

Edinburgh Research Explorer

iPregel: Vertex-Centric Programmability vs Memory Efficiency
and Performance, Why Choose?

Citation for published version:
Capelli, L, Hu, Z, Zakian, T, Brown, N & Bull, J 2019, 'iPregel: Vertex-Centric Programmability vs Memory
Efficiency and Performance, Why Choose?', Parallel Computing, vol. 86, pp. 45-56.
https://doi.org/10.1016/j.parco.2019.04.005

Digital Object Identifier (DOI):
10.1016/j.parco.2019.04.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Parallel Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224804168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.parco.2019.04.005
https://www.research.ed.ac.uk/portal/en/publications/ipregel-vertexcentric-programmability-vs-memory-efficiency-and-performance-why-choose(c0020f21-a61a-4541-86c0-63dd73626930).html

iPregel: Vertex-Centric Programmability vs Memory Efficiency and Performance,
Why Choose?

Ludovic A. R. Capellia,∗, Zhenjiang Hub, Timothy A. K. Zakianc, Nick Brownd, J. Mark Bulld

aInstitute for Computing Systems Architecture, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
bInformation Systems Architecture Research, National Institute of Informatics, 2 Chome-1- Hitotsubashi, Chiyoda, Tokyo 100-0003, Japan

cDepartment of Computer Science, University of Oxford, 15 Parks Road, Oxford OX1 3QD, United Kingdom
dEdinburgh Parallel Computing Centre, University of Edinburgh, 47 Potterrow, Edinburgh EH8 9BT, United Kingdom

Abstract

The vertex-centric programming model, designed to improve the programmability in graph processing application writing, has
attracted great attention over the years. Multiple shared memory frameworks that have implemented the vertex-centric interface all
expose a common tradeoff: programmability against memory efficiency and performance.

Our approach consists in preserving vertex-centric programmability, while implementing optimisations missing from Femto-
Graph, developing new ones and designing these so they are transparent to a user’s application code, hence not impacting pro-
grammability. We therefore implemented our own shared memory vertex-centric framework iPregel, relying on in-memory storage
and synchronous execution. In this paper, we evaluate it against FemtoGraph, whose characteristics are identical, but also an asyn-
chronous counterpart GraphChi and the vertex-subset-centric framework Ligra. Our experiments include three of the most popular
vertex-centric benchmark applications over 4 real-world publicly accessible graphs, which cover all orders of magnitude between a
million to a billion edges. We then measure the execution time and the peak memory usage. Finally, we evaluate the programma-
bility of each framework by comparing it against the original Pregel, Google’s closed-source implementation that started the whole
area of vertex-centric programming.

Experiments demonstrate that iPregel, like FemtoGraph, does not sacrifice vertex-centric programmability for additional perfor-
mance and memory efficiency optimisations, which contrasts with GraphChi and Ligra. Sacrificing vertex-centric programmability
allowed the latter to benefit from substantial performance and memory efficiency gains. However, experiments demonstrate that
iPregel is up to 2,300 times faster than FemtoGraph, as well as generating a memory footprint up to 100 times smaller. These
results greatly change the situation; Ligra and GraphChi are up to 17,000 and 700 times faster than FemtoGraph but, when com-
paring against iPregel, this maximum speed-up drops to 10. Furthermore, on PageRank, it is iPregel that proves to be the fastest
overall. When it comes to memory efficiency, the same observation applies; Ligra and GraphChi are 100 and 50 times lighter than
FemtoGraph, but iPregel nullifies these benefits: it provides the same memory efficiency as Ligra and even proves to be 3 to 6
times lighter than GraphChi on average. In other words, iPregel demonstrates that preserving vertex-centric programmability is not
incompatible with a competitive performance and memory efficiency.

Keywords: graph processing, vertex-centric, shared memory, in-memory

1. Introduction

From social networks analysis to database queries, graph
processing has become ubiquitous. The vertex-centric program-
ming model introduced by Google in Pregel [1] offers a sim-
ple interface that enables users, such as data scientists, to eas-
ily develop graph processing applications. By exposing a set
of highly-abstracted routines to the user, the vertex-centric in-
terface greatly improves programmability. Through improved
code readability and a less error prone code writing, the vertex-
centric interface supports fast prototyping of graph applications.

∗Corresponding author
Email addresses: l.capelli@ed.ac.uk (Ludovic A. R. Capelli),

hu@nii.ac.jp (Zhenjiang Hu), timothy.zakian@cs.ox.ac.uk (Timothy
A. K. Zakian), n.brown@epcc.ed.ac.uk (Nick Brown),
m.bull@epcc.ed.ac.uk (J. Mark Bull)

In the meantime, it requires no specialist programming exper-
tise from the user, since the parallelisation and optimisations are
offloaded to the underlying framework implementation. How-
ever, the vertex-centric programming model has traditionally
been a compromise between the abstraction offered to the user
and the performance achieved, as well as the memory foot-
print generated. To improve performance, certain vertex-centric
frameworks abandon some features of the vertex-centric model.
Whilst this improves performance, it can significantly impact
the programmability and ease of use.

In order to support the processing of current and next gen-
eration graphs, vertex-centric models must maximise perfor-
mance, so a key challenge is how to achieve this in a way
that does not adversely impact the benefits of the vertex-centric
model. The difficulty arises because the framework handles
many aspects of the computation, from vertex selection to thread-

Preprint submitted to Elsevier April 25, 2019

safety, through inter-vertex communications.
FemtoGraph, for instance, is a framework that preserves

the programmability of the vertex-centric interface. However,
it does not efficiently handle the high volume of messages ex-
changed between vertices, which results in a large memory foot-
print. In addition, the performance observed is orders of magni-
tude worse than that of vertex-centric frameworks that make de-
sign choices in favour of performance by sacrificing programma-
bility. There are certain frameworks, such as GraphChi, that
do provide a better performance and memory efficiency by no
longer abstracting certain computational steps from the user.
Ligra provides an even better performance and memory effi-
ciency, at the expense of an even greater programmability loss.
Indeed, the programming model is no longer vertex-centric but
vertex-subset-centric, where the user is required, for instance,
to explicitly use parallelism and atomic operations.

By contrast, our approach focuses on improving performance
and memory efficiency at no programmability cost. A major
goal has been to design our framework to be optimisable with-
out requiring application code rewriting for the user.

Our vertex-centric framework, iPregel [2], uses shared mem-
ory parallelism and in-memory storage. In this paper, we de-
scribe the novel features of iPregel in more detail and evalu-
ate iPregel against vertex-centric1 frameworks specifically de-
signed for single-node execution too. We selected FemtoGraph,
GraphChi and Ligra because they rely on fundamentally differ-
ent designs. In this work, we do not only consider performance,
but also the memory efficiency and general programmability.
The results collected demonstrate that iPregel and FemtoGraph
provide equally the best programmability. However, iPregel
proves to be up to both 2,300 times faster and 100 times more
memory efficient than FemtoGraph. When compared against
the frameworks optimised for performance, we observe that
the memory footprint of iPregel is as small as that of Ligra,
and up to 7.5 times smaller than GraphChi’s. In comparison
to GraphChi and Ligra, the performance observed on iPregel
varies for different benchmarks; for the Connected Components
and SSSP benchmarks, iPregel is several times slower than Ligra
and GraphChi, while remaining in the same order of magni-
tude. However, in PageRank, iPregel consistently exhibits the
best performance above 4 threads, regardless of the graph. We
thus demonstrate successful preservation of the vertex-centric
programmability with no consequence on memory footprint.
The impact on performance is greatly minimised compared to
FemtoGraph, and for some benchmarks, iPregel even exhibits
a greater performance than all frameworks tested.

The contributions described in this paper can be summarised
as follows:

• Programmability independent optimisations, allowing
the user to focus on application logic, then leverage the
potential of optimisations without requiring code rewrit-
ings.

