-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Mitigating JIT Compilation Latency in Virtual Execution
Environments

Citation for published version:

Kristien, M, Spink, T, Wagstaff, H, Franke, B, Boehm, | & Topham, N 2019, Mitigating JIT Compilation
Latency in Virtual Execution Environments. in Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. Association for Computing Machinery (ACM),
pp. 101-107, 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
Providence, United States, 14/04/19. https://doi.org/10.1145/3313808.3313818

Digital Object Identifier (DOI):
10.1145/3313808.3313818

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 12. Sep. 2019

https://core.ac.uk/display/224804113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3313808.3313818
https://www.research.ed.ac.uk/portal/en/publications/mitigating-jit-compilation-latency-in-virtual-execution-environments(80937df6-3753-4992-98ee-e2a5d67ab236).html

Mitigating JIT Compilation Latency in Virtual
Execution Environments

Martin Kristien
University of Edinburgh
Edinburgh, UK
m.kristien@sms.ed.ac.uk

Tom Spink
University of Edinburgh
Edinburgh, UK
tspink@inf.ed.ac.uk

Harry Wagstaft
University of Edinburgh
Edinburgh, UK
hwagstaf@inf.ed.ac.uk

Bjorn Franke Igor Bohm Nigel Topham
University of Edinburgh Synopsys Inc. University of Edinburgh
Edinburgh, UK Austria Edinburgh, UK

bfranke@inf.ed.ac.uk
Abstract

Many Virtual Execution Environments (VEEs) rely on Just-
in-time (JIT) compilation technology for code generation at
runtime, e.g. in Dynamic Binary Translation (DBT) systems
or language Virtual Machines (VMs). While JIT compilation
improves native execution performance as opposed to e.g.
interpretive execution, the JIT compilation process itself in-
troduces latency. In fact, for highly optimizing JIT compilers
or compilers not specifically designed for JIT compilation, e.g.
LLVM, this latency can cause a substantial overhead. While
existing work has introduced asynchronously decoupled JIT
compilation task farms to hide this JIT compilation latency,
we show that this on its own is not sufficient to mitigate the
impact of JIT compilation latency on overall performance. In
this paper, we introduce a novel JIT compilation scheduling
policy, which performs continuous low-cost profiling of code
regions already dispatched for JIT compilation, right up to
the point where compilation commences. We have integrated
our novel JIT compilation scheduling approach into a com-
mercial LLVM-based DBT system and demonstrate speedups
of 1.32X on average, and up to 2.31X, over its state-of-the-art
concurrent task-farm based JIT compilation scheme across
the SPEC CPU2006 and BioPerf benchmark suites.

CCS Concepts + Hardware — Simulation and emula-
tion; - Software and its engineering — Simulator / inter-
preter; Just-in-time compilers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VEE ’19, April 14, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6020-3/19/04...$15.00
https://doi.org/10.1145/3313808.3313818

igor.boehm@synopsys.com

npt@inf.ed.ac.uk

Keywords]JIT compilation, performance, compilation la-
tency, scheduling

ACM Reference Format:

Martin Kristien, Tom Spink, Harry Wagstaff, Bjérn Franke, Igor
Bohm, and Nigel Topham. 2019. Mitigating JIT Compilation Latency
in Virtual Execution Environments. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (VEE ’19), April 14, 2019, Providence, RI, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3313808.3313818

1 Introduction

Many VEEs, ranging from DBT systems [1, 3, 12] through
language VMs [4, 10, 25] to specialized accelerator runtime
environments [16], rely on JIT compilation as a key perfor-
mance enabler. While some of these VEEs use JIT compil-
ers specifically designed for this purpose, the LLVM [19]
compiler framework finds increasing use in both academic
projects, and commercial products as a JIT compiler. The list
of examples is long: From Julia [2] and R [22] to Facebook’s
HHVM [21], Azul’s Falcon Java JIT [23] and Apple’s Nitro
JavaScript engine, and virtually every OpenCL compiler (e.g.
Intel, Apple, Arm), LLVM is used as a JIT compiler.

