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A Detailed description of simulator
models used in experiments

A.1 A toy problem with complex posterior

This toy model illustrates that even simple models can
have non-trivial posteriors. The model has 5 parame-
ters θ = (θ1, . . . , θ5) sampled from a uniform prior as
follows:

θi ∼ U(−3, 3) for i = 1, . . . , 5. (1)

Given parameters θ, the data x is generated as follows:

mθ = (θ1, θ2) (2)

s1 = θ23 (3)

s2 = θ24 (4)

ρ = tanh(θ5) (5)

Sθ =

(
s21 ρs1s2

ρs1s2 s22

)
(6)

xj ∼ N (mθ,Sθ) for j = 1, . . . , 4 (7)

x = (x1, . . . ,x4). (8)

The data x is 8-dimensional. The likelihood is:

p(x |θ) =

4∏
j=1

N (xj |mθ,Sθ). (9)

In our experiments, we took the ground truth parame-
ters to be:

θ∗ = (0.7, −2.9, −1, −0.9, 0.6), (10)

and simulated the model with parameters θ∗ to get
observed data xo.

A.2 M/G/1 queue model

The M/G/1 queue model [8] describes how a server
processes a queue of arriving customers. Our exper-
imental setup follows Papamakarios and Murray [6].

There are 3 parameters θ = (θ1, θ2, θ3) sampled from
a uniform prior as follows:

θ1 ∼ U(0, 10) (11)

θ2 − θ1 ∼ U(0, 10) (12)

θ3 ∼ U(0, 1/3). (13)

Let I be the total number of customers, si be the
time the server takes to serve customer i, ai be the
time customer i arrived, and di be the time customer i
departed. Take a0 = d0 = 0. The M/G/1 queue model
is described by:

si ∼ U(θ1, θ2) (14)

ai − ai−1 ∼ Exp(θ3) (15)

di − di−1 = si + max (0, ai − di−1). (16)

In our experiments we used I = 50. The data x is
5-dimensional, and is obtained by (a) calculating the
0th, 25th, 50th, 75th and 100th quantiles of the set of
inter-departure times {di − di−1}1:I , and (b) linearly
transforming the quantiles to have approximately zero
mean and unit covariance matrix. The parameters of
the linear transformation were determined by a pilot
run. We took the ground truth parameters to be:

θ∗ = (1, 5, 0.2), (17)

and simulated the model with parameters θ∗ to get
observed data xo.

A.3 Lotka–Volterra population model

The Lotka–Volterra model [10] is a Markov jump pro-
cess describing the evolution of a population of preda-
tors interacting with a population of prey, and has four
parameters θ = (θ1, . . . , θ4). Let X be the number of
predators, and Y be the number of prey. According to
the model, the following can take place:

• With rate exp(θ1)XY a predator may be born,
increasing X by one.
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• With rate exp(θ2)X a predator may die, decreasing
X by one.

• With rate exp(θ3)Y a prey may be born, increasing
Y by one.

• With rate exp(θ4)XY a prey may be eaten by a
predator, decreasing Y by one.

Our experimental setup follows that of Papamakarios
and Murray [6]. We used initial populations X = 50
and Y = 100. We simulated the model using the
Gillespie algorithm [2] for a total of 30 time units.
We recorded the two populations every 0.2 time units,
which gives two timeseries of 151 values each. The data
x is 9-dimensional, and corresponds to the following
timeseries features:

• The mean of each timeseries.

• The log variance of each timeseries.

• The autocorrelation coefficient of each timeseries
at lags 0.2 and 0.4 time units.

• The cross-correlation coefficient between the two
timeseries.

Each feature was normalized to have approximately
zero mean and unit variance based on a pilot run. The
ground truth parameters were taken to be:

θ∗ = (log 0.01, log 0.5, log 1, log 0.01), (18)

and the observed data xo were generated from a simu-
lation of the model at θ∗. In our experiments we used
two priors: (a) a broad prior defined by:

pbroad(θ) ∝
4∏
i=1

I(−5 ≤ θi ≤ 2), (19)

and (b) a prior corresponding to the oscillating regime,
defined by:

posc(θ) ∝ N
(
θ |θ∗, 0.52

)
pbroad(θ). (20)

A.4 Hodgkin–Huxley cortical pyramidal
neuron model

In neuroscience, the formalism developed by Hodgkin–
Huxley in their classic model of the squid giant axon
[4] is used to model many different types of neuron. In
our experiments, we used a slightly modified version of
a regular-spiking cortical pyramidal cell [7], for which
NEURON [1] simulation code is available in ModelDB.1

1https://senselab.med.yale.edu/ModelDB/
ShowModel.cshtml?model=123623

The model is formulated as a set of five coupled ordi-
nary differential equations (ODEs) and describes how
the electrical potential V (t) measured across the neu-
ronal cell membrane varies over time as a function of
current Ie(t) injected through an electrode. In essence,
the membrane is a capacitor punctuated by conduc-
tances formed by multiple types of ion channel through
which currents flow. The currents charge and discharge
the membrane capacitance, causing the membrane po-
tential to change, as described by the first ODE, the
membrane equation:

Cm
dV

dt
= −I` − INa − IK − IM − Ie. (21)

Here, Cm = 1 µF cm−2 is the specific membrane capac-
itance, and I`, INa, IK and IM are the ionic currents
flowing through ‘leak’ channels, sodium channels, potas-
sium delayed-rectifier channels and M-type potassium
channels respectively. Each ionic current depends on a
conductance that corresponds to how many channels
are open, and on the difference between the membrane
potential and an equilibrium potential. For example,
for the leak current:

I` = g` (V − E`), (22)

where g` is the leak conductance, and E` is the leak
equilibrium potential. Here the conductance g` is con-
stant through time, but for the sodium, potassium and
M-type channels, the conductances vary over time, as
described by the product of a fixed conductance and
time-varying state variables:

INa = gNam
3h (V − ENa) (23)

IK = gK n
4 (V − EK) (24)

IM = gM p (V − EK). (25)

Here, gNa, gK and gM are the per-channel maximum
conductances, m, h, n and p are state variables that
range between 0 and 1, and ENa and EK are the sodium
and potassium reversal potentials. The state variables
evolve according to differential equations of the form
first introduced by Hodgkin and Huxley [4]:

dx

dt
= αx(V )(1− x)− βx(V )x for x ∈ {m,h, n}

(26)

dp

dt
=
p− p∞(V )

τp(V )
, (27)

where αx(V ), βx(V ), p∞(V ) and τp(V ) are nonlinear
functions of the membrane potential. We use the pub-
lished equations [7] for αm(V ), βm(V ), αh(V ), βh(V )
and αn(V ), which contain a parameter VT, and the
published equations for p∞(V ) and τp(V ), the latter of

https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=123623
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=123623
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which contains a parameter τmax. We use a generalized
version of βn(V ):

βn(V ) = kβn1 exp

(
−V − VT − 10

kβn2

)
(28)

in which kβn1 and kβn2 are adjustable parameters
(rather than 0.5 ms−1 and 40 mV). In order to sim-
ulate the model, we use NEURON [1] to solve the
ODEs numerically from initial conditions of:

m = h = n = p = 0 and V = −70 mV, (29)

using the “CNexp” method and a time-step of 25 µs.
At each time step the injected current Ie is drawn from
a normal distribution with mean 0.5 nA and variance
σ2. The duration of the simulation is 100 ms and the
voltage is recorded, which generates a timeseries of
4001 voltage recordings.

Our inference setup follows Lueckmann et al. [5]. There
are 12 parameters θ = (θ1, . . . , θ12) to infer, defined as:

θ1 = log(g`) θ7 = log(−EK)

θ2 = log(gNa) θ8 = log(−VT)

θ3 = log(gK) θ9 = log(kβn1)

θ4 = log(gM) θ10 = log(kβn2)

θ5 = log(−E`) θ11 = log(τmax)

θ6 = log(ENa) θ12 = log(σ).

(30)

The data x is taken to be 18 features of the voltage
timeseries V (t), in particular:

• The mean and log standard deviation of V (t).

• The normalized 3rd, 5th and 7th moments of V (t).

• The logs of the normalized 4th, 6th and 8th mo-
ments of V (t).

• The autocorrelation coefficients of V (t) at lags
k×2.5 ms for k = 1, . . . , 10.

The features are linearly transformed to have approx-
imately zero mean and unit covariance matrix; the
parameters of the transformation are calculated based
on a pilot run. The ground truth parameters θ∗ are
taken to be:

θ∗1 = log
(
10−4

)
θ∗7 = log(100)

θ∗2 = log(0.2) θ∗8 = log(60)

θ∗3 = log(0.05) θ∗9 = log(0.5)

θ∗4 = log
(
7× 10−5

)
θ∗10 = log(40)

θ∗5 = log(70) θ∗11 = log(1000)

θ∗6 = log(50) θ∗12 = log(1).

(31)

The prior over parameters is:

θi ∼ U(θ∗i − log 2, θ∗i + log 1.5) for i = 1, . . . , 12.
(32)

Finally, the observed data xo were generated by simu-
lating the model at θ∗.

B Full experimental results

In this section, we include the full set of experimental
results. For each simulator model, we report:

• The approximate posterior computed by SNL.

• The trade-off between accuracy and simulation
cost. This is reported for all methods.

• The full results of the simulation-based calibration
test, consisting of one histogram per parameter.

• The distance-based convergence diagnostic, i.e. the
distance between simulated and observed data vs
the number of rounds. This is reported for SNL,
SNPE-A and SNPE-B.

