

Edinburgh Research Explorer

Delimited Persistent Stochastic Non-Interference
Citation for published version:
Hillston, J, Marin, A, Piazza, C & Rossi, S 2019, Delimited Persistent Stochastic Non-Interference. in
Proceedings of the 12th EAI International Conference on Performance Evaluation Methodologies and Tools.
ACM, Palma de Mallorca, Spain, pp. 135-142, 12th EAI International Conference on Performance
Evaluation Methodologies and Tools, Palma de Mallorca, Spain, 13/03/19.
https://doi.org/10.1145/3306309.3306329

Digital Object Identifier (DOI):
10.1145/3306309.3306329

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 12th EAI International Conference on Performance Evaluation Methodologies and Tools

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224804102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3306309.3306329
https://www.research.ed.ac.uk/portal/en/publications/delimited-persistent-stochastic-noninterference(d02171cf-de25-4d69-afdf-aa263c08184d).html

Delimited Persistent Stochastic Non-Interference
Jane Hillston

University of Edinburgh, UK

Jane.Hillston@ed.ac.uk

Andrea Marin

Univiversità Ca’ Foscari Venezia, Italy

marin@unive.it

Carla Piazza

Università di Udine, Italy

carla.piazza@uniud.it

Sabina Rossi

Università Ca’ Foscari Venezia, Italy

sabina.rossi@unive.it

ABSTRACT
Non-Interference is an information flow security property which

aims to protect confidential data by ensuring the complete absence

of any information flow from high level entities to low level ones.

However, this requirement is too demanding when dealing with real

applications: indeed, no real policy ever guarantees a total absence

of information flow. In order to deal with real applications, it is often

necessary to allow mechanisms for downgrading or declassifying

information such as information filters and channel control.

In this paper we generalize the notion of Persistent Stochastic
Non-Interference (PSNI) in order to allow information to flow from

a higher to a lower security level through a downgrader. We intro-

duce the notion of Delimited Persistent Stochastic Non-Interference
(D_PSNI) and provide two characterizations of it, one expressed

in terms of bisimulation-like equivalence checks and another one

formulated through unwinding conditions. Then we prove some

compositionality properties. Finally, we present a decision algo-

rithm and discuss its complexity.

CCS CONCEPTS
• Security and privacy → Formal security models; • Theory
of computation → Algebraic language theory;

KEYWORDS
Process Algebra, Markovian models, Non-Interference

ACM Reference Format:
Jane Hillston, Andrea Marin, Carla Piazza, and Sabina Rossi. 2019. Delimited

Persistent Stochastic Non-Interference. In 12th EAI International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS 2019),
March 12–15, 2019, Palma, Spain. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3306309.3306329

1 INTRODUCTION
Non-Interference is an information flow security property which

aims to protect confidential data by ensuring the complete absence

of any information flow from high level entities to low level ones.

The concept of non-interference has been introduced by Goguen

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

VALUETOOLS 2019, March 12–15, 2019, Palma, Spain
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6596-3/19/03. . . $15.00

https://doi.org/10.1145/3306309.3306329

and Meseguer in [10, 11]. Since then, a large body of work has

led to a variety of definitions for different application contexts. A

systematic overview is given in [12].

In this paper we consider the notion of non-interference pre-

sented in [15] for stochastic, cooperating, processes expressed as

terms of the Performance Evaluation Process Algebra (PEPA) [13].

The property Persistent Stochastic Non-Interference (PSNI) intro-
duced in [15] is based on an observation equivalence that relies on

the concept of lumpability ensuring that, for a secure process P , the
steady state probability of observing the system being in a specific

state P ′ is independent from its possible high level interactions. In

other words, we assume that the observer is able to observe any

execution path with its delays and also to measure some timing

properties like, e.g., the response time or the throughput. Hence

a system S is secure if any external observer is not able to dis-

tinguish the behaviour of S performing confidential, high level,

activities from the behaviour of the same system but prevented

from performing any high level action.

However, as extensively discussed in the literature, absolute non-

interference can hardly be achieved in real systems. In order to deal

with real applications, it is often necessary to allow mechanisms for

downgrading or declassifying information. The aim of our work is

that of generalizing the non-interference property PSNI in order to

admit mechanisms for downgrading or declassifying information

such as information filters and channel control. We are not aware

of any work dealing with forms of delimited information release in

the context of stochastic processes.

Related work. The problem of modelling information flow policies

admitting some forms of downgrading has first been addressed by

Goguen and Meseguer in [11]. The authors introduce the notion

of conditional non-interference which admits flows from a high

level of security to a low one through a controlled or trusted part.

The notion of intransitive non-interference has been introduced by

Rushby in [23] to formally develop a theory of downgrading for

deterministic systems. Indeed, the non-interference property is said

to be intransitive since flows from the high level to a trusted part

and flows from the trusted part to the low level are admissible

assuming that the trusted part takes care of controlling them, while

a direct flow from high to low is not allowed. In the context of

process algebras, intransitive non-interference has been formulated

by Roscoe and Goldsmith in [22] for deterministic CSP processes.

Intransitive flow policies for non-deterministic systems have

been studied by Mantel in [19]. A few years later Backes and Pfitz-

mann propose in [2] a definition of intransitive probabilistic non-
interference for reactive systems. In [20]Mullins presents a property

https://doi.org/10.1145/3306309.3306329
https://doi.org/10.1145/3306309.3306329
https://doi.org/10.1145/3306309.3306329

VALUETOOLS 2019, March 12–15, 2019, Palma, Spain J. Hillston, A. Marin, C. Piazza and S. Rossi

named Admissible Interference for processes expressed as terms of

the CCS process algebra.