• A lightweight and efficient implementation of our frame-
work iPregel, as well as a set of benchmark applications.

1and vertex-subset-centric

• A thorough exploration of vertex centric frameworks,
including our own iPregel, contrasting three major at-
tributes; performance, memory efficiency and programma-
bility.

The rest of the paper is organised as follows: Section 2
presents related work and Section 3 briefly introduces the ter-
minology used throughout this paper. Section 4 provides an
overview of the iPregel framework, from its interface and im-
plementation to the optimisations designed and how they can be
leveraged by the user. Section 5 describes the other frameworks
evaluated, followed by Section 6 which presents the application
benchmarks selected. The conditions under which these exper-
iments were run are outlined in Section 7. Finally, the results
collected are presented, discussed and analysed in Section 8,
before we draw conclusions in Section 9 and discuss potential
further work directions.

2. Related work

First developed in 2010 through Pregel [1], the vertex-centric
programming model has proven to be an intuitive way of de-
veloping graph processing algorithms. Many implementations
have emerged, the majority of which rely on distributed mem-
ory architectures. Vertex-centric applications represent a real
challenge to such architectures: they exhibit a high, and irregu-
lar, volume of communications as well as frequent global syn-
chronisations. Nonetheless, with the exception of a few state-
of-the-art machines that provide up to 160 terabytes of RAM2 in
a single memory space, only distributed memory architectures
are able to provide enough RAM to process in-memory indus-
try graphs, such as those employed by Facebook [3], which can
contain up to a trillion edges.

To address this limitation, GraphChi [4] was developed;
which is a single-node vertex-centric framework able to pro-
cess graphs of any size. It does this via out-of-core computa-
tions; GraphChi relies on disk storage as an extension of mem-
ory. In this approach, the graph is divided into disjoint intervals,
each of which is represented by a shard that stores all incoming
edges of the vertices in that interval, on disk. GraphChi then
loads shards3 in turn into memory and processes concurrently
the vertices belonging to the interval represented by the shard in
memory. With this design, GraphChi is able to process graphs
that do not fit in-memory, overcoming the fundamental limita-
tion of single-node frameworks, at the expense of costly disk
accesses.

Ligra [5], a shared memory framework using in-memory
storage, has been a game changer with regard to the viability
of in-memory execution of large graphs. Its authors argue that
the amount of memory available in high-end single nodes is
sufficient to process graphs with hundreds of billions of edges.

2Record currently held by ”The Machine”, made by Hewlett Packard Enter-
prise

3When determining the size of a shard, GraphChi ensures that it is suffi-
ciently small to fit in-memory

2

Although this is true for certain state-of-the-art machines, real-
istically, as of 2018, a cluster node commonly has between 64
and 512GB of memory. Despite not meeting the memory needs
of a trillion-edge graph, these nodes do provide enough mem-
ory to process graphs up to a hundred billion edges in Ligra.
Therefore, single-node frameworks that rely exclusively on in-
memory storage like Ligra can be viable also at large scale.
Ligra demonstrates [5] that it is able to scale to graphs contain-
ing almost 13 billion directed edges, while preserving a parallel
efficiency between 45% and 80% on 40 cores. From a program-
ming perspective, Ligra is described as a vertex-subset-centric
framework in [6]. This categorisation is motivated by the obser-
vation that Ligra retains a centralised view of the graph being
processed, contrasting with a pure vertex-centric framework.

FemtoGraph [7] exposes the same characteristics as Ligra,
namely shared memory parallelism and in-memory storage. The
major difference resides in the fact that FemtoGraph preserves
the vertex-centric programming model, exposed via its program-
ming interface, which is identical to that of the initial Pregel.
However, based on the results reported in [7], at best Femto-
Graph provides little to no performance gain compared to ex-
isting graph processing frameworks. In addition, FemtoGraph
appears to suffer from significant performance overhead at low
number of threads.

3. Terminology

This section provides the reader with the technical terms
that will be used throughout this paper.

A graph is made of vertices linked via edges that can be
directed or undirected. Vertices standing at both ends of an edge
are called neighbours. A directed edge linking the source vertex
vsrc to the destination vertex vdst is said to be an outgoing edge
of vsrc and an incoming edge of vdst, abbreviated out-edge and
in-edge respectively. Similarly, vsrc is known as an incoming
neighbour of vdst, abbreviated in-neighbour, and vdst is said to
be an outgoing neighbour of vsrc, or out-neighbour. Adjacency
list is the term used to refer to the list of all neighbours of a
given vertex. In directed graphs, it can be an out-adjacency list
or in-adjacency list.

Finally, this paper will refer to the concept of broadcast,
which in iPregel and other vertex-centric frameworks means
sending a message to all out-neighbours of the broadcasting
vertex.

4. Overview of iPregel

4.1. Interface

In iPregel, the user is provided with a simple Application
Programming Interface (API), in which they must define the
combine and compute functions, the signatures of which are
illustrated in Figure 1. The compute function contains the com-
putation to execute on each vertex. The combine function is
called when a vertex that has a mailbox already containing a
message receives another message.

void IP_compute(struct IP_vertex_t* me);

void IP_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new);

Figure 1: User-defined functions of iPregel

size_t IP_get_superstep ();

bool IP_get_next_message(struct IP_vertex_t* me,

IP_MESSAGE_TYPE* msg);

void IP_send_message(IP_VERTEX_ID_TYPE destID ,

IP_MESSAGE_TYPE msg);

void IP_broadcast(struct IP_vertex_t* me ,

IP_MESSAGE_TYPE msg);

void IP_vote_to_halt(struct IP_vertex_t* me);

Figure 2: Main functions (not all) provided by iPregel

Figure 2 illustrates supporting functions provided by iPregel
that allow the user to track the superstep progression, read the
messages received from last superstep, send a message to a spe-
cific out-neighbour or all out-neighbours at once, and halt the
vertex currently processed respectively.

Although iPregel relies on shared memory parallelism, com-
munications are achieved via a message-passing abstraction.
Typically, message-passing abstractions are provided when writ-
ing codes for distributed memory architectures, nonetheless the
motivation behind this choice for shared memory is multifaceted.
Firstly, it protects the user from potential data races that ar-
bitrary memory accesses could allow. Secondly, direct mem-
ory accesses require the programmer to know exactly where to
write information, which implies exposing implementation de-
tails to the user. Finally, this abstraction provides iPregel with
the freedom to optimise the underlying communication mecha-
nisms whilst preserving a consistent interface to the user.

4.2. Implementation

The Bulk-Synchronous Parallel model (BSP [8]), on which
iPregel relies, is illustrated in Figure 3. This is a very common
approach in vertex-centric processing, where the execution flow
progresses in iterations, called supersteps, each made of three
steps:

1. Local computation
2. Communications
3. Global synchronisation

In the context of vertex-centric programming, the first step
consists in executing the user-defined function compute on each
active vertex. During this phase, vertices can modify their state
and have access to the messages they received during the pre-
vious superstep. During the second phase, the communications
in Figure 3, vertices send messages to their out-neighbours. Fi-
nally, once every active vertex has been processed and every
outgoing message delivered, the superstep completes and a new
superstep begins (synchronisation in Figure 3).

As mentioned, iPregel applies the compute function defined
by the user to each active vertex, at every superstep. When

3

Vertex1 Vertex2 Vertex3 Vertex4
Supersteps

Supersteps+1

Processing Communications Synchronisation

Figure 3: A Bulk-Synchronous Parallel superstep

a vertex receives more than one message, the user’s combine
function is applied to combine messages on-the-fly. Under the
hood, the message-passing abstraction provided to the user is
implemented as direct memory accesses by iPregel. We argue
that this gives the best of both worlds, it allows the user to rely
on a simple interface for communication while exploiting the
shared memory performance of a single-node solution.

