

Edinburgh Research Explorer

Counting Database Repairs under Primary Keys Revisited

Citation for published version:
Calautti, M, Console, M & Pieris, A 2019, Counting Database Repairs under Primary Keys Revisited. in
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
ACM, New York, pp. 104-118, ACM SIGMOD/PODS International Conference on Management of Data
(SIGMOD 2019), Amsterdam, Netherlands, 30/06/19. https://doi.org/10.1145/3294052.3319703

Digital Object Identifier (DOI):
10.1145/3294052.3319703

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224804156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3294052.3319703
https://www.research.ed.ac.uk/portal/en/publications/counting-database-repairs-under-primary-keys-revisited(e578c5ef-739e-4f2a-b1a8-e24c517373ce).html

Counting Database Repairs under Primary Keys
Revisited

Marco Calautti

School of Informatics

University of Edinburgh

mcalautt@inf.ed.ac.uk

Marco Console

School of Informatics

University of Edinburgh

mconsole@inf.ed.ac.uk

Andreas Pieris

School of Informatics

University of Edinburgh

apieris@inf.ed.ac.uk

ABSTRACT
Consistent query answering (CQA) aims to deliver meaning-

ful answers when queries are evaluated over inconsistent

databases. Such answers must be certainly true in all repairs,

which are consistent databases whose difference from the

inconsistent one is somehow minimal. An interesting task

in this context is to count the number of repairs that en-

tail the query. This problem has been already studied for

conjunctive queries and primary keys; we know that it is #P-

complete in data complexity under polynomial-time Turing

reductions (a.k.a. Cook reductions). However, as it has been

already observed in the literature of counting complexity,

there are problems that are “hard-to-count-easy-to-decide”,

which cannot be complete (under reasonable assumptions)

for #P under weaker reductions, and, in particular, under

standard many-one logspace reductions (a.k.a. parsimonious

reductions). For such “hard-to-count-easy-to-decide” prob-

lems, a crucial question is whether we can determine their

exact complexity by looking for subclasses of #P to which

they belong. Ideally, we would like to show that such a prob-

lem is complete for a subclass of #P under many-one logspace

reductions. The main goal of this work is to perform such a

refined analysis for the problem of counting the number of

repairs under primary keys that entail the query.

CCS CONCEPTS
• Information systems → Inconsistent data; • Theory
of computation → Complexity classes; Numeric ap-
proximation algorithms;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PODS’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6227-6/19/06. . . $15.00

https://doi.org/10.1145/3294052.3319703

KEYWORDS
inconsistency, repairs, primary keys, first-order queries,

counting, complexity, approximation schemes

ACM Reference Format:
Marco Calautti, Marco Console, and Andreas Pieris. 2019. Count-

ing Database Repairs under Primary Keys Revisited. In 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems (PODS’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3294052.

3319703

1 INTRODUCTION
Inconsistent databases, that is, databases that do not conform

to their specifications in the form of integrity constraints,

are a real-life phenomenon that arises due to many reasons

such as integration of conflicting sources. With the aim of

obtaining conceptually meaningful answers to queries posed

over inconsistent databases, Arenas, Bertossi, and Chomicki

introduced in the late 1990s the notion of Consistent Query

Answering (CQA) [2]. The key elements of the CQA approach

can be summarized as follows: (1) the notion of repair of an
inconsistent database D, i.e., a consistent database whose

difference with D is minimal, and (2) the notion of query

answering based on certain answers, i.e., answers that are
entailed by every repair. Here is a simple example.

Example 1.1. Consider the schema S consisting of a single
relation Employee(id, name, dept) that comes with the key

constraint key(Employee) = {1}, which states that the first

attribute, i.e., the id, is the key of the relation Employee.

Consider now the database D over S consisting of the atoms:

Employee(1,Bob,HR) Employee(1,Bob, IT)

Employee(2,Alice, IT) Employee(2,Tim, IT).

Observe that the above database is inconsistent w.r.t. the key

constraint since we are uncertain about Bob’s department,

and the name of the employee with id 2. In this case, to devise

a repair, we only need to keep one of the two atoms that are

in a conflict. In this way, we obtain a ⊆-maximal subset of D
that is consistent. Now, consider the Boolean query Q

∃x∃y∃z(Employee(1,x ,y) ∧ Employee(2, z,y)),

https://doi.org/10.1145/3294052.3319703
https://doi.org/10.1145/3294052.3319703
https://doi.org/10.1145/3294052.3319703

which asks whether employees 1 and 2 work in the same

department. This query is true only in two repairs, and thus,

according to the certain answer semantics, is not entailed.

The constraint used in the above example is a primary key.

Primary keys, which means that each relation of the schema

has at most one key, form a central class of constraints that is

heavily used in real-life applications. As we have seen above,

in the presence of primary keys, a repair of a database D is a

maximal consistent subset of D. The rest of this work deals

only with primary keys.

1.1 Counting Database Repairs
Example 1.1, despite its simplicity, illustrates one of the limi-

tations of the standard CQA approach. The notion of certain

answers only says that a tuple is entailed by all repairs, or is

not entailed by some repair. But, as discussed in [4], the for-

mer is too strict, while the latter is not very useful in a more

practical context. Instead, we would like to know how often

a tuple is a consistent answer, i.e., its relative frequency. For

instance, in Example 1.1, the relative frequency of the query

(in fact, of the empty tuple) is
1

2
since, out of four repairs in

total, two of those entail the query. Of course, to compute

the relative frequency of a tuple, we need a way to compute

(i) the number of repairs that entail a tuple (the numerator),

and (ii) the total number of repairs (the denominator).

It is easy to show that, assuming a fixed query and set of

primary keys (i.e., focussing on the data complexity), comput-

ing the total number of repairs is an easy task, i.e., feasible in

polynomial time; see, e.g., [8]. However, computing the num-

ber of repairs that entail a given tuple is #P-complete in data

complexity, under polynomial-time Turing reductions, when

we focus on conjunctive queries [8, 9]. Recall that #P is a hard

counting complexity class, which, roughly speaking, collects

the function problems that ask for the number of solutions

to an NP problem. Maslowski and Wijsen analyzed further

this counting problem. They proved in [8] that, for every

self-join-free conjunctive query and set of primary keys, it is

either tractable, i.e., in FP, or #P-hard under polynomial-time

Turing reductions, and they lifted this result to conjunctive

queries with self-joins in [9].

1.2 Our Main Goal
From the above brief discussion, it is fair to conclude that,

at least for conjunctive queries, the data complexity of the

problem of counting the number of repairs that entail a given

tuple is rather well-understood. Recall, however, that all the

aforementioned completeness results rely on polynomial-

time Turing reductions, a.k.a. Cook reductions. As it has been

already observed in the literature (see, e.g., [6, 10]), there are

problems that are “hard-to-count-easy-to-decide”, which can-

not be complete (under reasonable assumptions) for #P under

standard many-one logspace (or even polynomial-time) re-

ductions; these reductions are also called parsimonious. Note

that the decision version of a counting problem asks whether

the number of solutions is greater than zero. In our case, it

asks whether there is a repair that entails a given tuple.

As stated in [10], Cook reductions blur structural differ-

ences between counting problems and complexity classes.

The reason is that #P is not closed under Cook reductions

(under reasonable assumptions). Therefore, for such “hard-

to-count-easy-to-decide” problems, a crucial question is

whether we can determine their exact complexity by looking

for subclasses of #P to which they belong. Ideally, we would

like to show that such a problem is complete for a subclass

C of #P under many-one logspace reductions, where C is

closed under many-one logspace reductions.

The main goal of this work is to perform such a refined

complexity analysis for the problem of counting the number

of repairs that entail a given tuple, always focussing on its

data complexity. The query can be an arbitrary first-order

query, or a query from important fragments such as positive

existential queries, while the constraints are primary keys.

1.3 Research Challenges
After a preliminary complexity analysis, we have concluded

that in the case of arbitrary first-order queries, our problem

is not only “hard-to-count”, but also “hard-to-decide”. We

can show that the decision problem is NP-complete, while

the counting problem is #P-complete, both under many-one

logspace reductions. This tells us that #P is the right com-

plexity for our problem when we focus on first-order queries.

On the other hand, the situation for positive existential

queries is more interesting. We can show that in this case

we are dealing with a typical “hard-to-count-easy-to-decide”

problem, and therefore, further investigation is needed. We

know several counting complexity classes inside #P. One

of those, which is central for our work, is SpanL, which,

roughly speaking, collects all the functions that compute the

number of distinct accepted outputs of a nondeterministic

logspace transducer [1]. Although we can place our problem

inside SpanL, it is unlikely to be complete for SpanL under

many-one logspace reductions since this implies that L =

NL. In view of the fact that we do not know much about

subclasses of SpanL for which our problem can be complete

under logspace reductions, this brings us to our first question:

Question 1: Can we isolate a complexity class C ⊆ SpanL,
which is closed under many-one logspace reductions, for which
our problem is complete under many-one logspace reductions?

At this point, let us stress one more time that we focus

on the data complexity of our problem. This means, by con-

vention, that we deal, not with a single problem, but with a

family of problems; as usual, each query and set of primary

keys gives rise to a new problem. Furthermore, establishing

a completeness result for a certain complexity class C boils

down to showing that (i) every problem in this family belongs

to C, and (ii) there exists one problem that is C-complete.

But there is no guarantee that there exists a problem in this

family such that all the other problems of the family are

logspace reducible to it. This means that there is no guaran-

tee that the answer to the above question is affirmative. This

brings us to our second research question, which concerns

the case where Question 1 is answered negatively:

Question 2: Can we characterize the data complexity of a
parameterized version of our problem, i.e., when the query and
the set of primary keys enjoy additional properties?