However, while actively supported and equipped with
strong optimizations, the LLVM compiler was not originally
designed as a fast JIT compiler. In fact, it is well known that
the use of LLVM as a JIT compiler can introduce a large
compilation overhead [5]. This is because some traditional
algorithms used in static compilers are too slow to be used
in JIT compilers [6].

As a way of hiding this JIT compilation latency, and to
increase the throughput of the JIT compiler, parallel and con-
current JIT compilation task farms have been developed [3,
18] and, later, adopted by industry, e.g. to drive data center
software infrastructure like in HHVM [21], to improve the
start-up times of managed application as in Microsoft’s .Net
Multicore JIT [7], or to power browser based applications like
in Google’s Chrome v8 JavaScript engine. While effective,
we show how this decoupled approach to JIT compilation
introduces a new problem: Maintaining the right balance
between the selection of code regions for JIT compilation,

https://doi.org/10.1145/3313808.3313818
https://doi.org/10.1145/3313808.3313818

VEE 19, April 14, 2019, Providence, RI, USA

and scheduling regions for compilation is non-trivial. We
show how state-of-the-art scheduling approaches [3, 18] can
arrive at non-optimal decisions resulting in poor application
performance as hot code regions are compiled too late.

In this paper we propose a novel scheme for scheduling JIT
compilation units in a VEE. The key idea is to separate the
dispatch of a compilation unit into a compilation queue from
scheduling the next unit for compilation. When the compila-
tion threshold is met, compilation units are dispatched to a
compilation queue, but their heat is continually updated as
execution progresses. When the JIT compiler fetches the next
compilation unit from the queue, we select the hottest unit
to be compiled. This scheme enables us to make scheduling
decisions based on accurate and up-to-date heat information,
leading to better runtime performance.

We have extended a commercial multi-threaded and LLVM-
based DBT system (Synopsys DesignWare ARC nSIM [14])
with our new JIT scheduling technique and demonstrate its
viability. In our evaluation against the SPEC CPU2006 and
BioPerf benchmark suites we demonstrate overall average
speedups of 1.32x and 1.2X, respectively, and up to 2.31x
over the default scheme.

1.1 Contributions
In this paper, we make the following contributions:

e We show that existing FIFO and heat-and-recency based
JIT scheduling policies lead to sub-optimal compilation
schedules;

e We introduce a novel JIT compilation queue scheduling
policy, Dynamic Heat;

e We perform a detailed analysis of this new scheduling
policy, and compare it to existing policies across a range
of industry standard benchmarks.

2 Background and Motivating Example

Hybrid interpreter/DBT systems [17] offload the expensive
JIT compilation of work-units to threads [3], whilst still
making forward progress in the interpreter, and thus hiding
the latency of JIT compilation. Such set-ups (described as
Asynchronous Mixed-mode Translation by [24]) have a greater
scope for implementation, and raise questions such as what,
when, and how guest code should be translated.

Figure 1 contrasts a typical configuration for a hybrid
interpreter/DBT-based VEE against our novel scheme. In
this example, the main execution loop starts by checking to
see if the code to be executed (i.e. the code residing at the
current program counter (PC)) has already been translated.
If a translation exists, it is used for execution. Otherwise, the
guest code is executed by the interpreter. Following this, in
typical asynchronous implementations, if the code has been
marked for translation (i.e. it has been dispatched), then the
main execution loop continues as normal in the interpreter,
until eventually the translation is available. If the code has

M. Kristien, T. Spink, H. Wagstaff, B. Franke, I. Bchm, N. Topham

not been dispatched, its profile is updated, and its heat (the
demand for this code to be executed) is measured. Code that
passes a heat threshold is dispatched, and thus scheduled for
compilation. Typically, the code to be translated (the work
unit) will be added to a queue, and a compilation worker
thread will remove and process the work unit, usually in FIFO
order. We refer to a particular ordering as the compilation
schedule, and the policy dictates how this schedule is formed.