From a parallelisation perspective, the iPregel framework
is developed in C and relies on OpenMP [9] to support shared
memory concurrency. Vertices are stored in a global array, and
the list of their neighbour identifiers (known as their adjacency
list) in another global array, both of which are shared by all
threads. The vertex workload is then distributed using the de-
fault static schedule in OpenMP, in other words, the total num-
ber of vertices is evenly distributed across all threads and no
work-stealing strategy is used.

Section 4.3 presents the optimisations strategies employed
by iPregel. They all abide to the overarching philosophy of
iPregel: optimisations should not require user source code rewrit-
ing or make the code more error prone, and implementation de-
tails related to the optimisations must stay abstracted from the
user. This motivated the design of iPregel to trigger optimisa-
tions via compilation flags, which leaves the user source code
untouched.

4.3. Optimisations
The optimisations presented in this section are not mutually

exclusive. In other words, iPregel handles any combination of
optimisations, without requiring additional work from the user,
only a change of compilation flags is needed.

4.3.1. Selection Bypass
The first phase in vertex-centric frameworks consists in se-

lecting the vertices to execute: this is already known to be a
tricky aspect of vertex-centric models [10]. The naive approach
is to check the status of each vertex and process those that are
active.

First
superstep?

Vertex already
active?

No

Vertex received
a message?

No

Skip the
vertex

No

Run the
vertex

Yes

Yes

Yes

Default start point

Start point from
2nd superstep

Start point from
2nd superstep and
systematic halt

Figure 4: Execution flow of the vertex selection mechanism

However, for inactive vertices these checks are unfruitful
and result in wasted memory accesses. This is important be-
cause frameworks that use in-memory storage and shared mem-
ory parallelism already place a high pressure on memory band-
width. Therefore, keeping unproductive memory accesses to
a minimum prevents aggravating that pressure. The naive ap-
proach becomes especially problematic in programs that con-
tain a small number of active vertices, resulting in many wasted
checks.

Thus we analysed the selection phase, which typically de-
cides to run a vertex if it at least one of the following conditions
is met:

1. It is the first superstep
2. The vertex is already active (that is, it did not halt when

it was last processed)
3. The vertex received a message during previous superstep

Condition 1 becomes false at the end of the first superstep.
Thus, from the second superstep onwards, a vertex is active if
and only if conditions 2 or 3 are met. One cannot assert which
condition it is, unless the algorithm exhibits what we refer to as
systematic halt: every time a vertex is processed it halts at the
end of the compute function. In other words, this algorithmic
particularity guarantees that condition 2 is always false. It is
the case in the Connected Components and SSSP benchmarks
presented in Sections 6.2 and 6.3 respectively. By contrast, in
the PageRank benchmark presented in Section 6.1, a vertex pro-
cessed will not halt if the number of supersteps elapsed is less
than the predefined threshold. In other words, in PageRank a

4

vertex may be active in superstep n without having received a
message in superstep n − 1.

In the systematic halt situation however, this configuration
is not possible. Indeed, since condition 1 is false after the first
superstep and condition 2 is always false, only condition 3 re-
mains; a vertex is active if, and only if, it received a message in
previous superstep (as depicted in Figure 4). Thus, the list of
active vertices for superstep n + 1 can be established by moni-
toring message exchanges during superstep n and finding which
vertices are the recipients of these exchanged messages. This
is why when an algorithm exposes systematic halt, iPregel can
monitor message exchanges and automatically determine which
vertices to run next superstep.

Integrating the systematic halt feature is straightforward;
it can be embedded in the function called by vertices to send
messages (ip send message and ip broadcast as given in Fig-
ure 2). The modification consists in appending the recipient
vertex identifier to the list of vertices to run during next su-
perstep. However, one must avoid duplicate identifiers so that
a given vertex is not processed multiple times. This is again
straightforward because when a vertex sends a message, the
thread that runs that vertex must check if the recipient vertex
already has a message in its mailbox, to determine whether
it should apply the message combination presented in Section
4.3.3. From there, integrating the systematic halt feature con-
sists of the thread adding the recipient vertex identifier to the
list of vertices to execute during next superstep if that recipient
vertex’s mailbox is empty. Multiple threads accessing the same
list can raise data races, this is why in iPregel, each thread main-
tains its own list. At the end of every superstep, these lists are
merged into a single one. Then, one only needs to process the
vertices in that list, without having to check their active status
or the presence of pending messages. To exploit parallelism,
this list is split evenly across all threads.

There are multiple benefits from our selection bypass tech-
nique. Firstly, not having to check each individual vertex saves
memory accesses and removes possible branch mispredictions
on the vertex active state (execute if active, skip if inactive)
since vertices in the merged list are known to be active. Sec-
ondly, this feature improves load balancing because threads re-
ceive exclusively vertices that are guaranteed to be run. This
contrasts with the naive approach, where threads may receive
identical numbers of vertices, potentially containing drastically
different proportions of inactive vertices. In other words, our
technique of selection bypass makes the active vertex distribu-
tion optimal with regard to the number of active vertices per
thread.

4.3.2. Message Exchange
Typically, vertex-centric applications are communication in-

tensive. Optimising the message exchange mechanism can there-
fore result in substantial improvements in performance.

There are two means by which a message can be transmit-
ted: the sender can push it to a recipient mailbox, or the re-
cipient can pull it from a sender’s outbox. The push version
can result in race conditions in the event of multiple vertices
pushing to the same recipient mailbox concurrently. In iPregel,

this is prevented with the use of busy-waiting locks. These are
more efficient than their block-waiting counterparts, given that
the combination operation is typically very small. However,
the push version can be implemented without locks at all if the
combination operation conveniently corresponds to an atomic
operation. In Ligra [5], the user can exploit lock-free com-
bination by writing a second, atomic, implementation of their
combiner. Providing this optimisation without involving addi-
tional code writing may require a code parsing phase from the
framework to determine whether a given combiner code can
be atomically processed. In its current state, iPregel does not
leverage the lock-free combiner optimisation.

The pull-based approach, due to the read-only nature of
potential inter-thread interactions, has the advantage of being
data-race free. Thus, threads can process message exchanges
in parallel with no synchronisation. Vertices must have a mail-
box to receive messages, as well as an outbox in which they
can buffer the messages to send. Each message in the out-
box must be attached with the recipient identifier, so that each
out-neighbour knows which message take, if any. Such an ap-
proach would result in a heavy memory overhead, unless the
same value is sent to all out-neighbours via a broadcast.

In that case, only one message needs to be stored in the ver-
tex outbox, with no need to store the recipient identifier, since
every out-neighbour is meant to read that message. It was ob-
served that this optimisation can be applied to the majority of
vertex-centric applications, since communications are typically
performed via broadcasts to neighbours. This optimisation as-
sumes that at most one broadcast is issued per vertex per super-
step.

However,in order to support this lock-free design, iPregel
must check, for each vertex, the outbox of every out-neighbour,
which results in numerous memory accesses. In applications
that expose a low number of active vertices, this optimisation
generates a high number of memory accesses that consist in
checking an empty outbox, hence wasting memory bandwidth
and generating unproductive extra work. Although Ligra can
dynamically switch between the push and pull communications
at runtime via a threshold defined by the user, iPregel must be
told whether to use the former or the latter via a compilation
flag. The user must therefore determine experimentally whether
it is beneficial in their case to enable this optimisation.

4.3.3. Message Combination
Vertex-centric frameworks that complete communications

via message-passing provide each vertex with a mailbox. Mes-
sages received are then queued in the recipient mailbox. Due to
the high-volume of messages exchanged in vertex-centric appli-
cations, this design eventually results in large mailboxes that no
longer fit in-memory. This is where the concept of a combiner
can be leveraged.

