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SCALING AND BIAS CODES FOR MODELING SPEAKER-ADAPTIVE
DNN-BASED SPEECH SYNTHESIS SYSTEMS

Hieu-Thi Luong1, Junichi Yamagishi1,2

1National Institute of Informatics, Tokyo, Japan 2The University of Edinburgh, Edinburgh, UK

ABSTRACT

Most neural-network based speaker-adaptive acoustic mod-
els for speech synthesis can be categorized into either layer-
based or input-code approaches. Although both approaches
have their own pros and cons, most existing works on speaker
adaptation focus on improving one or the other. In this pa-
per, after we first systematically overview the common prin-
ciples of neural-network based speaker-adaptive models, we
show that these approaches can be represented in a unified
framework and can be generalized further. More specifically,
we introduce the use of scaling and bias codes as general-
ized means for speaker-adaptive transformation. By utilizing
these codes, we can create a more efficient factorized speaker-
adaptive model and capture advantages of both approaches
while reducing their disadvantages. The experiments show
that the proposed method can improve the performance of
speaker adaptation compared with speaker adaptation based
on the conventional input code.

Index Terms— speech synthesis, speaker adaptation,
neural network, factorization, speaker code

1. INTRODUCTION

Recent speaker-dependent speech synthesis systems can gen-
erate high-quality reading speech indistinguishable from nat-
ural human speech when their training data is recorded in
a quality-controlled condition and have sufficient amount
of data [1]. The speech synthesis community is currently
trying to solve more challenging problems. A good ex-
ample is multi-speaker speech synthesis and its adaptation
[2, 3, 4, 5]. Here multi-speaker synthesis means generat-
ing synthetic speech of multiple known speakers included
in a training dataset using a common model, and adaptation
means adapting the speaker-independent common model to
unseen speakers and generating their speech. This speaker-
adaptive speech synthesis systems are expected to opens
possibilities for a wide range of new applications for speech
synthesis such as a customizable, user-specific voice interface
and voice preservation for people with medical conditions in-
volving voice losses. However, training the multi-speaker

This work was partially supported by MEXT KAKENHI Grants
(16H06302, 17H04687, 18H04120, and 18H04112).

synthesis models and adapting them to unseen speakers are
still challenging problems, and resulting models are far from
perfect, especially when less than ideal datasets are used [6].

Most adaptation methods for neural network models can
be described as either (a) fine-tuning a set of or all of pa-
rameters of speaker-independent network so it explains un-
seen speaker’s data better or (b) factorizing a neural network
into speaker-specific and common parts and estimating the
speaker-specific components for the unseen speaker’s data.
The speaker-specific components may be composed by in-
put codes (e.g. one-hot vector) [7], embedding vectors ob-
tained externally (e.g. i-vector) [8], or latent variables (e.g.
variational auto-encoder) [3, 9, 10]. Of course any of those
speaker-specific components may be jointly optimized with
the common parts (e.g. [7, 10, 11]). Although there are a lot
of variants on multi-speaker modeling and adaptation, most
approaches for augmenting the speaker-specific components
into a neural network are equivalent to adapting a bias term
of each hidden layer and this bias term is typically constant
across all frames of all utterances. Although Wu et al. [12]
and Nachmachi et al. [13] proposed frame-dependent com-
ponents, these components are still bias adaptation and their
underlying frameworks and concepts have mathematical sim-
ilarities.

In this paper we first systematically overview the com-
mon concepts of neural-network based speaker-adaptive mod-
els and show that these approaches can be represented in a
unified framework. Further, we introduce a scaling code as
an extended speaker-adaptive transformation. As its name in-
dicates, this code introduces an additional scaling operation
as an approximation to adaptation of weight matrices unlike
the conventional deep neural network (DNN) adaptation ap-
proaches. Section 2 details relevant work. Section 3 describes
our factorized speaker adaptation based on scaling and bias
codes. Section 4 explains our experiments and shows both
objective and subjective results. We conclude our work and
describe the future direction for this method in Section 5.