Such a property can be, for example, a constant bound on

the keywidth of the query w.r.t. the set of primary keys, i.e,

the number of atoms occurring in the query with a relation

that has a key. Indeed, as we shall see, the notion of keywidth

plays a critical role in our analysis.

1.4 Summary of Contributions
Our main results can be summarized as follows; let us clarify

that all the complexity results refer to the data complexity:

I In Section 3, we perform a preliminary complexity anal-

ysis under many-one logspace reductions. We show that

our problem is “hard-to-count-hard-to-decide” for arbitrary

first-order queries, but “hard-to-count-easy-to-decide” for

positive existential queries. For the latter case, we further

show that our problem is in SpanL, which is essentially the

starting point of our subsequent investigation.

I In Section 4, we isolate a hierarchy of complexity classes

inside SpanL, dubbed the Λ-hierarchy. The main technical

challenge here is to understand how to limit the power of

logspace nondeterministic transducers in such a way that

will lead to the desired complexity classes. Note that the

Λ-hierarchy, apart from the 0th and 1st levels, consists of

hard complexity classes. In particular, if the second level is

inside polynomial-time, then P = NP.

IWe then proceed, in Section 5, to show that our problem,

assuming that the keywidth of the query w.r.t. the set of

primary keys is bounded by k ≥ 0, is Λ[k]-complete under

many-one logspace reductions, where Λ[k] denotes the kth
level of the Λ-hierarchy. This provides a firm answer to our

second question above.

I By exploiting the above result, we can partially answer

our first question. In Section 5, we show that: either our

problem is Λ[k]-complete, for some k ≥ 0, or there is no

class C ⊆ SpanL, which is closed under logspace reductions,

for which our problem is complete; both statements are un-

der many-one logspace reductions. As the reader may have

already suspected, the existence of an integer k ≥ 0 such

that Λ[k] is the right complexity class for our problem is

equivalent to the fact that the Λ-hierarchy collapses. The

latter is a difficult question that remains open.

I Since our problem is hard, it is natural to try to ap-

proximate it. In Section 6, we target fully polynomial-time

randomized approximation schemes, FPRAS for short. Al-

though for arbitrary first-order queries our problem does

not admit an FPRAS (under reasonable assumptions), in the

case of positive existential queries an FPRAS can be devised.

Actually, this is not a new result since we can inherit the

FPRAS for query answering over disjoint-independent prob-

abilistic databases [5]. The novelty lies in the fact that our

FPRAS is conceptually simpler than the one from [5]. Note

that this result is obtained by showing a more general result,

i.e., every function in Λ[k], for k > 1, admits an FPRAS.

I Finally, in Section 7, we provide more completeness

results for the Λ-hierarchy, which justifies even further its

meaningfulness. In particular, we show that counting the

satisfying assignments of disjoint positive kDNF formulas,

as well as counting the number of forbidden colorings of

k-uniform hypergraphs, are Λ[k]-complete.

2 PRELIMINARIES
In this section, we recall the basics on relational databases,

key constraints, and queries. We also recall some fundamen-

tal notions from complexity theory.

2.1 Databases, Constraints and Queries
Relational Databases. We assume a countably infinite set

C of constants from which database elements are drawn. A

(relational) schema S is a finite set of relation symbols (or

predicates) with associated arity. We write R/n to denote

that R has arity n. A fact over S is an expression of the form

R(c1, . . . , cn), where R/n ∈ S with n > 0, and ci ∈ C for each

i ∈ {1, . . . ,n}. A database over S is a finite set of facts over S.
The active domain of a database D, denoted dom(D), is the
set of constants occurring in D.

Primary Key Constraints. A key constraint (or simply key)
κ over a schema S is an expression of the form key(R) = A,
where R/n ∈ S and A ⊆ {1, . . . ,n}. Such an expression is

called an R-key. A database D satisfies κ if, for every two

facts R(t̄),R(s̄) ∈ D, t̄[A] = s̄[A] implies t̄ = s̄ . We say that D
is consistentw.r.t. a set Σ of keys, writtenD |= Σ, ifD satisfies

each key in Σ; otherwise, is inconsistent w.r.t. Σ. In this work,

we focus on sets of primary keys, i.e., sets of keys that, for
each predicate R of the underlying schema, have at most one

R-key. For technical clarity, we assume, w.l.o.g., that each key

constraint is of the form key(R) = {1, . . . ,m}, i.e., always

the firstm attributes of R/n, for somem ≤ n, form the key.

Queries. Let V be a countably infinite set of variables dis-
joint from C. An atom over a schema S is an expression of

the form R(t1, . . . , tn), where R/n ∈ S, and ti ∈ C ∪ V for

each i ∈ {1, . . . ,n}. Notice that a fact is an atom without

variables. A first-order query Q(x̄) over a schema S is an ex-

pression {x̄ | φ}, where φ is a first-order formula with free

variables x̄ that mentions only atoms over S. The class of first-
order queries is denoted FO. We are also going to consider

key fragments of FO, in particular, existential positive queries
(∃FO+), conjunctive queries (CQ), and unions of conjunctive
queries (UCQ). The answer to Q(x̄) over a database D, de-
noted Q(D), is the set of tuples {c̄ ∈ dom(D) |x̄ | | D |= φ(c̄)}.

Database Repairs and Blocks. For an inconsistent data-

base D w.r.t. a set Σ of primary keys, a repair of D w.r.t. Σ is a

maximal subset of D that is consistent w.r.t. Σ; i.e., if D ′ ⊆ D
is a repair, then there is no D ′′ ⊆ D that is consistent w.r.t. Σ
and D ′ (D ′′

. Let rep(D, Σ) be the set of repairs of D w.r.t Σ.
When we focus on primary keys, there is a convenient

way to construct repairs. We first collect all the facts of the

database that are in a conflict, i.e., they have the same predi-

cate R and agree on key(R), into disjoint sets called blocks.

A repair can then be constructed by keeping exactly one fact

from each block. Formally, for a fact α = R(c1, . . . , cn), the
key value of α w.r.t. Σ is defined as

keyΣ(α) =

⟨R, ⟨c1, . . . , cm⟩⟩ if key(R) = {1, . . . ,m} ∈ Σ,

⟨R, ⟨c1, . . . , cn⟩⟩ otherwise.

Then, given a database D, we define

blockΣ(α ,D) = {β ∈ D | keyΣ(β) = keyΣ(α)}.

For α , β ∈ D, if keyΣ(α) = keyΣ(β), then blockΣ(α ,D) and
blockΣ(β ,D) coincide. Moreover, blockΣ(α ,D) = {α } means

that α is not in a conflict. A repair can be constructed by keep-

ing one fact from each block. Formally, with blockΣ(D) =
{blockΣ(α ,D) | α ∈ D} and ΠD,Σ =

>
B∈blockΣ(D) B, it holds

that rep(D, Σ) = {{α1, . . . ,αn} | ⟨α1, . . . ,αn⟩ ∈ ΠD,Σ}.

For a database D and set Σ of primary keys, we write ≺D,Σ
for the lexicographic ordering over the set of key values

{keyΣ(α) | α ∈ D}. Observe that ≺D,Σ induces a sequence

B1, . . . ,Bn of the sets of blockΣ(D): assuming that κ1 ≺D,Σ
· · · ≺D,Σ κn , the key value of the facts of Bi is κi . Note that
in case D is empty, the above sequence is empty, i.e., n = 0.

Counting Database Repairs. An interesting problem,

which has been already studied in [8, 9], and is the main

concern of this work, is the following; Q is a class of queries:

PROBLEM : #CQA(Q)
INPUT : A database D, a set Σ of primary keys,

Q(x̄) ∈ Q, and a tuple t̄ ∈ dom(D) |x̄ | .
OUTPUT : |{D ′ ∈ rep(D, Σ) | t̄ ∈ Q(D ′)}|.

The goal of this work is to revisit the above problem with

the aim of providing more insights about its computational

complexity. As usual, we are interested in its data complexity,
where the set of constraints and the query are fixed, and only

the database and the tuple are considered input. Let us make

this more precise as it is very crucial for our work. For every

pair of a query Q(x̄) ∈ Q and a set Σ of primary keys, we

can define the following problem:

PROBLEM : #CQA(Q(x̄), Σ)
INPUT : A database D, and a tuple t̄ ∈ dom(D) |x̄ | .
OUTPUT : |{D ′ ∈ rep(D, Σ) | t̄ ∈ Q(D ′)}|.

Let C be a complexity class, and R a class of reductions;

details about complexity classes and reductions are given

below. We say that #CQA(Q) is R-complete for C in data

complexity if: (i) for each Q ∈ Q and set Σ of primary keys,

#CQA(Q, Σ) is in C, and (ii) there is Q ′ ∈ Q and a set Σ′
of

primary keys such that #CQA(Q ′, Σ′) is R-complete for C.

The above counting problems have a natural decision ver-

sion, denoted #CQA>0
(Q) and #CQA>0

(Q, Σ), respectively,
that simply asks whether |{D ′ ∈ rep(D, Σ) | t̄ ∈ Q(D ′)}| > 0.

The data complexity of #CQA>0
(Q) is defined in the same

way as for #CQA(Q). Henceforth, we focus on Boolean

queries, but all the results extend to non-Boolean queries.

2.2 Complexity Toolbox
Counting Complexity Classes. We recall well-known

counting complexity classes, i.e., classes of counting func-

tions of the form {0, 1}∗ → N, that are crucial for our analy-
sis. We first recall the counting analog of polynomial-time:

FP = { f | f is computable in polynomial-time}.

