuris-

tics that avoid building the whole chart without
compromising the correctness guarantees. This is
achieved using an agenda implemented as a pri-
ority queue of items ranked by their cost, calcu-
lated as a product of their inside cost and an upper
bound on their expected outside cost. The agenda
is initialised with the full set of 425 supertags for
each word. The parser pops the item with the low-
est cost from the agenda, stores it in the chart if it is
not already there, and attempts to combine it with
other items already present the chart. Newly cre-
ated items have their costs calculated before being
added to the priority queue agenda. The entire pro-
cess is repeated until a complete parse for the sen-
tence is returned. The algorithm guarantees that
the first parse returned is the most probable (i.e.
the Viterbi parse) according to the model.

L&S treat a CCG parse y as a list of lexical cat-
egories c0. . .cn�1 together with a derivation, and
make the simplifying assumptions that all deriva-
tions licensed by the grammar are equally likely,
and that the probability of a given lexical category
assignment is conditionally independent of all the
other assignments given the sentence. Let Y be
the set of all derivations licensed by the grammar;
then the optimal parse ŷ for a given sentence S
with words w0. . .wn�1 is given as:

ŷ = argmaxy2Y

n�1Y

i=0

p(ci|S) (1)

Let ↵ be a set of indices {i,..,j} for words
wi...wj labelled with category sequence ci...cj in-
side some expression. The inside probability of
↵ is simply the product of the probabilities of the
lexical category assignments given the sentence.

s(↵) =
Y

i2↵
p(ci|S) (2)

The upper bound estimate for the outside prob-
ability of a span ↵ is given by

h(↵) =
Y

i/2↵

max
ci

p(ci|S) (3)

where maxci p(ci|S) is simply the lexical cate-
gory with the highest probability assigned to word
wi according to the supertagger; this can be pre-
computed for the sentence and cached. To avoid
numerical errors caused by multiplying together
extremely small numbers, we convert the proba-
bilities to log space costs and use addition rather
than multiplication.

4.2 A* MG parsing

The simplicity, speed and performance of L&S’s
A* CCG parser made it attractive for a first imple-
mentation of a wide-coverage MG parser. How-
ever, while CCG and MG are similar in some re-
spects5 (such as the fact that they are both strongly
lexicalised), there are also some fundamental dif-
ferences between the formalisms which mean that
some adaptations are needed in order to port this
A* algorithm to MGs. The first (trivial) issue is
that MG derivations feature discontinuous spans
in order to allow for movement, as we saw in Fig-
ure 1. Therefore, we must redefine ↵ in Equations
2 and 3 to be the set of word indices covered by all
the spans contained within an MG expression.

The second issue is that, following Kobele
(2008) and T&S, the MGbank grammar allows
for so-called Across-the-Board (ATB) phrasal and
head movements in order to capture adjunct con-
trol, parasitic gaps, and certain coordination struc-
tures. ATB phrasal movement is illustrated in 2
below.

(2) Whoi did Jack say Mary likes ti and Pete
hates ti?

In 2, who has moved from two separate base
generated object positions in across-the-board
fashion. T&S (following Kobele 2008) propose
to account for this by initially generating two in-
stances of who in the two object positions and then
later unifying them into a single item when the
second conjunct is merged into the main struc-
ture. For A*, when two expressions containing
unifiable movers are merged together, only one of

5See Berwick and Epstein (1995) on the convergence of
Minimalist syntax and Categorial Grammar.

those movers must contribute to the cost of the re-
sulting expression in order to avoid excessive pe-
nalisation for what is now just a single instance
of the moving item. We can achieve this for both
ATB head and phrasal movement by first calculat-
ing the sum of the costs of the two expressions that
are Merged, and then subtracting from this the cost
of one member of each pair of unified movers.

In the MGbank grammar (unlike in Kobele
2008), it can be the case that two unified (head)
movers have different derivational histories, in
which case they may well have different costs. In
such cases, the parser uses the greater of these two
costs when calculating the inside cost of the newly
formed expression. If the lower of the two costs
were used instead, it may make some costs non-
monotonically increasing.6

The final problem relates to the fact that, un-
like CCG, MG allows for phonetically null heads
(following mainstream MP), but supertaggers can
only tag the overt words of a sentence. However,
we would like our probability model to also be de-
fined over the null heads. Addressing this prob-
lem, Torr (2018) proposes an algorithm for ex-
tracting a set of complex LTAG-like MG lexical
supertag categories from a corpus of MG deriva-
tion trees, which we adopt here. Each supertag
contains precisely one overt atomic MG lexical
item and zero or more atomic null heads anchored
to it. For example, in Figure 1, the [int] head
would be included inside the supertag anchored by
saw. The supertagging model can now be refac-
tored over these complex, overt MG categories.
The parser continues to manipulate the atomic cat-
egories, but now keeps track of the fact that the
v= of [int] must obligatorily be checked by the v
feature of (this specific instance of) saw, and vice
versa. During parsing, the overt heads carry the
entire cost of their supertag into the agenda; the
null heads are simply assigned a zero cost.

Pseudo-code for the A* MG parser is provided
in Appendix A.

5 Experiments

5.1 Model description
We used two types of MG grammars in our ex-
periments: Abstract and Reified. The differ-
ence between them is that in the Reified gram-

6Note that one drawback to only using the cost of one of
the two unified instances is that the strict optimality guaran-
tees of A* are lost.

mar, most of the 100 or so fine-grained selectional
and agreement restriction features have been re-
moved with the exception of the following 5 fea-
tures, which are necessary to the inner workings
of the parser: ANA, EDGE, IT, +NONE, MAIN.
The Reified grammar is clearly more constrained,
which should make it more precise (at some ex-
pense to recall) but at the same time more difficult
to supertag correctly due to the sparsity that comes
with a higher number of supertags. Extracting the
complex MG supertags from the entire MGbank
corpus resulted in a Reified tagset of 3926 items
and an Abstract tagset of 2644 items.7

For both Abstract and Reified we used the same
supertagging neural architecture that works by ini-
tially embedding the word tokens using the final
layer of an ELMo embedder (Peters et al., 2018),
followed by a single affine transformation to com-
press the embeddings into a vector of size 128 for
each word. These embeddings are further fed into
a two layer bi-LSTM (Hochreiter and Schmid-
huber, 1997; Graves, 2013). Finally, the hidden
states of the final layer of the bi-LSTM are passed
through a two layer MLP to predict the distribu-
tion of the supertags for each word. The param-
eters are trained using an Adam optimizer with a
learning rate of 0.0002.

5.2 Recovering MGBank dependencies
We first tested the parser on its ability to re-
cover global syntactic and semantic (local and
non-local) dependencies extracted from MGbank.
We extracted labelled and unlabelled bi-lexical de-
pendencies for each binary non-terminal in the
Xbar phrase structure trees transduced from the
derivation trees and included in MGbank.8 To
make up for the shortfall in the number of trees
in MGbank, we used both sections 00 and 01 for

7This number of tags is closer to the 4727 elementary
trees of the TAG treebank of Chen (2001) than to CCGbank’s
(Hockenmaier and Steedman, 2007) 1286 lexical categories.