2.1 Existing Scheduling Policies

In this paper, we make reference to the Default scheduling
policy as the one supplied with the Synopsys DesignWare
ARC nSIM product. This policy relies on both heat and re-
cency for determining the compilation schedule [3]. The
most prevalent policy found in literature is FIFO [9, 15, 21],
which although does not prioritize compilation units in any
way, maintains a strong sense of fairness, and prevents a
compilation unit from being stuck in the queue indefinitely.

2.2 Motivating Example

To motivate the research of compilation scheduling, we
demonstrate the effect of two different scheduling policies
in Figure 2. This figure depicts the execution of perlbench
from the SPEC CPU2006 [11] suite as heatmaps showing
execution in different regions of the application’s address
space over time. The horizontal axis represents the number
of executed instructions, as this is the time seen by the exe-
cuted application. Note, instruction time is not skewed by
different execution speeds resulting from different schedul-
ing policies.

A red color represents execution in interpretive mode. A
blue color represents execution in native mode. The inten-
sity of the color indicates the amount of execution in the
corresponding space-time region. A good policy should pro-
duce heatmaps that are more blue overall, by turning high-
intensity red regions into blue quickly.

The Default compilation scheduling policy (Figure 2a) pro-
duces a heatmap that contains long horizontal interpretation
lines (red). These indicate the policy has failed to recognize
the “importance” of the corresponding code regions. On the
other hand, the Dynamic Heat policy (Figure 2b) turns high
intensity interpretation into native execution more quickly.
This indicates that the policy selects important code regions
for compilation with a relatively short delay.

The two heatmaps in Figure 2 demonstrate the effect of
the compilation queue scheduling policy on the performance
of the whole system. In the case of perlbench, Dynamic Heat
results in a speedup of 1.99x relative to Default.

3 Methodology

The motivating example has shown clear sub-optimality of
the Default policy for a particular work-load. The visual-
ization (Figure 2a) shows code regions being interpreted

Mitigating JIT Compilation Latency in Virtual Execution Environments

START

VEE 19, April 14, 2019, Providence, RI, USA

Is Code
Dispatched?

Is Code
Translated?

Interpretive
Execution

[Native Execution] [

Original Scheme

| Profile }

Dispatch to
work queue

Is Code
Hot?

Is Code
Dispatched?

Update Profile in
Queue

3}
} Modify queued profile

(

Work Queue

14

)

JIT Compiler Worker

n-threads

JIT Compiler Worker

Figure 1. Operation of an asynchronous DBT system, with the original profiling scheme, and our proposed dynamic scheme.

—— interpretation
—— native execution

Address Space

Execution Progress

(a) Default scheduling policy.

Figure 2. Execution of the SPEC CPU2006 perlbench benchmark

—— interpretation
—— native execution

Address Space

Execution Progress

(b) Dynamic Heat scheduling policy.

with different scheduling policies. Red indicates interpretive

and blue indicates native execution. The intensity indicates the amount of execution in the corresponding space-time region.

for a long time, without the policy recognizing the regions’
importance to the application. Although the same code re-
gions were dispatched for compilation, the compilation order
differed, as dictated by the respective scheduling policy.

To tackle the issue of suboptimal compilation schedul-
ing, we introduce a novel scheduling policy focused on the
changing demands of applications. The policy relies on con-
tinuous profiling of already dispatched code regions, result-
ing in dynamic updates of heat of compilation units already
present in the queue. The compilation units are then priori-
tized based on the values of this dynamically updated heat.
Note, dynamic here means after-dispatch, rather than the
conventional meaning of at-runtime. We distinguish from a
typical heat policy as using static heat, i.e. at-dispatch.

The Dynamic Heat policy targets the long red interpreta-
tion lines by allowing all compilation units in the queue that
are being interpreted to increase in priority. Such dynamic
priority updates can fast-track previously moderately hot
units to the front of the compilation queue, preventing any
code region from being interpreted for a long time.

3.1 Implementation

We implement our novel policy in a state-of-the-art com-
mercial DBT system, Synopsys DesignWare ARC nSIM. This
DBT system implements the asynchronous compilation tech-
nique introduced previously. We make several changes to the
JIT compilation system to implement our new policy. These
were mainly in the profiling subsystem (to perform dynamic
heat updates), and in the compilation queue organization (to
take dynamic heat updates into consideration).

