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A B S T R A C T

The Genus Alexandrium is a widespread dinoflagellate marine phytoplankton that is the primary causative or-
ganism causing Paralytic Shellfish Poisoning (PSP) intoxications in European waters. EU food safety directives
specify that EU Member States must implement a routine monitoring programme to mitigate risks associated
with bio-accumulation of biotoxins by bivalve shellfish, such as those produced by Alexandrium. This strategic
drive comprises of both direct testing of bivalve flesh for the presence of regulated toxins and an early warning
phytoplankton monitoring programme. In the UK the flesh testing moved away from animal bio-assays to
analytical chemistry techniques, whereas phytoplankton monitoring methods have seen little technological
advancement since implementation. Methods currently utilize light microscopy and manual enumeration of
different algal species. These methods although proven are time consuming, reliant on highly trained staff, have
high limits of detection (LOD) with low specificity, unable to reliably identify Alexandrium to species level. The
implications of these limitations of the techniques mean that in the case of Alexandrium the LOD is also the action
limit and as such it is easy to miss positive samples affecting the efficacy of any early warning strategy. This
study outlines the development, preliminary method characterisation, validation and trial implementation of an
alternative early warning technique, utilizing quantitative PCR to identify water samples containing Alexandrium
cells. The approach outlined in this document, showed an improved correlation with flesh toxicity, improved
sensitivity, improved throughput compared to traditional light microscopy methods and there was also good
correlation with higher cell abundance samples when compared to the light microscopy results. The application
of this approach to routine water samples was explored and was found to demonstrate potential as a corro-
borative method for use during flesh intoxication episodes. This study offers potential for future improvements in
the accuracy and sensitivity of phytoplankton monitoring whilst ensuring continuity of public safety, providing
cost savings and offering new research opportunities.

1. Introduction

The bioaccumulation of algal borne biotoxins in filter feeding
shellfish has serious public health implications including the potential
for human fatalities in the case of saxitoxins also known as Paralytic
Shellfish Toxins (PST's) (Rodrigue et al., 1990; Vilariño et al., 2018;
Visciano et al., 2016). European food regulations dictate that there
should be both a flesh testing and an early warning programme un-
dertaken by Member States for the safe harvesting and export of
shellfish (EC Regulation No. 1664/2006). The phytoplankton mon-
itoring program is used as an early warning tool and is typically un-
dertaken using taxonomic identification by light microscopy (LM) in
Utermohl chamber (Utermöhl, 1931). It is not possible using LM to

reliably identify beyond the Genus level for many groups of phyto-
plankton including Alexandrium without further investigation, using
alternative techniques such as electron microscopy, Fluorescent In Situ
Hybridization (FISH) or molecular methods such as Polymerase Chain
reaction (PCR) (Antonella and Luca, 2013; John et al., 2003) are re-
quired. These alternative techniques have notable methodological or
application drawbacks such as being overly specific or high relative
costs when applied to high throughput applications; which have until
now prevented their widespread use for routine phytoplankton mon-
itoring purposes (Bott et al., 2010; Simon et al., 2000). Quantitative (q)
PCR has been widely utilised for highly specific identification of many
bacterial, viral and algal species with human-health implications to the
shellfish industry (Antonella and Luca, 2013; Gao et al., 2015;
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Vandersea et al., 2017). However, there is a level of complexity to algal
populations which has not yet been fully clarified, as studies have
identified that species-specific assays that work in one location will not
necessarily work on what is thought to be the same taxonomic species
elsewhere (Vandersea et al., 2017). Furthermore, the use of a species
specific assay will not detect new toxic species migrating into the lo-
cality by mechanisms such as inadvertent transfer of shipping ballast
water and climate change (Bolch and de Salas, 2007; Hallegraeff, 2010;
Hallegraeff and Bolch, 1991; Henry, 2002). A suitable alternative
strategy has been facilitated by the discovery of the genes associated
with the production of Saxitoxin (sxt), which allows for molecular de-
tection of genetic potential to produce these toxins (Stüken et al.,
2011). Development and testing of such assays has shown promise;
however, (unpublished) application highlighted limits of detection are
above the current sensitivity limits used in the UK, specifically 20 cells/
L (Murray et al., 2011), limiting their practical use for monitoring
purposes. England and Wales have approximately 50 designated shell-
fish harvesting locations included in the routine monitoring programme
with around 1000 samples per year requiring phytoplankton enu-
meration, running in parallel with flesh testing. Seasonal blooms of
primarily A. minutum pose a risk to public safety and regularly cause the
closure of shellfish harvesting sites. These blooms present an opportu-
nity to analyse water samples by molecular techniques in parallel with
these routine monitoring programmes to assess their suitability and
applicability. Any such tool would have to be robust, able to detect a
toxicity threat and fulfil at least the same degree of specificity currently
offered by light microscopy (identification to genus level) while at the
same time being cheaper, faster and allow for future developments such
as the ability to perform follow up analysis for species identification by
additional molecular tools such as sequencing. This study was an at-
tempt to design, characterise and trial a method that can facilitate the
progression toward a molecular technique for potential future fulfil-
ment of EU food legislation (EC regulation No. 854/2004). It was
decided, due to the need to be diverse in the target organism coverage,
that a genus specific assay would be the most suitable approach to
achieve this, by doing this the assay would be fit for purpose and would
fulfil the level of specificity achieved by LM.

