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Abstract
Bidirectional transformations (bx) manage consistency be-
tween different independently-changing data structures, such
as software engineering models. Many bx tools construct,
exploit, and maintain various auxiliary structures required
for correct and efficient consistency management. These
data structures seem analogous to provenance in other set-
tings, but their design is often ad hoc and implementation-
dependent. However, it is increasingly urgent to rational-
ize their design and use as first-class explanations, to help
users understand complex system behavior. In this paper
we explore whether and how these auxiliary structures can
already be viewed as forms of provenance, and outline open
questions and possible future directions for provenance in
bidirectional transformations, and vice versa.

Keywords Provenance, Triple Graph Grammars, Bidirec-
tional Transformations, Consistency Management

1 Introduction
The development and maintenance of complex software sys-
tems can be made tractable by decomposing systems into
multiple abstractions (models), each chosen to be as suitable
as possible for a specific group of experts. The price for this
separation into multiple concerns is, however, having to ad-
dress the challenge of consistency management, i.e., being
able to check for and possibly restore the consistency of the
entire system. The bidirectional transformation (bx) research
community [7] has focused on different consistency manage-
ment tasks over the years, producing diverse bx approaches
and bx tools. A substantial number of such bx tools are based
on Triple Graph Grammars (TGGs) [15], a rule-based formal-
ism that can be used to automatically derive consistency
management operations from a single specification.

TGG tools construct, exploit, and maintain various auxil-
iary structures for consistency management, which we call
horizontal alignment. A wide variety of tools inModel-Driven
Engineering (MDE) context provide similar capabilities, under
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a variety of different names [8, 11–13]. Possible connections
between provenance and bx have been discussed perenni-
ally [6], and bx researchers from the database community
have often wondered whether these auxiliary structures con-
stitute provenance information, but the exact relationship
is not well-understood. In this short paper, therefore, we
attempt to provide a high-level overview of the auxiliary
structures typically used by TGG tools for consistency man-
agement. We claim that these auxiliary structures already
could be considered forms of provenance, but have been
established in an ad-hoc manner across various TGG tools,
and utilized up until now more as a (technical) means to an
end, often inaccessible to end users. We argue that providing
dedicated and rich support for provenance information can
be pivotal for TGG tools, especially for complex consistency
management tasks that require convincing explanations to
guide conflict resolution and user interaction [16].

This paper is intended as a conversation-starter to provoke
discussion between the BX and provenance communities,
taking advantage of the co-location of BX 2019 and TaPP
2019 workshops. Although we focus on TGGs for concrete-
ness and cannot go into full technical details, many of these
observations also apply to bx formalisms more generally. In
the interest of accessibility, we include a glossary of possibly-
unfamiliar technical terms in the appendix.

2 Running Example
As our running example, we use a simplified version of the
FamiliesToPersons benchmark for bidirectional transforma-
tions [2]. The scenario involves synchronising two sources
of information maintained, e.g., by different government
agencies. Figure 1 depicts a source and target metamodel
describing the types and relations used in each domain: The
source metamodel focuses on families, grouping named fam-
ily members in a named family according to their roles in
the family. In contrast, the target metamodel does not have
the concept of a family and can only keep track of people as
named persons. Note, however, that target models are not
“views” that can be completely derived from corresponding
source models as only the target metamodel maintains dates
of birth of people. A pair of source and target model is con-
sistent if and only if there exists a bijection between family
members and persons such that every person’s name is equal
to the family member’s name concatenated together with
his/her family’s name using ", " as a separator.
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Male

Female
mother

father
daughter

son

FamilyMember

name: String

Family

name: String

Person
name: String

dob: Date

Figure 1. Families (Source) and Persons (Target)Metamodels

This consistency relation can be specified by providing a
graph grammar that generates all consistent pairs. With such
a grammar, checking if a pair of source and target models
is consistent becomes a language membership problem, i.e.,
can the pair be “parsed” using the rules of the grammar?