3.1.1 Profiler

In the original DBT system, profiling of application’s basic
blocks stopped after dispatch of the corresponding compila-
tion units. During dispatch, a handle to contain the produced
native code was registered with each basic block correspond-
ing to a particular compilation unit.

To allow dynamic updates to the heat of the compilation
units, a handle containing the compilation unit was also
registered with each dispatched basic block. Now, when the
profiler reaches a basic block already dispatched but not
yet compiled, the corresponding compilation unit’s heat is

VEE 19, April 14, 2019, Providence, RI, USA

Table 1. System Configuration

Host System

System Supermicro

Architecture x86-64 Model Intel Xeon
Sockets/Cores 2/10 Frequency | 2.4 GHz
L1 Cache 1$32 kB/D$32 kB | L2 Cache | 256 kB
Guest System

System Synopsys DesignWAre ARC nSIM
Architecture ARC700

Tracing Scheme | Region-based Interval 1,024 blocks
JIT Compiler LLVM # Threads | 1

JIT Optimization | -O3 Threshold | Adaptive

incremented through the handle on the basic block. During
this update no synchronization is involved, as the heat is
only an approximate metric and no error can arise from the
data races in accessing this metric.

Continued profiling of dispatched but not yet compiled
basic blocks resulted in no observable performance penalty.
Although more computation is being performed, it is done
only for blocks which are being interpreted, and the actual
interpretation is more costly than the counter increment.

3.1.2 Compilation Queue

All previous compilation queue implementations ordered
units during dispatch, as the priority metrics were fixed.
This led to an efficient implementation using standard C++
libraries, e.g. std: :queue or std: :priority_queue. How-
ever, no standard data structure allows for ordering elements
when the ordering metric is not fixed at insertion.

For simplicity of implementation, the compilation units
ordering point was moved from dispatch to selection (i.e. pop-
time). This allowed the use of an unstructured data structure,
in particular a std::vector. At the point of selection, a
linear scan through this data structure is performed, finding
a compilation unit with the maximal current (dynamic) heat.

Although this increases the complexity of the compilation
unit selection from O(1) (for std: : queue) or O(In(n)) (for
std: :priority_queue) to O(n) in size of the compilation
queue, no performance penalty was observed. Since the or-
dering has been moved from the application thread to the
compilation thread, the application thread can dispatch faster
and continue executing the application. On the other hand,
the compilation threads do not suffer from the increased
complexity, as the linear scan is negligible compared to the
computational cost involved in the compilation itself and the
synchronization overheads already present.

4 FEvaluation

Our novel compilation scheduling policy was evaluated us-
ing SPEC CPU2006 and Bioperf benchmarking suites, using
the host machine and DBT configuration described in Ta-
ble 1. For SPEC CPU2006, due to compilation issues and
long runtimes, we only use the integer benchmarks with

M. Kristien, T. Spink, H. Wagstaff, B. Franke, I. Bchm, N. Topham

the test input set. Benchmarks from the Bioperf suite are
run with the class-A workloads. The benchmarks have been
compiled with gcc 4.2.1, with -03 optimizations. Arithmetic
mean and standard deviation of 15 runs of each experiment
are depicted.

4.1 Key Results

In our results, the baseline policy (used for comparison) is
the Default policy, as implemented in the reference DBT
system, and described in subsection 2.1.

The results show speedups for both SPEC CPU2006 and
Bioperf in Figure 3. Some benchmarks achieve up to 2.31x
speedup compared to the baseline policy. On average, speedups
for SPEC and Bioperf are 1.32X and 1.2X, respectively.

Previous research [3] (from an older version of the refer-
ence DBT system) suggests the Default policy improves over
FIFO with a speedup of 1.04X and 1.13X%, for SPEC and Biop-
erf, respectively. Our Dynamic Heat policy achieves further
improvements, with speedups over FIFO of 1.29X and 1.54%
for SPEC and Bioperf, respectively.