8As in Collins (1999), the labels are triples of the parent,
non-head child and head child categories. The dependencies
include both local dependencies and those created by move-
ment, hence this evaluation is more akin to the deep depen-
dency evaluation discussed in Clark et al. (2002) for CCG
than to the more standard practice of evaluating parsers in
terms of just local dependencies (e.g. (Collins, 1999)). The
semantic head of the clause is taken to be the main verb,
while its syntactic head, if present, is the overt complemen-
tizer; similarly, nouns are taken to be semantic heads of PPs
and DPs while their syntactic heads are the preposition and
determiner respectively; the semantic heads of coordination
structures are the conjuncts themselves, while the syntactic
head is the coordinator. Unlabelled dependencies are also
undirected, as is standard practice in CCG evaluation.

model F1 P R E

sy
nt

ax LA
B Abstract 79.33 81.87 76.94 21.01

Reified 80.10 83.43 77.02 21.61

U
LA

B Abstract 84.57 87.15 82.14 29.59
Reified 85.19 88.63 82.02 30.49

se
m

an
tic

s

LA
B Abstract 74.90 77.17 72.75 20.96

Reified 75.47 78.53 72.64 21.56

U
LA

B Abstract 83.69 86.16 81.36 33.30
Reified 84.11 87.47 81.01 34.50

Table 1: Results on the whole MGbank test set with
P, R and E indicating precision, recall and exact match
respectively.

development and both sections 23 and 24 for test-
ing, with sections 02-22 used for training.

Table 1 shows the results on the MGbank test
set. On both dependency types, the Reified model
has higher precision, F1-score and exact match-
ing, but has a lower score on recall owing to the
constraining impact of the selectional and agree-
ment features: The Abstract model parsed 1924
sentences (96.5%) out of 1998 in the test set, while
the Reified model parsed 1902 (95.4%). These F1
scores are respectable for a first attempt at wide-
coverage MG parsing, though it should be noted
that the MGbank test set is somewhat easier than
the PTB test set owing to the difference of 4.8 in
average sentence length between the two corpora.

5.3 Comparison to CCG

Cross-formalism comparison is in general a diffi-
cult task (Clark and Curran, 2007a) because it is
necessary to account both for (1) the differences
in how the parsers work and (2) the differences
in the kinds of structures they predict. To control
for (1) we re-implemented a CCG parser similar
to L&S’s CCG A* algorithm but using our su-
pertagger to make the comparison fair. We first
trained our CCG supertagger on the CCG trees
from CCGbank, but only on those sentences that
are also present in MGbank. We then tested the
CCG parser on the recovery of CCGbank depen-
dencies for the test sentences also appearing in
MGbank, and compared this to an off the shelf
CCG parser, namely EasyCCG, that was trained
over the whole of the CCGbank training set. The
results are shown in Table 2. Our CCG parser
shows much better performance in spite of being
trained on much less data than EasyCCG, making
it a tough point of comparison for our MG parser.

To account for (2) we compared the CCG and

model F1 P R E

LA
B Our CCG A* 87.4 87.2 87.6 40.0

EasyCCG A* 83.8 87.2 80.7 31.4
U

LA
B Our CCG A* 92.8 92.5 93.0 47.2

EasyCCG A* 90.1 93.8 86.8 35.9

Table 2: Results of CCG parsers on all 1994 sentences
of MGbank test set for CCG dependencies.

MG parsers on their ability to recall the dependen-
cies for which both CCGbank and MGbank agree
by taking as the test set the intersection of the
gold unlabelled undirected CCGbank and syntac-
tic MGbank dependencies for sentences appearing
in the MGbank test set. Precision cannot be com-
puted due to the difficulties in normalising predic-
tions on the CCG and MG sides: one might predict
more dependencies which may be correct but are
not predicted by the syntactic theory used in the
other parser and therefore would be penalised.

The results of this evaluation are shown in Ta-
ble 4. The CCG parser clearly exhibits superior
performance, although the MG parser performs re-
spectably given that it is up against a near state-of-
the-art parser for a formalism with a much longer
history in wide-coverage parsing. The higher per-
formance of the CCG parser is likely the result
of a more complete search due to the lower com-
plexity of the formalism (the CCG parser parsed
all sentences) and of the much smaller supertag
set that is easier to predict as evident in Table 3.
This means that the MG parser requires a larger
amount of training data than the CCG parser to
achieve similar levels of accuracy and efficiency
(because the speed of A* parsing depends on the
quality of the probabilistic model). We tried re-
placing all MG supertags occurring less than twice
in the training data with UNK tags to reduce the
noise from unreliable tags, but this hurt perfor-
mance. Once MGbank’s coverage is increased, the
difference between the formalisms may narrow.

Our MG parser is currently a prototype Python
implementation, hence to keep parsing times prac-
tical it was necessary to prune the search space
by retaining only the 40 most likely supertags per
word. Even so, the parser still timed out on a few
sentences in the test set. Once reimplemented in
a faster language, its recall should increase as it
will have more time to explore a less aggressively
pruned search space.

top k CCG MG Abstract MG Reified
1 95.73 83.11 80.62
5 99.41 97.22 95.89
10 99.64 98.42 97.66
20 99.78 99.01 98.42
40 99.83 99.26 98.81

Table 3: Supertagging accuracies for each grammar as
the probability of having the correct supertag in the top-
k predictions per word.

parser R E
CCG A* 95.30 69.03
MG Abstract A* 91.75 54.38
MG Reified A* 92.65 55.67

Table 4: Results on overlapping gold CCGbank and
syntactic MGbank dependencies in sections 23 and 24.

5.4 Parsing speed

The CKY MG parser of Harkema (2001), when
augmented with head movement, has a worst case
time complexity of O(n4k+12) where k is the max-
imum number of phrasal movers that can be con-
tained in any single expression. In the MGbank
formalism, owing to DSMC, k = 4 (see Torr
2019), meaning that the worst case complexity of
parsing with this formalism using Harkema’s al-
gorithm would be O(n28). Our A* parsing algo-
rithm operates in a similar fashion, except that it
takes an additional multiplicative cost of O(log n)
due to the usage of a heap data structure for imple-
menting the agenda. O(n28 log n) is, of course,
a prohibitively high time complexity. However,
although A* does not improve on the worst case
theoretical complexity of CKY, it can dramatically
improve its practical expected complexity.

Figure 2 shows the scatter plot of parsing times
for different sentence lengths and the average
curve. The average curve is less informative in
very long sentences due to the smaller number
of parses, but in regions where there are more
data points a clear pattern can be observed: a cu-
bic polynomial curve approximates average time
taken to parse sentences extremely well, which
means that the expected time complexity of MG
parsing with our grammar and statistical model is
O(n3). This is much better than the worst case
analysis, although the variance is high, with some
sentences still requiring a very long time to parse.

