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Abstract 23	

Phenotypic correlations amongst partners for traits like longevity or late-onset disease have 24	

been found to be comparable to phenotypic correlations in first degree relatives. How these 25	

correlations arise in late life is poorly understood. Here, we introduce a novel paradigm to 26	

establish the presence of indirect assortment on factors correlated across generations, by 27	

examining correlations between parents of couples, i.e., in-laws. Using correlations in 28	

additive genetic values we further corroborate the presence of indirect assortment on 29	

heritable factors.  Specifically, using couples from the UK Biobank cohort, we show that 30	

longevity and disease history of the parents of white British couples are correlated, with 31	

correlations of up to 0.09. The correlations in parental longevity are replicated in the 32	

FamiLinx cohort, a larger and geographically more diverse historical ancestry dataset 33	

spanning a broader time frame. These correlations in parental longevity significantly (pval < 34	

0.0093 for all pairs of parents) exceed what would be expected due to variations in lifespan 35	

based on year and location of birth. For cardiovascular diseases, in particular hypertension, 36	

we find significant correlations (r=0.028, pval=0.005) in genetic values among partners, 37	

supporting a model where partners assort for risk factors to some extent genetically 38	

correlated with cardiovascular disease. Partitioning the relative importance of indirect 39	

assortative mating and shared common environment will require large, well characterised 40	

longitudinal cohorts aimed at understanding phenotypic correlations among none blood 41	

relatives. Identifying the factors that mediate indirect assortment on longevity and human 42	

disease risk will help to unravel factors affecting human disease and ultimately longevity.	  43	
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Introduction 44	

Partner correlations for a variety of phenotypes have been reported when examining 45	

environmental and genetic contributions to complex traits (ANONYMOUS 1903; HIPPISLEY-COX 46	

et al. 2002; SILVENTOINEN et al. 2003; ZIETSCH et al. 2011; TENESA et al. 2015; CONLEY et al. 47	

2016; HUGH-JONES et al. 2016; MUÑOZ et al. 2016; NORDSLETTEN et al. 2016; STULP et al. 48	

2016; XIA et al. 2016). These correlations between nominally unrelated individuals are 49	

substantial, with magnitude comparable to correlations between first degree blood relatives, 50	

for instance, between parents and children (MUÑOZ et al. 2016; XIA et al. 2016). Such effects 51	

can be interpreted as phenotypic convergence among partners due to the environmental 52	

factors that partners share during their co-habitation. In the case of late-onset diseases and 53	

longevity, which are not directly observable or present at the time of mate choice, this would 54	

arguably be the simpler explanation. Alternatively, partner correlations for late onset disease 55	

and longevity could arise due to indirect assortative mating. That is, direct assortative mating 56	

for traits, characteristics or social factors that are risk factors of disease and potentially 57	

observable at the time partners met (for instance, behavioural risk factors of disease such as 58	

smoking) would lead to indirect assortative mating for other focal traits, such as longevity or 59	

late-onset disease. Here, we take direct assortative mating to refer in general to non-random 60	

mate choice based on expressed phenotypes. In particular, we do not distinguish between 61	

mate choice which leads to positive or negative phenotypic correlations, the latter often being 62	

referred to as dissortative mating. The distinction between the causes that underpin partner 63	

effects has implications for the study of human behaviour, epidemiology and population 64	

genetics. It provides information about human mate choice behaviour and informs about the 65	

importance of environmental risk factors shared by couples in the household. The importance 66	

to population genetics arises because assortative mating for heritable traits induces a 67	

correlation of genetic values among partners, whilst assortment on environmental factors 68	

(e.g., social homogamy), and environmental effects shared by partner do not. The correlation 69	

of the genetic values of the partners in turn affect the amount of genetic variance of the trait 70	
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assorted on, as a consequence estimates of heritability reported in the literature which do not 71	

account for assortment overestimate the heritability for that trait in a random mating population 72	

due to the covariance among alleles at different loci (FALCONER AND MACKAY 1996) (Fig. 1a, 73	

Supplementary Methods). Furthermore, assortative mating for a trait would also induce an 74	

increase in heritability for genetically correlated traits (GIANOLA 1982) (Fig. 1b) and a change 75	

in the genetic correlation between the assortment and focal traits (Fig. 1c). This is the case 76	

even if these focal traits do not directly underlie mate choice, or do not manifest at the time of 77	

mate choice. For instance, assortment for BMI, would induce an indirect increase in the 78	

genetic variance of cardiovascular disease because there is a positive genetic correlation 79	

between these two traits (BULIK-SULLIVAN et al. 2015), and an increase in their genetic 80	

correlation with respect to what would be expected under random mating.  81	

Establishing assortative mating directly requires knowledge of the phenotype at the time of 82	

mate choice. Even for phenotypes which are observable at mate choice, like height, such data 83	

are rare. For phenotypes like longevity or disease risk, which only manifest long after mate 84	

choice, such data can obviously not be collected. Recent work, starting with Tenesa et al. 85	

(TENESA et al. 2015), has therefore concentrated on using genotype information to establish 86	

assortment (ROBINSON et al. 2017). As genetic values (i.e. polygenic scores) are fixed at birth, 87	

correlations between partners in such values provides direct evidence for assortment. 88	

However, this approach is limited by how well genetic values predict phenotype, i.e., the 89	

heritability, and the precision with which genetic values can be estimated. The heritabilities of 90	

longevity and many late onset diseases are medium to low (CANELA-XANDRI et al. 2017), with 91	

estimates for SNP heritability of longevity ranging from 0.12 to 0.3  (KAPLANIS et al. 2017). 92	

Furthermore, numbers of disease cases, for many diseases which are rare in the general 93	

population, and individuals with lifespan information are small in large prospectively collected 94	

and genotyped cohorts like UK Biobank, limiting the precision of estimates of genetic values.  95	