• The goodness-of-fit diagnostic, i.e. the Maximum
Mean Discrepancy between simulated data and
data generated from the likelihood model, for a
given parameter value (we use the true parameters
θ∗). We report this for SNL, NL and a baseline
Gaussian fit.

B.1 A toy problem with complex posterior

Figure 1 shows the results. The exact posterior p(θ |xo)
is plotted in Figure 1a. Even though the prior is uni-
form and the likelihood is Gaussian, the posterior is
complex and non-trivial: it has four symmetric modes
due to the two squaring operations in Equations (3) and
(4), and vertical cut-offs due to the hard constraints im-
posed by the prior. We can see that the SNL posterior
(Figure 1b) approximates the exact posterior well.

B.2 M/G/1 queue model

Figure 2 shows the results. The SNL posterior is shown
in Figure 2a. We can see that the posterior is concen-
trated around the true parameters. Parameter θ1 is
particularly well constrained. From the description of
the model in Equations (11)–(13), it directly follows
that:

θ1 ≤ mini (di − di−1). (33)

The data x is an invertible linear transformation of the
quantiles of {di − di−1}1:I including the 0th quantile,
which is precisely equal to mini (di − di−1). Hence, the
data x imposes a hard constraint on the maximum
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possible value of θ1, as correctly captured by the SNL
posterior. On the other hand, the data is less infor-
mative about θ2 and θ3, hence the parameters are less
constrained.

B.3 Lotka–Volterra population model

Figure 3 shows the results. The SNL posterior is shown
in Figure 3a; the extent of each plot corresponds to the
broad prior pbroad(θ). We can see that the posterior is
tightly concentrated around the true parameters, which
suggests that the data x is highly informative about
the parameters θ.

B.4 Hodgkin–Huxley cortical pyramidal
neuron model

The results are shown in Figure 4. The SNL posterior is
shown in Figure 5; the extent of each plot corresponds
to the uniform prior. In the SNL posterior, it can be
seen that all parameters are clustered around their true
values (red dots and lines).

The sodium and equilibrium potentials are relatively
tightly clustered, and the potassium equilibrium poten-
tial less so:

ENa = 50± 2 mV (34)

EK = −99 mV (range [−121 mV, −90 mV]) (35)

E` = −70± 4 mV. (36)

The tight clustering reflects that concentrations, and
hence equilibrium potentials, are maintained within a
range by neuronal ion exchangers and and glial buffer-
ing [9]. Furthermore, when regulation of ion concen-
tration fails, pathological brain states can arise [9].
The longer tail of the potassium equilibrium potential
posterior might be due to it having relatively little
influence on the mean of V (t), since at lower poten-
tials the potassium conductance gKn

4 will be relatively
small, so, according to Equation (24), the potassium
current will also be small. The quantity VT, which
adjusts the threshold of spike initiation, is also fairly
tightly controlled, which will tend to keep the firing
rate around a constant value.

In contrast to the equilibrium potentials, the conduc-
tances vary more, within a factor of 1.8 for g`, and
a factor of 3 for gNa, gK and gM. Moreover, gNa and
gK are correlated, which is consistent with their op-
posing depolarizing and hyperpolarizing influences on
the membrane potential. A higher sodium conduc-
tance could lead to the cell being hyper-excitable, but
this should be counteracted by a greater potassium
conductance. This allows for their wide range, and is
consistent with the biological evidence for diverse but
correlated sets of channel conductances underlying par-

ticular activity patterns [3]. In contrast, gM appears
to have relatively little influence over the output, and
is not correlated with any other parameters.

The parameter τmax, which also relates to the M-type
potassium channel, also has little effect. Further simu-
lations of other neuron types could be undertaken to see
if these parameters are generally loosely constrained,
which could then lead to experimentally testable pre-
dictions about the density and variability of M-type
conductances.

The parameters kβn1 and kβn2 also have relatively wide
ranges, and there is a weak correlation between the two.
Increasing kβn1 effectively increases the half-activation
voltage of potassium conductances, and increasing kβn2
makes the slope of transition less pronounced. The
lack of posterior at high kβn1 (high threshold) and
low kβn2 (sharper transition) might cause the neuron
not to repolarize quickly enough, and hence be hyper-
excitable.

Finally, we note that the posterior computed by SNL
is qualitatively consistent with the posterior reported
by Lueckmann et al. [5] in Figure G.2 of their article.
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Figure 1: A toy model with complex posterior.
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Figure 2: M/G/1 queue model.
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Figure 3: Lotka–Volterra population model.
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Figure 4: Hodgkin–Huxley neuron model.
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Figure 5: Hodgkin–Huxley model: MCMC samples from SNL posterior. True parameters θ∗ are indicated in red.
The range of each histogram is [θ∗i −log 2, θ∗i +log 1.5] for i = 1, . . . , 12. Compare with Figure G.2 by Lueckmann
et al. [5].
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