All the properties mentioned above are based on trace equiva-

lences and thus they are not suitable to deal with information flows

caused by possible deadlocks occurring in concurrent computations.

To cope with this problem, Ryan and Schneider in [24] introduce the

notions of partial and conditional information flows in the context

of CSP processes. Finally, Lafrance and Mullins in [17] introduce

the notion of Bisimulation-based Non-deterministic Admissible Inter-
ference (BNAI) which is a generalization of the property presented

in [4, 5, 7–9, 21]. In [26] von Oheimb provides automata based

definitions for both deterministic and non-deterministic systems

and both transitive and intransitive policies. Downgrading in the

context of CCS processes has been modelled by some of the authors

of this paper in [6].

Contribution of the paper. We present a generalization of the no-

tion of Persistent Stochastic Non-Interference (PSNI) in order to allow

information to flow from a higher to a lower security level through

a downgrader. We introduce the notion of Delimited Persistent Sto-
chastic Non-Interference (D_PSNI) and provide two characterizations
of it, one expressed in terms of bisimulation-like equivalence checks

and another one formulated through unwinding conditions [3, 18].

As for PSNI, the property that we propose is strictly related to the

lumping of Markov chains since the observation equivalence at

the base of our definition relies on the notion of lumpability [14].

As a consequence if P is secure then, from the low level point of

view, the steady state probability of observing the system being in

a specific state P ′ is independent from the possible high level, con-

fidential, interactions of P . Then we prove some compositionality

properties and show the relationships between the notions of PSNI
and D_PSNI. Finally, we present a decision algorithm and discuss

its complexity.

Structure of the paper. The paper is organized as follows. In Sec-

tion 2 we introduce the process algebra PEPA and the observation

equivalence named lumpable bisimilarity. Property PSNI and its

characterizations are presented in Section 3. Section 4 introduces

our novel security propertyD_PSNI and gives two characterizations
of it. In Section 5 we describe an algorithm to decide whether a

PEPA component is D_PSNI. Finally, Section 6 concludes the paper.

2 THE LANGUAGE
In this section we briefly recall the Performance Evaluation Process
Algebra (PEPA) [13].

Syntax. The PEPA language [13] consists of two basic elements:

components and activities. Activities are pairs (α , r) where α is

called action type and belongs to a countable setA, while r is called
activity rate and belongs to the set R+ ∪ {⊤} where the symbol ⊤ is

used to denote an unspecified rate. Hence, the duration of an activity
is modelled as a negative exponential distribution with mean r−1

.

The special action type τ ∈ A is used to denote the unknown type.

The PEPA language provides a small set of combinators. These

allow language terms to be constructed defining the behaviour of

components, via the activities they undertake and the interactions

between them. The syntax for PEPA terms is given by the following

grammar:

P ::= P ▷◁
L
P | P/L | S

S ::= (α , r).S | S + S | A

where S denotes a sequential component, while P denotes a model
component which can be obtained as the cooperation of sequential

terms. We denote by C the set of all possible components.

Operational semantics.Table 1 shows the operational semantics of

the PEPA language. The component (α , r).P carries out the activity

(α , r) of type α at rate r and subsequently behaves as component P .
P+Q specifies a system which may behave either as P or asQ . P+Q
enables all the current activities of both P and Q . The first activity

to complete distinguishes one of the components, P orQ . The other

component of the choice is discarded. The component P/L behaves

as P except that any activity of type within the set L are hidden, i.e.,
they are relabelled with the unknown type τ . The meaning of a con-

stant A is given by a defining equation such as A
def
= P which gives

the constant A the behaviour of the component P . The cooperation
combinator ▷◁

L
is in fact an indexed family of combinators, one for

each possible set of action types, L ⊆ A \ {τ }. The cooperation set
L defines the action types on which the components must synchro-

nise or cooperate (the unknown action type, τ , may not appear in

any cooperation set). It is assumed that each component proceeds

independently with the activities whose types do not occur in the

cooperation set L (individual activities). However, activities with
action types in L require the simultaneous involvement of both

components (shared activities). The shared activity will have the

same action type as the two contributing activities and its rate is

that of the slower component. If in a component an activity has rate

⊤, then we say that it is passive with respect to that action type.

In this case the rate of the shared activity will be that of the other

component. For a given component P and action type α , the appar-
ent rate of α in P , rα (P), is the sum of the rates of the α activities

enabled in P .
The semantics of each term in PEPA is given via a labelledmulti-

transition system where the multiplicities of arcs are significant.

In the transition system, a state or derivative corresponds to each

syntactic term of the language and an arc represents the activity

which causes one derivative to evolve into another. The set of

reachable states of a model P is termed the derivative set of P (ds(P))
and constitutes the set of nodes of the derivation graph of P (D(P))
obtained by applying the semantic rules exhaustively. We denote by

A(P) the set of all the current action types of P , i.e., the set of action
types which the component P may next engage in. We denote by

Act(P) the multiset of all the current activities of P . Thanks to the

exponential assumption, the probability that a particular activity

completes is the ratio between its rate and the exit rate from P .