2. Materials & method

2.1. Algal cell culturing conditions

Alexandrium cultures were purchased from Marine Biological
Agency (Plymouth UK) and grown in 250 mL flank (75 cm2 growth
area) containing L1 medium (Guillard and Hargraves, 1993) at 17 °C
and exposed to 14 h of light and 10 h of darkness per day until cell
density was observed by the naked eye. Forsaken.

2.2. Laboratory reference material

For purposes of quality control and performance characterisation, a
laboratory reference material (LRM) was generated. This was achieved
by culturing A. fundyense, fixing with 1% Lugol's iodine fixative and
dispensed into 200 × 1 mL aliquots while ensuring the culture was
mixed throughout the procedure to ensure homogeneity. LRM was kept
at 4 °C and long-term stability was determined up to 955 days after
fixation. Analysis of DNA extracts was performed by a 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, Ca, USA).

2.3. Sample preparation and DNA extraction

Seawater or culture samples were centrifuged at 4500 g for 5 min,
the supernatant was carefully removed by vacuum and the resulting
pellet was resuspended with the relevant DNA extraction buffer before
DNA extraction. Prior to analysis samples had been fixed at time of
collection in Lugol's and stored at 4 °C until DNA extraction could be

undertaken. The performance of three DNA extraction kits were com-
pared to determine the most appropriate approach to isolate nucleic
acids from a range of samples. The test kits included a widely used and
well-published proprietary method (e.g. Galluzzi et al., 2010, 2004),
Qiagen DNeasy Plant mini kit (Qiagen, Hilden, Germany) and two al-
ternative kits produced at the time of testing by MoBio: Power Biofilm
and Power Soil. For the DNeasy Plant kit, cell lysis was achieved using
MP Bio Lysing Matrix A tubes on a Fast prep system set at maximum
speed for 30 s (MPbio, Solon, OH, USA). The two alternative kits used
lysis tubes as per manufacturer's protocol. Extraction efficiency was
assessed for each kit by performing repeat extractions of the LRM at
varying degrees of dilution to ensure that recovered DNA correlated
with cell abundance. Manufacturer's instructions were followed for
DNA extraction except for the DNeasy kit for which the use of liquid
nitrogen was required but not available. Liquid nitrogen was replaced
by flash freezing in a −80 °C freezer.

2.4. qPCR method development

After identifying a suitable multi-target assay (Catherine et al.,
2009), which amplifies the 18S rDNA sequence of Alexandrium spp. It
was decided that a redesign of the PCR assay was required. The new
TaqMan qPCR assay includes degeneracies to help improve coverage of
target species more recently included in public databases. The assay
targets a 125bp region of the 18S rDNA gene and was developed by de
novo alignment of 25 Alexandrium species. The primers and MGB (minor
groove binding) probe for the assay are shown in Table 1. Primers and
probes were synthesized by Sigma life sciences (Sigma-Aldrich St Louis,
Mi, USA) and prepared in TE buffer. All qPCR analyses were performed
on an MX3005P instrument (Agilent Technologies, Santa Clara, Ca,
USA), with the following process: 37 °C for 10 min, 95 °C for 10 min and
50 repeat cycles of 95 °C for 15 s and 63 °C for 1 min with fluorescence
measured during each 63 °C step. PCR reactions used either universal
master mix or environmental master mix as specified in the results
section below (Thermo Fisher, Waltham Ma, USA) with Rox as a passive
reference dye.