Here, we propose a related alternative approach. We examine correlations between the 96	

parents of partners. That is, for example, between the father of one spouse and the father of 97	

the partner. We present data showing that there is indirect assortment for both longevity and 98	
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risk of disease. Specifically, we find that humans choose partners with similar parental history 99	

of disease and parental longevity. Since partner choice most likely happens before the 100	

parental onset of most of these diseases or parental death, these are unlikely to be the traits 101	

on which such choice is made.  Furthermore, as these traits are correlated across generations 102	

indirect assortment present the most parsimonious model. Finally, we demonstrate 103	

assortment directly, showing that the genetic values (i.e. GBLUPs) for hypertension are 104	

correlated among partners. Given that assortment for hypertension itself is unlikely, we 105	

hypothesise that this correlation in genetic values arises through assortment for one or more 106	

traits that influence mate choice and which are genetically correlated with hypertension. 107	

Materials and Methods 108	

The general framework of this study is outlined in Figure 2. We investigated partner 109	

correlations (ρy
couple) in longevity (see Partner Correlations for Longevity). To dissect the 110	

source of these correlations and in particular to establish whether they arise due to indirect 111	

assortment, we followed several approaches. First, we considered correlations in longevity 112	

between parents of focal partners	 (ρy
♀inlaws and ρy

♂inlaws) (see Parental Correlations of 113	

Longevity). That is, for example, ρy
♂inlaws is the correlation between the two fathers of a 114	

husband and wife pair. Then, we considered to what extend potential targets of assortment, 115	

like, Body Mass Index or Socio-Economic status, which are correlated across generations 116	

explained any observed parental correlations (see Effect of Environmental factors on parental 117	

correlations in longevity). Finally, we evaluated correlations between genetic values (GBLUPs) 118	

of the focal partners (ρg
couple ) to demonstrate assortment directly (see Partner correlations of 119	

genetic values of parental longevity).          120	

We hypothesised that indirect assortative mating for longevity could be driven by assortative 121	

mating for disease risk factors. We therefore also examined indirect assortment on disease 122	

risk, following the same approaches as for longevity (see Parental Correlations in Disease 123	

History). 124	
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The majority of analyses were performed using data from the UK Biobank cohort, but 125	

where possible results were replicated using the FamiLinx cohort (KAPLANIS et al. 126	

2017).  127	

Couples in the UK Biobank cohort  128	

Identification of heterosexual couples in the UK Biobank has been previously reported 129	

(TENESA et al. 2015). Specifically, using household sharing information we identified a set of 130	

105,380 households with exactly two members in the cohort. Of these 90,297 satisfied all of 131	

the following criteria a) individuals reported different ages for one or both parents b) individuals 132	

had an age difference of less than 10 years c) individuals were of opposite gender d) both 133	

individuals reported to live only with their partner or partner and children. We restricted our 134	

analysis to a subset of 79,094 couples for which both partners self-reported to be of White-135	

British ethnicity.  136	

Couples in the FamiLinx cohort  137	

The FamiLinx cohort (KAPLANIS et al. 2017), consisting of 86,124,644 individuals, is based on 138	

publicly accessible genealogy data ranging back up to the early 15th century and covering 139	

individuals born across the world, although individuals of European and North American birth 140	

dominate. In our analysis we restricted ourselves to a subset of individuals with full information 141	

regarding year of birth and death, latitude and longitude of the birth location. We removed 142	

individuals with a birth location along the zero meridian as visual inspection suggested majority 143	

of these to be coding errors. We furthermore removed individuals with lifespans below 30 or 144	

above 130. Furthermore following previous analysis (KAPLANIS et al. 2017)  we removed those 145	

individuals born before 1600, due to the sparsity and lower reliability of data before that date, 146	

and after 1910, due to the bias towards individuals with reduced lifespan after that date. 147	

Finally, also following previous analysis (KAPLANIS et al. 2017), we removed individuals who 148	

died during the American Civil War (year of death 1861 to 1865), the 1st World War (year of 149	

death 1914 to 1918) and the 2nd World War (year of death 1939 to 1945) due to the excess 150	
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number of early death in these periods. This resulted in a dataset of 3,445,971 individuals. 151	

Considering individuals with common offspring, we identified a set of 239,541 couples.  152	

Definition of Birth Location 153	

Both the UK Biobank and FamiLinx contain information about the birth locations of individuals, 154	

which we used to adjust for any potential geographical differences between longevity. 155	

However, in both cohorts the provided information is at a scale too fine to allow for effective 156	

stratification based on birth location. We therefore defined a Birth Location at a coarser scale 157	

in both cohorts.  158	

The UK Biobank contains information about the coordinates of the birth location with a 159	

resolution of one kilometer (km). We identified a subset of individuals with miscoded 160	

coordinates corresponding to birth in the Atlantic Ocean identified through visual inspection 161	

and set their Birth Location as missing. We used a 15 km grid to define Birth Location. That 162	

is, we assign all individuals who share birth coordinates when divided by 15 km and rounded 163	

to an integer to the same Birth Location.  164	

In the FamiLinx cohort we defined a one degree latitude and longitude grid to derive Birth 165	

Location.  166	

Genotypes and Estimation of genetic values in UK Biobank 167	

To performed genetic analyses we identified a set of quality controlled, genotypically White-168	

British individuals from the UK Biobank. Using appropriate subsets of these individuals as 169	

described for specific analyses, we jointly estimated SNP heritabilities and SNP effects 170	

following the mixed model approach using the DISSECT tool (CANELA-XANDRI et al. 2015). 171	

We used the estimated SNP effects to compute genetic values (i.e. Best Linear Predictors, 172	

BLUPs). All models included the leading 20 genomic principal components as fixed effects.     173	