Underlying Markov Chain. Let P
def
= P0 with ds(P) = {P0, . . . , Pn }

be a finite PEPA model. Then, the stochastic process X (t) on the

space ds(P) is a continuous time Markov chain [13]. The transition
rate between two states Pi and Pj is denoted by q(Pi , Pj) and cor-

responds to the rate at which the system changes from behaving

as component Pi to behaving as Pj , i.e., it is the sum of the activity

rates labelling arcs which connect the node corresponding to Pi to
the node corresponding to Pj in the derivation graph, i.e.,

q(Pi , Pj) =
∑
a∈Act(Pi |Pj) ra

Delimited Persistent Stochastic Non-Interference VALUETOOLS 2019, March 12–15, 2019, Palma, Spain

(α , r).P
(α ,r)
−−−−−→ P

P
(α ,r)
−−−−−→ P ′

P +Q
(α ,r)
−−−−−→ P ′

Q
(α ,r)
−−−−−→ Q ′

P +Q
(α ,r)
−−−−−→ Q ′

P
(α ,r)
−−−−−→ P ′

P/L
(α ,r)
−−−−−→ P ′/L

(α < L)
P

(α ,r)
−−−−−→ P ′

P/L
(τ ,r)
−−−−→ P ′/L

(α ∈ L)
P

(α ,r)
−−−−−→ P ′

A
(α ,r)
−−−−−→ P ′

(A
def
= P)

P
(α ,r)
−−−−−→ P ′

P ▷◁
L
Q

(α ,r)
−−−−−→ P ′ ▷◁

L
Q

(α < L)
Q

(α ,r)
−−−−−→ Q ′

P ▷◁
L
Q

(α ,r)
−−−−−→ P ▷◁

L
Q ′

(α < L)

P
(α ,r1)
−−−−−→ P ′ Q

(α ,r2)
−−−−−→ Q ′

P ▷◁
L
Q

(α ,R)
−−−−−→ P ′ ▷◁

L
Q ′

R =
r1

rα (P)
r2

rα (Q)
min(rα (P), rα (Q)) (α ∈ L)

Table 1: Operational semantics for PEPA components

with Pi , Pj and Act(Pi |Pj) = {| a ∈ Act(Pi)| Pi
a
−→ Pj |}. When

Pj is not a one-step derivative of Pi we set q(Pi , Pj) = 0. In the

following, when possible, we will write qi j instead of q(Pi , Pj). In
the definition of the infinitesimal generator Q of X (t), the qi j ’s,
with i , j, are the off-diagonal elements of the matrix whereas the

diagonal elements are the negative sum of the row non-diagonal

elements, i.e., qii = −q(Pi). For any finite and irreducible PEPA

model P , the steady-state distribution Π(·) exists and it may be

found by solving the probability normalising equation and the

linear system of global balance equations:∑
Pi ∈ds(P) Π(Pi) = 1 and ΠQ = 0.

Another notion that will be used in the paper is that of condi-
tional transition rate from Pi to Pj via an action type α , denoted
by q(Pi , Pj ,α). This is the sum of the activity rates labelling arcs

connecting the corresponding nodes in the derivation graph which

are also labelled by the action type α . It is the rate at which a system
behaving as component Pi evolves to behaving as component Pj
as the result of completing a type α activity. The total conditional
transition rate from P to S ⊆ ds(P), q[P , S ,α], is defined as

q[P , S ,α] =
∑
P ′∈S

q(P , P ′,α)

where q(P , P ′,α) =
∑
P

(α ,rα)

−−−−−−→P ′
rα .

Observation Equivalence. We consider a bisimulation-like equiv-

alence notion for PEPA components, named lumpable bisimilarity,
that we previously introduced in [14].

Two PEPA components are lumpably bisimilar if there exists an
equivalence relation between them such that, for any action type α
different from τ , the total conditional transition rates from those

components to any equivalence class, via activities of this type, are

the same.

Definition 2.1. (Lumpable bisimulation) An equivalence relation

over PEPA components, R ⊆ C × C, is a lumpable bisimulation if

whenever (P ,Q) ∈ R then for all α ∈ A and for all S ∈ C/R such

that

• either α , τ ,
• or α = τ and P ,Q < S ,

it holds

q[P , S ,α] = q[Q , S ,α] .

Notice that, in contrast with the notion of strong equivalence [13],

lumpable bisimulation allows arbitrary activities with type τ among

components belonging to the same equivalence class, and therefore

it is less strict.

We are interested in the relation which is the largest lumpable

bisimulation, that is the union of all lumpable bisimulations.

Definition 2.2. (Lumpable bisimilarity) Two PEPA components

P and Q are lumpably bisimilar, written P ≈l Q , if (P ,Q) ∈ R for

some lumpable bisimulation R, i.e.,

≈l =
⋃

{R | R is a lumpable bisimulation}.

≈l is called lumpable bisimilarity and it is the largest symmetric

lumpable bisimulation over PEPA components.

We proved that for any PEPA component P , lumpable bisimilarity

induces a partition of the derivative set ds(P) of P into equivalence

classes that is a strong lumpability [16] for the underlying Markov

chain. Moreover, the aggregated process satisfies the property that

the steady state probability of each aggregated macro-state is equal

to the sum of the steady state probabilities of the corresponding

equivalent states in the initial CTMC.

Finally in [14] we proved that lumpable bisimilarity is a congru-

ence, i.e., if P1 ≈l P2 then

• (α , r).P1 ≈l (α , r).P2 for all α ∈ A;

• P1/L ≈l P2/L for all L ⊆ A;

• P1
▷◁
L
Q ≈l P2

▷◁
L
Q for all L ⊆ A.

