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Climate projections1, 2, 3 and observations over recent decades4, 5 indicate that precipitation in 25 

subtropical latitudes declines in response to anthropogenic warming, with significant 26 

implications for food production and population sustainability. However, this conclusion is 27 
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derived from emissions scenarios with rapidly increasing radiative forcing to the year 21001, 2, 28 

which may represent very different conditions from both past and future ‘equilibrium’ 29 

warmer climates. Here, we examine multi-century future climate simulations to demonstrate 30 

that in the Southern Hemisphere (SH) subtropical drying ceases soon after global 31 

temperature stabilises. Our results suggest that 21st century SH subtropical drying is not a 32 

feature of warm climates per se, but is primarily a response to rapidly rising forcing and 33 

global temperatures, as tropical sea-surface temperatures (SSTs) rise more than southern 34 

subtropical SSTs under transient warming. Subtropical drying may therefore be a temporary 35 

response to rapid warming: as greenhouse gas concentrations and global temperatures 36 

stabilise, SH subtropical regions may experience positive precipitation trends.  37 

  38 

As Earth’s climate warms in response to rising greenhouse gas (GHG) concentrations, 39 

average global precipitation is expected to increase (Supplementary Fig. 1), but zonally-averaged 40 

subtropical precipitation is projected to decrease1, 6, 7. Several mechanisms have been proposed for 41 

this decline, including thermodynamic processes in which wet regions get wetter and dry regions 42 

get drier6; and dynamic changes7, such as the latitudinal expansion of the tropical overturning 43 

(Hadley) circulation8 and poleward shifts in the westerlies4, 9. Recent studies have suggested a 44 

central role for the fast response to direct radiative forcing of CO2[ref10], resulting in changes in 45 

land-sea temperature contrast and a decline in subtropical precipitation, predominantly over the 46 

ocean11.  Subtropical drying may already be evident in the Southern Hemisphere, where recent 47 

decades have witnessed declining cool-season frontal precipitation, leading to drying over regions 48 

such as southern Australia2, 4, 5. Coupled Model Intercomparison Project Phase 5 (CMIP5)12 49 

projections under high emissions scenarios show a high level of consensus that this cool-season 50 

trend will continue until 2100 CE1. 51 

 52 
 53 
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In contrast to this projected warmer and drier future, evidence from warm climates of the 54 

geologically recent past suggests that wetting, rather than drying, has been the equilibrium response 55 

of subtropical precipitation to warmer-than-present climate states. For example, during the Pliocene 56 

epoch (5.3-2.6 million years ago), global temperatures were ≥3°C warmer than pre-industrial and 57 

atmospheric CO2 is estimated to have been ca. 400 ppm, while global land-sea configurations and 58 

continental topography were similar to today13. In response to warm Pliocene temperatures, 59 

subtropical regions of both hemispheres were generally wetter than today14, 15, 16, 17. Thus there is an 60 

apparent contradiction between a projected warm, dry future subtropics and its reconstructed warm, 61 

wet past18, 19.  62 

Most climate simulations have focused on the transient climates of the 21st century, with 63 

rapidly changing radiative forcing and temperatures that have few parallels in the geological record.  64 

Increased interest in the impacts of stabilising global mean temperature at a desired level20, 21 raises 65 

the question of what a warmer than present-day, equilibrium climate state will look like, in contrast 66 

to better-studied, highly transient future climates.  We therefore pose the question: are 21st century 67 

subtropical drying trends transient, or will the drier subtropics persist in an equilibrium or near-68 

equilibrium warmer climate? 69 

 In order to address this question, we explore the evolution of subtropical precipitation under 70 

future, multi-century, warm-climate scenarios in which temperatures begin to stabilise following a 71 

projected rapid increase during most or all of the 21st century.  Although most current-generation 72 

climate models do not adequately represent important ‘slow’ components of the climate system 73 