2. RELATED WORK

Constrained Maximum Likelihood Linear Regression (CM-
LLR) [14, 15], also known as feature-space MLLR (fMLLR),
is a widely used speaker adaptation technique for hidden



Markov model (HMM)-based speech processing systems in
which a speaker-dependent affine transformation is applied
to source acoustic features to explain target data better. In the
case of automatic speech recognition (ASR), the transforma-
tion acts as a method of normalization, whereas in the case
of speech synthesis, the transformation purpose is to diverge
the acoustic output to each target speaker [16]. The fMLLR
method can be described using the following equation:

x = A(k)x+ b(k) (1)

where x is the source acoustic features, x represents approxi-
mated acoustic features of the target speaker k, A(k) is a full
linear matrix and b(k) is the bias vector. A(k) and b(k) are
transformation parameters specific to each speaker.

A feedforward layer of a standard neural network can be
defined by the following equation:

hl = f(Wlhl−1 + cl) (2)

where hl is the output of the l-th hidden layer. To simplify
our equation, let us assume all hidden layers have the same
number of hidden units m, that is, hl,hl−1 ∈ Rm×1 and the
l-th hidden layer has a weight matrix Wl ∈ Rm×m and a bias
vector cl ∈ Rm×1. f(.) is an element-wise non-linear activa-
tion function (such as sigmoid or tanh) that deterministically
squashes each dimension of an input vector Rm×1 to a limited
range.

Next we explain the existing DNN-based speaker adapta-
tion methods, that is, speaker-dependent layers and speaker-
dependent input code using similar notations to the above fM-
LLR. For the speaker-dependent layers [17, 18] approach, the
weight matrices and bias vectors of specific layers are fine-
tuned using adaptation data, therefore we can rewrite Equa-
tion 2 as:

hl = f(W
(k)
l hl−1 + c

(k)
l ) (3)

where W
(k)
l and c

(k)
l are now specific to a target speaker k

and hl also represents an adapted hidden layer . The method
has the advantage of modeling both a full matrix W

(k)
l and

the bias vector c(k)l , which usually yield favorable result when
the adaptation data is sufficient [8, 18]. However when the
amount of adaptation data is limited, the result is unstable as
number of parameters estimated is very large [19]. This is
also the reason that this method typically involves reducing
the number of parameters estimated [20, 21, 18] in order to
retain the adaptation performance.

Learning Hidden Unit Contribution (LHUC) [22] is an
adaptation method that transforms outputs of the activation
function using a speaker-dependent diagonal transformation
matrix, which significantly reduces the number of parameters:

hl = DiagA
(k)
l ◦ f(Wlhl−1 + cl) (4)

where A(k)
l ∈ Rm×m is a diagonal matrix for speaker k, Diag

is an operation to extract diagonal elements of a m×m ma-
trix as a m× 1 vector, and ◦ is an element-wise multiplication

of vectors. In LHUC, since we apply the transformation after
the activation function of the current layer, we may write the
LHUC operation at the next hidden layer as follows:

hl+1 = f(Wl+1hl + cl+1) (5)

= f
(
Wl+1 ·

(
DiagA

(k)
l ◦ hl

)
+ cl+1

)
(6)

= f
(
Wl+1A

(k)
l hl + cl+1

)
(7)

= f
(
W

(k)
l+1hl + cl+1

)
(8)

From these equations, we see that a speaker-specific weight
matrix W

(k)
l+1 is factorized as Wl+1A

(k)
l .