In the vast majority of vertex-centric applications, the user
is interested in the sum, average, minimum or maximum value
of the messages received. These happen to be both associative
and commutative operations. Therefore, rather than queuing
messages and then combining them in the user’s compute func-
tion, the user can declare a combination operation that will be

5

void ip_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new) {

if(*old > new)

*old = new;

}

Figure 5: The implementation in iPregel of a combiner keeping only the mini-
mum value of messages received

Vertex-centric BSP

SynchronousAsynchronous Non
vertex-centric

Figure 6: Comparison of vertex-centric and BSP models of computation.

applied by the framework on-the-fly as messages arrive in the
mailbox. The order in which messages are combined does not
have to be enforced due to the commutativity property of the
combination operation. The associativity allows for parallel re-
ductions in a multi-threaded and/or distributed environment.

Combiners result in a significant reduction of mailbox size
because each mailbox now stores a single message. Moreover,
the framework no longer needs to dynamically resize mailboxes
to fit new incoming messages. This saves numerous realloca-
tions that can potentially become costly in a multi-billion edge
graph. Furthermore, combiners expose additional optimisation
opportunities to the framework, which can now optimise and
parallelise the combination process.

To use this feature, the iPregel user must define their own
combine function and implement the operation to apply every
time a new message is received. An example of a combiner
calculating the minimum value of messages received is given
in Figure 5.

5. Frameworks Considered

To evaluate iPregel, we consider in this paper only frame-
works that are designed specifically for graph processing in
shared memory. Nevertheless, Figure 6, which is taken from [6],
highlights three types of frameworks that could be considered.
Among these categories, iPregel belongs to the middle; com-
bining vertex-centric programming and synchronous execution.
In order to provide a comparison of iPregel against a variety of
frameworks, one framework of each type has been selected.

5.1. GraphChi
The first vertex-centric framework to offer out-of-core com-

putations [4], GraphChi belongs to the category of vertex-centric
frameworks that exploit asynchronous execution, shown on the
left in Figure 6. For a graph that can fit entirely in memory,
the out-of-core nature of GraphChi makes comparisons with an
in-memory framework, such as iPregel, unfair. Fortunately, it

void update(graphchi_vertex <VertexDataType ,

EdgeDataType > &v, graphchi_context &ginfo) {

assert(ginfo.scheduler != NULL);

if(ginfo.iteration == 0) {

set_data(v, vertex_values[v.id()]);

if(v.id() == SOURCE_VERTEX)

for(int j = 0; j < v.num_outedges (); j++)

ginfo.scheduler ->add_task(

v.outedge(j)->vertex_id ());

} else {

vid_t curmin = v.get_data ();

for(int i = 0; i < v.num_inedges (); i++)

if(curmin > neighbor_value(v.inedge(i)))

curmin = neighbor_value(v.inedge(i));

if(curmin < v.get_data () - 1) {

curmin ++;

set_data(v, curmin);

for(int i = 0; i < v.num_outedges (); i++)

if(curmin <neighbor_value(v.outedge(i))-1)

ginfo.scheduler ->add_task(

v.outedge(i)->vertex_id ());

}

}

}

Figure 7: Compute function for SSSP in GraphChi

turns out that GraphChi provides in-memory implementations4

of its algorithms, which are automatically chosen by GraphChi
when memory allows. Concretely, when running a GraphChi
application, the user can pass the amount of RAM available
via a runtime parameter. GraphChi then estimates the amount
of memory needed for its in-memory version, and selects it if
the memory available is sufficient. Experiments presented in
this paper use the in-memory version of the implementations
provided by GraphChi, the exception being the Single Source
Shortest Path (SSSP) for which no implementation at all is pro-
vided. We therefore developed an in-memory implementation
for SSSP, given in Figure 7.

Another particularity of this framework is its asynchronous
execution flow, where vertex updates are immediately visible,
unlike its synchronous counterparts where updates take effect
only in the following superstep. The advantage of the former
is to help reach convergence faster, while the latter is easier to
reason about by providing clearer semantics.

5.2. FemtoGraph
FemtoGraph[7] is a shared memory vertex-centric frame-

work that uses exclusively in-memory storage and synchronous
execution. It thus belongs to the middle category shown in Fig-
ure 6, like iPregel. However, FemtoGraph5 is designed and
hard-coded for PageRank, in which all vertices are run at every
superstep. As a consequence, FemtoGraph does not implement
a vertex selection mechanism: it runs each vertex at every su-
perstep, without checking their active status or the presence of
pending messages in its mailbox. By contrast, the Connected

4Available at https://github.com/GraphChi/graphchi-cpp
5Available at https://github.com/DataSys-IIT/FemtoGraph

6

Components and SSSP benchmarks do require vertices to be se-
lected since they may become inactive during the computation.
As a result, such algorithms cannot be implemented in Femto-
Graph without rewriting parts of the framework itself. Also,
we have not been able to observe correct results across all the
graphs tested. Nonetheless, FemtoGraph remains an interest-
ing reference since it is the only other vertex-centric framework
specifically designed for in-memory storage and synchronous
execution, like iPregel.

5.3. Ligra

Out of the three categories illustrated in Figure 6, Ligra6 be-
longs to the rightmost: non-vertex-centric frameworks, which
includes vertex-subset-centric, with synchronous execution. Its
approach, described as vertex-subset-centric in [6] as opposed
to vertex-centric, consists in dividing the graph processed into
subsets, which are run in turn. Ligra executes on each subset
two functions defined by the user: one to apply to every ver-
tex and one to apply to every edge. In addition, the user must
implement the compute function, which in Ligra is the func-
tion that defines the overall execution flow of the application,
from a graph-centric view. For instance, the user is in charge
of writing the main loop, as well as its termination condition,
within which they must explicitly pass the graph to the ver-
tex and edge functions they defined earlier. Nonetheless, Ligra
is a graph processing framework that relies on shared memory
parallelism, in-memory storage and synchronous execution, so
in that regard it acts as the non-vertex-centric counterpart of
iPregel.

6. Benchmark Applications

In this work, we evaluate frameworks across three applica-
tions, namely PageRank, Connected Components and the Single-
Source Shortest Paths. These three applications are widely used
in vertex-centric experiments and thus act as standard bench-
marks.

6.1. PageRank

Initially presented in [11], the PageRank algorithm is de-
signed to order web pages based on their importance calculated
from the number of hyperlinks pointing to them.

The iPregel implementation of a PageRank algorithm pre-
sented in Figure 8 is based on the original Pregel version in-
troduced in [1]. During the first superstep, each vertex begins
with an initial PageRank value of one divided by the number of
vertices, and broadcasts (as defined in Section 3) its PageRank
value divided by its number of out-neighbours. From the next
superstep onwards, each vertex sums the PageRank values re-
ceived from its in-neighbours, then it updates its current PageR-
ank value and broadcasts it again as described earlier. This is
repeated for a pre-defined number of supersteps, after which
vertices halt and the execution terminates. In practice however,

6Available at https://github.com/jshun/ligra

void ip_compute(struct ip_vertex_t* me) {

if(ip_is_first_superstep ()) {

me->value = initial_value;

} else {

IP_MESSAGE_TYPE sum = 0.0;

IP_MESSAGE_TYPE msg;

while(ip_get_next_message(me , &msg))

sum += msg;

msg = ratio + 0.85 * sum;

me->value = msg;

}

if(ip_get_superstep () < 10)

ip_broadcast(me, me->value

/ me->out_neighbour_count);

else

ip_vote_to_halt(me);

}

void ip_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new) {

*old += new;

}

Figure 8: PageRank implemented in iPregel

a PageRank application would typically run until convergence
is reached.