As the benchmark does not state that any attribute values
are unique identifiers, there can be multiple bijections be-
tween a consistent source and target model. To pass all tests
in the benchmark, therefore, it is necessary to keep track of
which family members correspond to which persons. The
TGG approach does this by introducing a third model, the
correspondence model connecting source and target mod-
els. The grammar thus generates a language of consistent
triples not pairs, and in general, the same source and target
models can be present in multiple, different triples in the
language. These “connections” between source and target
elements is indicated in Fig. 1 by a bold double-headed arrow
between FamilyMember and Person. The exact representa-
tion of these connections (typed, attributed, 1-1, many-many)
depends on the specific TGG tool [13].
(Triple) graph grammars are a generalisation of string

grammars to typed, attributed graphs. Most TGG tools sup-
port context-sensitive, monotonic (non-deleting) triple rules
without terminal symbols. Figures 2 and 3 depict the triple
rules for handling mothers: CreateMother (Fig. 2) has no
context and creates a family, a family member as a mother in
the family, and a corresponding female person when applied.
Created elements have a green outline with a ++markup. The
relation between attribute values is specified as a constraint
that must be fulfilled when applying the rule.

f:Family m:FamilyMember fp:Femalemother

m.name + “, ” + f.name = fp.name

++ ++ ++++
++

Figure 2. CreateMother Triple Rule

AddMother (Fig. 3) is similar, but requires an existing fam-
ily as context, into which the created family member is added
as a mother. Context elements have a black outline and no
markup. Both rules also establish a correspondence between
the newly created mother and the corresponding female per-
son. Exactly how this is represented (a single edge, a node
with two edges) depends on the specific TGG tool. The TGG
for our running example comprises similar rules for handling

fathers, daughters, and sons. In addition to the required bi-
jection, note that triples with empty families, or with family
members that are not in a family, are inconsistent according
to the TGG as they can never be generated.

f:Family m:FamilyMember fp:Femalemother

m.name + “, ” + f.name = fp.name

++ ++++
++

Figure 3. AddMother Triple Rule

Similar to parser generators, TGG tools can derive dif-
ferent consistency management operations from a TGG, in-
cluding model generation to generate large examples for scal-
ability and conformance testing; model transformation to
construct a target consistent with a given source (or vice
versa); consistency restoration to restore consistency when
the source or target changes; and consistency checking to
check that a source and target are consistent. It is sometimes
desirable to perform these operations incrementally, to save
time or to minimize the side-effects of changes.
We refer the interested reader to Anjorin et al. [4] for an

overview of industrial projects where different combinations
of these consistency management operations were applied.

3 Alignment and Witness Structures
TGG tools also construct and use auxiliary structures to
derive consistency management operations. In this paper,
we concentrate on two primary structures: (i) an explicit
representation of the correspondences between source and
target elements, and (ii) a structure describing derivations by
which TGG rules can be applied to generate a given triple.

We use the term Horizontal Alignment for (i). While (HA)
can sometimes be computed based on unique identifiers or
some other convention (elements with the same name corre-
spond to each other), in general and for our running example,
one must record correspondences. Figure 4 depicts a con-
sistent pair of source and target models, together with a
(HA) indicated as dashed double-headed arrows connecting
family members to persons. For consistency management
operations such as model synchronisation, the desired man-
ner in which consistency is to be restored depends on the
(HA). Consider, for example, handling multiple Bart family
members in different Simpson families. If one of the Barts is
now deleted or renamed, this change must be propagated to
the correct person. TGG tools guarantee this using (HA).
TGG tools differ with respect to how “rich” (HA) is. A

minimal set of correspondences can be used, e.g., connecting
only family members to persons, or a maximal set of cor-
respondences including connections, e.g., between families
and persons connected to the family members of the fam-
ily. Maximal (HA) can be automatically derived from TGG
rules by simply creating all possible connections between all
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:Family
name = “Simpsons”

:Family
name = “Simpson”

:FamilyMember
name = “Marge”

:FamilyMember
name = “Bart”

:Male
name = “Bart, Simpson”

mother

son

:Female
name = “Marge, Simpson”

Figure 4. Horizontal Alignment for a Consistent Pair

elements in each rule every time it is applied. (HA) can be
strongly typed, e.g., using different a specific correspondence
type to connect mothers with females, and another type to
connect daughters with females, or weakly typed, e.g., using
the same type for all correspondences. (HA) can support cor-
respondence nodes/links with attributes, allow connections
(edges) between correspondence nodes, and enforce a 1-1 or
1-many connection between correspondence types and TGG
rules (can a specific correspondence type be created by more
than one TGG rule?). Finally, although all diagrams suggest
that correspondence links are 1-1 connections, this is not
necessarily true for all TGG tools. Some TGG tools connect
multiple nodes (and edges) in the source and target models
with a single correspondence “tentacle”.