The set of individuals available for genetic analyses was identified as follows. We used the 174	

data for the individuals genotyped in phase 1 of the UK Biobank genotyping program. 49,979 175	

individuals were genotyped using the Affymetrix UK BiLEVE Axiom array and 102,750 176	

individuals using the Affymetrix UK Biobank Axiom array. Details regarding genotyping 177	

procedure and genotype calling protocols are provided elsewhere 178	
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(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580). We performed quality control using 179	

the entire set of genotyped individuals before extracting the White-British cohort used in our 180	

analyses. From the overlapping genetic markers between the two arrays, we excluded those 181	

which were multi-allelic, their overall missingness rate exceeded 2% or which exhibited a 182	

strong platform specific missingness bias (Fisher’s exact test, pval < 10-100). We also excluded 183	

individuals if they exhibited excess heterozygosity, as identified by UK Biobank internal QC 184	

procedures (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580), if their missingness 185	

rate exceeded 5% or if their self-reported sex did not match genetic sex estimated from X 186	

chromosome inbreeding coefficients. These criteria resulted in a reduced dataset of 151,532 187	

individuals. To define the genotypically White-British subset, we performed a Principal 188	

Components Analysis (PCA) of all individuals passing genotypic QC using a linkage 189	

disequilibrium pruned set of 99,101 autosomal markers 190	

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149744) that passed our SNP QC protocol. 191	

The genotypically White-British individuals were defined as those for whom the projections 192	

onto the leading twenty genomic principal components fell within three standard deviations of 193	

the mean and who self-reported their ethnicity as White-British. We furthermore pruned the 194	

set of genotypically White-British individuals removing one individual from pairs with 195	

relatedness above 0.0625 (corresponding to second degree cousins) to obtain a dataset of 196	

unrelated genotypically White-British individuals. Finally, in our genetic models we only used 197	

genetic variants that had passed QC, that did not exhibit departure from Hardy-Weinberg 198	

equilibrium (pval < 10-50) in the unrelated genotypically White-British cohort and which had a 199	

minor allele frequency > 5%.  200	

Partner Correlations for Longevity 201	

We estimated partner correlations of longevity, defined as the age in years at death using data 202	

from the two cohorts, the UK Biobank and Familinx. We also computed correlations of 203	

longevity adjusted for cohort effects. Specifically, we computed adjusted longevity as the 204	

difference between an individual’s lifespan and the mean lifespan of the stratum defined by 205	
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the individual’s sex, birth year and birth location (see Definition of Birth Location), excluding 206	

all strata with fewer than 10 individuals.  207	

 208	

As the majority of UK Biobank participants are alive, we used the biological mothers and 209	

fathers of participants. Specifically, we identified self-reported White-British individuals with 210	

both parents deceased (using data fields UKBID 21000, 1797 and 1835), and non-missing 211	

Birth Location (see Definition of Birth Location). This yielded 252,899 pairs of parents for which 212	

we computed Pearson’s correlations between longevity extracted from data fields UKBID 1807 213	

and 3526. The UK Biobank does not directly contain information regarding the years or 214	

location of birth of parents of participants. As such, we used the participant’s place and year 215	

of birth (UKBID 34) as proxy measures of the parent’s place and year of birth. For a subset of 216	

parents, specifically parents who are still alive at recruitment of the participant, we can infer 217	

the parents’ year of birth from the date of recruitment and the parents’ age. The subset of 218	

parents who are still alive is relatively small, only 22% of fathers and 39% mothers 219	

respectively, and is complementary to the set of parents used in the analysis, who were 220	

required to be deceased. While we can therefore not use the data in our analysis, it allows us 221	

to evaluate the effect of using a proxy measure. The correlation between the year of birth of 222	

the offspring and their parent is relatively high with ρ=0.78.   223	

In the FamiLinx cohort we used all 239,541 couples identified as described above (see 224	

Couples in the FamiLinx cohort). We computed longevity as the difference of year of death 225	

and year of birth.        226	

 227	

 228	

Parental Correlations of Longevity 229	

We computed Pearson’s correlations of longevity and adjusted longevity for parents of 230	

partners. That is, we computed, for example, the correlation between the longevity of the two 231	

fathers of the male and female partners in a couple. We considered the three combinations of 232	

parents, that is, the two fathers or the two mothers of the partners and the father of one partner 233	
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and the mother of the other partner, separately.  Both longevity and adjusted longevity were 234	

computed as for the analysis of partner correlations (see Partner Correlations for Longevity). 235	

Of the 79,094 couples identified in the UK Biobank (see Couples in the UK Biobank) 40,504 236	

had both mothers and 60,978 both fathers deceased, while there were 104,922 father-mother 237	

pairs. Amongst the 3,445,971 individuals retained for analysis in the FamiLinx cohort (see 238	

Couples in the FamiLinx Cohort), we identified 97,223 sets of fathers, 66,077 sets of mothers 239	

and 143,896 father-mother pairs.  240	

We computed expected distributions of parental correlations due to geographical and temporal 241	

mating structure in the population based on permutations. Specifically, we generated fictitious 242	

sets of couples which matched the observed mating structure for birth years and birth locations 243	

and computed the parental correlations in longevity for these fictitious couples. To generate 244	

the fictitious couples we stratified couples based on the Birth Year and Birth Locations of both 245	

partners and permuted male partners within each stratum. To allow for effective permutations 246	

we only included couples in strata of size larger than 10 in the analysis. For each permutation 247	

we computed Pearson’s correlations of parental longevity as a test statistic. Empirical pvalues 248	

where then computed as the fraction of statistics exceeding the statistic computed without 249	

permutation, based on 10,000 permutations. 250	

Effect of Environmental factors on parental correlations in longevity 251	

We evaluated partner correlations for a range of potential assortment factors and evaluated 252	

their contribution to any observed correlations in parental longevity.  253	

Specifically, we extracted Townsend Deprivation Index (UKBID 189), height (UKBID 50), waist 254	

to hip ratio (computed from UKBID 48 and 49), BMI (UKBID 21001) and smoking history in 255	

Pack Years (UKBID 20161) for all individuals in the 79,094 couples identified in the UK 256	