2.5. PCR standards

Preparation of an internal standard was undertaken by performing a
conventional PCR using primers Alex-FWD and Alex-REV on an A.
fundyense DNA extract. The resulting PCR product was cleaned up with
CargeSwitch®-Pro PCR clean-up Kit (Invitrogen, Carlsbad. Ca, USA)
according to manufacturer's instructions. The target product was sub-
sequently observed to be the correct size by gel electrophoresis and the
concentration ascertained by Q-bit fluorometer (Thermo Fisher,
Waltham Ma, USA) and diluted to create a 1 × 105 copies per μL. The
standard was aliquoted and stored at −20 °C for serial dilutions and
amplification each time an assay was undertaken.

2.6. Determination of copy number

Using a light microscope and extruded Pasteur pipette, ten A. min-
utum cells were taken from a culture isolated from site one of the en-
vironmental study, this was repeated five times. The cells were then
centrifuged, and the culture media washed away to remove any residual
DNA that could have caused over-estimation. The five aliquots had DNA

Table 1
TaqMan primer & probe sequences.

Name Sequence (5′-3′)

Alex-FWD TGTTGCGGTTAAAAAGCTCGTAG
Alex-REV TGCACTTGACTGTGTGGTGTM
Alex MGB Probe (FAM) TGAGTATYTGGCACAGCC
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extracted and were qPCR analysed to obtain an average copy number
per cell.

2.7. Exclusivity/inclusivity test

Three dinoflagellate species (Lingulodinium polyedra CCAP 1121/1,
Gonyaulax spinifera CCAP118/1 and a Scrippsiella sp) which are ge-
netically similar to Alexandrium were cultured and fixed with Lugol's.
DNA was extracted, and qPCR undertaken. A BLAST search was un-
dertaken using the target sequence to identify potential non-
Alexandrium species that could also be amplified, all hits were aligned
and can be seen in Table 2.

2.8. Comparative study

A comparison of the Taqman genus assay, cell counts, and shellfish
flesh toxin levels was undertaken on samples collected from two sites in
south west England in 2016 and 2017. Water samples were taken
alongside routine monitoring shellfish samples and shipped directly to
the laboratory for 4 °C storage until analysis. DNA was extracted from
either 50 or 100 mL of water depending on sample size. The cell counts
and flesh testing results were derived from the routine monitoring
programme for England and Wales as previously documented (AOAC,
2005; Hatfield et al., 2016; International, 2011; Turner et al., 2009;
Turner and Hatfield, 2012; Utermöhl, 1931). Briefly, semi-quantitative
flesh results were generated by pre-column oxidation, Liquid Chroma-
tography with Fluorescence detection (LC-FLD) and cell counts gener-
ated using light microscopy. Shellfish samples were collected at the
same time and proximate location as water samples.

3. Results

3.1. Assessment of DNA extraction

The two MoBio DNA extraction kits (Power Biofilm and Power Soil)
both had adequate extraction efficiencies and linear correlation be-
tween cell abundance and DNA yield. The Power Biofilm kit had the
highest efficiency of extraction results and was therefore used
throughout the rest of the study. The Qiagen DNeasy kit required
adaptation by use of additional physical disruption via Lysing matrix A
tubes for improved DNA extraction efficiency. However, even with the
inclusion of this step, serial dilution of cell densities prior to DNA ex-
traction returned poorer relative efficiencies for low concentrations in
comparison to high, with linear plots giving slope value of m = ≥5.5.