As explained above, when a vertex receives messages, it
sums their values; this is an operation both associative and com-
mutative, and so a combiner can be used as explained in Sec-
tion 4.3.3. In Figure 8, the reader can see that implementing
this combiner requires very little work from the user: defining
the combine function and writing a single line of code repre-
senting the sum to apply. In addition, the communications per-
formed during the PageRank calculations consist exclusively
of broadcasts, with a maximum of one broadcast per vertex
per superstep. According to Section 4.3.2, this characteristic
makes PageRank compatible with the pull-based communica-
tion model, which the iPregel design allows the user to enable
just by passing a compilation flag. However, since vertices halt
only after a certain number of supersteps, in contrast to halting
at every superstep, PageRank is not compatible with the iPregel
selection bypass optimisation presented in Section 4.3.1.

6.2. Connected Components

Computing the Connected Components of a graph consists
in finding all disjoint subsets of that graph such that each subset
is made only of vertices that can all reach one another. There
are several possible vertex-centric algorithms to compute the
Connected Components. The algorithm selected in iPregel is
often referred to as Hash-Min. It relies upon the propagation of
vertex identifiers to find, for each vertex, the minimum vertex
identifier reachable. This computation converges, and thus ter-
minates, when vertices find the minimum vertex identifier they
can reach. Finally, vertices having reached the same minimum
vertex identifier belong to the same Connected Component.

The iPregel implementation, illustrated Figure 9, begins with
vertices initialising their value to their own vertex identifier, be-

7

void ip_compute(struct ip_vertex_t* me) {

if(ip_is_first_superstep ()) {

me->value = me ->id;

ip_broadcast(me, me->value);

} else {

IP_MESSAGE_TYPE old_value = me->value;

IP_MESSAGE_TYPE msg;

while(ip_get_next_message(me , &msg))

me->value = min(me->value , msg);

if(me->value < old_value)

ip_broadcast(me, me->value);

}

ip_vote_to_halt(me);

}

void ip_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new) {

if(*old > new) *old = new;

}

Figure 9: Connected components implemented in iPregel

fore broadcasting it to out-neighbours. From then, vertices find
the minimum vertex identifier received from their in-neighbours.
They then update their value if the minimum vertex identifier
obtained is smaller, in which case they broadcast it back to their
out-neighbours to continue the propagation. Since vertices may
obtain the minimum vertex identifier reachable at any super-
step, they always halt at the end of a superstep.

The broadcast characteristic makes this Connected Compo-
nents implementation compatible with the pull-based commu-
nications explained in Section 4.3.2. Also, the combination ap-
plied to messages received is once again an operation that is
associative and commutative: the minimum. Therefore, the use
of combiners can be leveraged as discussed in Section 4.3.3.
Similarly to the PageRank combiner implemented in Figure 8,
the Connected Components equivalent is once again a combine
function made of a single line of code. Furthermore, the fact
that vertices halt at the end of every superstep makes the Con-
nected Components also suitable for the selection bypass opti-
misation presented in Section 4.3.1, which too is enabled just
by passing a compilation flag.

6.3. Single-Source Shortest Paths

Finding Shortest Paths in graphs has many applications, as
explained in [1]. In this work, we consider the Single-Source
version of the Shortest Paths, where a vertex is selected as the
source and the algorithm finds the minimum distance between
that source vertex and every other vertex in the graph. In this
benchmark we assume edge weights equal to 1.

The iPregel implementation given in Figure 10 is based on
the original Pregel version introduced in [1], which is consid-
ered as a distributed version of the Bellman-Ford algorithm [6],
and is also the implementation used in Ligra for instance. Dur-
ing the first superstep, the source vertex initialises its value to
0 and begins the propagation by broadcasting its value incre-
mented by 1 (representing the edge weight assumed). In the
meantime, other vertices initialise their value to INF (a value

void ip_compute(struct ip_vertex_t* me) {

if(ip_is_first_superstep ()) {

if(me->id == SSSP_SOURCE) {

me->value = 0;

ip_broadcast(me, me->value + 1);

}

else

me->value = INF;

} else {

IP_MESSAGE_TYPE mindist = INF;

IP_MESSAGE_TYPE msg;

while(ip_get_next_message(me , &msg))

mindist = min(mindist , msg);

if(mindist < me->value) {

me->value = mindist;

ip_broadcast(me, me->value + 1);

}

}

ip_vote_to_halt(me);

}

void ip_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new) {

if(*old > new) *old = new;

}

Figure 10: Unweighted SSSP implemented in iPregel

greater than the longest distance possible in the graph). From
the second superstep onwards, vertices calculates the potential
minimum distance obtained from messages received. In the
event this distance is smaller than the current vertex value, the
vertex updates its value and broadcasts it incremented by 1 (rep-
resenting the edge weight assumed). Finally, vertices halt at the
end of every superstep since they may obtain their final mini-
mum distance at any superstep.

This SSSP algorithm exposes the same characteristics as the
Connected Components; vertices halt at the end of every super-
step, communications are performed only via broadcasts, with
a maximum of one broadcast per vertex per superstep, and it
contains a combination operation that is associative and com-
mutative (calculating the minimum). As a consequence, the
SSSP implementation can be optimised with the selection by-
pass technique presented in Section 4.3.1, the pull-based com-
munications discussed in Section 4.3.2 and the leverage of com-
biners introduced in Section 4.3.3 respectively.

Note that we amended, when needed, the benchmark im-
plementations in other frameworks to become algorithmically
equivalent such as homogenising the pre-defined iteration num-
ber in PageRank for instance.

7. Experimental Environment

Experiments are run on Cirrus, an HPE/SGI Apollo 6800
system, in which each compute node is equipped with two 18-
core Intel Xeon E5-2695 (Broadwell) series processors. Each
compute node also has 256GB of RAM made of two Non-
Uniform Memory Access (NUMA) regions of 128GB. Instances
are set-up with CentOS 7 Linux operating system.

8

Table 1: Graphs selected (Abbreviations used: |V | = number of vertices, |E| =
number of edges

Name |V | |E|

DBLP 317,080 1,049,866
Live Journal 4,036,538 34,681,189
Orkut 3,072,441 117,185,083
Friendster 65,608,366 1,806,067,135

iPregel is compiled with gcc version 6.3.0, using C99 stan-
dard (GNU99 extensions when using spinlocks) and is paral-
lelised with OpenMP. Ligra supports OpenMP and Cilk Plus
parallelisation. In order to make the comparison with iPregel
as consistent as possible, the OpenMP version was selected.
The frameworks Ligra, GraphChi and FemtoGraph , which are
developed in C++, are compiled with g++ version 6.3.0, using
C++14 standard. The optimisation level is set to -O3 for all
frameworks.

The timings reported include only the processing time, that
is, graph loading and dumping are not included. The second
factor we have measured during experiments is the resident set
size, which represents the peak memory usage of an applica-
tion over its entire runtime. Unlike the performance, which
is assessed purely on the runtime, the memory peak usage in-
cludes all phases of an application: graph loading, processing
and dumping. The motivation is to assess whether a framework
can process a graph given a certain amount of memory, which
is conditional upon the success of all phases, not only the pro-
cessing.

Table 1 lists the graphs processed in the experiments con-
ducted in this work, where |V | is the number of vertices, and |E|
the number of edges. They are real-world graphs selected from
the online collection Stanford Network Analysis Project [12]
(SNAP) and cover all orders of magnitude from million-edge to
billion-edge. These graphs are undirected, thus the total num-
ber of directed edges is twice the amount presented. The small-
est graph, the Database and Logic Programming Bibliography
graph7 (DBLP), is a real-world graph that represents the epony-
mous computer science bibliography. LiveJournal8, Orkut9 and
Friendster10 are network graphs; about blogging, social and
gaming respectively.