Biobank. The Townsend Deprivation Index is an area measure of socio-economical 257	

deprivation.  We computed Pearson’s correlations between the male and female partners for 258	

all pairs of these variables as well as birth year.     259	

We then computed linear regression models, regressing parental longevity on birth year, Birth 260	

Location, as well as Townsend Deprivation Index and height, waist to hip ratio, BMI and 261	
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smoking history in Pack Years, and the squares of these factors, of their children. Birth Year 262	

and Birth Location were coded as categorical variables while all other factors and their squares 263	

were included as continuous variables. Using the fitted models, we computed residuals and 264	

correlations between couples using these residuals. Comparing these, we quantified the 265	

change in correlations due to inclusion of individual covariates in the models. 266	

 267	

Partner correlations of genetic values of parental longevity 268	

As the majority of individuals in the UK Biobank are still alive, we cannot estimate genetic 269	

values for longevity directly. We therefore again use information about the lifespans of parents 270	

of participants and estimate genetic values (GBLUPs) for parental longevity as a proxy for 271	

genetic values of individuals longevity.  272	

Of the UK Biobank individuals retained for genetic analysis (see Genotypes and Estimation of 273	

genetic values in UK Biobank), subsets of 79,216 and 64,002 had respectively deceased 274	

fathers and mothers. Using these individuals, we estimated SNP heritabilities and genetic 275	

variant effects for parental longevity based on common variants, i.e., variants with minor allele 276	

frequency above 5%. Of the 79,094 couples identified in the UK Biobank (see Couples in the 277	

UK Biobank Cohort) a subset of 10,160 couples consisted of individuals retained for genetic 278	

analysis. For these couples, using the estimated genetic variant effects, we computed genetic 279	

values (CANELA-XANDRI et al. 2015; CANELA-XANDRI et al. 2016) for parental longevity and 280	

computed their Pearson’s correlation.   281	

 282	

Disease History in the UK Biobank 283	

Participants in the UK Biobank provide information about the family history for twelve diseases 284	

for both biological parents (UKBID 20107 and 20110). Considering the 79,094 couples 285	

identified in the UK Biobank (see Couples in the UK Biobank Cohort), disease history for both 286	

biological parents of each partner was reported by 58,043 couples for Heart Disease, Stroke, 287	

Chronic Bronchitis, High Blood Pressure, Diabetes and Alzheimer’s Disease and by 57,644 288	

couples in the case of Lung Cancer, Bowel Cancer, Parkinson’s Disease and Depression. For 289	
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the latter subset, information regarding disease history for the relevant parent for Breast and 290	

Prostate Cancer was available for each partner. 291	

The twelve disease for which family history was provided do not directly match disease 292	

reported in the self-reported medical history of participants (UKBID 20002). To identify self-293	

reported controls therefore utilized the methodology of Muñoz et al. (MUÑOZ et al. 2016) to 294	

match diseases to those reported for family history.   295	

Parental Correlations in Disease History  296	

Following the methods for parental correlations for longevity (see Parental Correlations of 297	

Longevity), we computed correlations of disease history between the fathers and mothers of 298	

couples in the UK Biobank. We also computed correlations for each disease using only 299	

couples where both partners are self-reported controls for the relevant disease.   300	

As disease history or status for an individual is a binary trait, Pearson’s correlations are not a 301	

suitable measure of correlation. Instead we computed polychoric correlations (DRASGOW 302	

1986) using the R package polycor (FOX 2010). In addition we assessed dependence between 303	

partner’s family histories using a 𝜒"	test and by computing empirical mutual information 304	

(COVER AND THOMAS 2012). For mutual information we computed an empirical pvalue for 305	

departure from independence using permutations. That is, we computed empirical mutual 306	

information for 1000 datasets in which family history for the male partners had been permuted 307	

and compared them to the empirical mutual information on the observed data.       308	

As for longevity we evaluated the expected effect of assortment due to place and year of birth 309	

using permutations. Permutations were performed as for longevity, using the 𝜒"	statistics, 310	

rather than Pearson’s correlation, as test statistic.  311	

We performed an additional permutation analysis to assess the impact of using the offspring’s 312	

year of birth as a proxy for the parents’ year of birth. Unlike in the analysis of longevity, where 313	

all parents are deceased, a subset of parents with family history is still alive. For these parents 314	

we can compute the year of birth. On the subset of parents with available year of birth, we 315	

permuted UK Biobank couples within the years of birth of their parents. That is, the offspring 316	
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within the years of birth of the parents. We did not permute within both Birth Year and Birth 317	

Location strata due to the smaller sample size.  318	

Partner correlations of genetic values of disease history 319	

We computed correlations for genetic values of parental disease history and self-reported 320	

disease status. For own disease status, we restricted the analysis to diseases with prevalence 321	

in the sample above 5% and excluding prostate and breast cancers.     322	

For family disease history traits we fitted models with only genomic principal components, as 323	

well as models which also included the participant’s Birth Year and Birth Location as 324	

categorical and the parents’ age as continuous covariates. The parent’s age was computed 325	

as either the age at death (UKBID 1807 and 3526), if the parent was deceased or age at 326	

assessment (UKBID 2946 and 1845) otherwise. Models used to estimate genetic values for 327	

self-reported disease also included the participant’s Sex, Age and Townsend Deprivation 328	

Index as fixed effects.  329	

We fitted models using all individuals available for genetic analysis (see Genotypes and 330	

Estimation of genetic values in UK Biobank) who reported family history. We transformed 331	

heritabilities which were estimated on the observed scale, i.e., modeling disease status 332	

directly, to the liability scale using the sample specific prevalence (LEE et al. 2011). Using SNP 333	

effects estimated on all individuals, we computed genetic values for the 10,160 couples that 334	

comprised individuals retained for genetic analysis (see Genotypes and Estimation of genetic 335	

values in UK Biobank) and computed their Pearson’s correlations. We combined paternal and 336	

maternal estimates using the Olkin-Pratt fixed effect approach (SCHULZE 2004).  337	