3.2. Methodological optimisation and characterisation

DNA extracts from all kits had an inhibitory effect on the PCR re-
action and it was identified that appropriate dilution (5:1) was required
to reduce this effect. However, dilution of DNA extract did not fully
resolve inhibition issues, so employment of proprietary environmental
master mix was tested and observed to return significantly better am-
plification efficiencies (Fig. 1). A low level of non-specific amplification
was observed in DNA extracted from a high-density culture (approxi-
mately 106 cells forwarded to DNA extraction) of Scrippsiella. The issue
was overcome by increasing the annealing temperature of the qPCR
method from 59 °C to 63 °C, thus increasing the specificity of the assay
to only amplify the Alexandrium cultures tested. Fig. 2 shows compar-
able amplification performance over a range from 60 to 65 °C of
Alexandrium cells (approximately 2 × 104) and Scrippsiella cells (ap-
proximately 1 × 106). Data from the BLAST Search (see Table 2)
showed that some non-Alexandrium spp shared the same genomic se-
quence as the forward primer site, including Scrippsiella. There were
however no exact matches for the probe or reverse primer identified in
any species that are not of the Genus Alexandrium. Preliminary tests
indicated a high number of copies of the target gene in each

Alexandrium cell, resulting in a sensitive assay. The presence of multiple
copies of rDNA in dinoflagellates is well documented and is in part
attributable to the very large genome present in many species
(Prokopowich et al., 2003). The attempt to determine copy number
from a toxic A. minutum culture isolated from site one found that within
a single culture there was a high degree of variability with individual
cells having estimated copy numbers per cell ranging from 1650 to
9995. An average of± 5000 target copies per cell was used as an ar-
bitrary figure later used to determine the half LOD value used for
standardisation of Figs. 3 and 4.

3.3. Comparative study of toxicity, cell count and genus assay

Data generated during the comparative study is shown in Figs. 3 and
4. The figures provide chronological plots of cell counts and qPCR data
compared to the semi-quantitative toxicity results obtained from the
flesh testing programme. Results from four toxic events over two years
and at two sites are shown. The semi-quantitative results tend to
overestimate toxicity by a factor of 2 but are well correlated with full
quantitative results and allow the tracking of low level toxicity in the
shellfish on the occasions they do not undergo full quantitation (Turner
et al., 2014).

As shown in Fig. 3a, data from site 1 in 2016 depicts a closure event
in which both the LM and qPCR methods were able to detect the pre-
sence of Alexandrium cells prior to their being a result above the semi
quantitative flesh testing toxicity reporting limit (RL) which is 400 μg
STXeq/kg (half action limit). As assessment of the correlation between
the flesh toxicity and the two water testing techniques was shown to be
acceptable with Pearson correlation coefficients (r2 values) of 0.88 and
0.92 for qPCR and LM respectively (this is with the outlier 28/6/2016
removed). The correlation between qPCR and LM was described by an
r2 of 0.91 if the outlier on the 28/6/2016 is again removed and 1.0 if it
was kept. Site 2 in 2016 (Fig. 3b) represents a non-closure event, with
only one flesh result breaching RL but did not exceeding the action limit
when quantified. Both water testing methods identified a peak in the
presence of Alexandrium cells prior to the toxin accumulation. This
delay in accumulation meant that poor correlations were observed
between both LM and qPCR with toxicity. If the high result is removed
the correlation between toxicity and qPCR improved from an r2 value of
0.001–0.4 but correlation between qPCR and LM drops from an r2 of
1.00 to 0.18.

Site 1 results from 2017 (Fig. 4a) show a two-stage bloom, with the
first incident being below RL but being detected by all methods fol-
lowed by a period in which no toxicity or cells are detected and then a
higher intensity second toxic event occurs which resulted in a closure.
Correlation between the water sampling methods and toxicity was
good, with r2 values of 0.98 and 0.62 for qPCR and LM respectively and
correlation between qPCR and LM also having an acceptable r2 value of
0.70.

At site 2 in 2017 (Fig. 4b) there was a more significant toxic event
when compared to 2016, during which the site was closed. There was
notably very low response from the LM method and as such correlation
between this data and both other metrics was poor (r2=<0.02). There
was however, very good correlation between qPCR and toxicity, r2

=>0.99.

4. Discussion

This multi-disciplinary approach utilised analytical testing of
shellfish flesh and light microscopy to enumerate phytoplankton cells to
assess the performance of a qPCR assay applied to real world en-
vironmental biotoxin bloom events and resulting toxin bioaccumulation
in shellfish. The study attempts to bridge the gap between the promise
of qPCR assays and their practical applicability to routine monitoring
programmes (Antonella and Luca, 2013; Bott et al., 2010; Medlin and
Orozco, 2017; Zamor et al., 2012). The initial aim of this work was to
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Fig. 1. Example serial dilution qPCR plot of standard material used to generate calibration for quantitation of 18S gene content.