Given a nondeterministic Turing machine (NTM) M , let

acceptM be the function {0, 1}∗ → N such that acceptM (x)
is the number of accepting computations of M on input x .
We can then define:

#P = {acceptM | M is a polynomial-time NTM}

#L = {acceptM | M is a logarithmic-space NTM}.

Given an NTMM with output tape, i.e., a nondeterministic

transducer (NTT), let spanM be the function {0, 1}∗ → N
such that spanM (x) is the number of distinct valid outputs
ofM on input x ; the output of a computation is considered

to be valid if the machine halts in an accepting state. Then:

SpanL = {spanM | M is a logarithmic-space NTT}.

For the above classes we know that #L ⊆ FP, SpanL ⊆ #P. It

is also believed that the above inclusions are strict (under

reasonable complexity-theoretic assumptions) [1].

Let us recall that every counting problem f has a natural

decision version, denoted by f>0, defined as expected: given

x ∈ {0, 1}∗, is it the case that f (x) > 0? Actually, we have

already seen this for #CQA(Q) and #CQA(Q, Σ) in the pre-

vious section. Of course, for pinpointing the complexity of

f>0 we rely on standard complexity classes.

Reductions. Consider two functions f ,д : {0, 1}∗ → N. We

say that f is Cook reducible to д, denoted f ≤
p

T
д, if there

exists a polynomial-time deterministic transducerM , with

access to an oracle for д, such that, for every x ∈ {0, 1}∗,
f (x) = M(x). In other words, a (functional) Cook reduction

is a polynomial-time (functional) Turing reduction. More-

over, we say that f is many-one logspace reducible to д, de-
noted f ≤

log

m
д, if there is a function h : {0, 1}∗ → {0, 1}∗

that is computable in logarithmic-space such that, for every

x ∈ {0, 1}∗, f (x) = д(h(x)). Let us say that when referring to

counting functions, many-one reductions are also called par-
simonious reductions. A class C is closed under Cook (resp.,

many-one logspace) reductions if, for every two functions

f ,д, f ≤
p

T
д (resp., f ≤

log

m
д) and д ∈ C implies f ∈ C.

3 COMPLEXITY OF #CQA: A GLIMPSE
The complexity of #CQA has been already studied by

Maslowski and Wijsen in [8, 9]. Notice that all the com-

plexity results for #CQA and #CQA>0
that will be given in

the rest of the paper concern their data complexity. Thus, for

brevity, we will sometimes avoid to explicitly mention the

term data complexity. We know that:

Theorem 3.1 ([8, 9]). #CQA(CQ) is ≤p

T
-complete for #P.

The above result relies on Cook reductions. However, as it

has been already discussed in Section 1, there are problems

that are “hard-to-count-easy-to-decide”, which cannot be

complete (under reasonable assumptions) for #P under many-

one logspace (or even polynomial-time) reductions. For such

problems, a crucial question is whether we can determine

their exact complexity by looking for subclasses of #P to

which they belong. Our main goal here is to perform such an

analysis for #CQA(Q), where Q is one of the standard query

languages mentioned in Section 2.

3.1 Arbitrary First-Order Queries
Is #CQA(FO) an “easy-to-decide” problem? Unfortunately,

the answer to this question is negative. We can show that:

Theorem 3.2. #CQA>0
(FO) is ≤log

m
-complete for NP.

For the upper bound (assume a fixed query Q ∈ FO and a

set Σ of primary keys), given a databaseD, we simply need to

guess a database D ′ ⊆ D, and then verify that D ′ ∈ rep(D, Σ)
and D ′ |= Q . It is clear that this nondeterministic procedure

runs in polynomial time. For the lower bound, we show that

there is a query Q ∈ FO and a set Σ of primary keys such

that 3SAT ≤
log

m
#CQA>0

(Q, Σ).

With Theorem 3.2 in place, it is not surprising that

#CQA(FO) is also “hard-to-count”. It is easy to show that:

Theorem 3.3. #CQA(FO) is ≤log

m
-complete for #P.

Proof. For the lower bound, since #3SAT, i.e., the count-
ing version of 3SAT, is ≤

log

m
-complete for #P [11], we can

exploit the construction given in the proof of Theorem 3.2.

For the upper bound, fix a query Q ∈ FO and a set Σ of pri-

mary keys. We need to show that #CQA(Q, Σ) is a function
of the form acceptM , where M is a polynomial-time NTM.

Consider a database D, and let B1, . . . ,Bn be the sequence

of blocks induced by ≺D,Σ. The machineM , on input D, per-
forms two simple steps: (1) for i = 1 to n: guess a fact αi ∈ Bi ,
and (2) if {α1, . . . ,αn} |= Q , then accept; otherwise, reject. It

is clear that D ′ = {α1, . . . ,αn} ∈ rep(D, Σ). Moreover, since

D ′
is constructed according to a fixed ordering, each compu-

tation of M on input D builds a distinct repair of rep(D, Σ).
Thus, the number of accepting computations of M on D is

the number of repairs of rep(D, Σ) that entail Q . Since the
machineM runs in polynomial time, the claim follows.

Since #P is closed under many-one logspace reductions,

Theorem 3.3 implies that #P is the right complexity for

#CQA(FO), and thus, there is no room for further analysis.

3.2 Existential Positive First-Order Queries
The situation for existential positive queries is more interest-

ing. According to the following result, we are dealing with a

typical “hard-to-count-easy-to-decide” problem.

Theorem 3.4. #CQA>0
(∃FO+) is in L.

Proof. Fix a queryQ ∈ ∃FO+ and a set Σ of primary keys.

We need to show that #CQA>0
(Q, Σ) is in L. We first recall

that Q can be equivalently rewritten in constant time (since

the query is not part of the input) as a queryQ ′ ∈ UCQ of the

form

∨n
i=1

Qi , where eachQi is a Boolean conjunctive query.

Thus, it suffices to show that #CQA(Q ′, Σ)>0 is in L. The

crucial observation, which is easy to verify, is the following;

we write var(Qi) for the variables in Qi :

Lemma 3.5. Given a databaseD, there existsD ′ ∈ rep(D, Σ)
such thatD ′ |= Q ′ iff there exists i ∈ {1, . . . ,n} and amapping
h from var(Qi) to dom(D) such thath(Qi) ⊆ D andh(Qi) |= Σ.

We then get the following logspace procedure: if there is

i ∈ {1, . . . ,n} and mapping h : var(Qi) → dom(D) such that

h(Qi) ⊆ D and h(Qi) |= Σ, then accept; otherwise, reject.

The following is an easy consequence of Theorem 3.4:

Proposition 3.6. If #CQA(∃FO+) is ≤log

m
-complete for #P,

then P = NP. This holds even for polynomial-time reductions.

Input: a database D
Output: a member of rep(D, Σ)

guess i ∈ {1, . . . ,m} and mapping

h : var(Qi) → dom(D);
if h(Qi) * D or h(Qi) ̸|= Σ then

reject;

j := 1;

while j ≤ n do
if Bj ∩ h(Qi) = {R(t̄)} and Σ has an R-key then

output R(t̄);
else

guess α ∈ Bj ;
output α ;

j := j + 1;

accept.

Algorithm 1: The nondeterministic transducerMQ,Σ.

Towards pinpointing the complexity of #CQA(∃FO+),
Proposition 3.6 tells us that first we should look for a subclass

of #P, closed under many-one logspace reductions, in which

we can place our problem. The obvious candidate is SpanL:

Theorem 3.7. #CQA(∃FO+) is in SpanL.

Proof. It suffices to show that #CQA(UCQ) is in SpanL.

Fix a query Q ∈ UCQ of the form

∨m
i=1

Qi , and a set Σ of

primary keys. We need to show that #CQA(Q, Σ) is a func-
tion of the form spanM , where M is a logarithmic-space

NTT. Consider the transducerMQ,Σ, depicted in Algorithm 1,

that accepts as input a database D, and outputs a member

of rep(D, Σ). Let B1, . . . ,Bn be the sequence of blocks from

blockΣ(D) induced by ≺D,Σ. It can be shown thatMQ,Σ uses

only logarithmic-space. It is also not difficult to see that (1)

for each D ′ ∈ rep(D, Σ), D ′ |= Q iff there exists an accepting

computation ofMQ,Σ on D that outputs D ′
, and (2) for each

output α1, . . . ,αn of an accepting computation of MQ,Σ on

D, αi ∈ Bi , i.e., facts from a certain block always appear at

the same position of the output. The latter statement ensures

that it is not possible for two different accepting computa-

tions to produce the same repair, while their output strings

are syntactically different by producing the same facts in dif-

ferent order. Hence, from (1) and (2), we get that the number

of distinct valid outputs of MQ,Σ on input D is exactly the

number of repairs of rep(D, Σ) that entail Q .

At this point, one may be tempted to think that SpanL is

the right complexity for #CQA(∃FO+). Unfortunately, the
situation is more complex. The following consequence of

Theorem 3.4 states that it is unlikely to be the case:

Proposition 3.8. If #CQA(∃FO+) is ≤
log

m
-complete for

SpanL, then L = NL.

What about subclasses of SpanL? From Section 2.2, we

know that #L ⊆ SpanL. However, since this class is tractable,

while our problem is hard (i.e., ≤
p

T
-complete for #P), it is

again unlikely that this is the class that we are looking for.

Proposition 3.9. If #CQA(∃FO+) is in #L, then P = NP.