8. Results

8.1. Performance

Figure 9 illustrates the results of the three benchmarks across
the four different frameworks, with different graphs. For PageR-
ank, illustrated in the left column of Figure 11, we observe that

7https://snap.stanford.edu/data/com-DBLP.html
8https://snap.stanford.edu/data/com-LiveJournal.html
9https://snap.stanford.edu/data/com-Orkut.html

10https://snap.stanford.edu/data/com-Friendster.html

Table 2: Minimum, average and maximum speed-up of Ligra over iPregel when
processing the Connected Components of each graph, across all numbers of
threads tested.

Graph Min Avg Max

DBLP 5.47 8.07 10.44
Live Journal 7.52 8.17 9.43
Orkut 5.72 6.47 7.77
Friendster 4.60 4.99 5.92

the iPregel version is 70 to 2,300 times faster than its Femto-
Graph counterpart11. GraphChi and Ligra outperform Femto-
Graph too, exhibiting a maximum speedup of 700 and 17,000
respectively. The best sequential performance, regardless of the
graph, is achieved by GraphChi12, due to its asynchronous ex-
ecution that enables vertices to read values updated by other
vertices during this same superstep. However, it offers no per-
formance gain when the number of threads increases and even-
tually falls behind both iPregel and Ligra versions. The results
reported for PageRank in Figure 11 demonstrate that the thread
scalability13 of iPregel is similar to that of Ligra. They also
point to better graph scalability14 in iPregel. In addition, Fig-
ure 11 shows that the bigger the graph, the better the thread
scalability of iPregel. Thenceforth, the performance differences
observed for PageRank between Ligra and iPregel can be ex-
plained using these three factors. On the smallest graph DBLP,
Ligra begins with a sequential runtime lower than iPregel and
also provides a better thread scalability. Moving to the Live
Journal graph, the number of vertices and edges are multiplied
by 10 and 30 respectively. We can see that iPregel now be-
gins ahead of Ligra at 1 thread, and provides a thread scal-
ability better than in DBLP. Despite this progress, the strong
thread scalability of Ligra eventually allows it to outperform
iPregel above 8 threads. When moving to the hundred-million-
edge graph Orkut, however, with PageRank, iPregel outper-
forms once again Ligra at 1 thread and manages to remain
ahead across all numbers of threads thanks to its thread scalabil-
ity improving. When moving to the billion-edge graph Friend-
ster, iPregel now provides a thread scalability as good as that
of Ligra, which allows its runtime remain to half that of Ligra
across all numbers of threads. Overall, for PageRank, the best
performance at 32 threads is achieved by iPregel.

For the Connected Components, whose results are shown
in the middle column of Figure 11, we find certain patterns
already observed for PageRank. Namely, GraphChi offers no
thread scalability, which allows Ligra and iPregel to become

11FemtoGraph’s timings for Orkut and Friendster graphs could not be col-
lected due to abnormal termination and out-of-memory failure respectively.

12GraphChi’s timings for the Friendster graph could not be collected due to
the number of file descriptors needed, approximately 21,000, being beyond our
allowed limit.

13The capacity to provide performance gains when the number of threads
increases.

14The capacity to provide performance gains when the size of the graph in-
creases.

9

1 2 4 8 16 32
0.01

0.1

1

10

100

1000

Number of threads

[D
B

L
P]

R
un

tim
e

in
se

co
nd

s

PageRank

1 2 4 8 16 32
0.001

0.01

0.1

1

Number of threads

Connected Components

1 2 4 8 16 32
0.001

0.01

0.1

1

Number of threads

SSSP

1 2 4 8 16 32
1

10

100

1000

10000

Number of threads

[L
iv

eJ
ou

rn
al

]
R

un
tim

e
in

se
co

nd
s

1 2 4 8 16 32
0.1

1

10

Number of threads
1 2 4 8 16 32

0.1

1

10

Number of threads

1 2 4 8 16 32
1

10

100

Number of threads

[O
rk

ut
]

R
un

tim
e

in
se

co
nd

s

1 2 4 8 16 32
0.1

1

10

100

Number of threads
1 2 4 8 16 32

0.1

1

10

Number of threads

1 2 4 8 16 32
10

100

1000

10000

Number of threads

[F
ri

en
ds

te
r]

R
un

tim
e

in
se

co
nd

s

1 2 4 8 16 32
10

100

1000

Number of threads
1 2 4 8 16 32

1

10

100

1000

Number of threads

iPregel FemtoGraph Ligra GraphChi

Figure 11: Evolution of iPregel, Ligra, GraphChi and FemtoGraph runtimes against the number of nodes used, for each benchmark application, per graph.

10

Table 3: Maximum resident set size of each framework tested across all graphs
processed, for each application executed, in Gigabytes. (Abbreviations used:
CC = Connected Components, ABT = Abnormal Termination, OOM = Out Of
Memory, FDO = File Descriptor Overflow)

Graph iPregel FemtoGraph GraphChi Ligra

Pa
ge

R
an

k DBLP 0.07 3.26 0.07 0.04
Live Journal 0.48 51.95 1.41 0.51

Orkut 1.08 ABT 3.91 1.10
Friendster 20.45 OOM FDO 21.43

C
C

DBLP 0.15 - 1.06 0.03
Live Journal 0.42 - 2.49 0.48

Orkut 1.03 - 7.58 1.07
Friendster 20.94 - FDO 20.45

SS
SP

DBLP 0.14 - 0.10 0.02
Live Journal 0.47 - 2.49 0.42

Orkut 1.07 - 7.57 1.04
Friendster 19.91 - FDO 18.19

competitive at high number of threads. However, the perfor-
mance achieved by GraphChi thanks to its asynchronicity is
almost never equalled by iPregel, even at 32 threads. Nonethe-
less, iPregel continues to exhibit a better graph scalability than
Ligra as illustrated in Table 2, in which we can see that the
speed-up of Ligra over iPregel decreases as the graph grows,
albeit always remaining greater than 1. Still, the vertex-centric
iPregel remains up to 10 times slower than the vertex-subset-
centric Ligra which leverages atomic combiners. Overall, there
are however two major differences between the results observed
for Connected Components and PageRank. First, the best se-
quential performance is now achieved by both GraphChi and
Ligra. Second, the thread scalability of iPregel is as good as
Ligra’s on all graphs.

Finally, the timings collected in SSSP, presented in the right
column of Figure 11, show patterns found in the timings gath-
ered for the Connected Components. Indeed, although Ligra re-
mains several times faster than iPregel, the performance differ-
ence diminishes as the size of the graph increases. In-between
stands GraphChi, faster than iPregel on low numbers of threads
but due to its poor scalability it eventually falls behind as the
number of threads increases. Also, we observe that iPregel con-
tinues to exhibit a thread scalability as good as that of Ligra.

8.2. Memory Footprint

The memory footprints collected are reported in Table 3.
We observe that FemtoGraph is up to 100 times less efficient
than iPregel, eventually resulting in an out-of-memory failure
for Friendster. The high memory overhead generated by Fem-
toGraph is partly due to the lack of message combination. In-
deed, each vertex is provided with a mailbox that contains space
for 100 messages while iPregel mailboxes only store the com-
bined message, as introduced in Section 4.3.3. When process-
ing the 65 million vertices of the Friendster graph (see Table

1), the FemtoGraph mailbox design requires 26GB15 while that
of iPregel uses 0.26GB. In addition to causing message losses
when a vertex receives more than 100 messages, the Femto-
Graph design results in wasted memory for vertices that receive
fewer than 100 messages. Finally, we report that we were not
able to process Orkut with FemtoGraph due to an abnormal ter-
mination that the debugging information provided by Femto-
Graph does not permit us to explain.

According to Table 3, GraphChi is approximately 40 times
more memory efficient than FemtoGraph. It produces a mem-
ory footprint that is within the same order of magnitude than
iPregel. Nonetheless, GraphChi remains between 3 and 6 times
less memory efficient on average. Despite providing an in-
memory version of several applications, GraphChi remains a
framework tailored for out-of-core computations, and it is there-
fore understandable that its memory usage is not as optimised
as that of a pure in-memory framework like iPregel or Ligra.