Recently, Stanojević (2019) has shown that with

0 10 20 30 40
0

2

4

6

8

10

words

m
in
u
te
s

average

0.00012 n3

Figure 2: Parsing speed for Abstract model on test set.

relatively small adjustments to the parser’s in-
ference rules, MGs with head movement can be
parsed in O(n2k+5) time in the worst case,9 which
for the MGbank grammar equates to O(n13), a
dramatic improvement over O(n28). We hope to
leverage these efficiency gains in the future to im-
prove the expected time complexity of the parser.

5.5 Coverage
Section 00 of the PTB contains 1921 sentences
with an average sentence length of 21.9 words;
other than a 212 word outlier, the maximum sen-
tence length is 96. When run over all of these sen-
tences, the Reified parser returned parses for 1490
(77.6%) sentences with an average sentence length
of 14 and a maximum sentence length of 53. The
Abstract parser returned 1549 parses (80.6%) with
an average sentence length of 15.3 and a maxi-
mum sentence length of 49. The CCG A* parser
returned 1909 parses (99.4%).

5.6 Recovery of unbounded dependencies
As noted in Section 1, the recovery of unbounded
dependencies, including wh-object questions, is
a primary motivation for using linguistically ex-
pressive parsers. Wh-object questions themselves
are extremely rare in the PTB, but object relative
clauses, which also involve unbounded movement,
are relatively frequent. Following Clark et al.
(2004), we manually evaluated our parser on the
free and non-free object (and embedded subject)

9Fowlie and Koller (2017) previously demonstrated that
MGs without head movement could be parsed in O(n2k+3)
worst case time, which was already a dramatic improvement
over Harkema’s original result. However, Stanojević (2019)
shows that adding head movement to Fowlie and Koller’s sys-
tem increases complexity to O(n2k+9).

relative clauses in section 00 of the Penn Tree-
bank, as well as on the two examples of so-called
tough movement. The MGbank analyses of these
constructions are discussed in Appendix B.

There are 24 examples of non-free object rel-
ative dependencies across 20 sentences in section
00, and 17 free object relative dependencies across
16 sentences. All of these sentences, along with
indications of which dependencies our parser did
and did not recover, are given in Appendix C,
and are presented using the tokenization our MG
parser used (the CCG A* parser used the origi-
nal CCGbank tokenization). Also included are a
phrase structure tree and its corresponding deriva-
tion tree illustrating the MGbank analysis of a re-
strictive object relative clause.

On the free object relatives, our Abstract parser
performed best, recovering 13/17 dependencies.
The parser only predicted 14 free object relatives
meaning that the precision was 13/14. Of the 4
free object relative dependencies in the data which
it missed, 3 were in very long sentences on which
the parser timed out (the time-out was set to 30
mins), suggesting that a faster re-implementation
may achieve higher recall. In the one case which
the parser actually got wrong, it correctly iden-
tified that there was a free object relative depen-
dency, but extracted the wrong object from a dou-
ble object verb. Clark et al. (2004) reported re-
call of 14/17 (with precision 14/15), while our A*
CCG parser recovered 15.5/17 of the free object
relative dependencies with precision also 15.5/17.

Non-free object relatives are harder than both
wh object questions and free object relatives be-
cause they require a head noun to be identified
in addition to an extraction site. Our Abstract
parser performed best here, retrieving 10/24; the
CCG A* parser recovered 15/24, with precision
of 15/21 (Clark et al. (2004) also reported recall
of 15/24 and precision of 15/20). Our Reified
parser retrieved 13/24 with precision 13/17 when
allowed to reparse any sentences it initially failed
to find any analyses for with increasingly relaxed
tag-dictionary settings. In two of the errors, the
parser correctly identified the extraction site, but
attached the relative clause to the wrong NP. For
example, in sentence 1, the parser attached whom
Sony hosted for a year to complaint rather than
to American. Appositive relative clauses such as
this are treated as involving adjunction of the rel-
ative clause to the head noun in MGbank, and the

choice of attachment to either American or com-
plaint is underdetermined by the model (the same
supertag containing the requisite [rel] and [adjunc-
tizer] heads will be assigned to hosted in either
case).10 For the restrictive relative clause in sen-
tence 8, the parser incorrectly assigned the su-
pertag containing the [relativizer] null head (which
causes the noun to undergo promotion) to the noun
esteem rather than to damage, hence the problem
here originates with the scores assigned by the su-
pertagger. In the other two errors, the parser incor-
rectly predicted an object extraction dependency,
again owing to tagging mistakes.

We also evaluated on the 2 tough movement ex-
amples in section 00, one of which is shown below.

(3) [ThatAi got hard [CP tA0
i to take tAi]]j he

added tj .

Tough movement is of linguistic interest be-
cause it arguably involves a DP licensed in two
case positions as well as so-called improper move-
ment, in which an A0-movement step feeds sub-
sequent A-movement. In order to generate tough
movements, MGbank uses a null [op] head which
has the effect of a unary type-changing rule map-
ping an ordinary DP into a DP with additional A-
and A0-movement licensees.

Our parser failed to correctly analyse either of
the two examples in section 00 owing to supertag-
ging errors. For example, in 3 there are three im-
portant tagging decisions to be made: hard must
be assigned the supertag for a tough adjective, that
the supertag for a pronoun which undergoes tough
movement,11 and take the supertag for a transitive
verb. The highest scoring tag assigned to hard
by the Abstract supertagger was the supertag for
a regular adjective that takes a CP complement
(eager to help). The correct tough adjective su-
pertag, meanwhile only ranked 14th, meaning that
the A* search algorithm never got to consider it.
Furthermore, the highest ranked tag for take was
the supertag for an unergative intransitive verb;
the correct transitive verb tag appeared in second
place. Finally, the supertag for a pronoun under-
going tough movement was not included in the 40

10One way to resolve such ties would be to augment
our simple supertag-factored model with a secondary head-
dependency model; an alternative would be to hard code the
constraint in the grammar using fine-grained properties and
requirements such as HUMAN and +HUMAN.

11This supertag contains both the overt pronoun category
assigned to that and the [op] null head (see Figure 6).

tags assigned to that owing to the fact that this su-
pertag did not appear in the training data at all.
We tried increasing the 8 examples of tough move-
ment in the training data to 18 examples (including
one example with that as the tough mover) by per-
forming some additional hand annotation of PTB
sentences. This bolstered the tough adjective su-
pertag to 10th position, while the tough movement
supertag for that now appeared in 28th position,
but this was not enough to enable the parser to cor-
rectly recover the tough movement analysis.

Our A* CCG parser scored 1/2 (the same as
Clark et al. 2004); its higher performance is no
doubt due to the much smaller tag set and the fact
that CCG does not require special supertags for
tough-moved DPs.