Results 338	

Partner Correlations in Longevity  339	

We found that the lifespan of the biological mothers and fathers of all self-reported White-340	

British individuals in the UK Biobank with both parents deceased was correlated and 341	

significantly different from zero (ρy
couple  = 0.11, 95% CI 0.107 – 0.114, pval < 10-188). The 342	

correlation was only slightly reduced (ρy-adj
couple =0.10, 95% CI 0.091 – 0.108, pval < 10-188) and 343	
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remained significantly different from zero when adjusting for the participants’ year of birth as 344	

a proxy of the parent’s year of birth, which itself was unavailable. This finding reproduced in 345	

the FamiLinx cohort. Specifically, although partner correlations for longevity in the FamiLinx 346	

cohort were significantly higher (ρy
couple =0.18, 95% CI 0.176 – 0.183, pval < 10-188), correlations 347	

for lifespans adjusted for an individual’s year and place of birth were comparable to those in 348	

the UK Biobank cohort  (ρy-adj
couple =0.125, 95% CI 0.121 – 0.129, pval < 10-188).  349	

Parental Correlations of Longevity 350	

We found significant correlations for the lifespans of both mothers (ρy
♀inlaws =0.049, 95% CI  351	

0.038 – 0.062, pval=10-15) and fathers (ρy
♂inlaws =0.032, 95% CI 0.022-0.042, pval=10-10) of 352	

couples in the UK Biobank. This finding reproduced in the FamiLinx cohort. Although we again 353	

observed higher correlations in lifespans of mothers (ρy
♀inlaws =0.061, 95% CI 0.053 – 0.068, 354	

pval=10-55) and fathers (ρy
♂inlaws =0.071, 95% CI 0.064 – 0.077, pval=10-107) of couples 355	

compared to the UK Biobank, correlations between adjusted lifespans where again 356	

comparable to those in the UK Biobank (ρy-adj
♀inlaws =0.02, 95% CI 0.012 – 0.030, pval=10-7 and 357	

ρy-adj
♂inlaws =0.03, 95% CI 0.023 – 0.038, pval=10-17 for mothers and fathers respectively). 358	

Considering father-mother pairs, we observed reduced correlations in the UK Biobank 359	

(ρy
♂/♀inlaws =0.014, 95% CI = 0.005 – 0.024, pval=0.003) which however were still significant. 360	

In the Familinx cohort on the other hand, correlations for father-mother pairs were comparable 361	

to those between fathers and mothers and significant (ρy
♂/♀inlaws =0.055, 95% CI 0.049 – 0.060, 362	

pval=10-15 and ρy-adj
♂/♀inlaws =0.055, 95% CI 0.049 – 0.060, pval=10-15 for observed and 363	

adjusted lifespan respectively). We did not consider father-mother correlations in the UK 364	

Biobank cohort further and discuss the likely reasons for the observed discrepancy below (see 365	

Discussion).       366	

We compared the observed parental correlations to the distribution of correlations for 367	

fictitious sets of couples with matched mating structure for year and location of birth. The 368	

expected correlation due to mating structure, i.e., the mean correlation across fictitious sets of 369	
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couples, were small and not significantly different from zero in the UK Biobank (ρmean= 0.02, 370	

s.d. 0.006 and ρmean= 0.01, s.d. 0.005 for mothers and fathers respectively). Expected 371	

correlations where larger and significantly different from zero in the FamiLinx cohort (ρmean= 372	

0.03, s.e. 0.007, ρmean= 0.03, s.d. 0.005 and ρmean= 0.02, s.d. 0.004 for mother, father, and 373	

mother-father pairs respectively). The observed correlations lie in the extreme tails of the 374	

distributions of correlations between parents’ lifespans (Supplemental Figure S1).The 375	

empirical pvalues for the observed correlations are 0.0002 and <0.0001 for mothers of couples 376	

in UK Biobank and FamiLinx respectively and 0.0093 and <0.0001 for the fathers of couples 377	

in UK Biobank and FamiLinx respectively. For father-mother pairs of couples in the FamiLinx 378	

cohort the empirical pvalues for observed correlations is <0.0001. 379	

 Year and birth place, socioeconomic status (as measured by Townsend Deprivation 380	

Index), height, waist to hip ration, body mass index and smoking history measured in Pack 381	

Years (as a proxies of a putative behavioural factor associated with disease and longevity), 382	

showed significant partner correlations in the UK Biobank (Supplemental Table S1). Adjusting 383	

parental lifespans for any of these factors reduced the observed correlations. Birth year and 384	

location were the most important factors, reducing the observed correlations for both maternal 385	

and paternal longevity by around 55%. Socioeconomic status and the other factors had a 386	

lesser but still important effect on the correlation of lifespan of parents, reducing such 387	

correlation an additional	~15%.  388	

 Significant SNP heritabilities were observed for mother’s (h2=0.03, 95% CI 0.02 – 0.04) 389	

and father’s (h2=0.04, 95% CI 0.03 – 0.05) longevity (Supplemental Table S3). These SNP 390	

heritabilities for a parental phenotype are under certain assumptions expected to be ½ the 391	

SNP heritability of the phenotype measured in the individual. Correlations between partners 392	

in genetic values of parental longevity were not found to be significantly different from zero 393	

(ρg
couple = -0.007, 95% CI -0.026 – 0.013, pval = 0.5 and ρg

couple =0.01, 95% CI -0.009 – 0.030, 394	

pval=0.3 for paternal and maternal longevity respectively).  395	

Parental Correlations of Disease History 396	
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We found significant (P<0.05) polychoric correlations, which were consistent for both 397	

fathers and mothers, for half of the twelve examined diseases: heart disease, stroke, lung 398	

cancer, chronic bronchitis, hypertension, and Alzheimer’s disease (Table 1, Supplemental 399	