Fig. 2. qPCR amplification plot for Alexandrium and Scrippsiella at temperatures ranging between 60 and 65 °C with increments of 1 °C, threshold level is indicated by
dashed line.
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develop, characterise and apply a molecular tool for the detection of all
known Alexandrium spp in seawater samples. This has direct relevance
for any potential future methods within the official monitoring pro-
gramme. The results obtained in this study outline the potential suit-
ability of this technique, either alongside or as an alternative tool to
traditional phytoplankton testing. Overall the environmental applica-
tion of the assay was promising. Firstly, qPCR data compared well with
the LM phytoplankton data and there was a better correlation between
qPCR results and toxicity observed in the shellfish than between LM and
toxicity (Figs. 3 and 4). The results generated in this study indicated
that the genus-specific assay for Alexandrium spp is more sensitive, has
better specificity and had a better correlation to shellfish toxicity than
LM and therefore could be a suitable alternative for use in a phyto-
plankton monitoring programme. The costs associated LM and qPCR
assay are hard to compare fairly as the methods are fundamentally
different. It is fair to identify that qPCR consumable costs are

significantly higher than those required of LM, however, the training
required and time to undertake LM analysis are a significant factor, for
these reasons no direct comparison of costs associated with the two
methods are reported.

Although there have been no accounts of Gymnodinium or
Pyrodinium spp causing PSP event in UK, waters it would be important
to acknowledge the potential for these species to become a problem as
global ocean temperatures rise (Hallegraeff, 2010; Higman et al., 2014;
Townhill et al., 2018). As such if a qPCR approach was adopted as an
early warning technique for routine monitoring it would be necessary
to include all relevant species into any adopted strategy and would
ideally be multiplexed into a single assay.

The design of the qPCR assay was based upon a published method
(Catherine et al., 2009) which utilised multiple primer sets to achieve
inclusivity for multiple species of Alexandrium (3 forward and 3 re-
verse). After testing the published assays performance and performing

Fig. 3. The findings of the comparative for sites A and B in 2016, with each figure showing toxicity data plotted on a linear primary scale and the cell count and qPCR
result being plotted against a secondary, log scale. The secondary scale data has been normalised to half the respective LOD for that method, these being 20 cell/Lt for
LM and 2500 copies/Lt, with this being an arbitrary LOD calculated from the copy number study. Semi-quantification data is used for flesh toxicity results as only
samples above RL are forwarded to full quantification.

Fig. 4. The findings of the comparative for sites A and B in 2017, with each figure showing toxicity data plotted on a linear primary scale and the cell count and qPCR
result being plotted against a secondary, log scale. The secondary scale data has been normalised to half the respective LOD for that method, these being 20 cell/Lt for
LM and 2500 copies/Lt, with this being an arbitrary LOD calculated from the copy number study. Semi-quantification data is used for flesh toxicity results as only
samples above RL are forwarded to full quantification.
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in silco investigation it was discovered that inclusivity and specificity
could be improved by re-designing the primers and probe. The updated
assay described here has single forward and reverse primers and an
increased probe length. These changes proved to perform adequately,
reduce costs associated with purchasing and preparing multiple primers
for each master-mix preparation, and reduce complexity of the reaction.

A number of challenges were addressed during development of the
method. DNA extraction was hindered by issues associated with non-
linear extraction efficiencies in the Qiagen DNeasy plant kit, which was
potentially due to the inability to use liquid nitrogen as a bench reagent
due to health and safety limitations. Attempts to use physical lysis to
overcome the issue did increase extraction efficiency but did not
overcome the lower efficiency of DNA extraction in low density sam-
ples. However, alternative extraction kits subsequently tested were
deemed suitable for use, providing adequate relative extraction effi-
ciencies between differing cell densities. The Power biofilm kit (MoBio)
had lower average CT values which indicates better extraction effi-
ciency for equivalent samples and as such was selected for usage
throughout the study. This information will be useful to other re-
searchers interested in applying molecular methods such as qPCR to
marine phytoplankton samples in water who do not have access to li-
quid nitrogen for DNA extraction.