Finally, we observe in Table 3 that the memory footprint
of Ligra is similar to that of iPregel. In the majority of ex-
periments, the difference is smaller than 60MB. The maximum
difference in favour of Ligra is for SSSP on Friendster, where
its memory footprint is 1.72GB (or 9%) smaller than that of
iPregel. Conversely, running PageRank on the Friendster graph
is where iPregel makes the biggest difference in its favour with
20.45GB against 21.43GB for Ligra; saving 0.98GB (approx-
imately 5%). Among the two frameworks, the best in terms
of memory efficiency depends entirely on the benchmark and
graph being processed, Ligra proves to be more efficient than
iPregel 7 times, while the contrary is observed 5 times. As
a consequence, iPregel manages to provides a vertex-centric
interface with a memory footprint as competitive as its non-
vertex-centric counterpart.

8.3. Programmability
In this section, we evaluate the programmability of frame-

works tested by comparison against the vertex-centric interface
exposed in Pregel. Although Pregel is available within Google
exclusively, its implementations for multiple benchmarks used
in this paper are given in the original paper [1].

The PageRank application is the only one implemented by
all four frameworks considered in this paper, so it was selected
as the reference application. The PageRank implementation us-
ing the original Pregel framework is illustrated in Figure 12,
taken from [1]. We observe 3 characteristics that we use as
evaluation criteria:

1. A vertex-centric interface; representing the fundamental
advantage of the Pregel API with regard to programma-
bility.

2. Encapsulated vertex data, that is, data specific to vertices
are stored in vertices themselves, such as the rank for
PageRank. This contrasts with another possible approach
where vertices would fetch their rank from a global struc-
ture shared across all vertices. The latter however re-
quires the user to be aware of the underlying addressing

1565 million vertices storing 100 4-byte integers each

11

void Compute(MessageIterator* msgs) {

if(superstep () >= 1) {

double sum = 0;

for(; !msgs ->Done (); msgs ->Next ())

sum += msgs ->Value ();

*MutableValue () = 0.15 / NumVertices ()

+ 0.85 * sum;

}

if(superstep () < 10) {

const int64 n = GetOutEdgeIterator (). size ();

SendMessageToAllNeighbors(GetValue () / n);

} else {

VoteToHalt ();

}

}

Figure 12: Compute function for PageRank in Pregel.

Table 4: Evaluation of frameworks considered against the programmability
criteria defined from the Pregel implementation of PageRank. (Abbreviations
used: IP = iPregel, FG = FemtoGraph, GC = GraphChi, LI = Ligra)

Framework IP FT GC LI

Vertex-centric interface Yes Yes Yes No
Encapsulated attributes Yes Yes No No
Vertex halting Yes Yes No No

algorithm between a vertex identifier and the correspond-
ing position in the global structure. As a result, encap-
sulating vertex attributes improves programmability by
letting the framework handle the vertex addressing while
exposing a less error prone programming interface to the
user.

3. The completion of a vertex is expressed via a halting
function. This is the cornerstone of vertex selection and
algorithm termination, yet it requires very little work from
the user: calling the halting function.

In Table 4, we observe that iPregel and FemtoGraph fulfil
all three programmability criteria. As we can see in their imple-
mentations given in Figures 8 and 13, they clearly offer a highly
abstracted vertex-centric interface, vertex-specific information
are encapsulated in the vertices and the halting mechanism is
invoked by vertices using a simple function call.

GraphChi too provides a vertex-centric interface. However,
we observe in its implementation of PageRank in Figure 14
that vertex ranks are contained in a single array pr. As a re-
sult, the user is in charge of handling the vertex addressing, and
they have to manipulate this global structure from a centralised
view and not vertex-centric. In addition, GraphChi performs
the vertex selection via a vertex scheduler, which can be dis-
abled for algorithms such as PageRank, resulting in no halting
mechanism available at vertex-level. Although the algorithm
termination is “based on all vertices voting to halt” according
to Pregel [1], in the GraphChi version of PageRank it is deter-
mined in the main function, where a maximum number of iter-
ations is defined. PageRank has a particularity; all vertices run

void compute(queue <message*, fixed_sized <true >>*

messages) {

if(graph ->superstepcount >= 1) {

double sum = 0;

message* m;

while(messages ->pop(m))

sum += m->data;

data ->weight = 0.15 / graph ->size()

+ 0.85 * sum;

}

if(graph ->superstepcount < 10) {

const long n = outEdges.size ();

sendMessageToNodes(neighbors ,

data ->weight / n);

}

else voteToHalt ();

}

Figure 13: Compute function for PageRank in FemtoGraph.

void update(graphchi_vertex <VertexDataType ,

EdgeDataType >& v, graphchi_context& ginfo) {

if(ginfo.iteration == 0)

pr[v.id()] = 1.0 / ginfo.nvertices;

else if(ginfo.iteration > 0) {

float sum = 0.0;

for(int i = 0; i < v.num_inedges (); i++)

sum += pr[v.inedge(i)->vertexid];

pr[v.id()] = 0.15 / ginfo.nvertices

+ 0.85 * sum;

if(v.outc > 0)

pr[v.id()] /= v.outc;

}

if(ginfo.iteration < 10)

v.set_data(v.outc > 0

? pr[v.id()] * v.outc

: pr[v.id ()]);

}

Figure 14: Compute function for PageRank in GraphChi.

at every superstep. However, this is not the case for most algo-
rithms, including the Connected Components and SSSP, there-
fore requiring a vertex selection mechanism. In GraphChi, this
is achieved via a vertex scheduler that must be explicitly en-
abled or disabled by the user, then called in user code when
processing each vertex. Indeed, for an algorithm that requires
vertex selection like SSSP, vertices that send a message must
then explicitly call the scheduler and schedule the recipient ver-
tex for execution. This approach exposes implementation-level
details to the user. By contrast, iPregel abstracts the vertex se-
lection behind the call to the halting function. In addition, the
selection bypass optimisation presented in Section 4.3.1 is en-
abled via a compilation flag, without requiring a modification
in the user application source code. That allows the user to
rely on a consistent programming interface across all applica-
tions, unlike GraphChi where, for instance, vertices do not halt
in PageRank whereas they do in SSSP, and sending a message
must be followed by an explicit schedule of the recipient vertex
in SSSP, while it does not in PageRank.

12

Finally, Figure 15 illustrates the Ligra implementation of
PageRank. For fairness, we removed the source code section
that was calculating the convergence of PageRank results since
other frameworks (including iPregel) do not do this. This dele-
tion is also beneficial to Ligra from a programmability perspec-
tive as it reduces the amount of code written and hides the de-
tails about convergence calculations from the code. Nonethe-
less, we observe none of the criteria presented in Table 4, al-
though this is understandable for a framework that is not vertex-
centric but vertex-subset-centric. The source code provided ex-
plicitly exposes parallelism to the user in two aspects. First,
syntactically, as we can see with the use of parallel for loops
wrapped in curly brackets. Second, semantically, as Ligra states
in [5], the function provided to edgeMap ”can run in parallel,
so the user must ensure parallel correctness”. In other words,
the user is in partially responsible for the thread-safety of Ligra.
In addition, the iterative structure of the computation as well
as dynamic memory allocations and deallocations are done di-
rectly by the user, as shown in Figure 15. This a price the de-
signers of Ligra have accepted in order to obtain more perfor-
mance, but we argue that such concerns are too low-level for
the user. Furthermore, we observe that the compute function
only outlines the general computation flow. The edge map and
vertex map functions must be defined by the user as well, which
are given in Figure 16 for PageRank. As we can see, the total
amount of code that must be written by the user greatly exceeds
that for iPregel. As explained in Section 4.3.2, Ligra provides
atomic combination as an additional optimisation, which is en-
abled by writing a second version of the update function. This
requires the user to be aware of the atomicity potential of its
combination operation, as well as being able to implement it
atomically using the Ligra functions provided.