Note that the above holds even if we replace #L with FP.

Our Main Research Questions
The above discussion brings us to ourmain questions, already

discussed in Section 1. We proceed to expand a bit more on

those questions in order to make them more precise.

Question 1: Is there a class C ⊆ SpanL, closed under logspace
reductions, such that #CQA(∃FO+) is ≤log

m
-complete for C?

One may think that the above question is trivial since, for

every function f ∈ SpanL, there is a class C ⊆ SpanL, closed

under logspace reductions, such that f is ≤
log

m
-complete for

C: define C as {д ∈ SpanL | д ≤
log

m
f }. However, it should

not be forgotten that we concentrate on the data complexity

of #CQA(∃FO+), which means that we deal with a family F
of functions and not a single function, and, by convention, F
is ≤

log

m
-complete for C if (i) F ⊆ C, and (ii) there is a function

of F that is ≤
log

m
-complete for C. But there is no guarantee

that there is f ∈ F such that, for every д ∈ F, д ≤
log

m
f .

This means that it might be the case that a class C ⊆ SpanL,

closed under logspace reductions, for which #CQA(∃FO+)
is ≤

log

m
-complete does not exist. This brings us to our second

question, which is a refined version of the first one:

Question 2: Can we characterize the data complexity of a
parameterized version of #CQA(∃FO+)?
Let us make this more precise. A covering function for

#CQA(∃FO+) is a function that maps pairs of the form (Q, Σ),
where Q is a query from ∃FO+ and Σ is a set of primary

keys, to the natural numbers. Such a function cov is called

covering for #CQA(∃FO+) since it induces a cover for F =
{#CQA(Q, Σ) | Q ∈ ∃FO+ and Σ is a set of primary keys},

i.e., the family of problems that we have to deal with in

order to pinpoint the data complexity of #CQA(∃FO+). More

precisely, cov induces a sequence F0, F1, . . . of subsets of

F, where Fk = {#CQA(Q, Σ) | cov(Q, Σ) = k}, that covers
F in the sense that F =

⋃
i≥0

Fi . We can now consider a

parameterized version of #CQA(∃FO+) defined as follows:

PROBLEM : #CQAcov
k (∃FO+)

INPUT : A database D, a set Σ of primary keys,

and Q ∈ ∃FO+ such that cov(Q, Σ) = k .
OUTPUT : |{D ′ ∈ rep(D, Σ) | D ′ |= Q}|.

The data complexity of the above problem is defined as ex-

pected. In case Question 1 is answered negatively, the best

that we can hope for is to isolate a covering function cov that
allows us to pinpoint the data complexity of #CQAcov

k (∃FO+).
Question 2 asks whether such a covering function exists.

Plan of Attack. We will first focus on our second question

and provide a definite answer, whichwill then allow us to par-

tially answer the first question. Despite our efforts, we have

not managed to provide a firm answer to the first question.

As we shall see, it is equivalent to a problem concerning the

collapsing of a hierarchy of complexity classes inside SpanL.

Our plan is as follows:

IWe show that the keywidth function (kw), which com-

putes the number of atoms in Q that use a predicate with

a key (w.r.t. to Σ), is a covering function that allows us to

pinpoint the complexity of #CQAkw
k (∃FO+). To this end, we

first isolate (in Section 4) a hierarchy of classes inside SpanL,

which are closed under logspace reductions, dubbed the Λ-
hierarchy. We then show (in Section 5) that, for each k ≥ 0,

#CQAkw
k (∃FO+) is ≤log

m
-complete for Λ[k], i.e., the kth level

of the Λ-hierarchy.
I Then, we proceed (in Section 5) to partially answer our

first question. By exploiting the above result, we show the

following: either #CQA(∃FO+) is ≤log

m
-complete for Λ[k], for

some k ≥ 0, or there is no C ⊆ SpanL, closed under logspace

reductions, such that #CQA(∃FO+) is ≤log

m
-complete for C.

The existence of an integer k ≥ 0 such that Λ[k] is the

right complexity class for #CQA(∃FO+) is equivalent to the

fact that the Λ-hierarchy collapses. Whether the latter holds

seems to be a difficult question that remains open.

4 THE Λ-HIERARCHY
We now proceed to introduce our hierarchy of complexity

classes. The main technical challenge is to understand how

to limit the computational power of logarithmic-space NTTs,

which in turn will lead to our new complexity classes inside

SpanL that serve the purpose described in our plan of attack.

To this end, we first give a semi-formal discussion on a couple

of structural properties that our problem enjoys, which will

provide important insights on how to overcome our main

technical challenge. Interestingly, these properties are shared

by several natural problems inside SpanL.

4.1 The Guess-Check-Expand Paradigm
It turned out that there exists a generic paradigm, which

we call guess-check-expand, that a logspace NTT can follow

in order to place problems inside SpanL, assuming that the

following structural properties are fulfilled:

Small Certificates. A solution (in our case, a repair that

entails the query) is witnessed via a small certificate,
i.e., of logarithmic size, that is verifiable in logspace.

For the next property, we first need to give some auxiliary

terminology. Given a sequence of sets S1, . . . , Sn , an ℓ-selector
of it, for ℓ ≥ 0, is a sequence of pairs σ = (i1, e1), . . . , (iℓ, eℓ),
where 1 ≤ i1 < · · · < iℓ ≤ n, and ej ∈ Si j for each

j ∈ {1, . . . , ℓ}. Intuitively, a pair (i, e) in σ tells us to “keep

the element e from the set Si ”. We can then define the carte-
sian product of S1, . . . , Sn w.r.t. σ , denoted [S1, . . . , Sn]

σ
, as

Sσ
1
×· · ·×Sσn , where S

σ
i = {e} if σ contains a pair (i, e), other-

wise, Sσi = Si . In simple words, [S1, . . . , Sn]
σ
is the cartesian

product of S1, . . . , Sn with the difference that ℓ sets are first
replaced by a singleton set as dictated by the ℓ-selector σ .

We can now discuss the second property. For brevity, for

an input instance x , let sol(x) be the set of solutions, and

cert(x) the set of certificates that witness a solution of sol(x).

Solutions via Certificate Expansion. There is k ≥ 0 such

that, for every input instance x , there is a sequence

of logspace computable sets S1, . . . , Sn , called solution
domains, such that

|sol(x)| =

������ ⋃
c ∈cert(x)

[S1, . . . , Sn]
σc

������ ,
where σc is an ℓ-selector, with ℓ ≤ k , for S1, . . . , Sn
determined by the small certificate c . In fact, there is a

bijection enc : sol(x) →
⋃

c ∈cert(x)[S1, . . . , Sn]
σc
, and

enc(s) should be seen as an encoding of the solution s .

A function that enjoys the above properties can be placed

in SpanL via a simple guess-check-expand algorithm:

(1) (Guess) Guess a candidate small certificate c .
(2) (Check) If c is not a valid certificate, then reject.

(3) (Expand) Expand c into an encoding of a solution

witnessed by c using the solution domains S1, . . . , Sn
as follows: for i = 1 ton, if the ℓ-selector σc determined

by c mentions (i, e), then output e; otherwise, guess
e ∈ Si and output e .

It is clear that, on an input x , the above NTT uses loga-

rithmic space in the size of x since the small certificates are

logspace verifiable, and the solution domains are logspace

computable. It is also clear that the number of distinct valid

outputs of the NTT coincides with

��⋃
c ∈cert(x)[S1, . . . , Sn]

σc
��
,

and thus, with |sol(x)|, as needed.

#CQA(Q, Σ) via a Guess-Check-Expand Algorithm. It is
interesting to observe that the problem #CQA(Q, Σ), for some

UCQ Q and set Σ of primary keys, enjoys the two structural

properties discussed above; recall that an existential positive

query can be rewritten as a UCQ. In fact, on input D:

• A small certificate for a repair of rep(D, Σ) that entails
Q , is a pair (Q ′,h), where Q ′

is a disjunct of Q , and
h : var(Q ′) → dom(D) with h(Q ′) ⊆ D and h(Q ′) |= Σ.

• The sequence of solution domains corresponds to the

sequence B1, . . . ,Bn of the sets of blockΣ(D) induced
by ≺D,Σ. The ℓ-selector σ(Q ′,h) for B1, . . . ,Bn deter-

mined by a certificate (Q ′,h)mentions the pair (i,R(t̄)),
i.e., it keeps the factR(t̄) from Bi , iffh(Q

′)∩Bi = {R(t̄)}
and Σ has anR-key. The latter implies that ℓ is bounded
by the maximum number of atoms with a predicate

that has a key over all disjuncts of Q , which does not

depend on the input database D. Clearly, the number

of repairs of rep(D, Σ) that entail Q is the number������ ⋃
(Q ′,h)∈cert(D)

[B1, . . . ,Bn]
σ(Q′,h)

������ .
Therefore, the fact that #CQA(Q, Σ) is in SpanL can be

shown via a guess-check-expand algorithm. Actually, the

logspace NTT presented in Algorithm 1 is such an algorithm:

(1) (Guess) It first guesses a candidate certificate (Q ′,h).
(2) (Check) If h(Q ′) * D or h(Q ′) ̸|= Σ, then it rejects.

(3) (Expand) It expands (Q ′,h) into an encoding of a so-

lution witnessed by (Q ′,h) as follows: for i = 1 to n, if
h(Q ′) ∩ Bi = {R(t̄)} and Σ has an R-key, then outputs

R(t̄); otherwise, it guesses a fact α ∈ Bi and outputs α .