For the second auxiliary structure (ii), representing the se-
quence inwhich TGG rules can be applied to generate a given
triple, we propose to use the term Witness Structure (WS)
as used by Cheney et al. [5] or McKinna [14] as it witnesses
the consistency of the triple. A triple is consistent if and
only if such a witness exists. While some consistency man-
agement operations such as consistency checking produce
a (WS) as their output, others such as model synchronisa-
tion can exploit a (WS) by equating consistency restoration
with repairing such a (WS). If local repair operations can
be performed cheaply, this allows for efficient consistency
restoration as opposed to attempting to essentially recreate
the (WS) from scratch. Figure 5 depicts a (WS) for the con-
sistent triple depicted in Figure 4. It tells us that the triple
is indeed consistent because it can be created by applying
CreateMother then AddSon as indicated. The application
of AddSon requires an element created by CreateMother as
context and thus “depends” on the previous rule application
(indicated in the figure as a dependsOn arrow.

:Family
name = “Simpsons”

:Family
name = “Simpson”

:FamilyMember
name = “Marge”

:FamilyMember
name = “Bart”

:Male
name = “Bart, Simpson”

mother

son

:Female
name = “Marge, Simpson”

CreateMother

AddSon

dependsOn

Figure 5. Witness Structure for a Consistent Pair

Note that the (WS) is typically not unique: in this example
a different (WS) could be to create Bart first with Create-
Son and then add Marge with AddMother. As with (HA),
TGG tools differ with respect to how “rich” their (WS) are:
Are dependencies recorded only on the level of rules (as
suggested in Fig. 5)? Or also between elements, e.g., keeping
track of the fact that the family member Bart depends on
the family member Marge? In cases where a choice was
made between conflicting rules – are all alternatives also
maintained in the (WS)?
Finally, some TGG tools combine (HA) and (WS) into a

single data structure for efficient storage and bookkeeping.
Other tools separate the structures as some operations such
as model transformation only require (HA) but not (WS).

4 Provenance and Explanations for BX
As the (technical) design space for (HA) and (WS) is large
– as can be seen from the wide range of choices made in
different TGG tools – it is helpful to concentrate on what
these structures represent and not how they accomplish this.
To provide a high-level characterisation of (HA) and (WS) as
employed by TGG tools, therefore, we propose to view these
structures as different types of provenance [5]:

(HA) is why-provenance: The existence of a (HA) that
completes a pair of source and target models to a triple
that the underlying TGG can generate answers the
question why the pair is consistent.

(WS) is how-provenance: How canwe prove that a pair
of source and target models is consistent? The (WS)
shows which rules and in what order they can be ap-
plied to generate a consistent triple extending the pair
by a (HA). Note that (WS) implies (HA), and that (WS)
can always be (re-)computed, albeit at a high cost. Both
these observations are consistent with prior work con-
cerning the relationship between why-provenance and
how-provenance in databases [5, 9].

Apart from achieving conceptual clarity by abstracting
from the (technical) details and differences of how (HA) and
(WS) are implemented in different TGG tools, how else is our
proposed characterisation of (HA) and (WS) as provenance
useful? One observation it leads to is that (HA) and (WS) are
used today either for correctness (if (HA) cannot be uniquely
recomputed), or for efficiency (avoid revisting the entire
triple by repairing (WS) locally as far as possible). For these
two use cases, correctness and efficiency, it makes sense to
keep provenance as minimal as possible – basically reduced
to just what is absolutely necessary.

As TGG tools attempt to address richer and more challeng-
ing consistency management scenarios such as model inte-
gration (both models can be manipulated concurrently) [3],
interacting and consulting with users will become increas-
ingly important to enable conflict resolution and cope with
the inherent non-deterministic nature of the consistency
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restoration process in this case. Such a communication with
users, however, will require adequate explanations of the
choices (to be) made [16].

5 Open Questions and Research Agenda
We argue that providing andmaintaining rich(er) provenance
will play an important role in explaining consistency man-
agement operations. Some initial ideas we have identified
of how this can be achieved are outlined in the following as
pointers for future work:

What about where-provenance? While we claim that
(HA) and (WS) have arisen naturally as why- and how-
provenance, respectively, it remains unclear, however,
if and what where-provenance relates to in the con-
text of TGG-based consistency management. While
why-provenance is about relationships and inferences,
where-provenance is about locations and data values [5].
What is a location in a TGG setting? Can we explain
“where” a string in the target model “came from” in the
source, or vice versa?

Enriching (WS): Possible extensions of (WS) include
(i) adding connections to the propagated changes (typ-
ically referred to as deltas), i.e., as an additional reason
that led to the current state of the (WS), and (ii) adding
connections to (user) decisions that led to the current
(WS). For both these extensions, it might become nec-
essary to keep track of deleted elements in addition to
created and modified elements (TGG tools currently
have no reason to do this).