Furthermore, while both the Default and the FIFO can be
outperformed by the Random policy for some benchmarks,
Dynamic Heat is never outperformed by the Random policy.

4.2 Comparison to Parallel JIT

The scheduling policy itself only aims at reducing the amount
of interpretation by selecting the most important code re-
gions. Another way to reduce the amount of interpretation is
to increase compilation throughput by using multiple parallel
JIT workers. Figure 4 compares the speedups achieved from
parallelism, to the speedup achieved by using Dynamic Heat,
for the SPEC and Bioperf benchmark suites. All speedups
are relative to the Default policy with one JIT worker.

As expected, introducing multiple workers improves per-
formance on average. Interestingly, for most benchmarks,
our novel scheduling policy results in better performance
improvement than one additional JIT worker. The graphs
clearly indicate the benchmarks that benefit the most from
concurrent compilation, and our policy follows this trend.

4.3 Reduction of Interpretation

Figure 5 shows the relative reduction in the number of in-
terpreted instructions, when using the Dynamic Heat policy,
compared to the Default policy. A smaller number of inter-
preted instructions indicates a larger proportion of native
instructions, which is the desirable outcome. Using the Dy-
namic Heat policy results in a reduction of instructions being
interpreted by more than 48% relative to the Default policy,
on average.

However, due to the long runtime, execution of some
benchmarks (e.g., bzip2, hmmer) is dominated by native exe-
cution for all policies (see Figure 6). In these cases, further
reductions in the proportion of interpreted instructions do

Mitigating JIT Compilation Latency in Virtual Execution Environments VEE 19, April 14, 2019, Providence, RI, USA

SPEC CPU2006 Bioperf
2.0 2.0
215 215
S10+-1ill---p- -0l -l = - grot---f--f-iam-- -l - - -l - - - - - - -
0.5 0.5
W FIFO W Random WM Dynamic Heat fmw FIFO mmm Random EEE Dynamic Heat

o o, Cog(ee meav\

i \be“d‘ ier gcc “"dgob‘“\‘ e’ \e“%a“w‘“ﬁ,me* ete® asta cbt;“ oea® 0ot rast® Nsxa\“ ea“";\\m‘“e

q(aqva earc pﬁa‘“

Figure 3. Speedups over the baseline policy for both the SPEC CPU2006 and Bioperf benchmark suites. Higher is better.

o 220

3 %1

2 2 2 i

%) %) 1o B ~ B | B ~
e '-'.'-'-'-'-' CI 05 ' . '.

BN 2 workers WM 3 workers WM 6workers EEE Dynamic Heat BN 2 workers WM 3 workers WEM 6 workers EEE Dynamic Heat

N0t o o gk et @ acef af ¥ at X0 st @ oW e el 2 o o ¥ gfe€ oal
ve(\ne“c L ST s\{%"&%an\“ “16“0“\(\2“’9 a:;\anr_v‘;‘eomea S e Qs ggea™ ™ g(?\‘)«‘:msea;\mmvia oo™ eof G0

Figure 4. Speedups over the baseline policy, when used with different numbers of JIT worker threads. Higher is better.

w
=}

s FIFO B Random B Dynamic Heat

mm FIFO mmm Random mmm Dynamic Heat

s 5
S 151]
5 525
O v
E &J‘é 2.0

10+--1--M - N
2 215
° °
S5 810
2 I
2 2
c c 05

0.0 0.0

N ol cC o \'S el . O of a0 \'S W X0 X0 ce W o el > o o \'3 ee a0
pe‘\uevc L A S\‘\\g&%a‘\‘“ 2ot e®® ai;\ancb‘;‘eomea e g Aws®" e o™ g(i\‘:gmr,ea‘“mmv‘a Qo™ eof Geo®

Figure 5. Proportion of interpreted instructions in each benchmark suite, relative to the Default policy. Lower is better.