Ubiquity of the Guess-Check-Expand Paradigm. It

turned out that there are several natural problems that enjoy

the above structural properties, and thus, can be placed in

SpanL via the guess-check-expand paradigm. Here we give

a partial list of such problems, which ask for the number of:

• Satisfying assignments of a positive kDNF formula.

• Non-independent sets of an undirected graph.

• Non-3-colorings of an undirected graph.

• Non-vertex-covers of an undirected graph.

Let us stress that the above list is by no means exhaustive,

which is a strong indication that the guess-check-expand

paradigm is a fundamental algorithm design paradigm that

deserves our attention.

Problems Beyond Guess-Check-Expand. At this point,
one may think that the structural properties discussed above

are trivial, i.e., they are fulfilled by every problem inside

SpanL. In such a case, all the functions inside SpanL admit a

guess-check-expand algorithm, and thus, it would be of little

use towards understanding how to limit the computational

power of logarithmic-space NTTs, which in turn will lead to

our new complexity classes. The small certificate property

implies that the decision version of a counting problem is

in L. Actually, this is how Theorem 3.4, which states that

#CQA>0
(∃FO+) is in L, is shown. Thus, if a ≤

log

m
-complete

problem for SpanL enjoys the small certificate property, then

L = NL. Hence, it is unlikely that ≤
log

m
-complete problems

for SpanL can be solved via guess-check-expand algorithms

(this is shown in Theorem 4.3).

4.2 Guess-Check-Expand via Compactors
The previous discussion suggests that our new complexity

classes inside SpanL, which will form theΛ-hierarchy, should
be defined by relying on logarithmic-space NTTs whose com-

putational power does not go beyond guess-check-expand

algorithms. In other words, we should limit the nondeter-

minism of logspace NTTs in such a way that they can only

implement algorithms that follow the guess-check-expand

paradigm. However, it is not clear at all how this can be

achieved, while keeping the definition of the obtained class

of NTTs compact and elegant.

Towards such an elegant definition, we observe that the

“solutions via certificate expansion” property essentially tells

us the following. On an input x , assuming that S1, . . . , Sn
are the solution domains, for a valid certificate c ∈ cert(x),
we can deterministically compute in logspace a compact

representation of [S1, . . . , Sn]
σc
. This is simply the sequence

of sets Sσc
1
, . . . , Sσcn , while its unfolding

unfolding
(
Sσc

1
, . . . , Sσcn

)
= Sσc

1
× · · · × Sσcn

gives us back the set [S1, . . . , Sn]
σc
. Having this simple ob-

servation in place, we can implement guess-check-expand

algorithms via deterministic logspace transducers, called

compactors, which are responsible for computing compact

representations as the one above. Somehow, a logspace com-

pactor implements the deterministic part of a guess-check-

expand algorithm, while the nondeterministic part is taken

care by the unfolding of the compact representations. As we

shall see, logspace compactors, together with the notion of

unfolding, will allow us to provide an elegant definition for

our hierarchy. Before giving the formal definitions, let us

give some more details how compactors work.

Logspace Compactors and Unfolding. Consider a func-
tion f that enjoys the two main properties. Let x be an input

instance, and S1, . . . , Sn the solution domains. A logspace

compactorMf accepts as input x and a candidate certificate

c , and performs two steps:

(1) (Check) If c is not valid, then output ϵ and halt.

(2) (Compact) For i = 1 ton, if the selector σc determined

by c mentions (i, e), then output {e}; else, output Si .

Let unfolding(ϵ) = ∅, and assume that ccert(x) collects all
the candidate small certificates. It is not difficult to see that

f (x) =

������ ⋃
c ∈ccert(x)

unfolding
(
Mf (x , c)

) ������ .
Note that unfolding(ϵ) = ∅ reflects the fact that invalid can-

didate certificates should not be taken into count.

4.3 The Λ-hierarchy: Definition and
Results

The previous, rather extensive, semi-formal discussion pro-

vides important insights on how to limit the power of

logspace NTTs, which in turn will lead to our new com-

plexity classes that form the Λ-hierarchy. This will be done
via logspace compactors and unfolding as sketched above.

We proceed with the formal definitions.

Shape of Compact Representations.We first need to fix

the syntactic shape of compact representations, and for-

malize the notion of unfolding. Let S1, . . . , Sn ⊆ {0, 1}∗ be
non-empty sets of strings, where n ≥ 0; assume that, for

i ∈ {1, . . . ,n}, Si = {s1

i , . . . , s
ℓi
i }. We write [[S1, . . . , Sn]]

k
,

where k ≥ 0, for the set of strings

{ϵ} ∪ {s1$s2$ · · · $sn | either si ∈ Si or si = #s1

i $ · · · $sℓii #

and |{i ∈ {1, . . . ,n} | si ∈ Si }| ≤ k}.

Given a string s1$ · · · $sn ∈ [[S1, . . . , Sn]]
k \ {ϵ}, we define

unf(si) =

{si } if si ∈ Si

Si otherwise,

for each i ∈ {1, . . . ,n}. The unfolding of s ∈ [[S1, . . . , Sn]]
k
,

denoted unfolding(s), is defined as
unf(s1) × · · · × unf(sn) if s = s1$ · · · $sn

∅ if s = ϵ .

Logspace Compactors. We are now ready to introduce

logspace compactors. A logspace 2-2-transducer has two

read-only two-way input tapes. Our logspace compactors

are essentially logspace 2-2-transducers that output strings

of the shape introduced above. We use the notion of cer-
tificate function, which is a logspace computable function

д : {0, 1}∗ → N such that д(x) ∈ O(log |x |).

Definition 4.1 (Logspace Compactor). A logspace k-
compactor, where k ≥ 0, is a logspace 2-2-transducerM such

that, for some certificate function д, the following holds: for

each x ∈ {0, 1}∗, there are non-empty sets S1, . . . , Sn ⊆

{0, 1}∗, for n ≥ 0, such that, for each c ∈ {0, 1}∗ with

|c | ≤ д(x),M(x , c) ∈ [[S1, . . . , Sn]]
k
.

In simple words, a logspace k-compactor accepts as input

an instance x ∈ {0, 1}∗, and a candidate certificate c ∈ {0, 1}∗

of logarithmic size, and outputs ϵ , or a compact representa-

tion of [S1, . . . , Sn]
σc
, whereσc is the ℓ-selector for S1, . . . , Sn

determined by c .

The Λ-hierarchy. Given a logspace k-compactor M , let

unfoldM be the function {0, 1}∗ → N such that unfoldM (x)

is the number������ ⋃
c ∈{0,1}∗, |c | ≤д(x)

unfolding(M(x , c))

������ .
For each k ≥ 0, we can then define the complexity class

Λ[k] = {unfoldM | M is a logspace k-compactor}.

The Λ-hierarchy is defined as the infinite union

Λ =
⋃
k≥0

Λ[k].

Weproceed to establish some fundamental results concern-

ing the Λ-hierarchy. The first one is crucial for our analysis:

Proposition 4.2. For each k ≥ 0, Λ[k] is closed under
many-one logspace reductions.

The above proposition, shown by exploiting the fact that

many-one logspace reductions can be composed, simply says

that, if f ≤
log

m
д and д ∈ Λ[k], then f ∈ Λ[k]. The next result

confirms that Λ is a hierarchy of classes inside SpanL:

Theorem 4.3. Λ[0] ⊆ Λ[1] ⊆ · · · ⊆ Λ ⊆ SpanL; further-
more, unless L = NL, Λ (SpanL.

The fact thatΛ[i] ⊆ Λ[i+1], for i ≥ 0, follows by definition.

For showing that Λ ⊆ SpanL, we essentially show that a

logspace k-compactor, for k ≥ 0, can be converted into a

logspaceNTT that follows the guess-check-expand paradigm.

This should be already clear from the previous semi-formal

discussion on guess-check-expand algorithms and logspace

compactors. Finally, for showing that Λ (SpanL (unless

L = NL), we first establish that, for every f ∈ Λ, its decision
version f>0 is in L; the latter uses the fact that the existence

of a solution is witnessed by a small, logspace verifiable,

certificate. Since every problem in NL is the decision version

of some problem in SpanL, SpanL ⊆ Λ implies L = NL.

The next result establishes that, apart from Λ[0] and Λ[1],
the rest of the hierarchy consists of “hard” classes:

Theorem 4.4. The following statements hold:
(1) Λ[1] ⊆ #L; furthermore, unless L = NL, Λ[1] (#L.
(2) FPΛ[2] = FP

#P.

For showing that Λ[1] ⊆ #L, for every function f ∈ Λ[1],
we provide a logspace NTM Mf such that, for each x ∈

{0, 1}∗, f (x) = acceptMf
(x). The fact that the inclusion is

strict (unless L = NL) is a consequence of (i) for each f ∈

Λ[1], f>0 ∈ L (actually, as discussed above, this holds for the

whole hierarchy), and (ii) every problem in NL is the decision

version of a problem in #L. For showing the second claim,

i.e., FP
Λ[2] = FP

#P
, it suffices to show FP

#P ⊆ FP
Λ[2]

(the

other direction is trivial), which is equivalent to #P ⊆ FP
Λ[2]

.

The latter boils down to showing that there exists f ∈ Λ[2]
that is ≤

p

T
-complete for #P. Such a function is #Pos2DNF,

which computes the number of satisfying assignments of

a positive 2DNF formula. Indeed, we can easily show that

#Pos2DNF ∈ Λ[2], while the #P-hardness is implicit in [12];

for a formal proof see [8].