Table S4). Only stroke in fathers failed significance after Bonferroni correction (P<0.05/22). Of 400	

these, the largest correlation was for paternal hypertension (ρy
♂inlaws =0.09, 95% CI 0.08 – 401	

0.11, pval=10-35) and the smallest for paternal stroke (ρy
♂inlaws =0.02, 95% CI 0.01 – 0.04, 402	

pval=0.003). The history of prostate cancer among fathers of couples was also significantly 403	

correlated (ρy
♂inlaws =0.04, 95% CI 0.01 – 0.06, pval=0.004). Among mothers, the correlations 404	

for lung cancer (ρy
♀inlaws , 95% CI 0.04 – 0.11, pval=10-5), hypertension (ρy

♀inlaws =0.08, 95% CI 405	

0.07 – 0.10, pval<10-37) and Alzheimer’s (ρy
♀inlaws =0.08, 95% CI 0.06 – 0.10, pval<10-12) were 406	

the largest, whilst the correlations for heart disease were only marginally smaller (ρy
♀inlaws 407	

=0.07, 95% CI 0.06 – 0.09, pval<10-22). The analysis using only couples of self-reported 408	

controls was largely in agreement with the analysis using all couples (Supplemental Table 409	

S5).  410	

We compared the observed parental associations to the distribution of associations for 411	

fictitious sets of couples with matched mating structure for year and location of birth 412	

(Supplemental Table S6). Results using a mating structure based on the parent’s year of birth, 413	

available in only a subset of parents, were consistent with the results obtained when using the 414	

participant’s year of birth as a proxy measure (Supplemental  Table S7).  415	

We found modest but significant SNP heritabilities for a majority of the considered parental 416	

family histories (Supplemental Table S8). Correlations between genetic values of partners 417	

were significant (P < 0.05) for maternal and paternal history of hypertension as well as 418	

maternal heart disease, stroke and chronic bronchitis (Table 2). However, only maternal 419	

chronic bronchitis and hypertension remained significant after Bonferroni correction (P < 420	

0.05/22). Whilst hypertension in fathers did not reached the stringent Bonferroni correction 421	

threshold, the size of the correlation was similar to that of maternal hypertension. Furthermore, 422	
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hypertension remained significant in the meta-analysis of paternal and maternal correlations 423	

(Table 2).  424	

While Correlations between genetic values were reduced, when adjusting for an individual’s 425	

birth year, birth location and the parent’s age, they remained significant (P < 0.05) for maternal 426	

and paternal hypertension and maternal chronic bronchitis and stroke (Supplemental Table 427	

S9).  428	

Despite the smaller numbers of cases, when using own disease status rather then parental 429	

disease history, we again found the correlations of genetic value of partners for hypertension 430	

to be significant and of similar size to the parental hypertension (ρg
couple =0.03, 95% CI 0.01 –431	

0.05, pval = 0.005).  432	

Discussion 433	

Partner correlations for age at death have been demonstrated going back to early work on 434	

assortative mating (ANONYMOUS 1903). We were able to reproduce these results in two 435	

independent cohorts of unprecedented sample size. The partner correlations we observed 436	

were significantly lower than the correlation of 0.23 reported a century ago for a much smaller 437	

sample from the UK (ANONYMOUS 1903), but similar to more recent estimates of 0.12 in a 438	

Canadian population (PHILIPPE 1978). The sample of partners from the UK Biobank used here 439	

was censored, consisting of parents of participants and necessarily excluding all parents who 440	

were still alive. However, the close agreement between estimates in the independent FamiLinx 441	

cohort and previous estimates does not suggest that this introduced substantial bias. The 442	

results suggest that partner correlations for lifespan, after adjusting for mating structure due 443	

to year and place of birth, are in the region of 0.1 – 0.12. Estimates of heritability for longevity 444	

in the FamiLinx cohort imply a phenotypic correlation between 1st degree relatives of 0.06  445	

(KAPLANIS et al. 2017), while previous estimates of heritability suggest higher correlations of 446	

0.13 (HERSKIND et al. 1996). Our estimates of SNP heritability for longevity of an individual’s 447	

parents suggest a phenotypic correlation between 1st degree relatives of 0.03 or 0.04. Unlike 448	

previous estimates, our estimates are based on samples of unrelated individuals, largely 449	
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precluding inflation due to shared environment which may have affected previous estimates. 450	

On the other hand, we only estimate the variance explained by common SNPs and therefore 451	

likely underestimate the heritable component of longevity. However, even allowing for the 452	

whole range of estimates, we may conclude that partner effects are comparable in magnitude, 453	

or even exceed, genetic effects on longevity.  454	

Various possible explanations exist for the observed partner correlations. The year of death 455	

of partners could potentially be correlated due to effects directly related to the partner’s death 456	

(i.e. a partner’s death has a causal link with the other partner’s death). This together with the 457	

assortment by birth year, as we observed in the UK Biobank, would lead to partner correlations 458	

for lifespan. More generally, convergence due to shared environmental factors represents in 459	

the absence of other data the most plausible explanation for the observed partner correlations. 460	

That is, partners share one or more environmental risk factors, such as for example a diet, 461	

which affects life expectancy. Such shared environment can be restricted to the partners. More 462	

broadly, correlations may reflect mating structure within a broader shared environment. For 463	

example, partners may mate preferably in the same socio economical stratum. This may, 464	

depending on interpretation, be considered a form of assortative mating. In particular, one’s 465	

broader environment may have genetic underpinnings. For example, one’s socio-economic 466	

status may be is influenced by heritable traits like educational attainment (BELSKY et al. 2018) 467	

and their combined effect reduce social mobility.   468	

By comparison to partner correlations, the estimates of correlations between parental 469	

longevity we report are substantially smaller. Indeed, they are arguably small enough to be 470	

considered practically insignificant. However, we do not argue for their significance based on 471	

their magnitude. As a matter of fact, taking into account the low heritability of longevity, they 472	

are expected to be small. Instead, their relevance lies in the information their presence 473	

provides about the larger partner correlations. They provide evidence that observed partner 474	

correlations arise due to a form of assortment. Specifically, they provide evidence that mating 475	

is not random with respect to factors which persist across generations. As the parents of 476	