100

B Default Wwm FIFO W Random WEE Dynamic Heat

Bmm Default W FIFO W Random WM Dynamic Heat

~ 9 ~Q
2 80 2 80
[g [g
82 60 22 60
s =
52 s2
gg, 40 -Sg 40
gg 2a
= =
%2 20 X8 20
0 oL B
£ ('3
o (\beac oot oc¢ o obm“ m«\e‘ g\ené a“m‘“ﬁ,me aete? asxa‘ oo 0™ ges® \u5na\"5$earc\"q\\m«\e g@p? c_,ea‘C m‘,ﬁaﬁ‘ p(gm\ cofte®

Figure 6. Proportion of interpreted instructions in each benchmark suite, relative to total instructions, for each policy. Shaded
areas are interpreted, solid areas are native execution. Larger solid area is better.

B Default

s FIFO

B Random

B Dynamic Heat

Default

FIFO

Random
Dynamic Heat

Compiled Code (%)
Compiled Code (%)

A £ < 33 \ o e n 31 %y N \'S e
‘,e(\be“‘“ o o o gov‘“\‘ e s\e“q ant“‘“ﬁ,‘“e etP? ai‘a oo S i g(a“::\msea‘:\mmvﬁam oo™ ot

Figure 7. The percentage of static code JIT-compiled during execution. Lower is better.

VEE 19, April 14, 2019, Providence, RI, USA

1200 A

—— Baseline
FIFO

—— Random

—— Dynamic Heat

1000 1

800

600 -

queue length

400

200 4

0.0 8.0 16.0 24.0 32.0 40.0 48.0 56.0
runtime (s)

Figure 8. Compilation queue length over run-time for gcc.

not translate to significant speedups. This also explains neg-
ligible effect of compilation scheduling policy on the runtime
of some benchmarks.

4.4 Quantity of Translated Code

Figure 7 shows the total quantity of translated code for each
benchmark suite. For several benchmarks, the Dynamic Heat
policy results in a significant reduction in the amount of
translated code (e.g., gcc, gobmk, grappa) compared to the
Default policy. Although less code is compiled with Dynamic
Heat, more native execution is observed, indicating Dynamic
Heat is better at selecting “important” code.

4.5 Compilation Queue Length

The choice of scheduling policy also affects the length of
the compilation queue. Counter-intuitively, speedups are
associated with longer compilation queues. Since the queue
consumption rate is fixed by the compilation throughput,
different scheduling policies can only affect the queue pro-
duction rate. New compilation units are added to the compila-
tion queue when newly discovered code regions become hot.
Therefore, fast native execution results in less time elapsed
before new code is discovered, increasing the effective queue
production rate. In other words, good policy speeds up ap-
plication execution leaving less time for the JIT workers to
consume the compilation queue. We observe this effect in
Figure 8 for gcc, where the compilation queue is observed to
be significantly longer for Dynamic Heat (nearly 1200) than
for Default (peaking at approximately 600).

5 Related Work

QEMU [1] is a widely-supported, portable binary translation
tool, which uses its own block-based JIT compiler (TCG).
QEMU performs translation synchronously with execution,
and so does not need to perform any compilation scheduling.
On the other hand, it is unable to extensively optimize the
translated code, since it is only considering a small code
region at a time. MAMBO-X86 [8] uses a tracing and trans-
lation scheme which maps guest call/return instructions to

M. Kristien, T. Spink, H. Wagstaff, B. Franke, I. Bchm, N. Topham

equivalent host instruction sequences in order to take advan-
tage of the host system’s return address prediction mecha-
nisms. Asynchronous DBT systems have been presented in a
variety of contexts. These include HQEMU [12], an extension
of QEMU which introduces an asynchronous trace-based
optimizer based on LLVM. HQEMU profiles and translates
traces, rather than the large code region which nSIM uses. [3]
presents another asynchronous DBT system. Here, a parallel
task farm is used to translate large code regions using LLVM.
They use an interpreter for the profiling/tracing step, unlike
HQEMU that uses tiered compilation, and traces continu-
ously rather than only when the possibility of a hot region
is encountered. [13] extends HOQEMU with Intel Processor
Trace, to reduce the overheads involved in trace forming.
Here, modern tracing and profiling hardware built in to the
CPU is used to reduce the cost of hot regions detection and
selection for further optimization. However, the paper does
not discuss the compilation scheduling policy. Ha et al.[10]
present an asynchronous, trace-based JavaScript JIT com-
piler. This uses a simple FIFO queue to order the traces to
be compiled. They also suggest that a lock-free queue could
be used, although they also admit that this is unlikely to
have a significant effect on performance. In [20], Namjoshi
et al present a method for online predictive profiling of Java
applications. This method attempts to detect the iteration
count for each loop, and prioritize the compilation of loops
that are predicted to become hot, as well as any methods
called from such loops.