6 Conclusion

We have presented the first wide-coverage parser
based on Transformational Grammar theory. The
results of this initial attempt are optimistic. First,
the accuracy on recovering syntactic and semantic
dependencies predicted by the Minimalist syntax
is relatively high considering the higher complex-
ity of the mechanisms behind Minimalism com-
pared to other formalisms. In comparison to CCG,
a formalism with a much longer history of wide-
coverage parsing, performance currently lags be-
hind. However, the gap will likely narrow as the
size and quality of MGbank improves and as better
probabilistic models are developed enabling these
systems to parse a higher number of sentences.

Another important and optimistic result of this
investigation is that Minimalist Grammar parsing
is not as slow as may have been expected given
its worst case time complexity. Worst case com-
plexity results have previously been raised as one
of the prime criticisms of TG theories. Our re-
sults show that the combination of a good neural
probabilistic model and A* search, together with a
strong formal grammar, makes Minimalist parsing
practical for the majority of sentences.

Acknowledgments

The first author was supported by an EPSRC PhD
studentship, the second author by an ERC H2020
Advanced Fellowship GA 742137 SEMANTAX
grant, the third author by a Google Faculty Award,
and the fourth author by a Bloomberg award. We
would also like to thank the three anonymous re-
viewers for their very helpful feedback.

References
Steven Abney. 1996. Statistical methods and linguis-

tics. The balancing act: Combining symbolic and
statistical approaches to language, pages 1–26.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing. Computa-
tional Linguistics, 25:237–265.

Robert C Berwick and Samuel D Epstein. 1995. Com-
putational minimalism: The convergence of the min-
imalist syntactic program and categorial grammar.
TWLT-10: Algebraic Methods in Language Process-
ing, Enschede, the Netherlands.

Rajesh Bhatt. 2002. The raising analysis of rela-
tive clauses: Evidence from adjectival modification.
Natural language semantics, 10(1):43–90.

Manfred Bierwisch. 1963. Grammatik des deutschen
Verbs. Akademie Verlag.

Michael Brody. 1993. ✓-theory and arguments. Lin-
guistic Inquiry, pages 1–23.

A Cahill, M Burke, R O’Donovan, J van Genabith, and
A Way. 2004. Long-distance dependency resolution
in automatically acquired wide-coverage pcfg-based
lfg approximations. In Proceedings of the 42nd An-
nual Meeting of the Association for Computational
Linguistics, pages 320–327, Barcelona, Spain. As-
sociation for Computational Linguistics.

John Chen. 2001. Towards efficient statistical parsing
using lexicalized grammatical information. Ph.D.
thesis, University of Delaware.

Noam Chomsky. 1957. Syntactic Structures. Mouton,
The Hague.

Noam Chomsky. 1965. Aspects of the Theory of Syn-
tax. MIT Press, Cambridge, MA.

Noam Chomsky. 1977. On wh-movement. Formal
syntax, pages 71–132.

Noam Chomsky. 1981. Lectures on Government and
Binding. Foris, Dordrecht.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, Massachusetts.

Noam Chomsky and Howard Lasnik. 1977. Filters and
control. Linguistic inquiry, 8(3):425–504.

Stephen Clark and James Curran. 2007a. Formalism-
independent parser evaluation with ccg and dep-
bank. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
248–255.

Stephen Clark and James R. Curran. 2007b. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33:493–552.

Stephen Clark, Julia Hockenmaier, and Mark Steed-
man. 2002. Building deep dependency structures
with a wide-coverage ccg parser. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics, pages 327–334. Association for
Computational Linguistics.

Stephen Clark, Mark Steedman, and James R Curran.
2004. Object-extraction and question-parsing using
ccg. In Proceedings of the 2004 Conference on Em-
pirical Methods in Natural Language Processing.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Sandiway Fong. 1991. The computational imple-
mentation of principle-based parsers. In Robert
Berwick, Steve Abney, and Carol Tenny, edi-
tors, Principle-Based Parsing, pages 65–82. Kluwer,
Dordrecht.

Sandiway Fong and Jason Ginsburg. 2012. Com-
putation with doubling constituents: Pronouns
and antecedents in phase theory. AMD Sci-
ullo, Hg., Towards a Biolinguistic understand-
ing of Grammar: Essays on Interfaces. Amster-
dam/Philadelphia: John Benjamins Publishing Co,
pages 303–338.

Meaghan Fowlie and Alexander Koller. 2017. Parsing
minimalist languages with interpreted regular tree
grammars. In Proceedings of the Thirteenth Inter-
national Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+13), pages 11–20.

Michael L Fredman and Robert Endre Tarjan. 1987.
Fibonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the ACM
(JACM), 34(3):596–615.

Sabrina Gerth. 2015. Memory limitations in sentence
comprehension. Ph.D. thesis, University of Pots-
dam.

Thomas Graf, Brigitta Fodor, James Monette, Gianpaul
Rachiele, Aunika Warren, and Chong Zhang. 2015.
A refined notion of memory usage for minimalist
parsing. In Proceedings of the 14th Meeting on the
Mathematics of Language (MoL 2015), pages 1–14.

Thomas Graf and Bradley Marcinek. 2014. Evaluating
evaluation metrics for minimalist parsing. In Pro-
ceedings of the Fifth Workshop on Cognitive Model-
ing and Computational Linguistics, pages 28–36.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

John Hale. 2003. Grammar, Uncertainty and Sentence
Processing. Ph.D. thesis, Johns Hopkins University.

John T Hale. 2011. What a rational parser would do.
Cognitive Science, 35(3):399–443.

Hendrik Harkema. 2001. Parsing Minimalist Lan-
guages. Ph.D. thesis, UCLA, Los Angeles, Califor-
nia.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Julia Hockenmaier and Mark Steedman. 2002. Gen-
erative models for statistical parsing with combina-
tory categorial grammar. In In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 335–342.

Julia Hockenmaier and Mark Steedman. 2007. Ccg-
bank: A corpus of ccg derivations and dependency
structures extracted from the penn treebank. Com-
putational Linguistics, 33(3):355–396.

Norbert Hornstein. 2001. Move! A Minimalist Theory
of Construal. Blackwell Publishing.

Tim Hunter and Chris Dyer. 2013. Distributions on
minimalist grammar derivations. In Proceedings of
the 13th Meeting on the Mathematics of Language
(MoL 13), pages 1–11, Sofia, Bulgaria. The Associ-
ation of Computational Linguistics.

Riny Huybregts. 1984. The weak inadequacy of
context-free phrase structure grammars. Van per-
iferie naar kern, pages 81–99.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 136–143, Philadelphia. ACL.

Aravind Joshi. 1985. Tree-adjoining grammars. In
David Dowty, Lauri Karttunen, and Arnold Zwicky,
editors, Natural Language Parsing, pages 206–250.
Cambridge University Press, Cambridge.

Aravind K Joshi. 1990. Processing crossed and nested
dependencies: An automation perspective on the
psycholinguistic results. Language and cognitive
processes, 5(1):1–27.