Complete track of changes: Instead of just repairing
or rewriting the (WS) when restoring consistency, it
can be useful to record all “versions” of the (WS). Such
information can be exploited and used to enable inter-
active “debugging” of consistency restoration.

Conversely, we also believe that provenance research may
benefit from ideas or techniques in the bx or TGG commu-
nities. For example, the TGG notion of “triple graph”, with
source data, target data, and (HA) structure linking them,
seems to generalize several familiar models of annotation or
trace structures used in database and workflow provenance.
This observation suggests a strategy for importing ideas or
technology from the bx community to the provenance set-
tings, which may in turn lead to further opportunities for
generalization or unification of provenance models:

Querying provenance and data Conventionally, prove-
nance querying focuses on the (HA) graph and the
source and target data are separate. Can we view (e.g.)
database or workflow provenance as (HA) relating
the source and target data (also represented as graphs)
and derive query languages that support querying data
alongside its provenance?

Provenance integration Currently, provenance mod-
els are often defined in a particular computational

context, e.g. databases, workflow engines, operating
systems, or scripts. Integrating provenance (and data)
from these different systems is a challenge. Can such
integration be facilitated by MDE ideas, using models
and metamodels as an interlingua?

One provenance (semi)ring to rule them all? Since the
introduction of the “provenance semirings” framework [9],
database researchers have systematically explored al-
gebraic structures that capture provenance for increas-
ingly richer query languages [10]. Does an analogous
notion of “most general” (WS) exist for TGGs?

We hope that this paper will lead to deeper discussion or
collaboration between these two communities.
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A Glossary
Bidirectional transformations, BX Given two mod-

els, representing different (but related) parts of a sys-
tem, a bidirectional transformation specifies (a) what
it means for the two models to be consistent, and (b)
given two models that have become inconsistent (or
given a proposed change to one model), how to restore
consistency.

Consistency checking Given a source and targetmodel
(and optionally a horizontal alignment orwitness struc-
ture), check that they are consistent.

Consistency management/maintenance Restoring or
establishing consistency between source and target
models. The task of a bidirectional transformation. In-
cludes model transformation, consistency checking,
and consistency restoration.

Consistency restoration Given a consistent source and
target model, and a (proposed) updated version ormod-
ification one of them, consistency restoration finds a
new version of the other one that is consistent. In a
TGG setting, this may also involve finding a new hori-
zontal alignment or witness structure linking the new
source and target.

Consistent For a TGG, a triple graph is consistent if it
is derivable by the rules of the grammar. A source and
target model pair are derivable if there is a horizontal
alignment linking them that forms a consistent triple
graph.

Horizontal alignment, HA An intermediate graph link-
ing parts of the source and target models. Sometimes
called correspondences, correspondence links/models,
traces, traceability links, protocols, precedence struc-
tures. As TGGs can be viewed as an implementation of
the more general delta lens framework for bx [1], we
distinguish between horizontal alignment and Vertical
alignment that refers to the representation of changes
between models in the same domain (instances of the
same metamodel).

Model In MDE, a data structure (usually, but not always,
a UML-style graph).

Metamodel In MDE, a type or schema describing a col-
lection of models (usually, but not always, a UML-style
graph).

Model Driven Engineering, MDE Software engineer-
ing based on representing parts of a software system
using models, or high-level data structures defining
different aspects of the system.

Model generation Generating consistent triples by ap-
plying the rules of a TGG in some order (e.g. system-
atically or randomly). Analogous to string generation
from a context-free grammar.

Model transformation Given a source model (or tar-
get model), to attempt to find a consistent triple that
includes the given model.

Triple graph A graph structure with three parts, often
called the source model, target model, and correspon-
dence model a.k.a horizontal alignment. The source and
target models are disjoint graphs. The correspondence
model is a graph linking components of the source and
target graphs to each other or to intermediate elements
of the correspondence graph.

Triple Graph Grammar, TGG Agrammar defining lan-
guages of triples of graphs (analogous to context free
grammars for string languages). A grammar specifies
start rules that describe possible initial states of the
graph and additional rules that explain how to add
structure to a partially-derived graph. Rules are usu-
ally written as graph triples themselves, with precon-
dition structure shown in black and new node or edge
structure shown in green or decorated with “++” (or
both). Rules may also have side-conditions explaining
how data values in source or target nodes should be
related.

Witness Structure, WS An intermediate data structure
describing one (or more) possible derivation(s) of a con-
sistent triple graph. Other terms from (MDE) literature
include rule dependency structure, precedence graph,
and synchronisation protocol.
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