3 STOCHASTIC NON-INTERFERENCE
In this section we recall the security property named Persistent
Stochastic Non-Interference (PSNI) for PEPA components which aim

VALUETOOLS 2019, March 12–15, 2019, Palma, Spain J. Hillston, A. Marin, C. Piazza and S. Rossi

at characterizing classes of processes having no information flows

from high to low.

Property PSNI tries to capture every possible information flow

from a classified (high) level of confidentiality to an untrusted (low)
one. The definition of PSNI is based on the basic idea of Non-

Interference [10]: “No information flow is possible from high to low

if what is done at the high level cannot interfere in any way with

the low level”. Hence, the notion of PSNI consists of checking all
the states reachable by the system against all high level potential

interactions.

In order to formally define this security property, we partition

the set A \ {τ } of visible action types, into two sets,H and L, of

high and low level action types, respectively. A high level PEPA

componentH is a PEPA term such that for allH ′ ∈ ds(H),A(H ′) ⊆

H , i.e., every derivative of H may next engage in only high level

actions. We denote by CH the set of all high level PEPA components.

A system P satisfies property PSNI if for every state P ′ reachable
from P and for every high level process H a low level user cannot

distinguish P ′ running in isolation or, equivalently, P ′ running
in parallel with any high level PEPA component that does not

synchronize with it from P ′ ▷◁
H
H where H is a high component

cooperating with P ′. In other words, a system P satisfies PSNI if
what a low level user sees of the system is not modified when it

cooperates with any high level process H .

In order to model a process P running in isolation we introduce

the special model component 0 and extend the syntax of model,

non-sequential, PEPA components as

P ::= 0 | P ▷◁
L
P | P/L | S .

We model a process P running in isolation or, equivalently, run-

ning in parallel with any high level PEPA component that does not

synchronize with it as (P ▷◁
H
0). Now observe that high level inter-

actions are not visible by an external low level observer which is

only aware of the delay while the interactions take place. Therefore,

from the low level point of view the process (P ▷◁
H
H) behaves as

(P ▷◁
H
H)/H .

We are now in position to formally define the property PSNI.
The observation equivalence at the base of our definition relies

on the notion of lumpable bisimilarity and this ensures that, for

a secure process P , the steady state probability of observing the

system being in a specific state P ′ is independent from its possible

high level interactions.

Definition 3.1. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P), ∀H ∈ CH ,

(P ′ ▷◁
H
0)/H ≈l (P

′ ▷◁
H
H)/H .

Notice that (P ′ ▷◁
H
0) does not engage in any high level activity

and then the derivation graphs of (P ′ ▷◁
H
0) and (P ′ ▷◁

H
0)/H are iso-

morphic as graphs with labels and edges. More precisely, (P ′ ▷◁
H
0)

behaves as the component P ′ prevented from performing any high

level activity. We can thus express the behaviour of (P ′ ▷◁
H
0) by

using the restriction operator (\) as defined for instance in CCS, as

P \ H . From now on we use the notation P \ H as a shorthand of

(P ′ ▷◁
H
0)/H . The definition of PSNI can be expressed as:

Definition 3.2. [15] Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P), ∀H ∈ CH ,

P ′ \ H ≈l (P
′ ▷◁

H
H)/H .

In [15] we provided two characterizations of PSNI : one based
on bisimulation-like equivalence checks and another one based

on unwinding conditions which demand properties of individual

actions.

The first characterization of PSNI is based on an observation

equivalence where actions fromH may be ignored. We introduced

the notion of lumpable bisimilarity up toH .

Definition 3.3. (Lumpable bisimilarity up toH) An equivalence

relation over PEPA components, R ⊆ C × C, is a lumpable bisimu-
lation up to H if whenever (P ,Q) ∈ R then for all α ∈ A and for

all S ∈ C/R

• if α < H ∪ {τ } then

q[P , S ,α] = q[Q , S ,α] ,

• if α ∈ H ∪ {τ } and P ,Q < S , then

q[P , S ,α] = q[Q , S ,α] .

Two PEPA components P and Q are lumpably bisimilar up to H ,

written P ≈H
l Q , if (P ,Q) ∈ R for some lumpable bisimulation up

toH , i.e.,

≈H
l =

⋃
{R | R is a lumpable bisimulation up toH}.

≈H
l is called lumpable bisimilarity up to H and it is the largest

symmetric lumpable bisimulation up toH over PEPA.

The first characterization of PSNI is stated below.

Theorem 3.4. Let P be a PEPA component. Then

P ∈ PSNI iff P \ H ≈H
l P .

We also provided a characterization of PSNI in terms of unwind-
ing conditions. In practice, whenever a state P ′ of a PSNI PEPA
model P may execute a high level activity leading it to a state P ′′,
then P ′ and P ′′ are indistinguishable for a low level observer.

Theorem 3.5. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P),

P ′
(h ,r)
−−−−→ P ′′ implies P ′ \ H ≈l P

′′ \ H .

Using the equivalence relation ≈H
l this can be reformulated as

follows.

Theorem 3.6. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P),

P ′
(h ,r)
−−−−→ P ′′ implies P ′ ≈H

l P ′′ .

Example 3.7. The aim of this first example is to support the

intuition underlying the definition of PSNI. Let us consider a system

offering some public access to two types of customers: the first

consists of ordinary customers without any special privilege, while

the second is formed by the users with administrative privileges

who can access to some confidential information stored in the

system. A malicious user is not interested in attacking the system

Delimited Persistent Stochastic Non-Interference VALUETOOLS 2019, March 12–15, 2019, Palma, Spain

Ordinary Confidential

bH , α1

eH , α2

qcL, α3qL, α4

qL, α5

qoL, α6

qcH , α7

Figure 1: An unsecure system for public access.

while ordinary users are interacting since a successful attempt

would lead to an irrelevant leakage of information. On the contrary,

an attack while the system is in its ‘Confidential’ state may lead

to a valuable leakage of information. Hence, it becomes crucial for

the system to hide its operating state to low-level users at any time

epoch.