	 19	

partners do not share the narrow environment of the couple, our results provide evidence that 477	

the observed correlations, at least partly, arise due to mating structure related to factors 478	

correlated across generations. Correlations across generations can arise due to several 479	

distinct pathways which cannot be differentiated by considering correlations of parents of 480	

couples. On the one hand genetic effects lead to across generation correlations. These can 481	

take the form of direct effects, i.e., classical heritability, or indirect parent offspring effects as 482	

recently described (KONG et al. 2018). On the other hand, cross generational correlations can 483	

also arise due non genetic transmission, i.e., cultural heritability. For example, low social 484	

mobility in a society will lead to parent offspring correlations in socio-economic status.  485	

Like partner correlations, parental correlations are expected to be partly explained by 486	

differences in life expectancy across history and geography. We have demonstrated that a 487	

mating structure based on these factors alone cannot explain the observed correlations. 488	

Identification of the specific factors contributing to the observed partner correlations 489	

represents an important question for future research. We have examined the contribution of a 490	

small number of baseline factors, each of them heritable (CANELA-XANDRI et al. 2017), 491	

including known targets of assortment like height and factors reflecting social mating structure, 492	

like the Townsend Deprivation Index. All of the examined factors explain parts of the observed 493	

correlation and it does not appear a single factor will be able to explain partner correlations in 494	

longevity. However, our results suggest that these factors and socioeconomic status are 495	

correlated across generations as the children’s phenotypes and socioeconomic status explain 496	

some of the correlation in longevity of their respective parents.         497	

We were not able to demonstrate correlations in genetic values for longevity. Lack of such 498	

correlations would be consistent with environmental assortment, i.e., mating within a broader 499	

shared environment or cultural transmission of factors across generations. However, power to 500	

detect correlations in genetic values is limited due to the low number of couples available and 501	

the low heritability of the trait (Supplemental Table S4). In particular, as a majority of the cohort 502	

is still alive it was necessary to use parental longevity to estimate genetic effects. While this 503	
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approach has been successful in identifying genetic effects for longevity in a GWAS setting 504	

(JOSHI et al. 2016), the reduction in heritability due to using a parents phenotype, severely 505	

impacts the precision with which genetic values can be estimated. We would therefore suggest 506	

that these results do not provide strong evidence against assortment on heritable risk factors.   507	

A majority of the reported estimates were consistent across both cohorts and with previous 508	

estimates, where these are available. A notable exception are the reduced correlations for 509	

parental longevity for father-mother pairs in the UK Biobank cohort, when compared to the 510	

same estimate in the FamiLinx cohort and correlations for same sex parent pairs in both 511	

cohorts. We suggest that this is a consequence of the limitations of the UK Biobank data. 512	

Specifically, as noted previously, the UK Biobank cohort is censored. Parents who are still 513	

alive are excluded. Such censoring will bias observed correlations downwards (BEGIER AND 514	

HAMDAN 1971). This is consistent with the lower correlations observed in the UK Biobank 515	

compared to the FamiLinx cohort which does not suffer from such censoring. This effect is 516	

exacerbated when censoring is stronger on one of the two variables as it is the case for father-517	

mother correlations, due to higher life expectancies for females.  518	

We hypothesised that partner correlations in longevity could be mediated through partner 519	

correlations in disease risk. For a majority of the examined disease partner correlations had 520	

been previously reported (MUÑOZ	et	al.	2016). Our results for disease risk are in line with those 521	

for longevity. That is, the observed partner correlations, at least partly, arise due to assortment 522	

on factors correlated across generation. Indeed, for a number of diseases, in particular 523	

hypertension, we find direct evidence for assortative mating. As the results for couples of self-524	

reported controls were in line with those using all couples, we can exclude the possibility of 525	

direct assortment on disease status. We therefore conclude, that these correlation is likely 526	

indirectly generated through genetic correlation between the focal trait (e.g. hypertension) and 527	

another, genetically correlated, trait or traits for which assortment happens, e.g., BMI 528	

(ROBINSON et al. 2017). A consequence of this model is that disease prevalence in the 529	

population may potentially be increased through indirect assortment for traits or risk factors 530	
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correlated with disease (PEYROT et al. 2016). While we find direct evidence for assortment on 531	

genetic risk factors for some disease, parental correlations for other disease lack evidence for 532	

assortment from correlations of genetic values. Parental correlations for these diseases could 533	

arise due to shared broad environment. In the particular case of late onset disease, like for 534	

example, Alzheimer’s the observed correlations could arise as a consequence of correlations 535	

in longevity.   536	

The cohorts used in this study have several limitations. For example, the already mentioned 537	

censoring of partners who are still alive in the UK Biobank. Another limitation is the lack of 538	

information about the year of birth of a majority of parents in the UK Biobank. However, 539	

correlations between the offspring’s and parent’s year of birth, where both are available as 540	

well as, replication of results on the parental disease history using the parents’ year of birth, 541	

both suggest that adjusting for year of birth of the children is an acceptable, albeit not perfect, 542	

proxy for year of birth of the parents. In particular, results did not suggest that using the 543	

offspring’s year of birth as a proxy introduced a substantial bias. The FamiLinx cohort on the 544	

other hand has a genealogical structure, potential biasing observed correlations upwards. 545	