(e.g. ice sheets, dynamic vegetation) that equilibrate with forcing over centuries to millennia22, 23, 74 

we refer to the period following stabilisation of radiative forcing in these simulations as a ‘near-75 

equilibrium’ state, to distinguish it from the rapidly changing forcing and temperatures that are 76 

expected to characterise much of the current century. This is not to be confused with a full 77 

geological ‘equilibrium’ state achieved only after many centuries to millennia of changes in ice 78 

sheet extent, vegetation, and deep ocean warming24, 25.  79 
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To evaluate precipitation responses to future near-equilibrium climates, we examined 80 

subtropical precipitation in scenarios in which GHG concentrations and temperatures stabilise 81 

during multi-century simulations. We examined subtropical precipitation in CMIP5 model runs 82 

under Representative Concentration Pathways 4.5 and 8.5, using their extensions to 2300 CE (ECPs 83 

4.5 and 8.5)26. Both ECPs represent worlds with high atmospheric CO2 (~2× and ~7× pre-industrial 84 

by 2300, respectively) but in ECP 4.5 atmospheric CO2 concentrations stabilise by the year ~2080, 85 

while in ECP 8.5 stabilisation is not reached until the year ~2250, at much higher global 86 

temperatures (Supplementary Fig. 2). In addition, we examined an even longer simulation using 87 

CanESM1 extending to 3000 CE, based on a scenario of rapidly increasing atmospheric CO2 88 

concentrations (to ~2.7× pre-industrial) followed by complete cessation of emissions at 2100 [ref 27] 89 

(Supplementary Fig. 3). 90 

The Southern Hemisphere subtropical precipitation trends, averaged over all longitudes 91 

within the latitude range 25°S-35°S (Fig. 1), show that the 21st century decline occurs in the austral 92 

winter (represented by June through August precipitation, JJA), consistent with previous studies1. 93 

The JJA SH subtropical drying trend flattens, or reverses, soon after 2100 CE in ECP 4.5 and 94 

around 2200 CE in ECP 8.5 (Fig. 1). Thus SH subtropical precipitation reductions are greatest in 95 

JJA and in the 21st century, under both ECPs.  Soon after the rate of warming declines 96 

(Supplementary Fig. 2), in both ECP 4.5 and ECP 8.5, JJA precipitation trends change from 97 

negative, to near zero or positive in several models in ECP4.5, and to positive in all models in 98 

ECP8.5 (Fig. 1).  99 

Spatial patterns of the precipitation trends for ECP8.5 are shown in Fig. 2 (equivalent 100 

ECP4.5 trends are shown in Supplementary Fig. 4). In the 21st century, JJA SH subtropical 101 

precipitation trends are predominantly negative, especially in regions with high model agreement 102 

(indicated by stippling), including over both land and ocean. By the 23rd century, the JJA SH 103 

subtropics exhibits a pattern of weaker largely positive precipitation trends with some areas of high 104 

model agreement, again over both land and ocean. The ECP8.5 annual SH subtropical precipitation 105 
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trend also changes from largely negative values in the 21st century to weaker positive trends in the 106 

23rd century. 107 

In order to explore the drivers of these reversals in the sign of precipitation change, we 108 

examined changes in the SH meridional temperature gradient (MTG), calculated as the difference 109 

between 0-10°S and 25-35°S zonal mean sea-surface temperatures (note, results are similar when 110 

different definitions of the MTG are used, see Methods), as the MTG influences the strength of the 111 

Hadley circulation, and hence the position and intensity of its descending subtropical branch28, 29, 30. 112 

We first consider the relationship of the MTG to JJA precipitation, since projected SH subtropical 113 

drying is most pronounced in the austral winter season. During the 21st century under transient 114 

warming, CMIP5 models generally show significantly decreasing JJA precipitation and a 115 

steepening MTG, under both ECP 4.5 and 8.5 (Fig. 3a,d).  Under ECP 4.5, in the 22nd and 23rd 116 

centuries CMIP5 JJA precipitation and MTG trends are mostly indistinguishable from unforced 117 

variability (Methods).  The CanESM1 simulation (Fig. 3g) follows a similar evolution from 118 

steepening MTG and declining JJA precipitation under transient 21st century warming, to weakly 119 

positive trends in JJA precipitation and negative MTG trends after and beyond 2100, as global 120 