Richard S. Kayne. 1994. The Antisymmetry of Syntax,
Linguistic Inquiry Monograph Twenty-Five. MIT
Press, Cambridge, Massachusetts.

Dan Klein and Christopher D Manning. 2003. A* pars-
ing: fast exact viterbi parse selection. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Lin-
guistics on Human Language Technology-Volume 1,
pages 40–47. Association for Computational Lin-
guistics.

Gregory M Kobele. 2008. Across-the-Board Extrac-
tion in Minimalist Grammars. In Proceedings of
the Ninth International Workshop on Tree Adjoining
Grammar and Related Formalisms (TAG+9), vol-
ume 9, pages 113–128.

Gregory M Kobele, Sabrina Gerth, and John Hale.
2013. Memory resource allocation in top-down
minimalist parsing. In Formal Grammar, pages 32–
51. Springer.

Robert J. Kuhns. 1990. A PARLOG implementation of
government-binding theory. In 13th International
Conference on Computational Linguistics, COLING
1990, University of Helsinki, Finland, August 20-25,
1990, pages 394–396.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
Lstm ccg parsing. In Proceedings of the 15th Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
221–231.

Mike Lewis and Mark Steedman. 2014. A* ccg pars-
ing with a supertag-factored model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
990–1000.

Dekang Lin. 1993. Principle-based parsing without
overgeneration. In Proceedings of the 31st annual
meeting on Association for Computational Linguis-
tics, pages 112–120. Association for Computational
Linguistics.

Dekang Lin. 2001. Latat: Language and text analysis
tools. In Proceedings of the first international con-
ference on Human language technology research,
pages 1–6. Association for Computational Linguis-
tics.

Dekang Lin. 2003. Dependency-based evaluation of
minipar. In Treebanks, pages 317–329. Springer.

Wolfgang Maier, Miriam Kaeshammer, and Laura
Kallmeyer. 2012. Plcfrs parsing revisited: Restrict-
ing the fan-out to two. In Proceedings of the 11th In-
ternational Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+ 11), pages 126–134.

Mitchell P Marcus. 1980. Theory of syntactic recogni-
tion for natural languages. MIT press.

Mark-Jan Nederhof. 2003. Weighted deductive parsing
and knuth’s algorithm. Computational Linguistics,
29(1):135–143.

Joakim Nivre, Laura Rimell, Ryan McDonald, and Car-
los Gomez-Rodriguez. 2010. Evaluation of depen-
dency parsers on unbounded dependencies. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics, pages 833–841. Associ-
ation for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Stanley Roy Petrick. 1965. A recognition procedure
for transformational grammars. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Carl Pollard and Ivan Sag. 1994. Head Driven Phrase
Structure Grammar. CSLI Publications, Stan-
ford, CA.

Geoffrey Pullum. 2009. Computational linguistics and
generative linguistics: The triumph of hope over ex-
perience. In Proceedings of the EACL 2009 Work-
shop on the Interaction between Linguistics and
Computational Linguistics, pages 12–21, Athens,
Greece. Lawrence Erlbaum Associates.

Andrew Radford. 2004. Minimalist Syntax: Explor-
ing the Structure of English. Cambridge University
Press.

Owen Rambow and Aravind K Joshi. 2015. 12 a pro-
cessing model for free word-order languages. Per-
spectives on sentence processing.

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 813–821, Singapore. ACL.

Luigi Rizzi. 1990. Relativized minimality. The MIT
Press.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context free
grammars. Theoretical Computer Science, 88:191–
229.

Stuart Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Phi-
losophy, 8:333–343.

Richard Sproat and Shalom Lappin. 2005. A chal-
lenge to the Minimalist community. Linguist List,
16:1156.

Edward P. Stabler. 1992. The logical approach to syn-
tax: foundations, specifications, and implementa-
tions of theories of government and binding. MIT
Press.

Edward P. Stabler. 1997. Derivational minimalism.
In Logical Aspects of Computational Linguistics
(LACL’96), volume 1328 of Lecture Notes in Com-
puter Science, pages 68–95, New York. Springer.

Edward P. Stabler. 1999. Remnant movement and com-
plexity. Constraints and resources in natural lan-
guage syntax and semantics, 2:299–326.

Edward P. Stabler. 2001. Recognizing head move-
ment. In Logical Aspects of Computational Lin-
guistics: 4th International Conference, LACL 2001,
Le Croisic, France, June 27-29, 2001, Proceedings.,
volume 4, pages 245–260.

Edward P. Stabler. 2013. Two models of minimalist,
incremental syntactic analysis. Topics in Cognitive
Science, 5:611–633.

Miloš Stanojević and Edward Stabler. 2018. A sound
and complete left-corner parsing for minimalist
grammars. In Proceedings of the Eight Workshop
on Cognitive Aspects of Computational Language
Learning and Processing, pages 65–74.

Miloš Stanojević. 2019. On the computational com-
plexity of head movement and affix hopping. In For-
mal Grammar 2019. Springer Berlin Heidelberg.

Mark Steedman. 1996. Surface Structure and Inter-
pretation. Linguistic Inquiry Monograph 30. MIT
Press, Cambridge, MA.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, Massachusetts.

John Torr. 2017. Autobank: a semi-automatic anno-
tation tool for developing deep minimalist gram-
mar treebanks. In Proceedings of the EACL 2017
Software Demonstrations, Valencia, Spain, April 3-
7 2017, pages 81–86.

John Torr. 2018. Constraining mgbank: Agreement, l-
selection and supertagging in minimalist grammars.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 590–600.

John Torr. 2019. Wide-Coverage Statistical Parsing
with Minimalist Grammars. Ph.D. thesis, University
of Edinburgh.

John Torr and Edward P. Stabler. 2016. Coordination
in minimalist grammars: Excorporation and across
the board (head) movement. In Proceedings of the
Twelfth International Workshop on Tree Adjoining
Grammar and Related Formalisms (TAG+12), pages
1–17.

William A Woods. 1970. Transition network grammars
for natural language analysis. Communications of
the ACM, 13(10):591–606.

William A Woods. 1973. An experimental parsing sys-
tem for transition network grammars. Natural lan-
guage processing, pages 111–154.

Huijia Wu, Jiajun Zhang, and Chengqing Zong. 2017.
A dynamic window neural network for ccg supertag-
ging. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence (AAAI-17), pages
3337–3343.

Wenduan Xu. 2016. Lstm shift-reduce ccg parsing.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1754–1764.

Arnold M Zwicky, Joyce Friedman, Barbara C Hall,
and Donald E Walker. 1965. The mitre syntactic
analysis procedure for transformational grammars.
In Proceedings of the November 30–December 1,
1965, fall joint computer conference, part I, pages
317–326. ACM.