Specificity of the assay was reassessed when low level amplification
of a high cell density culture of Scrippsiella was observed. However,
increasing annealing temperature was found to limit this non-specific
amplification of Scrippsiella (Fig. 2). A 3 °C increase to 63 °C was
adopted, as this did not impact the Alexandrium amplification. The
adoption of increased annealing temperature, in conjunction with an
amended cycle threshold and iterative analysis of all amplifications
during the PCR assay successfully eliminated false-positive results.

Poor PCR efficiencies were observed for most samples when using
universal master mix, causing potential inaccuracy in CT number and
sensitivity issues for low level positive samples. This was suspected to
be due to the presence of PCR-inhibitors as a dilution of template DNA
often reduced the effect. The use of proprietary Environmental Master
mix overcame these issues and no further PCR efficiency issues were
observed throughout the study. This finding may be of general sig-
nificance for researchers using qPCR on environmental marine phyto-
plankton samples.

Due to the large variances observed in cell densities in bloom con-
ditions, logarithmic scales to display data were adopted and as such
both LM and qPCR data was displayed accordingly. This however posed
a problem in allowing comparison with such differing datasets, so data
was normalised to the LOD with negative samples plotted as half LOD.

For qPCR data an arbitrary LOD was chosen using the average copy
number from the toxic culture isolated from Site 1. Ongoing use of the
assay will require a more robust calculation of the assay's LOD and
would require year-round analysis to ensure that false positives results
are not generated.

Stability of Lugol's fixed samples was tested using the LRM and in
contrast to a recent publication (Eckford-Soper and Daugbjerg, 2015)
no decrease in amplification was observed throughout the study period,
one day and 855 day samples had ct values of 17.18 and 17.05 re-
spectively, indicating long-term stability. Furthermore, analysis of DNA
extracts indicated DNA molecular weight was high and therefore sui-
table for long read sequencing techniques such as Nano-pore tech-
nology utilised by Minion (Feng et al., 2015). Many Alexandrium spp are
non-toxin producing and can co-occur in the same waters as toxic
strains which complicates both traditional LM and molecular analysis
(Cho et al., 2008; Toebe et al., 2013). However, by sequencing the PCR
target region of toxic and non-toxic strains, it should be possible to
develop a secondary multiplex probe that could for identification of
toxic and non-toxic Alexandrium spp in a single qPCR assay (Nagai,
2011). Alternatively, coupling this approach to toxin-specific (e.g. STX
genes) (Murray et al., 2011; Stüken et al., 2011) or species-specific
molecular targets (Metfies et al., 2006; Otten and Genetics, 2017; Toebe

et al., 2013) could offer the sensitivity, robustness and specificity re-
quired for reliable monitoring of toxin events in near real-time. This
therefore represents a valid alternative to other molecular techniques
such as whole cell ELISA, with the benefit of having improved sensi-
tivity and the benefit of being able to multiplex additional species or
genera (Carrera et al., 2010; Gas et al., 2009). Although the data pre-
sented here is promising, the application of these approaches using a
larger collection of bloom events is required to determine the robust-
ness of these methods on real environmental samples before the ap-
proach could be implemented in any official phytoplankton monitoring
programmes.

5. Conclusion

This study aimed to investigate if a molecular technique could fulfil
the requirements of the UK routine monitoring programme of seawater
for Alexandrium spp. The qPCR assay performed well in comparison to
LM in the environmental study with improvements in specificity, sen-
sitivity, linearity with shellfish toxicity and a reduction in analysis time
observed. There are however noted limitations to the assay, no re-
solution of taxonomy beyond Genus level and variability of copy
number being the most significant issues that must be overcome before
the assay could be implemented into an official monitoring programme.
Additionally, more experiments using a larger collection of bloom
events are needed to confirm and determine the robustness of this
method.

Application of the assay could potentially be used strategically as a
screening procedure coupled with additional analysis of positive sam-
ples. In addition, with high-throughput Sequencing costs steadily re-
ducing, and DNA barcode databases becoming more comprehensive,
DNA extract analysis could include additional tools added as they be-
come available (Muir et al., 2016), facilitating accurate speciation and
quantification of bloom events beyond that which is currently possible.
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