temperatures stabilise. By comparison, under ECP 8.5, in which CO2 and global temperature are 121 

still rising through the 22nd century (Supplementary Fig. 2), a transition to uniformly negative MTG 122 

trends and uniformly positive JJA precipitation trends (6 out of 9 models have significant trends) is 123 

deferred until the 23rd century (Fig. 3f), corresponding to the slowing of GHG increase and its 124 

complete stabilisation by 2250.  125 

Thus MTG steepening appears to be closely linked to the rate of change of warming, since it 126 

shallows soon after CO2 concentrations stabilise, around 2100 in ECP 4.5 and in the CanESM1 127 

simulation, and by 2250 in ECP 8.5 (Supplementary Figs. 2 and 3). This shift to a shallowing MTG 128 

is generally associated with a recovery of JJA precipitation; the magnitude of this recovery (weak in 129 

ECP 4.5 and stronger in ECP 8.5) corresponds to the magnitude of warming. In summary, SH 130 

subtropical austral winter precipitation, in both CMIP5 models and CanESM1, seems to be closely 131 
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linked to changing meridional gradients in SH SST warming.  As the models approach global 132 

surface temperature equilibrium, warming is greater in the subtropics than the tropics and initially 133 

declining subtropical SH JJA precipitation trends reverse. These results are consistent with an 134 

earlier study based on a single model and using idealised experiments29 that identified a reversal in 135 

SH subtropical precipitation trends in one region following a stabilisation of GHG concentrations 136 

and shifts in meridional temperature and pressure gradients. 137 

In contrast to the JJA precipitation pattern of initial drying followed by a reversal, austral 138 

summer (DJF) precipitation trends, over the 2006-2300 CE interval, are overwhelmingly positive in 139 

ECP 8.5 (Figs. 3d-f). In ECP 4.5, the majority (10/16) of DJF precipitation trends are significantly 140 

positive, although there are two models with significantly negative trends and four with no 141 

significant trend, possibly reflecting intermodel differences in the importance of dynamic 142 

processes7 in this lower-emissions scenario.  Because they show little relationship to MTG trends 143 

(Fig. 3) but approximately scale with global temperature (Fig. 1), it seems likely that steady 144 

increases in DJF precipitation are either a thermodynamic response7 to warming, or a dynamic 145 

response related to tropical, rather than mid-latitude circulation. In summary, model simulations 146 

indicate that, after initial transient winter drying, winter, summer and annual SH subtropical 147 

precipitation eventually increase with warming (Fig. 1, Supplementary Figs. 5 and 6).  148 

Previous analyses11 have suggested that the 21st century subtropical drying trend occurs 149 

predominantly over the ocean; we find that the models simulate stronger drying trends over ocean 150 

areas in the SH subtropics, but the proportionally small SH subtropical land areas also show 21st C 151 

JJA drying trends, and a reversal of this trend in the 22nd and 23rd centuries (Figure 2, 152 

Supplementary Fig. 7). Other studies31 have suggested that the spatial pattern of precipitation 153 

change is driven by patterns of SST change as regions that warm least become drier, while regions 154 

that warm most become wetter. This is broadly consistent with our results, as the relatively weaker 155 

warming in the subtropics leads to a reduction in JJA subtropical precipitation in the transient part 156 

of the simulations, which reverses in the near-equilibrium part of the simulations. The relatively 157 
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weaker warming in the SH subtropical ocean during transient warming may be driven by 158 

strengthened trade winds in that hemisphere31, 32. Several additional mechanisms have been 159 

proposed to explain trends in subtropical precipitation: changes in stratospheric ozone 160 

concentrations, and trends in the Hadley Cell extent and the Southern Annular Mode. Investigation 161 

of these mechanisms indicates that they are unable to explain the identified reversal in austral 162 

winter precipitation trends as global temperatures stabilise (see Methods). 163 

Our results indicate that subtropical precipitation in coupled climate models responds within 164 

decades to a slowing in the rate of global warming, which in the multi-model mean leads to a 165 

change in sign of SH subtropical winter and annual precipitation trends. While previous studies33 166 