A Appendix: Pseudo-Code for the MG
A* algorithm

Algorithm 1 MG parser A* algorithm
1: while agenda is not empty do
2: item1 deleteMax(agenda)
3: if item1 is goal item then
4: return item1
5: else if item1 /2 chart then
6: add(chart, item1)
7: R []
8: if can move item1 then
9: add(R,move(item1))

10: for item2 2 chart do
11: if can merge item1 and item2 then
12: add(R,merge(item1, item2))
13: for item 2 R do
14: if item /2 {chart [agenda} then
15: add(agenda, item)
16: else if item 2 agenda then
17: updateWeight(agenda, item)

The A* search algorithm presented in Algo-
rithm 1 is an adaptation of the weighted deductive
parsing approach (Nederhof, 2003; Maier et al.,
2012) to Minimalist Grammars. It uses two data
structures, an agenda and a chart. The agenda is
implemented as a priority queue with support for
an increase-key operation. Concretely, we use a
Fibonacci heap (Fredman and Tarjan, 1987), but
many other types of heap could be used for the
same purpose.

The chart is currently organised similarly to that
of standard CKY in that it constitutes the upper-
triangular portion of an (n + 1) x (n + 1) matrix,
where n is the length of the string, and each cell
[i, j] in this matrix references some span from po-
sition i to position j in the input string. However,
whereas in standard CKY, these cell indices ref-
erence the span of the entire expression, in our
MG parser they reference only the span of the
narrow yield of the expression, where the narrow
yield refers to all those indices which are not part
of some span which is undergoing or may un-
dergo movement. For example, the narrow yield
of the TP expression in 4 below is the set of in-
dices corresponding to the words Jack and gone
there (shown in bold face). The moving chain why
is excluded from the narrow yield, as is the head
string has because, depending on the type of com-

plementizer which selects for this TP, has may un-
dergo head movement to yield why has Jack gone
there, or not undergo head movement to yield, e.g.,
you know why Jack has gone there.

(4) Jack, has, gone there : t, why : -wh

At present, the chart is not organised according
to the yields of any of the moving elements. How-
ever, Stanojević (2019) shows how this could be
done using a trie-like data structure in order to sig-
nificantly reduce computational complexity, and
we intend to reimplement the parser in this way
in the future.

Expressions within each cell are also currently
placed into bins according to the first feature of
their head chain, so that when the system encoun-
ters a t= feature, for example, it only needs to con-
sider merging this expressions with other expres-
sions whose first feature is t.

The call updateWeight(agenda, item) finds the
current (backpointer, weight) pair of item in the
agenda and compares it to the newly constructed
(backpointer, weight) pair. The weight includes
both the inside and outside scores. Only the pair
with a lower weight is kept in the agenda. This up-
date is made efficient by using an additional hash-
table and the increase-key heap operation.

B Appendix: MGbank analyses of
relative clauses and tough movement

The MGbank analysis of restrictive relative
clauses is illustrated in phrase structural terms for
the phrase the book of ghost stories which Jack
read in Figure 3; the derivation tree for the sim-
pler phrase the book which Jack read is shown in
Figure 4. This analysis is inspired by an analy-
sis in Bhatt (2002) and departs from that of Kayne
(1994), where the wh determiner and the NP form
a constituent in both the deep and surface structure
(with the NP moving to the specifier of the wh DP
to derive the correct word ordering). One reason
for preferring Bhatt’s analysis is that the wh item
appears to form a constituent with the rest of the
clause, as evidenced by the fact that it can form a
conjunct with it: the book [which Jack wrote] and
[which Mary read]. Bhatt (pages 79-81) suggests
that the head noun moves to the left periphery and
projects an NP layer over the clause, but does not
specify what features drive this movement. MG-
bank uses a null type changing [relativizer] head to
introduce a -n licensee onto the head noun which

is then attracted to the +N of a [nom] head that se-
lects the clause as its complement and projects the
clausal NP layer. The [nom] head is needed here
because in the MGbank formalism it is only possi-
ble for a specifier to project its fine-grained selec-
tional properties and requirements (MASC, +3SG,
-INF etc), not its selectee (n) category, hence the
type of projecting movement Bhatt proposes must
be precompiled into the lexicon.

Note that relative that is often treated as a
complementizer rather than as a relative pronoun
in MP (Radford, 2004, pages 228-230). When
present in MGbank relatives, it therefore appears
in the slot occupied by the null [decl] head in Fig-
ure 3, with a null [wh] head playing a similar role
to the overt wh item in this example (selectional
restrictions ensure that the grammar does not over-
generate examples like the book which that Jack
read which violate the Doubly Filled Comp Filter
(Chomsky and Lasnik, 1977)). Free relatives, as
in I like [what you’re reading], have a very similar
analysis, but project only as far as CP (as they lack
any head noun) and are then selected for by a null
determiner head. Appositive relatives, as in the
book, which you’ve read, is on the table, receive a
head external analysis, again projecting only as far
as CP and then adjoining to their head noun.

Figures 5 and 6 show the phrase structure and
derivation trees for the tough movement example
that got hard to take, which is one of the two ex-
amples of tough movement found in section 00
of the PTB. It has generally been assumed since
(Chomsky, 1977, 1981) that the infinitival clause
is a type of relative clause with a null constituent
in its left periphery that is co-indexed both with the
object trace and the subject of the tough adjective.
This null constituent is in fact included in the orig-
inal PTB, although it is generally just ignored by
treebank parsers. MGbank follows Brody (1993)
and Hornstein (2001) in treating it as a trace of
movement.

C Appendix: The Section 00 relative
clause examples

Figures 7 and 8 show all the examples of free and
non-free (non-reduced) relative clauses in section
00 of the PTB, and indicate which ones our best
models did and did not correctly analyse.

DP

NP

N0

CP

C0

CP

TP

T0

vP

v0

VP

V0

DPk

�
Vl

⇤

DPk
�

v

v
[trans]

Vl

read

DPl

�

T
[past]

DPl

Jack

C
[decl]

C
[rel]

DPk

NPi

�
D

which

N
[nom]

NPi

NP

PP

P0

DPj

NP

N
stories

N
ghost

D
[det]

P
of

DPj
µ

N
book

N
[relativizer]

D
the

Figure 3: MGbank’s phrase structural analysis of the phrase the book of ghost stories which Jack read, which
contains a restrictive relative clause as the complement of the determiner the. The tree has been simplified in
certain respects, for instance by removing the successive cyclic wh movement through spec-vP which is assumed
in MP and included in the actual MGbank trees. ⇤ indicates a trace of head movement, � indicates a trace of overt
phrasal movement, and µ indicates the landing site of a covert movement.

bo
ok

,✏
,w

hic
hJ

ac
kr

ea
d

:n
{

3S
G}

✏,
✏,

wh
ich

Ja
ck

re
ad

:+
N{

x}
n{

x}
,b

oo
k:

-n
{

3S
G}

wh
ich

,✏
,J

ac
kr

ea
d

:c
{

RE
LA

T}
,b

oo
k:

-n
{

3S
G}

✏,
✏,

Ja
ck

re
ad

:+
W

H
c{

RE
LA

T}
,b

oo
k:

-n
{
3S

G}
,w

hic
h:

-w
h{

3S
G}

✏,
✏,

Ja
ck

re
ad

:c
,b

oo
k:

-n
{

3S
G}

,w
hic

h:
-w

h{
3S

G}

Ja
ck

,✏
,r

ea
d

:t
,b

oo
k:

-n
{
3S

G}
,w

hic
h:

-w
h{

3S
G}

✏,
✏,

re
ad

:+
CA

SE
t,b

oo
k:

-n
{
3S

G}
,w

hic
h:

-w
h{

3S
G}

,J
ac

k:
-ca

se

✏,
re

ad
,✏

:l
v,

bo
ok

:-
n{

3S
G}

,w
hic

h:
-w

h{
3S

G}
,J

ac
k:

-ca
se

✏,
re

ad
,✏

:=
dl

v,
bo

ok
:-

n{
3S

G}
,w

hic
h:

-w
h{

3S
G}

✏,
re

ad
,✏

:v
,b

oo
k:

-n
{

3S
G}

,w
hic

h:
-w

h{
3S

G}

✏,
re

ad
,✏

:+
CA

SE
v,

bo
ok

:-
n{

3S
G}

,w
hic

h:
-ca

se
{
3S

G}
-w

h{
3S

G}

✏,
wh

ich
,✏

:D
{
3S

G}
-ca

se
{
3S

G}
-w

h{
3S

G}
,b

oo
k:

-n
{
3S

G}

✏,
✏,

bo
ok

:n
{

3S
G.

RE
L}

-n
{

3S
G}

✏,
bo

ok
,✏

::
n{

3S
G}

✏,
[re

lat
ivi

ze
r],

✏
::

n{
x}

=
n{

RE
L.

x}
-n
{
x}

✏,
wh

ich
,✏

::
n{

x}
=

D{
x}

-ca
se
{

x}
-w

h{
x}

✏,
re

ad
,✏

::
d=

+C
AS

E
v

✏,
[tr

an
s],

✏
::
>

lv=
=d

lv

✏,
Ja

ck
,✏

::
D

-ca
se

✏,
[p

as
t],

✏
::

lv=
+C

AS
E

t

✏,
[d

ec
l],

✏
::

t=
c

✏,
[re

l],
✏

::
c{

+D
EC

L}
=

+W
H

c{
RE

LA
T}

✏,
[n

om
],
✏

::
c{

+R
EL

AT
}
=

+N
{

x}
n{

x}

Fi
gu

re
4:

A
de

riv
at

io
n

tre
e

fo
rt

he
br

ac
ke

te
d

N
P

in
th

e
[b

oo
k

w
hi

ch
Ja

ck
re

ad
].

Fi
ne

-g
ra

in
ed

se
le

ct
io

na
lp

ro
pe

rti
es

an
d

re
qu

ire
m

en
ts

irr
el

ev
an

tt
o

th
e

di
sc

us
si

on
ar

e
om

itt
ed

to
sa

ve
sp

ac
e.

CP

TP

T0

vP

v0

adjP

adj0

CP

C0

CP

TP

vP

v0

VP

V0

�i⇤k

�i

v

v
[trans]

Vk

take

D
[pro-d]

T
to

C
[decl]

C
[rel]

�i

adj
hard

�i

v
got

�i

T
[past]

DPi

D0

Dj

that
D

[op]

µj

C
[decl]

Figure 5: Derived Xbar tree showing MGbank’s analysis for the phrase that got hard to take with tough move-
ment. The tree has been simplified here by removing the successive cyclic wh movement through spec-vP that is
standardly assumed in MP and is included in the actual MGbank trees. Note that µ indicates the landing site of a
covert movement.

th
at

,g
ot

,h
ar

d
to

ta
ke

:t
{

PA
ST

}

✏,
✏,

go
th

ar
d

to
ta

ke
:

+C
AS

E{
+N

OM
}

t{
PA

ST
}
,t

ha
t:

-c
as

e{
AC

C.
NO

M
.3

SG
}

✏,
go

t,
ha

rd
to

ta
ke

:l
v{

PA
ST

}
,t

ha
t:

-c
as

e{
AC

C.
NO

M
.3

SG
}

✏,
go

t,
ha

rd
to

ta
ke

:=
d

lv
{

PA
ST

}
,t

ha
t:

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
ha

rd
,t

o
ta

ke
:a

dj
,t

ha
t:

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
ha

rd
,t

o
ta

ke
:+

TO
UG

H
ad

j,
th

at
:-

to
ug

h
D{

3S
G}

-c
as

e{
AC

C.
NO

M
.3

SG
}

✏,
✏,

to
ta

ke
:c
{
RE

LA
T}

,t
ha

t:
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
✏,

to
ta

ke
:+

W
H

c{
RE

LA
T}

,t
ha

t:
-w

h
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
✏,

to
ta

ke
:c

,t
ha

t:
-w

h
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
to

,t
ak

e:
t,

th
at

:-
wh

-to
ug

h
D{

3S
G}

-c
as

e{
AC

C.
NO

M
.3

SG
}

✏,
ta

ke
,✏

:l
v{

BA
RE

.T
RA

NS
}

,t
ha

t:
-w

h
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
ta

ke
,✏

:=
d

lv
{

BA
RE

.T
RA

NS
}

,t
ha

t:
-w

h
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
ta

ke
,✏

:v
{

BA
RE

.T
RA

NS
}

,t
ha

t:
-w

h
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
ta

ke
,✏

:+
CA

SE
{

+A
CC

}
v{

BA
RE

.T
RA

NS
}

,t
ha

t:
-c

as
e{

AC
C}

-w
h

-to
ug

h
D{

3S
G}

-c
as

e{
AC

C.
NO

M
.3

SG
}

✏,
✏,

th
at

:D
{

OP
.3

SG
}

-c
as

e{
AC

C}
-w

h
-to

ug
h

D{
3S

G}
-c

as
e{

AC
C.