The second statement of Theorem 4.4 has a couple of inter-

esting implications, which confirm that beyond Λ[1] we deal
with “hard” complexity classes. More precisely, the fact that

FP
Λ[2] = FP

#P
, combined with the fact that the polynomial-

hierarchy (PH) is included in P
#P

(this is a consequence of

Toda’s powerful theorem [13]), we get that:

Corollary 4.5. (1) If Λ[2] ⊆ FP, then P = NP.
(2) PH ⊆ P

Λ[2] = P
#P.

Notice that claim (1) of Theorem 4.4, together with claim

(1) of the above corollary, imply that the 1st level of the Λ-
hierarchy is strictly contained in the 2nd level, unless P = NP.

We can also show, assuming that there are infinitely many

Mersenne primes, i.e., prime numbers of the form 2
n − 1,

for some integer n, that the 0th level is strictly contained in

the 1st level. The above assumption is known as the Lenstra-

Pomerance-Wagstaff conjecture. Therefore:

Proposition 4.6. (1) Unless P = NP, Λ[1] (Λ[2].
(2) Unless the Lenstra-Pomerance-Wagstaff conjecture does

not hold, Λ[0] (Λ[1].

This brings us to the crucial question whether the same

can be established (possibly under reasonable assumptions)

for the other levels of the hierarchy. Unfortunately, we do

not known whether the inclusions beyond Λ[2] are strict.
This essentially asks whether the Λ-hierarchy collapses to

its kth level for some k ≥ 2, i.e., whether Λ = Λ[k]. This is
a difficult question that, despite our efforts, has remained

open. We strongly believe that:

Conjecture 4.7. The Λ-hierarchy does not collapse.

An interesting issue is whether our new classes ensure the

existence of efficient approximation schemes; this is studied

in Section 6. But now the question is whether theΛ-hierarchy
serves its purpose. This is the subject of the next section.

5 COMPLEXITY OF #CQA(∃FO+)
We are now ready to analyze the complexity of #CQA(∃FO+)
under the lenses of many-one logspace reductions. We first

study, in Section 5.1, the question whether a covering func-

tion for #CQA(∃FO+) that allows to pinpoint the data com-

plexity of the parameterized version of the problem ex-

ists. Then, in Section 5.2, we partially answer the ques-

tion whether we can characterize the data complexity of

#CQA(∃FO+) via a class C ⊆ SpanL.

Input: a database D, and a pair (Q ′,h)

Output: a string from [[B1, . . . ,Bn]]
k

if h(Q ′) * D or h(Q ′) ̸|= Σ then
halt;

i := 1;

while i ≤ n do
if Bi ∩ h(Q ′) = {R(t̄)} and Σ has an R-key then

output R(t̄);
else

output #α1

i $ · · · $α ℓi
i #;

if i < n then
output $;

i := i + 1;

Algorithm 2: The k-compactorMQ,Σ.

5.1 #CQA(∃FO+) and the Keywidth
Function

Recall that the keywidth function (kw) maps pairs (Q, Σ),
where Q ∈ ∃FO+ and Σ is a set of primary keys, to N, while

kw(Q, Σ) = |{R(t̄) | R(t̄) occurs in Q, and Σ has an R-key}|.

It is clear that kw is a covering function for #CQA(∃FO+).
We focus on the parameterized version of #CQA(∃FO+), de-
noted #CQAkw

k (∃FO+), which is defined in the same way as

#CQA(∃FO+) with the key difference that the input query

Q and set Σ of primary keys are such that kw(Q, Σ) = k .

Theorem 5.1. #CQAkw
k (∃FO+) is ≤log

m
-complete for Λ[k].

For brevity, let Fkwk = {#CQA(Q, Σ) | kw(Q, Σ) = k}. The
above result boils down to showing that, for each k ≥ 0:

(1) (Membership) For each f ∈ Fkwk , f ∈ Λ[k].

(2) (Hardness) There exists f ∈ Fkwk that is ≤
log

m
-complete

for Λ[k].

The rest of this subsection is devoted to showing the above

statements. In the sequel, fix an arbitrary k ≥ 0.

Proof of Membership
Since an existential positive query can be converted into a

UCQ, we can assume that the function f ∈ Fkwk is of the

form #CQA(Q, Σ), whereQ ∈ UCQ, and Σ is a set of primary

keys. We need to show that #CQA(Q, Σ) is a function of the

form unfoldM , whereM is a logspace k-compactor. Actually,

we simply need to convert the guess-check-expand NTT,

depicted in Algorithm 1, into a check-compact transducer.

It should be clear from our semi-formal discussion how this

can be done, but, for the sake of completeness, we provide

here the details and the formal definition.

Consider the 2-2-transducerMQ,Σ, depicted in Algorithm 2

(notice the similarity with Algorithm 1), that accepts as input

a database D, and a candidate certificate (Q ′,h), where Q ′

is a disjunct of Q and h : var(Q ′) → dom(D). The data-

base D is stored on the first tape, while the pair (Q ′,h)
on the second tape. As usual, B1, . . . ,Bn is the sequence

of the sets of blockΣ(D) induced by ≺D,Σ. For brevity, let

Bi = {α1

i , . . . ,α
ℓi
i }, for each i ∈ {1, . . . ,n}. Let us clarify that

if the transducer halts without writing anything on the out-

put tape, this means that the output tape contains the empty

string ϵ . It can be shown that MQ,Σ uses only logarithmic-

space; in fact, the argument is the same as for the logspace

NTT depicted in Algorithm 1. It is also clear thatMQ,Σ is a

k-compactor. Notice that the latter is a consequence of the

fact that the number of atoms R(t̄) occurring in Q ′
such that

Σ has an R-key is at most k , which in turn implies that indeed

MQ,Σ(D, (Q
′,h)) ∈ [[B1, . . . ,Bn]]

k
. Finally, with C being the

set of all candidate certificates, i.e., pairs of the form (Q ′,h),
where Q ′

is a disjunct of Q , and h : var(Q ′) → dom(D), it is
easy to see that the number of repairs that entail Q is������ ⋃

(Q ′,h)∈C

unfolding
(
MQ,Σ(D, (Q

′,h))
) ������ ,

and the claim follows.

Proof of Hardness
We proceed to show that there exists a query Q ∈ ∃FO+
(actually, a conjunctive query), and a set Σ of primary keys,

with kw(Q, Σ) = k , such that, for every function λ ∈ Λ[k],
λ is many-one logspace reducible to #CQA(Q, Σ). The con-
junctive query Q is defined as

∃x1∃y1 · · · ∃xk∃yk∃z
(
Selector(z,x1,y1, . . . ,xk ,yk) ∧

k∧
i=1

Element(xi ,yi)

)
,

while the set Σ consists of the single key

key(Element) = {1}.

Roughly, the predicate Selector stores ℓ-selectors, with ℓ ≤ k ,
for the solution domains, while the predicate Element stores

elements of the solution domains (e.g., Element(i, s) refers to
the element s from the ith solution domain). It is clear that

kw(Q, Σ) = k . We proceed to show that, for each function

λ ∈ Λ[k], λ ≤
log

m
#CQA(Q, Σ).

Fix λ ∈ Λ[k]. By definition, λ is a function of the form

unfoldM , whereM is a logspace k-compactor. Therefore, for

some certificate function д, the following holds: for each

x ∈ {0, 1}∗, there are non-empty sets S1, . . . , Sn ⊆ {0, 1}∗

such that, for each c ∈ {0, 1}∗ with |c | ≤ д(x), M(x , c) ∈

[[S1, . . . , Sn]]
k
. Consider an arbitrary instance x ∈ {0, 1}∗.

We define the database Dx as the union of two databases:

Delement and Dselector . The first one collects all the elements

of the solution domains that the compactor outputs:

{Element(⋆,⋆)} ∪

{Element(i, s) | i ∈ {1, . . . ,n}, s ∈ Si , and there exists

c ∈ {0, 1}∗ with |c | ≤ д(x) such that

M(x , c) = s1$ · · · $sn with si = s or si = # · · · s · · · #}.

Let us clarify that Element(⋆,⋆) is an auxiliary fact, which

is needed for dealing with selectors that select less than k el-

ements. The other database collects all the ℓ-selectors for the
solution domains. For brevity, given a string s1$ · · · $sn ∈

[[S1, . . . , Sn]]
k
, let single(s1$ · · · $sn) = {(i, si) | i ∈

{1, . . . ,n} and si ∈ Si }. Let also C = {c ∈ {0, 1}∗ | |c | ≤
д(x),M(x , c) , ϵ}. Dselector follows:⋃

c ∈C

{
Selector(c, i1, s1, . . . , iℓ, sℓ,⋆, . . . ,⋆︸ ︷︷ ︸

2(k−ℓ)

) |

single(M(x , c)) =
{
(i j , sj)

}
j ∈{1, ..., ℓ }

}
.

This completes the definition of Dx . We can show that

λ(x) = |{D ∈ rep(Dx , Σ) | D |= Q}|.

This is done by exhibiting a bijection

h : {D ∈ rep(Dx , Σ) | D |= Q} →
⋃

c ∈{0,1}∗
|c | ≤д(x)

unfolding(M(x , c));

h(D ′) = s1, . . . , sn , where, for i ∈ {1, . . . ,n}, Element(i, si) ∈
D ′ \ Element(⋆,⋆). We can also show, via simulation of the

compactor M , that Dx can be constructed in logarithmic

space. Thus, the above is a many-one logspace reduction.

5.2 Non-parameterized #CQA(∃FO+)
We now focus our attention on #CQA(∃FO+). By exploiting

Theorem 5.1, we can partially answer the question whether

there is a class C ⊆ SpanL, closed under many-one logspace

reductions, such that #CQA(∃FO+) is ≤log

m
-complete for C.