have assumed that precipitation changes at all latitudes scale approximately with global 167 

temperature, we find that winter SH subtropical drying may be a transient response that is later 168 

succeeded by positive precipitation trends, as the slowing rate of global temperature change allows 169 

southern extratropical SST warming to catch up with tropical warming24, 27, 32.  While SH 170 

subtropical winter precipitation undergoes a reversal in trend, summer precipitation consistently 171 

increases with warming, potentially resulting in an overall increase in annual mean subtropical 172 

precipitation in a ‘near-equilibrium’ warmer world.  We conclude that future subtropical 173 

precipitation changes beyond the traditional IPCC projection timeframe (to 2100) may not simply 174 

involve intensification of 21st century trends, but that cessation of subtropical drying may rapidly 175 

follow stabilisation of GHG concentrations. Reconstructions of subtropical precipitation during past 176 

warmer climate states suggest that wetting, rather than drying, is the long-term response of 177 

subtropical regions to warmer climates. If the long-term future response in these regions is also 178 

wetting, the apparent discrepancy between past and future subtropical precipitation under warm 179 

climates may be resolved as future climates move from a rapidly warming to a near-equilibrium 180 

state.  181 

  182 
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 183 

 184 

Figure legends 185 

 186 

Figure 1 | Future precipitation projections. CMIP5 model time series of a, b global mean temperature, c, 187 

d, annual Southern Hemisphere (SH) meridional temperature gradient (SST 0-10°S – SST 25-35°S), and SH 188 

subtropical (25°S -35°S zonal mean) e, f, austral winter (JJA), g, h, austral summer (DJF) and i, j, annual 189 

(Ann) precipitation to 2300 CE under Extended Representative Concentration Pathway (ECP) 4.5 (left) and 190 

8.5 (right), all expressed as anomalies relative to the 1986-2005 mean. Thick lines are multi-model mean 191 

and thin lines are individual models (ECP 4.5 has 16 models and ECP 8.5 has 9 models). All data is Loess-192 

filtered.  193 

 194  195 

Figure 2 | ECP8.5 Annual, DJF and JJA precipitation trends (mm/day/century) for the 21st, 22nd and 196 

23rd centuries, 25°S-35°S subtropical band indicated. Stippling indicates 80% of models (8/9) agree on the 197 

sign of the trend. Spatial plots of ECP4.5 precipitation trends are shown in Supplementary Fig. 4.  198 

 199 

Figure 3 | Relationship between the SH meridional temperature gradient (MTG) and SH subtropical 200 

precipitation. a-f, slopes of linear trends (K/century) of the MTG (difference between 0-10°S and 25°S-201 

35°S zonal mean temperature) vs. slope of linear trends (mm/day/century) of subtropical seasonal 202 

precipitation (25-35°S zonal mean), for a,d, 21st century (2006-2100 CE), b,e, 22nd century (2101-2200 CE), 203 

and c,f, 23rd century (2201-2300 C), under scenarios ECP 4.5 (a-c, upper panels, n = 16) and ECP 8.5 (d-f, 204 

lower panels, n = 9). g,h for the CanESM1 simulation, showing 21st through 30th centuries (centuries 205 

labelled), with seasons g, JJA, and h, DJF, shown separately. a-f, for JJA, filled circles represent values that 206 

exceed two standard deviations of CMIP5 unforced control simulations (Methods, Supplementary Fig. 14); 207 

unfilled dots represent values indistinguishable from unforced control simulations. Double-headed arrows 208 

show the direction of wetting vs. drying, and shallowing vs. steepening of the MTG. 209 

 210 
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 355 
Methods 356 

Models and variables used. We examined global temperature and SH subtropical 357 

precipitation trends to 2300 CE under two Extended Concentration Pathway (ECP) scenarios, ECP 358 

4.5 and ECP 8.512, 26. We examined results from nine models for ECP 8.5, and sixteen models for 359 

ECP 4.5 (Supplementary Table 1). ECP 4.5 and ECP 8.5 represent continuations beyond 2100 of 360 