6 Summary & Conclusion

In this paper we have developed a novel JIT compilation
scheduling policy mitigating the negative impact of compi-
lation latency in an asynchronous JIT system. Our Dynamic
Heat policy represents a significant improvement over a
state-of-the-art combined heat/recency policy used in a com-
mercial LLVM based DBT system. We demonstrated that our
novel policy consistently performs as good or better than the
default policy and integrates well with the multi-threaded
JIT compilation task farm system of the DBT system. In
addition to average speedups of 1.32x and 1.2Xx for SPEC
2006 and Bioperf benchmark suites respectively, and up to
2.31x, we found that the use of our novel scheduling policy
provides a performance boost roughly equivalent to that of
adding one further JIT compilation thread. For systems with
small numbers of host machine cores this is of particular sig-
nificance as our Dynamic Heat policy is able to outperform
the Default policy using two workers on every benchmark,
and with three workers in many cases. Larger systems still
benefit from lower machine utilization while delivering the
same performance with fewer compilation threads.

Future work will consider JIT compilation scheduling
policies for multi-core guest systems with both private and
shared JIT compilation threads.

Mitigating JIT Compilation Latency in Virtual Execution Environments

References
[1] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator..

(9]

(10]

(11]
(12]

(13]

In USENIX Annual Technical Conference, FREENIX Track. 41-46.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2014.
Julia: A Fresh Approach to Numerical Computing. CoRR abs/1411.1607
(2014). arXiv:1411.1607 http://arxiv.org/abs/1411.1607

Igor Bohm, Tobias JK Edler von Koch, Stephen C Kyle, Bjérn Franke,
and Nigel Topham. 2011. Generalized just-in-time trace compilation
using a parallel task farm in a dynamic binary translator. In ACM
SIGPLAN Notices, Vol. 46. ACM, 74-85.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler. In
Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems.
ACM, 18-25.

Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler.
2009. Fast and Accurate Simulation using the LLVM Compiler Frame-
work. In 1st Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools (RAPIDO).

M. Cierniak and W. Li. 1997. Just-in-time optimization for high-
performance Java programs. In Java for Computational Science and
Engineering - Simulation and Modeling IL.

Microsoft Corporation. 2012. An easy solution for improving app
launch performance. https://blogs.msdn.microsoft.com/dotnet/2012/
10/18/an-easy-solution-for-improving-app-launch-performance/. [ac-
cessed 13-December-2018].

Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Lujan.
2017. Low Overhead Dynamic Binary Translation on ARM. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, New York, NY, USA,
333-346. https://doi.org/10.1145/3062341.3062371

Google. 2018. Chrome V8. https://developers.google.com/v8/. [ac-
cessed 8-August-2018].

Jungwoo Ha, Mohammad Haghighat, Shengnan Cong, and Kathryn
McKinley. 2009. A concurrent trace-based just-in-time compiler for
JavaScript. University of Texas, Austin, Tech. Rep. TR-09-06 (2009).
John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1-17.

Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-
Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
2012. HQEMU: a multi-threaded and retargetable dynamic binary
translator on multicores. In Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization. ACM, 104-113.
Ding-Yong Hong, Jan-Jan Wu, Yu-Ping Liu, Sheng-Yu Fu, and Wei-
Chung Hsu. 2018. Processor-Tracing Guided Region Formation in
Dynamic Binary Translation. ACM Trans. Archit. Code Optim. 15, 4,

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

VEE 19, April 14, 2019, Providence, RI, USA

Article 52 (Nov. 2018), 25 pages. https://doi.org/10.1145/3281664
Synopsys Inc. 2018. DesignWare ARC nSIM. https://www.synopsys.
com/dw/ipdir.php?ds=sim_nsim. [accessed 8-August-2018].