Theorem 5.2. The following are equivalent:
(1) There exists a complexity class C ⊆ SpanL, closed under

many-one logspace reductions, such that #CQA(∃FO+)
is ≤log

m
-complete for C in data complexity.

(2) There exists an integer k ≥ 0 such that #CQA(∃FO+) is
≤
log

m
-complete for Λ[k] in data complexity.

(3) The Λ-hierarchy collapses.

Theorem 5.2 essentially tells that either #CQA(∃FO+) is
≤
log

m
-complete for Λ[k], for some k ≥ 0, or there is no com-

plexity class C ⊆ SpanL, closed under logspace reductions,

such that #CQA(∃FO+) is ≤
log

m
-complete for C. Thus, the

right complexity class that characterizes the data complexity

of our problem, if it exists, is one of the levels of the Λ-
hierarchy. Moreover, whether such a class exists boils down

to the question whether the Λ-hierarchy collapses. Thus, the
latter question begs for an answer, which will complete the

picture concerning the data complexity of #CQA(∃FO+).

6 EFFICIENT APPROXIMATION
SCHEMES

When a counting problem is computationally hard, it is natu-

ral to approximate it. In general, approximations to such prob-

lems can be computed via randomized algorithms with some

probabilistic guarantees. Here we target fully polynomial-

time randomized approximations schemes, FPRAS for short.

As we shall see, for arbitrary first-order queries, our prob-

lem does not admit an FPRAS (under a reasonable assump-

tion). On the other hand, for positive existential queries, we

already know that our problem admits an FPRAS; this is

implicit in [5]. However, by exploiting the fact that, for ev-

ery Q ∈ ∃FO+ and set Σ of primary keys, #CQA(Q, Σ) is in
Λ[kw(Q, Σ)], we can provide a conceptually simpler FPRAS.

But let us first recall some basic notions.

Probability Spaces and Random Variables. A probabil-
ity space is a pair PS = (Ω,π), where Ω is a finite set, called

sample space, and π : Ω → [0, 1] is a function such that∑
ω ∈Ω π (ω) = 1. A subset E ⊆ Ω is called an event. The prob-

ability of an event E, denoted Pr(E), is defined as
∑

ω ∈E π (ω).
A random variable over PS is a function X : Ω → Q. The
probability distribution of X is a function πX from the image

of X to [0, 1] such that πX (x) = Pr(X = x), where X = x
denotes the event {ω ∈ Ω | X (ω) = x}.

FPRAS. Consider a function f : {0, 1}∗ → N. A fully
polynomial-time randomized approximation scheme (FPRAS)
for f is a randomized algorithm A that accepts as input

x ∈ {0, 1}∗, and numbers ϵ > 0 and 0 < δ < 1, runs in poly-

nomial time in |x |, 1/ϵ and log(1/δ), and produces a random
variable A(x , ϵ,δ) such that

Pr(|A(x , ϵ,δ) − f (x)| ≤ ϵ · f (x)) ≥ 1 − δ .

Let us clarify that, assuming the random variable A(x , ϵ,δ)
is over the sample space (Ω,π), |A(x , ϵ,δ)− f (x)| ≤ ϵ · f (x)
denotes the event {ω ∈ Ω | |A(x , ϵ,δ)(ω) − f (x)| ≤ ϵ · f (x)}.

6.1 Approximation via FPRAS
As said above, for arbitrary first-order queries, our problem

does not admit an FPRAS, under the assumption that RP ,

NP. This is a consequence of the fact that #CQA(FO) is ≤log

m
-

complete for #P (Theorem 3.3). Recall that RP is the class

of problems that are efficiently solvable by a randomized

Input: a string x ∈ {0, 1}∗

Output: 0 or 1

for i = 1 to n do
choose si ∈ Si with probability

1

|Si |
;

if there exists c ∈ {0, 1}∗ with |c | ≤ д(x) such that

(s1, . . . , sn) ∈ unfolding(M(x , c)) then
return 1;

else
return 0;

Algorithm 3: The randomized algorithm Sample.

algorithm with a bounded one-sided error (i.e., the answer

may mistakenly be “no”) [3].

Theorem 6.1. Unless RP = NP, there exists a queryQ ∈ FO
and a set Σ of primary keys such that #CQA(Q, Σ) does not
admit an FPRAS.

We now proceed to provide an FPRAS for the case of

positive existential queries which, as mentioned above, is

conceptually simpler than the one inherited from [5]. Actu-

ally, we are going to establish a more general result, which

will immediately imply the desired FPRAS. Interestingly, we

can show that every problem that falls in the Λ-hierarchy
admits such a conceptually simple FPRAS:

Theorem 6.2. For k ≥ 0, every function in Λ[k] admits an
FPRAS.

Proof. Fix k ≥ 0, and consider a function f ∈ Λ[k]. By
definition, f is a function of the form unfoldM , where M
is a logspace k-compactor. Let д be the certificate function

associated withM . Consider an arbitrary x ∈ {0, 1}∗, and let

S1, . . . , Sn ⊆ {0, 1}∗ be the solution domains ofM on input

x . The FPRAS for f relies on a randomized algorithm, called

Sample, which is depicted in Algorithm 3. We define U as

the cartesian product S1 × · · · × Sn . We can show that:

Lemma 6.3. The following statements hold:
(1) Sample(x) terminates after polynomially many steps.
(2) Pr(Sample(x) = 1) =

f (x)
|U |

.

Sample is a polynomial-time randomized algorithm that,

on input x , outputs a random variable Xx over (U ,π), with
π being the uniform distribution, that maps U to {0, 1}, and

Pr(Xx = 1) =
f (x)
|U |

. Consider now the random variable

X (t)
x =

|U |

t
·

t∑
i=1

X i
x ,

where t > 0, and X 1

x , . . . ,X
t
x are independent random vari-

ables, which are essentially copies ofXx . HavingX
(t)
x in place,

we define the randomized algorithm Apxf , which accepts as

input x , and numbers ϵ > 0 and 0 < δ < 1, and performs the

following steps:

(1) m := max1≤i≤n {|Si |};

(2) t :=
(2+ϵ)mk

ϵ 2
· ln

(
2

δ

)
;

(3) return X (t)
x .

It is easy to see that Apxf runs in polynomial time in |x |,
1/ϵ and ln(1/δ). It remains to show that Apxf is indeed an

FPRAS for f . To this end, we exploit Chernoff’s inequality.

Since X (t)
x is the product of |U | and the random mean of t

Bernoulli random variables,

Pr
(���X (t)

x − f (x)
��� ≤ ϵ · f (x)

)
≥ 1 − 2e−

tϵ2

2+ϵ ·
f (x)
|U | .

By replacing t with (2+ϵ)mk

ϵ 2
· ln

(
2

δ

)
, we obtain that

Pr
(���X (t)

x − f (x)
��� ≤ ϵ · f (x)

)
≥ 1 − 2e−m

k ·ln(2

δ)·
f (x)
|U | .

Observe that, if we could replace
f (x)
|U |

with
1

mk , then

Pr
(���X (t)

x − f (x)
��� ≤ ϵ · f (x)

)
≥ 1 − δ ,

which proves the claim. Thus, it remains to show that
f (x)
|U |

≥
1

mk . Consider a small certificate c ∈ {0, 1}∗ with |c | ≤ д(x),
and let s = s1$ · · · $sn = M(x , c). Since M is a k-compactor,

|single(s)| = ℓ ≤ k ; recall that single(s) = {(i, si) | si ∈ Si }.
We can assume, w.l.o.g., that single(s) = {(i, si)}1≤i≤ℓ . Hence,

|unfolding(M(x , c))| =
n∏

i=ℓ+1

|Si |.

By definition of Λ[k], f (x) ≥ |unfolding(M(x , c))|. Thus,

f (x)

|U |
≥

∏n
i=ℓ+1

|Si |∏n
i=1

|Si |
=

1∏ℓ
i=1

|Si |
≥

1∏k
i=1

|Si |
.

Recall thatm = max1≤i≤n {|Si |}. Consequently,

f (x)

|U |
≥

1∏k
i=1

m
=

1

mk
,

and the claim follows.

An immediate corollary of Theorem 6.2 is that:

Corollary 6.4. For every query Q ∈ ∃FO+ and set Σ of
primary keys, #CQA(Q, Σ) admits an FPRAS.

As already said, it is known that the above statement holds.

In particular, in [5] it is shown that, for every positive ex-

istential Boolean query Q , the problem of computing the

probability of Q over a disjoint-independent probabilistic

database, denoted DisjPDB(Q), admits an FPRAS.
1
But, it

is an easy task, given a query Q ∈ ∃FO+ and a set Σ of

primary keys, to reduce #CQA(Q, Σ) to DisjPDB(Q) via an
1
In fact, the result is given for conjunctive queries, but it can be easily

generalized to positive existential queries.

approximation-preserving polynomial-time Turing reduc-

tion, which in turn implies that #CQA(Q, Σ) admits an FPRAS.

Therefore, the novelty here is not the statement itself, but

the actual FPRAS, which is conceptually simpler than the

one inherited from [5].

The simplicity of our FPRAS lies in the fact that we can

sample from the natural sample space, i.e., the solution do-

mains of the problem (see Algorithm 3). This is not the case

for DisjPDB(Q), where the natural sample space consists of

all the possible worlds of the probabilistic database. However,

by using this sample space, in general, we need exponen-

tially many samples in order to achieve the desired error

and confidence guarantees. Thus, the sampling should be

performed over a more complex sample space consisting of

pairs of the form (W ,h), whereW is a possible world, and h
is a homomorphism from the query to the database.