The model is depicted in Figure 1. High-level users can force the

system to move from the state ‘Ordinary’ to the state ‘Confidential’

and vice-versa with the actions bH and eH (standing for ‘begin’

and ‘end’, respectively). Once the system is in the ‘Confidential’

state, the high-level user interacts by means of the action type

qcH (standing for query at confidential state). A low-level user can

interact with the system in the following ways:

• Action types qcL and qoL (query at confidential and at ordi-

nary, respectively) functionally allow the user to understand

that the system is in the ‘Confidential’ or ‘Ordinary’ state:

for example, a request for service could produce a message

displaying that an update is being run if the system is in the

‘Confidential’ state or the expected reply otherwise.

• Action type qL allows the low-level user to interact with the

system without being able to distinguish its functionality

from that observed when the system state is ‘Ordinary’. In

fact, the action type qL is exposed in both state ‘Ordinary’

and ‘Confidential’.

It is clear that the system, in this form, is not secure. In fact, action

types qcL and qoL simply allow the malicious user to understand

its state. Indeed, the states ‘Ordinary’ and ‘Confidential’ are not

lumpable bisimilar for a low level observer since they expose a

different set of low-level actions.

Let us consider the model depicted in Figure 2 that is obtained

from the one of Figure 1 by suppressing the action types qcL and

qoL . The obtained model satisfies PSNI iff α4 = α5. If this is not the

case, the malicious attacker may infer the state of the system thanks

to the sequence of response times obtained by a set of queries. In

other words, the state of the system can be inferred not only by its

functional properties but also by its non-functional properties.

4 DELIMITED NON-INTERFERENCE
The notion of PSNI is too demanding when dealing with practical

applications: indeed no real policy ever guarantees a total absence

of information flow. In many concrete applications confidential

data can flow from high to low provided that the flow is not direct

and it is controlled by the system, i.e., a trusted part of the system

can control the downgrading of sensitive information.

In this section we show how our security property can be gener-

alized in order to obtain a notion of stochastic non-interference for

Ordinary Confidential

bH , α1

eH , α2

qL, α4

qL, α5

qcH , α7

Figure 2: A secure system for public access.

PEPA components which allows systems to intentionally release

some information.

To model downgrading we now partition the set A \ {τ } of

visible action types, into three sets,H , L and D of high, low and

downgraded action types. Downgraded action types are used to

specify the behaviour of trusted components interacting with the

system. We assume that the low level users cannot observe the

actions performed by the trusted part.

We generalize the notation expressed in terms of (\) in the pre-

vious section. Indeed, for a given PEPA component P and a set of

action types L ∈ A \ {τ }, we denote by P \ L the component P
prevented from performing any activity whose action type belongs

to L.
Delimited Persistent Stochastic Non-Interference (D_PSNI) can be

formalized as follows.

Definition 4.1. Let P be a PEPA component.

P ∈ D_PSNI iff ∀P ′ ∈ ds(P), ∀H ∈ CH ,

((P ′ ▷◁
H
0)/H) \ D ≈l ((P

′ ▷◁
H
H)/H) \ D .

Notice that this definition states that a system P satisfies D_PSNI
if whenever it does not cooperate with a trusted part, what a low level

user sees of the system is not modified when it cooperates with

any high level process H . Hence, flows from the high level to the

trusted part and flows from the trusted part to the low level are

admissible, while direct flows from the high level to the low one

are not allowed.

As in the case of PSNI , property D_PSNI can be equivalently

written as:

Definition 4.2. Let P be a PEPA component.

P ∈ D_PSNI iff ∀P ′ ∈ ds(P), ∀H ∈ CH ,

P ′ \ H ∪ D ≈l ((P
′ ▷◁

H
H)/H) \ D .

In this section we provide two characterizations of D_PSNI . The
first one is expressed in terms of a bisimulation-like equivalence

relation named L-Lumpable bisimilarity up toH .

Definition 4.3. (L-Lumpable bisimilarity up to H) An equiva-

lence relation over PEPA components, R ⊆ C × C, is a L-lumpable
bisimulation up to H if whenever (P ,Q) ∈ R then for all α ∈

L ∪H ∪ {τ } and for all S ∈ C/R

• if α ∈ L then

q[P , S ,α] = q[Q , S ,α] ,

• if α ∈ H ∪ {τ } and P ,Q < S , then

q[P , S ,α] = q[Q , S ,α] .

VALUETOOLS 2019, March 12–15, 2019, Palma, Spain J. Hillston, A. Marin, C. Piazza and S. Rossi

endFileL, α1

beginFile
L
, α2

req
H
, α3 encD, α4

τ, α5 okH , α6

beginErr
L
, α7

endErrL, α8

Figure 3: Unsecure database query.

Two PEPA components P and Q are L-lumpably bisimilar up to H ,

written P ≈H
L

Q , if (P ,Q) ∈ R for some L-lumpable bisimulation

up to H , i.e.,

≈H
L
=
⋃

{R | R is a L-lumpable bisimulation up toH}.

≈H
L

is called L-lumpable bisimilarity up toH and it is the largest

symmetric L-lumpable bisimulation up to H over PEPA compo-

nents.