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Mikio Takeuchi,
Takeshi Ogasawara, Toshio Suganuma, Tamiya Onodera, Hideaki Ko-
matsu, and Toshio Nakatani. 1999. Design, Implementation, and Eval-
uation of Optimizations in a Just-in-time Compiler. In Proceedings of
the ACM 1999 Conference on Java Grande (JAVA 99). ACM, New York,
NY, USA, 119-128. https://doi.org/10.1145/304065.304111

Pekka Jadskeldinen, Carlos Sanchez Lama, Erik Schnetter, Kalle
Raiskila, Jarmo Takala, and Heikki Berg. 2015. Pocl: A Performance-
Portable OpenCL Implementation. Int. §. Parallel Program. 43, 5 (Oct.
2015), 752-785. https://doi.org/10.1007/s10766-014-0320-y

Daniel Jones and Nigel Topham. 2009. High speed CPU simulation
using LTU dynamic binary translation. In International Conference
on High-Performance Embedded Architectures and Compilers. Springer,
50-64.

Prasad A Kulkarni. 2011. JIT compilation policy for modern machines.
In ACM SIGPLAN Notices, Vol. 46. ACM, 773-788.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO *04). IEEE Computer
Society, Washington, DC, USA, 75-. http://dl.acm.org/citation.cfm?
id=977395.977673

Manjiri A Namjoshi and Prasad A Kulkarni. 2010. Novel online pro-
filing for virtual machines. In ACM Sigplan Notices, Vol. 45. ACM,
133-144.

Guilherme Ottoni. 2018. HHVM JIT: A Profile-guided, Region-based
Compiler for PHP and Hack. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2018). ACM, New York, NY, USA, 151-165. https:
//doi.org/10.1145/3192366.3192374

R Development Core Team. 2008. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org ISBN 3-900051-07-0.

Philip Reames. 2017. Falcon: An Optimising Java JIT. In LLVM Devel-
opers Meeting. Azul Systems. https://llvm.org/devmtg/2017-10/slides/
Reames-FalconKeynote.pdf

Tom Spink, Harry Wagstaff, Bjoern Franke, and Nigel Topham. 2015.
Efficient Dual-ISA Support in a Retargetable, Asynchronous Dynamic
Binary Translator. In Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS), 2015 International Conference on. IEEE,
103 - 112. https://doi.org/10.1109/SAM0S.2015.7363665

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. 2003. A
region-based compilation technique for a Java just-in-time compiler.
In ACM SIGPLAN Notices, Vol. 38. ACM, 312-323.

http://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1411.1607
https://blogs.msdn.microsoft.com/dotnet/2012/10/18/an-easy-solution-for-improving-app-launch-performance/
https://blogs.msdn.microsoft.com/dotnet/2012/10/18/an-easy-solution-for-improving-app-launch-performance/
https://doi.org/10.1145/3062341.3062371
https://doi.org/10.1145/3281664
https://www.synopsys.com/dw/ipdir.php?ds=sim_nsim
https://www.synopsys.com/dw/ipdir.php?ds=sim_nsim
https://doi.org/10.1145/304065.304111
https://doi.org/10.1007/s10766-014-0320-y
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1145/3192366.3192374
http://www.R-project.org
https://llvm.org/devmtg/2017-10/slides/Reames-FalconKeynote.pdf
https://llvm.org/devmtg/2017-10/slides/Reames-FalconKeynote.pdf
https://doi.org/10.1109/SAMOS.2015.7363665

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background and Motivating Example
	2.1 Existing Scheduling Policies
	2.2 Motivating Example

	3 Methodology
	3.1 Implementation

	4 Evaluation
	4.1 Key Results
	4.2 Comparison to Parallel JIT
	4.3 Reduction of Interpretation
	4.4 Quantity of Translated Code
	4.5 Compilation Queue Length

	5 Related Work
	6 Summary & Conclusion
	References