RCP 4.5 and 8.5 scenarios, respectively, using idealised emission trajectories that lead to 361 

stabilisation of greenhouse gas forcing at c. 4.5 W m-2 by c. 2080 CE under ECP 4.5 (corresponding 362 

to c. 550 ppm CO2), and at c. 12.5 W m-2 by 2250 CE, under ECP 8.5 (corresponding to c. 1900 363 

ppm CO2)
26 (Supplementary Fig. 1). To examine whether ECP trends continued beyond 2300 CE, 364 

we examined global temperature and SH subtropical precipitation in an idealised simulation 365 

extending to 3000 CE using CanESM1, in which CO2 increases rapidly (to ~2.7× pre-industrial) 366 

followed by complete cessation of emissions at 2100 CE27. Further details of the model and 367 

experimental design for the CanESM1 simulation is provided in reference [27]. 368 

Monthly fields of global surface temperature (Ts for CMIP5, TAS for CanESM1), zonally 369 

averaged SH tropical and subtropical temperature (annual zonal mean sea surface temperature, SST, 370 

in two latitudinal bands, 0-10°S, and 25-35°S), and SH subtropical precipitation (defined as the 371 

average for all grid points in a zonal band, 25°S-35°S, both for the entire zonal band, and for ocean 372 

and land surfaces separately – see Supplementary Fig. 7) were obtained for each CMIP5 model over 373 

the period 2006-2300 CE, and for the CanESM1 simulation over the period 2006-3000 CE. The 374 

corresponding historical simulations (1986-2005) were obtained from each model to provide a 375 

reference period, following IPCC AR5 convention (e.g. ref 1). The annual and seasonal mean SH 376 

subtropical precipitation for DJF and JJA was calculated for each year. The yearly anomaly of 377 

Annual, DJF and JJA SH subtropical precipitation for each of the nine ECP 8.5 simulations, 16 378 

ECP 4.5 simulations, and the CanESM1 simulation was calculated for each year of the simulation 379 

relative to the historical reference period. The anomalies are plotted in Fig. 1 using robust Loess 380 

smoothing34 to remove inter-annual to inter-decadal scale variability.   381 
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Our definition of the SH subtropics as a zonal band extending between 25-35°S, 382 

representing a commonly used definition of the subtropics35. Analyses with alternative definitions 383 

of this band (20-40°S, 28-38°S) suggested that the precipitation response identified here is not 384 

sensitive to the definition of these equatorward or poleward boundaries (Supplementary Fig. 8). The 385 

exact location of the subtropical boundaries will vary from model to model, and may also shift over 386 

time. We choose a zonal band that corresponds to a shared region of coherent climate response, and 387 

excludes the latitudes where the boundary between subtropical drying and midlatitude wetting 388 

occurs (see Supplementary Figs. 5, 6).  389 

Calculation of meridional temperature gradient. To examine the relationship over time 390 

between SH subtropical precipitation and the SH meridional temperature gradient (MTG), we 391 

calculated a metric of the annual mean SH MTG as the difference between 0-10°S and 25°S-35°S 392 

zonal mean sea surface temperature (SST) (Supplementary Fig. 9). The chosen low and high 393 

latitude boundaries are consistent with a range of studies that evaluate observed and future changes 394 

in the strength and poleward extent of the Hadley Cell, which largely governs moisture transport 395 

between the tropics and subtropics. We conducted sensitivity tests (not shown) with alternative 396 

definitions of the SH MTG (viz. 10°N-10°S minus 10°-30°S; 20°N-20°S minus 20°S-40S; and 0-397 

10°S minus 40°S-60°S), consistent with various definitions used in recent studies30, 36, 37.  These 398 

analyses indicated that our results are not sensitive to our choice among these definitions of 399 

equatorial and subtropical/mid-latitude bands. We divided each CMIP5 time series and the 400 

CanESM1 time series into three ~equivalent windows defined by the years 2006-2100, 2101-2200, 401 

and 2201-2300 CE. For the CanESM1 time series we also defined a fourth window between 2301-402 