For the speaker-dependent input-code approach, a vector
representing the speaker identity is fed into one or many lay-
ers of a neural network. This vector can be as simple as an
one-hot vector [7, 19] or an embedding vector obtained from
outside systems like speaker verification [6, 23] or speaker
recognition [24]. Although there are many variations, each
may be viewed as a bias adaptation of a hidden layer and the
speaker-dependent input approach can be written as:

hl = f(Wlhl−1 + cl +Wb
l s

(k)) (9)

= f(Wlhl−1 + c
(k)
l ) (10)

where s(k) ∈ Rq×1 is the auxiliary input vector specific to
speaker k and has an arbitrary size q; Wb

l ∈ Rm×q is a new
weight matrix added to the layer to handle the new input. The
input code approach provides the flexibility of using an out-
side system to constrain the model. It is also convenient to
present each speaker (or speaking style) as one single vector
since it may be used for controlling characteristics of syn-
thetic speech [7, 3, 25]. As the number of speaker-dependent
parameters q is typically small, this method shows preferable
results when the amount of adaptation data is limited. How-
ever, it does not seem to improve the adaptation performance
when the adaptation data is plentiful [19].

3. FACTORIZED SPEAKER TRANSFORMATION
BASED ON SCALING AND BIAS CODES

3.1. Scaling and bias codes

The above approaches are obviously complementary. Our
proposal, illustrated in Figure 1, is therefore the design of
a new speaker transformation by combining the above two
types of approaches and further factorizing its essential com-
ponents on the basic of “scaling” and “bias” codes. The main
idea is to explicitly transform both the weight matrix and the
bias vector as:

hl = f(A
(k)
l Wlhl−1 + cl + b

(k)
l ) (11)

A
(k)
l = diag(WA

l s
A,(k)) (12)

b
(k)
l = Wb

l s
b,(k) (13)



WA WbW
sA,(k) sb,(k)

speaker-embeded table

f(.)

Fig. 1. Proposed factorized speaker transformation based on
scaling and bias codes. Gray boxes indicate layers with non-
linear activation function, and the white box indicates a layer
with linear function.

where A
(k)
l ∈ Rm×m is a diagonal matrix for the scaling

operation at the l-th layer. The matrix is further factorized
into a speaker-independent projection matrix WA

l ∈ Rm×p

and a scaling code vector sA,(k) ∈ Rp×1. diag is an operation
to change a m× 1 vector into a diagonal m×m matrix. The
speaker-specific bias term b

(k)
l is also factorized in the same

way using Wb
l ∈ Rm×q and sb,(k) ∈ Rq×1. As described

previously, sb,(k) is basically equivalent to the conventional
speaker code, but we call it as bias code here to better outline
its property. These codes may have arbitrary lengths, but, p
and q are usually chosen to be much smaller than m to reduce
the number of free parameters further.

Factorizing models explicitly and using lower-dimensional
subspaces is a powerful concept used in various models (e.g.
Heteroscedastic Linear Discriminant Analysis (HLDA) [26],
subspace Gaussian mixture model [27]). The proposed fac-
torization is somewhat similar to Factorize Hidden Layer
(FHL) introduced by Samrakoon and Sim [20], but we focus
on performing the scaling and bias adaptation simultaneously
using lower dimensional vectors. A concept similar to scaling
and bias codes was also investigated for ASR in [28, 29], but
instead of mapping the scaling and bias transformation from
a common vector we use separated vectors as scaling and bias
codes to give ourselves more degrees of freedom to design a
speaker-adaptive architecture. If necessary, we may directly
adapt A(k)

l and b
(k)
l when the amount of adaptation data is

sufficient.

3.2. Extensions of the proposed method

In this paper, we investigate two more strategies as extensions
of the proposed method. The first strategy is to separately use
the scaling and bias codes at different layers and to explicitly
perform either scaling or bias operations only as illustrated by
Figure 2-a. This is a special case of the proposed method.

The second strategy is to combine the proposed method
with other type of matrix decomposition. For example, in

WA

sA,(k)

sb,(k)

Wb

W

W

f(.)

f(.)

V

U

WA

sA,(k) sb,(k)

f(.)