The next theorem states that P satisfiesD_PSNI if and only if for
all P ′ ∈ ds(P) it holds that P ′ and P ′ \H ∪D are indistinguishable

with respect to ≈H
L
.

Theorem 4.4. Let P be a PEPA component. Then P ∈ D_PSNI iff ∀P ′ ∈
ds(P)

P ′ \ H ∪ D ≈H
L

P ′ .

We also provide a characterization of D_PSNI in terms of un-
winding conditions which demand properties of individual activities.

This characterization of D_PSNI is stated below.

Theorem 4.5. Let P be a PEPA component.

P ∈ D_PSNI iff ∀P ′ ∈ ds(P),

P ′
(h ,r)
−−−−→ P ′′ implies P ′ \ H ∪ D ≈l P

′′ \ H ∪ D .

Theorems 4.4 and 4.5 provide different characterizations ofD_PSNI
which naturally lead to efficient methods for the verification and

construction of secure systems. A decision algorithm for D_PSNI is
presented in Section 5.

Example 4.6. Let us consider the model depicted in Figure 3 that

represents a confidential query to a database system. Starting from

the left-most state, the system waits for a request reqH that uses

a private channel, e.g., a channel based on a asymmetric cryptog-

raphy. Upon the reception of the request, the system negotiates a

symmetric key that will be used to transfer the reply (encD). This

phase is observable by a malicious user, but by using the down-

grading we are stating that we tolerate the information flow that

happens up to this point. The following τ activity represents the

computation of the reply. At this point, we may observe two be-

haviours: either the computation is successful or it is unsuccessful.

In the former case, the system transmits on the private channel the

acknowledge okH , then begins (beginFileL) and ends (endFileL) the

transmission of the reply encrypted with the shared key negotiated

before. For this reason, these activities are modelled by means of

endFileL, α1

beginFile
L
, α1

beginFile
L
, α1

req
H
, α2 encD, α3

τ, α4 okH , α5

Figure 4: Secure database query.

low-level action types. In the case of failure, the system transmits

an error message (beginErrL , endErrL).

Let us analyse the information flow in the system. Notice that

once a malicious observer sees the action type encD , he/she can

infer that a query has been started. However, thanks to the down-

grading, we consider that this flow is acceptable because we trust

the security of the system in this phase. In contrast, action type

okH is not protected (although cannot be seen by the malicious

user) since it is followed by a beginFileL action type. Therefore, the

observer can deduce the state of the query by inferring that it has

been successful if it sees beginFileL after encD , or unsuccessful if

it sees beginErrL after encD . Formally, this can be seen since the

states depicted by squares in Figure 3 are not lumpable bisilimilar

from a low-level point of view.

One possible solution to this leakage of information is shown in

Figure 4. First of all, we avoid the use of different action types for

signalling the error. This means, for example, that the error message

must use the same service (e.g., TCP port) as the correct reply

message. Second, it is important that the distribution of the size of

the reply and error message is the same (in our case proportional

to an exponential random variable with parameter α1). If this is

not the case, a malicious observer could be able to probabilistically

infer the reply the outcome of the query (successful, unsuccessful)

by the transmission time of the reply.

Here we prove some compositionality results that allow us to

check the security of a system by only verifying the security of its

subcomponents. In particular we prove that D_PSNI is composi-

tional with respect to non-high prefix, hiding, and cooperation over

a set of low actions.

Proposition 4.7. Let P andQ be two PEPA components. If P ,Q ∈

D_PSNI , then

• (α , r).P ∈ D_PSNI for all α ∈ L ∪ D ∪ {τ };
• P/L ∈ D_PSNI for all L ⊆ A;
• P ▷◁

L
Q ∈ D_PSNI for all L ⊆ L.

We also prove that if P ∈ D_PSNI then the equivalence class [P]
with respect to lumpable bisimilarity ≈l is closed under D_PSNI.

Proposition 4.8. Let P and Q be two PEPA components. If P ∈

D_PSNI and P ≈l Q then also Q ∈ D_PSNI .

We conclude this section by showing the relationships between

the two equivalence relations ≈H
l and ≈H

L
and also between the

two security properties PSNI and D_PSNI .
Proposition 4.9 relates the bisimulation-like equavalence rela-

tions ≈H
l and ≈H

L
. The proof follows immediately from Definitions

3.3 and 4.3.

Delimited Persistent Stochastic Non-Interference VALUETOOLS 2019, March 12–15, 2019, Palma, Spain

Proposition 4.9. Let P and Q be two PEPA components. It holds
that

P ≈H
L

Q iff P \ D ≈H
l Q \ D.

The next Proposition gives a characterization of D_PSNI in

terms of ≈H
l . The proof is straightforward and follows from Propo-

sition 4.9.

Proposition 4.10. Let P be a PEPA component. Then P ∈ D_PSNI
iff ∀P ′ ∈ ds(P) it holds that

P ′ \ H ∪ D ≈H
l P ′ \ D .

Finally, we show how D_PSNI can be expressed in terms of

PSNI .

Proposition 4.11. Let P be a PEPA component.
P ∈ D_PSNI iff ∀P ′ ∈ ds(P), P ′ \ D ∈ PSNI .

5 A DECISION ALGORITHM
We briefly describe an algorithm to decide whether a PEPA compo-

nent having a finite set of derivatives is D_PSNI.
In [1] an algorithm has been presented for solving the label-

compatibility problem. The algorithm works on directed labelled

weighted graphs defined as follows.