3000 CE. Within each time window we calculated linear trends of the MTG and of SH subtropical 403 

precipitation for JJA and DJF.  404 

Southern Annular Mode and Hadley Cell extent as possible drivers. The role of changes 405 

in the latitude of the southern margin of the Hadley Cell was investigated, as some studies have 406 

suggested that subtropical precipitation changes may be driven by a poleward expansion of the 407 
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Hadley circulation (e.g. ref38). A related driver of subtropical precipitation change is the Southern 408 

Annular Mode (SAM), a mode of variability associated with the poleward shift of the mid-latitude 409 

westerlies in its positive (high SAM) phase. In the current climate, a high SAM results in increased 410 

SH subtropical rainfall in summer (and also spring and autumn) but reduced rainfall in winter39. 411 

Future projections to 2100 CE show an increased SAM in all seasons in response to increased 412 

greenhouse gases40. This positive SAM trend is expected to result in increased summer rainfall but 413 

reduced winter rainfall in the SH subtropics41. In addition, future projections show that the Hadley 414 

Cell will continue to expand poleward with increasing greenhouse gases (e.g. refs 1, 5, 42). We 415 

investigated whether either SAM or Hadley Cell extent changes can explain the reversal in SH 416 

subtropical winter rainfall trends as global temperatures stabilise. 417 

The SAM index is defined as the difference in the normalized zonally averaged sea level 418 

pressure between 40°S and 65°S (e.g. ref 43). The SAM index was calculated for each model under 419 

ECP4.5 and ECP8.5 for DJF, JJA and Annual (Supplementary Fig. 10) and seasonal SAM trends 420 

calculated for the 21st, 22nd and 23rd centuries (Supplementary Fig. 11). Under ECP4.5, SAM trends 421 

are generally positive during the 21st century in all seasons, then SAM anomalies remain positive 422 

and stable in the 22nd and 23rd centuries (Supplementary Figs. 10 and 11). Under ECP8.5, SAM 423 

values increase most strongly in the 21st and 22nd centuries in both seasons and stabilise at a higher 424 

positive value during the 23rd century (Supplementary Figs. 10 and 11). Positive SAM values are 425 

consistent with increasing SH subtropical rainfall in austral summer and decreasing SH subtropical 426 

rainfall in austral winter in the transient parts of the ECP simulations39, 41, but do not explain the 427 

reversal of winter rainfall trends following stabilisation of temperatures, as there is no clear reversal 428 

of SAM trends in any season.  429 

The Hadley Cell edge is calculated from the latitude where the zonal mean meridional mass 430 

streamfunction is zero at 500 hPa (e.g. ref 44). The latitude of the southern edge of the Hadley Cell 431 

was calculated for each model under ECP4.5 and ECP8.5 for DJF, JJA and Annual (Supplementary 432 

Fig. 12) and seasonal SAM trends calculated for the 21st, 22nd and 23rd centuries (Supplementary 433 
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Fig. 13). Similar to SAM, there is a clear southward displacement of the Hadley Cell edge in all 434 

seasons, with the latitude of the Hadley Cell edge stabilising around 2100 under ECP4.5 and around 435 

2200 under ECP8.5 (Supplementary Fig. 12). The trends in Hadley Cell edge latitude are southward 436 

(negative) under transient climate (ECP4.5 21st century and ECP8.5 21st and 22nd centuries) and 437 

then near zero following stabilisation of global temperatures (Supplementary Fig. 13). There is no 438 

reversal of the trend in Hadley Cell edge latitude, so we conclude that changes in the southward 439 

extent of the Hadley Cell do not drive the reversal in SH subtropical winter rainfall trends. 440 

Ozone recovery. Stratospheric ozone depletion in the historical period has been linked to 441 

increases in austral summer precipitation in the SH subtropics due to a poleward shift of the 442 

extratropical westerly jet45. The recovery of stratospheric ozone in the 21st century would therefore 443 

favour reduced austral summer precipitation, but the absence of such a summer drying trend in 444 

projections (including ECP4.5 and ECP8.5, see Fig. 1) indicates that GHG increases dominate the 445 

response (e.g. refs 40, 46, 47). In addition, changes in stratospheric ozone concentrations are prescribed 446 

to return to pre-industrial levels by 2050 CE (ref 46) therefore they cannot explain the reversal of 447 