9. Conclusions and Future Work

Our initial observation that programmability suffers from
optimisations made for memory efficiency and performance is
illustrated in the results collected. Preserving the vertex-centric
programmability leads FemtoGraph to be up to 17,000 times
and 700 times slower than Ligra and GraphChi respectively,
in addition to resulting in a memory footprint up to orders of
magnitude bigger.

Experiments demonstrate that our framework, iPregel, pro-
vides the best of both worlds. By developing optimisations that
do not hinder programmability, iPregel has been able to bridge
the weaknesses of FemtoGraph with regard to memory effi-
ciency and performance, without sacrificing programmability.
This statement can not be said about any other vertex-centric
framework including FemtoGraph, GraphChi and Ligra. The
memory efficiency of iPregel equals that of Ligra which was the
most memory efficient framework tested. iPregel is also up to
100 times more memory efficient than FemtoGraph, and up to
7 times more memory efficient than GraphChi. This additional
memory efficiency allows iPregel to process graphs that Femto-
Graph cannot because its memory footprint exceeds the avail-
able memory. Regarding performance, the maximum speedup
of GraphChi or Ligra over iPregel is at most 10, which is up to

template <class vertex >

void Compute(graph <vertex >& GA, commandLine P) {

long maxIters = 10, iter = 0;

const intE n = GA.n;

double one_over_n = 1/(double)n;

double* p_curr = newA(double ,n);

{parallel_for(long i=0;i<n;i++)

p_curr[i] = one_over_n ;}

double* p_next = newA(double ,n);

{parallel_for(long i=0;i<n;i++)

p_next[i] = 0;}

bool* frontier = newA(bool ,n);

{parallel_for(long i=0;i<n;i++)

frontier[i] = 1;}

vertexSubset Frontier(n,n,frontier);

while(iter++ < maxIters) {

edgeMap(GA,Frontier ,PR_F <vertex >(

p_curr ,p_next ,GA.V),0, no_output);

vertexMap(Frontier ,PR_Vertex_F(

p_curr ,p_next ,0.85 ,n));

vertexMap(Frontier ,PR_Vertex_Reset(p_curr));

swap(p_curr ,p_next);

}

Frontier.del (); free(p_curr); free(p_next);

}

Figure 15: Compute function for PageRank in Ligra.

1,700 times less than the speed-up they can achieve over Fem-
toGraph. The performance observed on iPregel is up to 2,300
times better than that of FemtoGraph. At worst, iPregel remains
70 times faster than FemtoGraph. On PageRank, iPregel even
manages to provide the best performance overall, outperform-
ing its programmability-hindered counterparts as well.

The multifaceted analysis of this paper demonstrates that
our framework iPregel overcomes the fundamental compromise
in vertex-centric frameworks by reaching a point where vertex-
centric programmability no longer impacts memory efficiency,
and can result in a limited performance loss, no loss at all or
even a performance gain. This makes iPregel the first shared
memory vertex-centric framework able to scale to a multi-billion
edge graph without sacrificing vertex-centric programmability.

Further improvements of iPregel could include the design
and implementation of atomic combiners that do not hinder the
programmability exposed to the user. Also, the multi-threaded
performance observed would certainly benefit from additional
investigations in load-balancing strategies and work stealing
techniques. Finally, porting iPregel to a distributed memory ar-
chitecture is a third potential direction, which may lead future
efforts.

10. Acknowledgements

We thank the reviewers for their helpful feedback and sug-
gestions. This research was supported by the International In-
ternship Program of the National Institute of Informatics of
Tokyo, the Japan Society for the Promotion of Science [grant
number 17H06099] and the UK Engineering and Physical Sci-
ences Research Council [grant number EP/L01503X/1, CDT in
Pervasive Parallelism].

13

template <class vertex > struct PR_F {

double* p_curr;

double* p_next;

vertex* V;

PR_F(double* _p_curr , double* _p_next ,

vertex* _V)

: p_curr(_p_curr), p_next(_p_next), V(_V) {

}

inline bool update(uintE s, uintE d) {

p_next[d] += p_curr[s]

/ V[s]. getOutDegree ();

return 1;

}

inline bool updateAtomic(uintE s, uintE d) {

writeAdd (& p_next[d],

p_curr[s]/V[s]. getOutDegree ());

return 1;

}

inline bool cond(intT d) {

return cond_true(d);

}

};

struct PR_Vertex_F {

double damping;

double addedConstant;

double* p_curr;

double* p_next;

PR_Vertex_F(double* _p_curr , double* _p_next ,

double _damping , intE n)

: p_curr(_p_curr), p_next(_p_next),

damping(_damping),

addedConstant ((1 - _damping)

*(1 / (double)n)){

}

inline bool operator () (uintE i) {

p_next[i] = damping * p_next[i]

+ addedConstant;

return 1;

}

};

struct PR_Vertex_Reset {

double* p_curr;

PR_Vertex_Reset(double* _p_curr)

: p_curr(_p_curr) {

}

inline bool operator () (uintE i) {

p_curr[i] = 0.0;

return 1;

}

};

Figure 16: Additional user-defined structures needed by the PageRank compute
function in Ligra.

11. References

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
G. Czajkowski, Pregel: A system for large-scale graph processing, in:
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, ACM, New York, NY, USA, 2010,
pp. 135–146. doi:10.1145/1807167.1807184.
URL http://doi.acm.org/10.1145/1807167.1807184

[2] L. A. R. Capelli, Z. Hu, T. A. K. Zakian, ipregel: A combiner-based
in-memory shared memory vertex-centric framework, Proceedings of the
47th International Conference on Parallel Processing Companion - ICPP
’18doi:10.1145/3229710.3229719.
URL http://dx.doi.org/10.1145/3229710.3229719

[3] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan, One
trillion edges: Graph processing at facebook-scale, Proceedings of the
VLDB Endowment 8 (12) (2015) 1804–1815.

[4] A. Kyrola, G. Blelloch, C. Guestrin, Graphchi: Large-scale graph com-
putation on just a pc, in: Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12, USENIX
Association, Berkeley, CA, USA, 2012, pp. 31–46.
URL http://dl.acm.org/citation.cfm?id=2387880.2387884

[5] J. Shun, G. E. Blelloch, Ligra, Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming - PPoPP
’13doi:10.1145/2442516.2442530.
URL http://dx.doi.org/10.1145/2442516.2442530

[6] R. R. McCune, T. Weninger, G. Madey, Thinking like a vertex: A survey
of vertex-centric frameworks for large-scale distributed graph processing,
ACM Computing Surveys 48 (2) (2015) 1–39. doi:10.1145/2818185.
URL http://dx.doi.org/10.1145/2818185

[7] B. Alex, W. Benjamin, R. Ioan, Femtograph: A pregel based shared-
memory graph processing library, poster at SC’16.

[8] L. G. Valiant, A bridging model for parallel computation, Communica-
tions of the ACM 33 (8) (1990) 103–111.

[9] L. Dagum, R. Menon, Openmp: an industry standard api for shared-
memory programming, IEEE Computational Science and Engineering
5 (1) (1998) 46–55. doi:10.1109/99.660313.

[10] A. Khan, Vertex-centric graph processing: The good, the bad, and the
uglyarXiv:1612.07404.
URL https://arxiv.org/abs/1612.07404

[11] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search
engine, Computer networks and ISDN systems 30 (1-7) (1998) 107–117.

[12] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset
collection, http://snap.stanford.edu/data (Jun. 2014).

14