Definition 5.1. (Directed labelled weighted graph) A directed la-

belled weighted graph is a tuple G = (V , Lab, E,w) where:

• V is a finite set of vertices;

• Lab is a finite set of labels;

• E ⊆ V ×V × Lab is a finite set of labelled edges;

• w : E → R is a weighting function that associates a value to

each edge.

Given V ′ ⊆ V , we denote byw(v,V ′,a) the sum of the weights

of the edges from v to V ′
having label a.

The label-compatibility problem is an extension to labelledweighed

graphs of the problem described in [25].

Definition 5.2. (Label-Compatibility Problem) LetG = (V , Lab, E,w)

be a directed labelled weighted graph and R ⊆ V ×V be an equiv-

alence relation over V . R is said to be label-compatible with G if

for each a ∈ Lab, for each C ,C ′ ∈ V /R, and for each v,v′ ∈ C it

holds thatw(v,C ′,a) = w(v′,C ′,a). Moreover, the labelled weighted
compatibility problem over G requires to compute the largest equiv-

alence relation label-compatible with G.

In [1] it has been presented an algorithm, named LCW (_), for

solving the label-compatibility problem onG and it has been proved

that the label-compatibility problem has always a unique solution

which can be computed in timeO(|V |+|E | log |V |). Herewe consider

the algorithm LCW (_) described in [1] where the initial relation is

the total relation.

The problem of deciding P ≈l Q can be reduced to a label-

compabitility problem. Hence, by Theorem 4.5 we immediately

get an algorithm for deciding P ∈ D_PSNI in polynomial time

with respect to the dimension of ds(P). This algorithm consists

of evaluating whether P ′ \ H ∪ D ≈l P ′′ \ H ∪ D, for each

P ′, P ′′ ∈ ds(P) such that P ′
(h ,r)
−−−−→ P ′′.

However, we can improve on the above algorithm and reduce

the problem of deciding P ∈ D_PSNI to a single run of LCW (_)

Algorithm 1 Algorithm for D_PSNI

1: function DPSNI(D(P))
2: Compute Down(P)
3: P = LCW (Down(P))

4: for P ′
(h ,r)
−−−−→ P ′′

in D(P) do
5: if (P ′, P ′′) < P then
6: return False

7: end if
8: end for
9: return True

10: end function

followed by a final check. In particular, for a given PEPA component

P let us consider the following graph.

Definition 5.3. (Downgrading Graph) Let P be PEPA component.

The downgrading graph of P is the directed labelled weighted graph

DownP = (VDP ,L ∪ {τ }, EDP ,wdP), where:

• VDP = {R | R is P ′ \ H ∪ D with P ′ ∈ ds(P)}
• EDP is the set of labelled edges

EDP = {(R,R′,α) | R
(α ,r)
−−−−→ R′

with α ∈ L ∪ {τ }}
∪{(R,R, τ) | R ∈ VDP }}

• wdP is the function which associates to each edge in EDP
the value

wdP (R,R
′,α) =

{
q(R,R′,α) ifα , τ ∨ R , R′

−q[R,VDP \ {R},α] otherwise

Notice that the downgrading graph is not necessarily connected.

The algorithm LCW (DownP) returns a binary relation P. In or-

der to decide whether P ∈ D_PSNI we have to check that when-

ever P ′
(h ,r)
−−−−→ P ′′ is an edge in the derivation graph D(P), then

(P ′, P ′′) ∈ P. This test is performed by Algorithm 1 that computes

DPSNI (D(P)). The computation of Down(P) at line 2 can be per-

formed in linear time with respect to the size of D(P) by applying

the rules of Definition 5.3. Notice that the graphDown(P) has size at
most equal to the size ofD(P). Once LCW (Down(P)) has computed

the relation P the for-loop at lines 4-8 checks that the conditions

of Theorem 4.5 are satisfied.

Let EP be the transitions in D(P). The following theorem states

the correctness of our algorithm and evaluates its time complexity.

Theorem 5.4 (Correctness and Complexity). Let P be a PEPA
component having a finite set of derivatives. The algorithmDPSNI (D(P))
terminates in time

O(|ds(P)| + |EP | + |EDP | log(|VDP |))

and returns True if and only if P is D_PSNI .

6 CONCLUSION
In this paper we presented a form of delimited persistent informa-

tion flow security property for stochastic processes specified as

terms of a quantitative process algebra, namely Performance Eval-

uation Process Algebra (PEPA). Our property D_PSNI is based on

a bisimulation based observation equivalence for the PEPA terms

which induces a lumping on the underlying Markov chain. The

aim of our definition is that of protecting systems from maliciuos

VALUETOOLS 2019, March 12–15, 2019, Palma, Spain J. Hillston, A. Marin, C. Piazza and S. Rossi

attackers which are able to measure also the timing properties of

the system, e.g., the response time or the throughput. Property

D_PSNI implements a notion of intransitive non-interference: flows

from the high level to a trusted part and flows from the trusted

part to the low level are admissible since they are intended to be

controlled by the trusted part, while a direct flow from high to low

is not allowed.

In this paper we also deal with compositionality issues and prove

that D_PSNI is compositional with respect to non-high prefix, hid-

ing and cooperation over low level actions. The relationships be-

tween PSNI and D_PSNI are formally stated. Moreover, a decision

algorithm for D_PSNI is presented
As a futureworkwe plan to relax the definition of Non-Interference

by introducing metrics that allow us to measure the security degree

of a system in terms of probabilities.