JJA precipitation trends in ECP4.5 around 2080 and in ECP8.5 around 2200. 448 

Comparison with control runs. In order to evaluate whether the observed linear trends of 449 

the SH MTG, and of SH subtropical JJA and DJF precipitation are significantly different from those 450 

expected under unforced variability, we obtained control runs for the 16 CMIP5 models that ran 451 

extended RCP simulations12.  We used these control runs differently for JJA and DJF precipitation 452 

trends, for the following reasons. For JJA, 21st through 23rd century precipitation trends clearly 453 

show a reversal in sign which we have shown is closely linked to changes in the MTG (Fig. 3). 454 

Because our goal was to evaluate the significance of future bivariate MTG vs JJA precipitation 455 

change, we divided the control runs into 94 unique 100-year intervals, from which we extracted 456 

linear trends of the MTG and JJA precipitation. We standardised the 94 control run MTG and JJA 457 

precipitation data sets, then converted each standardised MTG slope vs. standardised JJA 458 

precipitation slope pair into its radial distance from the origin, using Pythagoras’ theorem. We then 459 
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standardised our 21st to 23rd century MTG and JJA precipitation trends with respect to the mean and 460 

standard deviation of the 94 control run MTG and JJA precipitation trends, respectively, before 461 

converting these standardised 21st to 23rd century trends to radial distances from the origin. Where 462 

the standardised radial distances of the 21st to 23rd century MTG vs JJA precipitation trend slopes 463 

are <2 standard deviations from the origin, measured in standardised units of the corresponding 464 

control runs’ slopes, we interpret them as trends that might occur solely due to unforced variability; 465 

where their values are ≥2 standard deviations, we interpret them as unlikely to occur in the absence 466 

of increased GHG forcing (Supplementary Fig. 14).  467 

For DJF, 21st through 23rd century precipitation trends show no change of sign, but, 468 

particularly in ECP 8.5, are consistently positive (Fig. 3), and do not have a strong relationship with 469 

the MTG.  Therefore, we evaluated the significance of the DJF precipitation trends over the entire 470 

2006 to 2300 interval, and employed a univariate approach. To evaluate the significance of these 471 

trends, we divided the control runs into 22 unique 295-year intervals, from which we extracted 472 

linear trends of DJF precipitation, and calculated their 2.5 and 97.5 percentiles (ca. –2 and + 2 473 

standard deviations). Where the 2006-2300 DJF precipitation trends are ≤ -2 or ≥+2 standard 474 

deviations of the control DJF precipitation trends, we interpret them as unlikely to occur in the 475 

absence of increased GHG forcing (Supplementary Fig. 15).  476 

Comparison with the full set of RCP simulations. Because only a subset of CMIP5 477 

models (the “ECP models”) undertook the extended simulations to 2300 CE (16 for ECP 4.5, nine 478 

for ECP 8.5), we evaluated the possibility that the ECP subset is a biased sample of the full set of 479 

CMIP5 models, by comparing the performance of the ECP models during the 21st century, with the 480 

full set of available CMIP5 models that solely undertook 21st century runs (the “RCP models”). We 481 

compared their performance using Student’s T-tests, which indicated that mean 21st century trends 482 

of JJA and DJF precipitation and of the MTG in the ECP models are indistinguishable from those of 483 

the RCP models (Supplementary Fig. 16). We thus concluded that the ECP subset is broadly 484 

representative of the full set of CMIP5 models.  485 
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Data Availability 487 

The authors declare that the data supporting the findings of this study are available within the article 488 

and its supplementary information files. The CMIP5 model data used in this study are available in 489 

public repositories, for example at https://esgf-node.llnl.gov/projects/esgf-llnl/. The model data used 490 

here were stored on the Australian node of the Earth System Grid (the National Computational 491 

Infrastructure). Data associated with the CanESM1 simulation used in this study is available at 492 

http://crd-data-donnees-rdc.ec.gc.ca/CCCMA/CanESM1_zero_emission.  493 
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