However, the close agreement of estimates with those obtained in the UK Biobank does not 546	

suggest this is the case.    547	

Taken together the results suggest that the characteristics that influence mate choice lead 548	

to detectable assortment for familial disease and longevity. This assortment is only partially 549	

explained by birth cohort and the few factors chosen to reflect the social mating structure, 550	

suggesting a contribution to assortment for parental disease history and longevity of other 551	

traits, lifestyle choices or social factors shared among parents and children. While we have 552	

not directly demonstrated that the underlying factors are transferred across generations, that 553	

is, that the same behavioural or social factors which drive parental disease risk are also the 554	

factors underlying mate choice in the offspring, such a model presents the most canonical 555	

explanation. While recent work has highlighted traits which are plausible candidates for direct 556	

assortative mating, like for example height (TENESA et al. 2015; ROBINSON et al. 2017), our 557	
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work suggests a network of effects. Whereby direct assortative mating on observable factors, 558	

leads to indirect assortment for a multitude of genetically correlated traits. This highlights that 559	

assortative mating can have effects far beyond the focal trait and suggests wide-spread levels 560	

of pleiotropy. Understanding the contributions that mate choice and cultural transmission of 561	

behaviours and environments across generations make to these correlations will present a 562	

major but exciting challenge of future research.       563	

  564	
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Figures and Tables 661	

Figure 1: Effects of indirect assortative mating on heritability and correlations based on the 662	

model of (GIANOLA 1982) (see Supplementary Methods). We consider a pair of traits. One 663	

trait which is the target of assortment, e.g., BMI, and a genetically correlated focal trait, e.g., 664	

hypertension disease liability. Both traits are taken to have heritabilities of 0.3 in a random 665	

mating population. We illustrate relative changes in three genetic parameters as functions of 666	

the strength of assortative mating (ρcouple) and genetic correlation in a random mating 667	

population between the traits (ρg). Specifically, (a) changes in heritability of the assortment 668	

trait, (b) changes in heritability of the focal trait and (c) changes in genetic correlation between 669	

the traits. In all three panels we plot the ratios of the parameter under assortment to random 670	

mating. We assume a population at equilibrium after assortative mating (which happens only 671	

after a few generations of assortment) relative to a random mating population. In (b) and (c) 672	

colors indicate the ratios of h2 or ρg in the two populations. Specifically, red colors indicate 673	

areas where assortative mating leads to increased heritability in the focal trait and increased 674	

absolute genetic correlations, i.e., the ratio of h2 or ρg after assortative mating to that in a 675	

random mating population is greater than one.  676	

  677	
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Figure 2: Schematic outline of the study. We consider couples and their parents. We 678	

compute phenotypic correlations between couples (ρy
couple) for longevity and disease 679	

status. Such correlations could be explained by the couple sharing a nuclear 680	

environment, e.g., shared exposures in the shared home or shared diet. In order to 681	

exclude the possibility of convergence based on shared nuclear environment, we 682	

examined parental correlations, that is correlations between the fathers (ρy
♂inlaws) and 683	

mothers (ρy
♀inlaws) of the partners. Such correlations cannot arise due to the nuclear 684	

couple environment, but require non-random mating and across generation 685	

correlations. The across generation correlations could arise due to heritable genetic 686	

effects or culturally transmitted environmental effects. We therefore also examined 687	

correlations in genetic values (ρg
couple), which provide evidence for non-random mating 688	

with respect to heritable factors.    689	
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Table 1: Polychroic correlations for family history of fathers and mothers of couples in 693	

the UK Biobank. 694	

 Father (ρy
♂inlaws) Mother (ρy

♀inlaws) 

 ρchor s.e. P ρchor s.e. P 

Heart Disease 0.04 0.006 6×10-11 0.07 0.007 9×10-23 

Stroke 0.02 0.009 0.003 0.06 0.009 2×10-11 

Lung Cancer 0.04 0.012 1×10-4 0.08 0.018 1×10-5 

Bowel Cancer 0.04 0.015 0.009 -0.01 0.017 0.747 

Breast Cancer - - - 0.01 0.012 0.325 

Chronic Bronchitis 0.06 0.01 2×10-9 0.06 0.015 7×10-5 

High Blood Pressure 0.09 0.007 1×10-35 0.08 0.006 7×10-38 

Diabetes 0.02 0.012 0.067 0.04 0.011 0.001 

Alzheimer's 0.07 0.017 2×10-5 0.08 0.011 3×10-13 

Parkinson's 0.02 0.027 0.267 0.04 0.034 0.13 

Depression 0.03 0.022 0.103 0.04 0.014 0.005 

Prostate Cancer 0.04 0.013 0.004 - - - 

ρchor = polychoric correlation, s.e. = standard error, P = pvalue for ρchor = 0  695	



	 29	

Table 2: Within couple correlations of genetic values (ρg
couple) for family history and 696	

self-reported disease in genotyped couples in the UK Biobank. 697	

 Parental Family 
History1 

Self2 

 ρ P ρ 95% CI P 
Hypertension 0.03 8×10-6 0.028 0.009-0.048 0.005 
Chronic Bronchitis 0.019 0.07 0.011 -0.008-0.031 0.26 
Heart Disease 0.016 9×10-3 -0.015 -0.034-0.005 0.14 
Stroke 0.013 0.12 0.004 -0.016-0.023 0.7 
Diabetes 0.009 0.09 0.024 0.004-0.043 0.02 
Prostate Cancer 0.009 0.34 -  - 
Lung Cancer 0.005 0.32 -  - 
Alzheimer's 0.004 0.27 -  - 
Severe Depression 0.003 0.41 0.017 -0.002-0.036 0.09 
Parkinson's -0.001 0.42 -  - 
Breast Cancer -0.004 0.68 -  - 
Bowel Cancer -0.008 0.14 -  - 

 698	

1meta-analysis of paternal and maternal results, with the exception of Prostate Cancer and 699	

Breast Cancer which are paternal and maternal results respectively, separate results for all 700	

disease can be found in Supplementary Table S10, 2contains only results for self-reported non 701	

sex specific disease with UK Biobank prevalence > 5%, ρ = Pearson’s correlation between 702	

genetic values in couples, P = pvalue for ρ=0 703	