ACKNOWLEDGMENTS
The work described in this paper has been partially supported

by the Università Ca’ Foscari Venezia - DAIS within the IRIDE

program, by the Università di Udine PRID ENCASE project, and by

GNCS-INdAM.

REFERENCES
[1] G. Alzetta, A. Marin, C. Piazza, and S. Rossi. 2018. Lumping-based equivalences

in Markovian automata: Algorithms and applications to product-form analyses.

Information and Computation 260 (2018), 99–125.

[2] M. Backes and B. Pfitzmann. 2003. Intransitive Non-Interference for Crypto-

graphic Purposes. In Proc. of the IEEE Symposium on Security and Privacy (SSP’03).
IEEE, 140–152.

[3] A. Bossi, R. Focardi, D. Macedonio, C. Piazza, and S. Rossi. 2004. Unwinding in

Information Flow Security. Electr. Notes Theor. Comput. Sci. 99 (2004), 127–154.
[4] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. 2003. Bisimulation and Unwinding for

Verifying Possibilistic Security Properties. In Proc. of Int. Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI’03) (LNCS), L. D. Zuck,
P. C. Attie, A. Cortesi, and S. Mukhopadhyay (Eds.), Vol. 2575. Springer-Verlag,

223–237.

[5] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. 2003. A Proof System for Information

Flow Security. In Logic Based Program Development and Transformation (LNCS),
M. Leuschel (Ed.), Vol. 2664. Springer-Verlag, 199–218.

[6] A. Bossi, C. Piazza, and S. Rossi. 2004. Modelling Downgrading in Information

Flow Security. In Proc. of the 17th IEEE Computer Security Foundations Workshop
(CSFW’04). IEEE, 187–201.

[7] A. Bossi, C. Piazza, and S. Rossi. 2007. Compositional Information Flow Security

for Concurrent Programs. Journal of Computer Security 15, 3 (2007), 373–416.

[8] R. Focardi and S. Rossi. [n. d.]. A Security Property for Processes in Dynamic

Contexts (extended abstract). ([n. d.]). In Proc. of Workshop on Issues in the Theory
of Security (WITS’02).

[9] R. Focardi and S. Rossi. 2006. Information flow security in dynamic contexts.

Journal of Computer Security 14, 1 (2006), 65–110.

[10] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In

Proc. of the IEEE Symposium on Security and Privacy (SSP’82). 11–20.
[11] J. A. Goguen and J. Meseguer. 1984. Unwinding and Inference Control. In Proc.

of the IEEE Symposium on Security and Privacy (SSP’84). 75–86.
[12] D. Hedin and A. Sabelfeld. 2012. A Perspective on Information-Flow Control.

In Software Safety and Security - Tools for Analysis and Verification. IOS Press,

319–347.

[13] J. Hillston. 1996. A Compositional Approach to Performance Modelling. Cambridge

Press.

[14] J. Hillston, A. Marin, C. Piazza, and S. Rossi. 2013. Contextual Lumpability. In

Proc. of Valuetools 2013 Conf. ACM Press, 194–203.

[15] J. Hillston, A. Marin, C. Piazza, and S. Rossi. 2018. Information Flow Security

for Stochastic Processes. In Computer Performance Engineering - 15th European
Workshop, EPEW. 142–156.

[16] J. G. Kemeny and J. L. Snell. 1960. Finite Markov Chains. D. Van Nostrand

Company, Inc.

[17] S. Lafrance and J. Mullins. 2002. Bisimulation-based Non-deterministic Admissi-

ble Interference and its Application to the Analysis of Cryptographic Protocols.

Electronic Notes in Theoretical Computer Science 61 (2002), 1–24.

[18] H. Mantel. 2000. Unwinding Possibilistic Security Properties. In Proc. of the
European Symposium on Research in Computer Security (ESoRiCS’00) (LNCS),
Vol. 2895. Springer-Verlag, 238–254.

[19] H. Mantel. 2001. Information Flow Control and Applications - Bridging a Gap. In

Proc. of the nternational Symposium of Formal Methods Europe (FME’01) (LNCS).
Springer-Verlag, 153–172.

[20] J. Mullins. 2000. Nondeterministic Admissible Interference. Journal of Universal
Computer Science 11 (2000), 1054–1070.

[21] C. Piazza, E. Pivato, and S. Rossi. 2004. CoPS - Checker of Persistent Security.

In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’04).
144–152.

[22] A. W. Roscoe and M. H. Goldsmith. 1999. What Is Intransitive Noninterference?.

In Proc. of the IEEE Computer Security Foundations Workshop (CSFW’99). 228–238.
[23] J. Rushby. 1992. Noninterference, Transitivity, and Channel-Control Security Policies.

Technical Report CSL-92-02. SRI International.

[24] P.Y.A. Ryan and S. Schneider. 2001. Process Algebra and Non-Interference. Journal
of Computer Security 9, 1/2 (2001), 75–103.

[25] A. Valmari and G. Franceschinis. 2010. Simple O(m logn) Time Markov Chain

Lumping. In Proc. of Int. Conf. TACAS, Vol. 6015. Springer Verlag, 38–52.
[26] David von Oheimb. 2004. Information Flow Control Revisited: Noninfluence =

Noninterference + Nonleakage. In Computer Security (ESORICS’04). 225–243.

	Abstract
	1 Introduction
	2 The language
	3 Stochastic Non-Interference
	4 Delimited Non-interference
	5 A Decision Algorithm
	6 Conclusion
	Acknowledgments
	References