7 MORE ON THE Λ-HIERARCHY
In this last section, we provide more completeness results

for the Λ-hierarchy, which justifies even further its meaning-

fulness. This analysis led to the definition of another natural

complexity class that goes beyond the Λ-hierarchy, but is
still inside SpanL.

7.1 More Complete Problems
We present two families of problems that have a problem that

is complete for every level of the Λ-hierarchy. The first one is
about counting satisfying assignments of Boolean formulas,

while the second one is about counting forbidden colorings

for hypergraphs.

Counting Satisfying Assignments. Let X = {x1, . . . ,xn}
be a (possibly empty) set of Boolean variables, and let P =
{X1, . . . ,Xn} be a partition of X . A P-assignment for X is a

function µ : X → {0, 1} such that, for each i ∈ {1, . . . ,n},
exactly one x ∈ Xi is such that µ(x) = 1. A positive kDNF
formula over X is a Boolean formula of the form φ = C1 ∨

· · · ∨Cn , where each Ci is a conjunction of ℓ ≤ k variables

fromX occurring positively inCi , i.e., the variables occurring

in φ form a subset of X . A P-assignment µ for X satisfies φ if

µ(φ), i.e., the formula obtained after replacing each variable

x with µ(x), evaluates to 1. Then:

PROBLEM : #DisjPoskDNF
INPUT : A set of variables X , a partition P of X ,

and a positive kDNF formula φ over X .

OUTPUT : Number of P-assignments for X
that satisfy φ.

The above problem is a generalization of the problem of

counting the number of satisfying assignments of a positive

kDNF formula, and is the counting variant of a probabilistic

extension of kDNF presented in [5]. It is possible to show

that, for each k ≥ 0:

Theorem 7.1. #DisjPoskDNF is ≤log

m
-complete for Λ[k].

Counting Forbidden Colorings. Consider a hypergraph
H = (V ,E); H is called k-uniform, for k ≥ 0, if, for each

e ∈ E, |e | = k . Let C = {Cv }v ∈V be sets of colors for each

node v ∈ V . A C-assignment for a set S ⊆ V is a function

µ : S →
⋃

v ∈V Cv such that µ(v) ∈ Cv . Given a set F =
{Fe }e ∈E , where Fe is a set ofC-assignments for e , a forbidden
C-coloring for H w.r.t. F is a C-assignment µ for V such that,

for some e ∈ E and ν ∈ Fe , µ(v) = ν (v), for each v ∈ e . Then:

PROBLEM : #kForbColoring
INPUT : A k-uniform hypergraph H = (V ,E),

sets of colors C = {Cv }v ∈V , and

sets of C-assignments F = {Fe }e ∈E .
OUTPUT : Number of forbidden C-colorings

for H w.r.t. F .

The above problem generalizes the problem of count-

ing the number of non-list-colorings of a hypergraph; see,

e.g., [7]. It is possible to show that, for each k ≥ 0:

Theorem 7.2. #kForbColoring is ≤log

m
-complete for Λ[k].

7.2 Beyond the Λ-hierarchy
The above results consider the “bounded” version of the

problems in question; #DisjPoskDNF bounds the number of

variables in a clause, while #kForbColoring the number of

nodes in a hyperedge. But, what about the complexity of their

“unbounded” version, i.e., #DisjPosDNF and #ForbColoring?
This question led to a new complexity class, dubbed SpanLL,

which is of independent interest, that goes beyond the Λ-
hierarchy, but is strictly contained in SpanL (unless L = NL).

The Complexity Class SpanLL. As the reader may have

already suspected, this class is defined in the same way as

Λ[k], for somek ≥ 0, with the key difference that an arbitrary

logspace compactor, instead of a k-compactor, is used, which

is able to choose an element from an unbounded number

of solution domains. Formally, with [[S1, . . . , Sn]] (as usual,
S1, . . . , Sn ⊆ {0, 1}∗ are non-empty sets of strings) defined

as the set of strings

{ϵ} ∪ {s1$s2$ · · · $sn | either si ∈ Si or si = #s1

i $ · · · $sℓii #},

i.e., is the same as [[S1, . . . , Sn]]
k
but without the condition

that |{i ∈ {1, . . . ,n} | si ∈ Si }| ≤ k , a logspace compactor is
defined in exactly the same way as a logspace k-compactor

(see Definition 4.1) with the crucial difference thatM(x , c) ∈
[[S1, . . . , Sn]]. Then:

SpanLL = {unfoldM | M is a logspace compactor}.

We can indeed show that SpanLL goes beyond the Λ-
hierarchy, buy stays inside SpanL. In particular:

Theorem 7.3. Λ ⊆ SpanLL ⊆ SpanL; furthermore, unless
L = NL, SpanLL (SpanL.

We can also show that:

Theorem 7.4. Every function in SpanLL admits an FPRAS.

Notice, however, that for devising an FPRAS for functions

from SpanLL, we are forced to sample from a more complex

sample space, similar in spirit to that for DisjPDB(Q); see
the discussion at the end of Section 6. Sampling from the nat-

ural sample space, i.e., the solution domains of the problem,

will lead to an exponential time algorithm. Observe that the

FPRAS given in the previous section for functions from Λ[k]
becomes exponential if we do not bound k .

Back to our Problems. Coming back to the problems in

question, we can show the following:

Theorem 7.5. #DisjPosDNF and #ForbColoring are ≤log

m
-

complete for SpanLL.

An immediate consequence of Theorem 7.4 and Theo-

rem 7.5 is that #DisjPosDNF and #ForbColoring admit an

FPRAS. Notice, however, that for the “bounded” version of

the problems, one can use the simpler FPRAS where the

sampling is performed over the natural sample space.

8 THE NEXT STEPS
Although we have provided a definite answer to our second

question (Theorem 5.1), our first question is only partially

answered (Theorem 5.2). Providing a firm answer to this

question boils down to answering the question whether the

Λ-hierarchy collapses. Our conjecture is that it does not

collapse. Proving or disproving this conjecture is one of our

main priorities, which will complete the picture concerning

the data complexity of #CQA(∃FO+).
We have stressed a couple of times that the new FPRAS

provided for each level of the Λ-hierarchy is conceptually

simpler than the one inherited from the literature. The ques-

tion is how this will perform in practice. The right way to

answer this question is to implement this approximation

scheme, and design a proper set of experiments, which we

intend to do in the followup work.

Acknowledgements.We thank the anonymous referees for

their useful feedback. This work was supported by the EP-

SRC grant EP/S003800/1 EQUID, and the EPSRC Programme

Grant EP/M025268/ VADA.

REFERENCES
[1] Carme Àlvarez and Birgit Jenner. 1993. A Very Hard log-Space Count-

ing Class. Theor. Comput. Sci. 107, 1 (1993), 3–30.

[2] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Con-

sistent Query Answers in Inconsistent Databases. In PODS. 68–79.
[3] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A

Modern Approach. Cambridge University Press.

[4] Marco Calautti, Leonid Libkin, and Andreas Pieris. 2018. An Opera-

tional Approach to Consistent Query Answering. In PODS. 239–251.
[5] Nilesh N. Dalvi and Dan Suciu. 2007. Management of probabilistic

data: foundations and challenges. In PODS. 1–12.
[6] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. 2005. Sub-

tractive reductions and complete problems for counting complexity

classes. Theor. Comput. Sci. 340, 3 (2005), 496–513.
[7] Penny E. Haxell and Jacques Verstraëte. 2010. List Coloring Hyper-

graphs. Electr. J. Comb. 17, 1 (2010).

[8] Dany Maslowski and Jef Wijsen. 2013. A dichotomy in the complexity

of counting database repairs. J. Comput. Syst. Sci. 79, 6 (2013), 958–983.
[9] Dany Maslowski and Jef Wijsen. 2014. Counting Database Repairs

that Satisfy Conjunctive Queries with Self-Joins. In ICDT. 155–164.
[10] Aris Pagourtzis and Stathis Zachos. 2006. The Complexity of Counting

Functions with Easy Decision Version. In MFCS. 741–752.
[11] Christos H. Papadimitriou. 1994. Computational complexity. Addison-

Wesley.

[12] J Scott Provan and Michael O. Ball. 1983. The Complexity of Counting

Cuts and of Computing the Probability that a Graph is Connected.

SIAM J. Comput. 12 (1983), 777–788.
[13] Seinosuke Toda. 1991. PP is as Hard as the Polynomial-Time Hierarchy.

SIAM J. Comput. 20, 5 (1991), 865–877.

	Abstract
	1 Introduction
	1.1 Counting Database Repairs
	1.2 Our Main Goal
	1.3 Research Challenges
	1.4 Summary of Contributions

	2 Preliminaries
	2.1 Databases, Constraints and Queries
	2.2 Complexity Toolbox

	3 Complexity of #CQA: A Glimpse
	3.1 Arbitrary First-Order Queries
	3.2 Existential Positive First-Order Queries

	4 The -hierarchy
	4.1 The Guess-Check-Expand Paradigm
	4.2 Guess-Check-Expand via Compactors
	4.3 The -hierarchy: Definition and Results

	5 Complexity of #CQA(FO+)
	5.1 #CQA(FO+) and the Keywidth Function
	5.2 Non-parameterized #CQA(FO+)

	6 Efficient Approximation Schemes
	6.1 Approximation via FPRAS

	7 More on the -hierarchy
	7.1 More Complete Problems
	7.2 Beyond the -hierarchy

	8 The Next Steps
	References