NO
M

.3
SG

}

✏,
✏,

th
at

:+
ca

se
{
y}

D{
OP

.3
SG

}
-c

as
e{

AC
C}

-w
h

-to
ug

h
D{

3S
G}

-c
as

e{
y}

,✏
:-

ca
se
{
AC

C.
NO

M
.3

SG
}

✏,
th

at
,✏

::
D{

3S
G}

-c
as

e{
AC

C.
NO

M
.3

SG
}

✏,
[o

p]
,✏

::
d{

-O
P.x

}
=

+c
as

e{
y}

D{
OP

.x
}

-c
as

e{
AC

C}
-w

h
-to

ug
h

D{
x}

-c
as

e{
y}

✏,
ta

ke
,✏

::
d=

+C
AS

E{
+A

CC
}

v{
BA

RE
.T

RA
NS

}

✏,
[tr

an
s],

✏
::
>

v{
+T

RA
NS

.x
}
=

=d
lv
{
x}

✏,
[p

ro
-d

],
✏

::
D

✏,
to

,✏
::

lv
{

+B
AR

E}
=

t

✏,
[d

ec
l],

✏
::

t=
c

✏,
[re

l],
✏

::
c=

+W
H

c{
RE

LA
T}

✏,
ha

rd
,✏

::
c{

+R
EL

AT
}
=

+T
OU

GH
ad

j

✏,
go

t,
✏

::
ad

j=
=d

lv
{

PA
ST

}

✏,
[p

as
t],

✏
::

lv
{
+P

AS
T.

x}
=

+C
AS

E{
+N

OM
.x
}

t{
x}

Fi
gu

re
6:

M
G

de
riv

at
io

n
tre

e
fo

rt
he

se
nt

en
ce

th
at

go
th

ar
d

to
ta

ke
w

ho
se

ph
ra

se
st

ru
ct

ur
e

tre
e

is
gi

ve
n

in
Fi

gu
re

5.
N

ot
e

th
at

th
e

fin
al

C
P

la
ye

ri
s

om
itt

ed
he

re
to

sa
ve

sp
ac

e.

1. The survey found that nearly half of Hong Kong consumers espouse what it
identified as materialistic values compared with about one-third in Japan and the U.S.

2. What she did was like taking the law into your own hands
3. We work damn hard at what we do for damn little pay and

what she did cast unfair aspersions on all of us
4. There may be others doing what she did
5. The U.S. wants the removal of what it perceives as barriers to investment ;

Japan denies there are real barriers
6. But they have n’t clarified what those might be
7. Deregulation has effectively removed all restrictions on what banks

can pay for deposits as well as opened up the field for new products such as high - rate CDs
8. Mr. Martin said they have n’t yet decided what their next move would be but he did n’t

rule out the possibility of a consent solicitation aimed at replacing Georgia Gulf ’s board
9. What matters is what advertisers are paying per page and in that department

we are doing fine this fall said Mr. Spoon
w.o. 10. What this tells us is that U.S. trade law is working he said
t.o. 11. The paper accused him of being a leading proponent of peaceful evolution

a catch phrase to describe what China believes is the policy of Western
countries to seduce socialist nations into the capitalist sphere

t.o. 12. Despite the harsh exchanges the U.S. and China still seem to be looking for
a way to mend relations which have deteriorated into what Mr. Nixon referred
to as the greatest crisis in Chinese - American relations since his initial visit to
China num years ago

13. Judge Ramirez num said it is unjust for judges to make what they do.
14. Judges are not getting what they deserve

t.o. 15. Composer Marc Marder a college friend of Mr. Lane ’s who earns his
living playing the double bass in classical music ensembles has prepared
prepared an exciting eclectic score that tells you what the characters are
thinking and feeling far more precisely than intertitles or even words would

16. We have and I ’m sure others have considered what our options are and
we ’ve had conversations with people who in the future might prove to be interesting partners

Figure 7: The 16 sentences with free object relative clause dependencies in section 00 of the PTB. Each tick
indicates a point awarded for the correct identification of the extraction site of the wh word; t.o. indicates that the
parser timed out before returning a parse, and w.o. indicates that the parser correctly identified an object relative
dependency but extracted the wrong object of a double object verb. Our Abstract parser correctly identified 13/17
dependencies with a precision of 13/14. Our A* CCG parser correctly recovered 15.5/17 of these dependencies
with precision 15.5/17 (we awarded the CCG parser half a point for sentence 15 because it related what to thinking
but not feeling, which it analysed as intransitive). Note that sentence 3 contains two free object relative clauses.

1. It ’s the petulant complaint of an impudent American whom Sony hosted for a year
while he was on a Luce Fellowship in Tokyo – to the regret of both parties

2. It said the man whom it did not name had been found to have the disease after hospital tests
3. Commonwealth Edison now faces an additional court-ordered refund on its summerwinter

rate differential collections that the Illinois Appellate Court has estimated at $ num million
4. But Rep. Marge Roukema -LRB- R. N.J -RRB- instead praised the House ’s acceptance

of a new youth training wage a subminimum that GOP administrations have sought
for many years

5. Democratic Lt. Gov. Douglas Wilder opened his gubernatorial battle with Republican
Marshall Coleman with an abortion commercial produced by Frank Greer that analysts
of every political persuasion agree was a tour de force

6. Against a shot of Monticello superimposed on an American flag an announcer talks
about the strong tradition of freedom and individual liberty that Virginians have nurtured
for generations

7. Another was Nancy Yeargin who came to Greenville in num full of the energy and
ambitions that reformers wanted to reward

8. Mostly she says she wanted to prevent the damage to self - esteem that her low - ability
students would suffer from doing badly on the test

9. Mrs. Ward says that when the cheating was discovered she wanted to avoid the morale -
damaging public disclosure that a trial would bring

10. Mr. Sherwood speculated that the leeway that Sea Containers has means that Temple
would have to substantially increase their bid if they ’re going to top us

11. A high - balance customer that banks pine for she did n’t give much thought to the rates
she was receiving nor to the fees she was paying

12. Interviews with analysts and business people in the U.S. suggest that Japanese capital
may produce the economic cooperation that Southeast Asian politicians have pursued
in fits and starts for decades

13. Interpublic Group said its television programming operations – which it expanded earlier
this year – agreed to supply more than num hours of original programming across
Europe in num

14. Interpublic is providing the programming in return for advertising time which it said
will be valued at more than $ num million in num and $ num million in num

15. Mrs. Hills said many of the num countries that she placed under varying degrees
of scrutiny have made genuine progress on this touchy issue

16. The Japanese companies bankroll many small U.S. companies with promising products
or ideas frequently putting their money behind projects that commercial banks wo n’t touch

17. In investing on the basis of future transactions a role often performed by merchant banks
trading companies can cut through the logjam that small - company owners often face
with their local commercial banks

18. He described the situation as an escrow problem a timing issue which he said was rapidly
rectified with no losses to customers

19. In CAT sections where students ’ knowledge of two - letter consonant sounds is tested
the authors noted that Scoring High concentrated on the same sounds that the test does
– to the exclusion of other sounds that fifth graders should know

20. The events of April through June damaged the respect and confidence which most
Americans previously had for the leaders of China

Figure 8: The 20 sentences with non-free object relative clause dependencies in section 00 of the PTB. Our reified
parser correctly recovered 13/24 of these (with precision of 13/17) by using a tag dictionary threshold initially set
to 5. If the parser did not find a parse, then this was increased to 10 and the sentence reparsed. If a parse was
still not found, the tag dictionary was turned off completely and a final parse attempted (on the single run, with
no tag dictionary, our abstract parser performed best, retrieving 10/24 dependencies; the CCG A* parser returned
15/24 with precision 15/20). Note that following Clark et al. (2004), two points are awarded where the relativized
NP involves two conjoined NPs, as in 6, provided that the entire coordinate complex is relativized; one point is
awarded if only the rightmost of the two NPs in this complex is relativized.