Wb

(a) Multilevel (b) Bottleneck
Fig. 2. Extended strategies utilizing the scaling and bias codes
to integrate speaker transformations into neural network

(a) Nonlinear case (b) Linear case
Fig. 3. Different injection points of proposed factorized
speaker transformation. It may be applied to intermediate
hidden layers with non-linear activation functions or used at
a specific layer where all remaining operations are linear. Re-
lationships between speaker transforms and acoustic features
are non-linear for the former case but linear for the latter case.

the work of Xue et al. [30], a weight matrix is decomposed
into three linearly connected matrices using singular value de-
composition (SVD). Therefore, instead of multiplying a scal-
ing matrix to a weight matrix, we may first decompose the
weight matrix into the three linearly connected matrices and
use the proposed scaling matrix to approximate one of the de-
composed matrices further as follows:

hl = f(W
(k)
l hl−1 + cl + b

(k)
l + hl−1) (14)

W
(k)
l = UlA

(k)
l Vl (15)

A
(k)
l = diag(WA

l s
A,(k)) (16)

b
(k)
l = Wb

l s
b,(k) (17)

where Ul ∈ Rm×n, Vl ∈ Rn×m and A
(k)
l ∈ Rn×n with

n� m1. Note that residual connections are also added here.
When we use this model for time-series speech data, the in-
put varies at each time and the residual part becomes a time-
variant bias term as hl,t = f(W

(k)
l hl−1,t+cl+b

(k)
l +hl−1,t)

where hl,t is output of the l-th hidden unit at time t. The bot-
tleneck method can be summarized as Figure 2-b.

1It is also possible to theoretically include SVD bottleneck speaker adap-
tation with low-rank approximation [31]. To do this, a constrain Wl ≈
UlVl needs to be added.



Table 1. Divisions of English and Japanese speech corpora used in our experiments.
Set Train (Speech & Text) Valid (Speech & Text) Test (Text) Speakers

Each speaker Total Each speaker Total Each speaker Total Male Female Total
en.base ∼370 26785 5 360 - - 31 41 72
en.target.10 10 80

5 40 15 120 4 4 8en.target.40 40 500
en.target.160 160 1280
en.target.320 320 2560
jp.base ∼148 34713 3 705 - - 51 184 235
jp.target.10 10 200

3 60 10 200 10 10 20jp.target.50 50 1000
jp.target.100 100 2000

Table 2. Different strategies evaluated in this paper. The pa-
rameter’s size was purposely chosen so that all models used
the same number of parameters.

Size
Notation Strategy Scaling Bias Bottleneck
bias bias code - 64 -
scale scaling code 64 - -
affine bias + scaling 32 32 -
level multilevel 32 32 -
bottle bottleneck 64 32 512

We also investigate to which layers we should inject the
proposed transformation and what kinds of activation func-
tions should be used after the speaker transformation. More
specifically, we investigate whether the proposed transforma-
tion should be used at intermediate hidden layers with non-
linear activation functions as shown in Figure 3-a or at a spe-
cific layer where all remaining operations are linear as shown
in Figure 3-b. By analyzing this, we can understand whether
the relationship between the proposed speaker transformation
functions and generated acoustic features should be repre-
sented in a non-linear way like the former case, or in a linear
one like the latter case.2

4. EXPERIMENTS

4.1. Experimental condition

We use two speech corpora to evaluate our proposal: an En-
glish corpus containing 80 speakers, which is a subset of
the VCTK [32, 33], and an in-house Japanese speech corpus
with over 250 speakers. The English corpus was used to
objectively evaluate various aspects of our proposal while the
Japanese corpus is used to reproduce the results and eval-
uate subjectively with native Japanese listeners. We split
each corpora into the base and target sets as shown in Table
1 and conducted two tasks (multi-speaker and adaptation)

2For the combination of the linear case with the strategy in Figure 2-a,
which has operations at two different layers, we first used speaker transfor-
mation based on the bias code at a hidden layer with the non-linear activation
functions and further used speaker transformation based on the scaling code
at the next linear layer. This is technically a mix of linear and non-linear
speaker transformations, but we included this in ”the linear setup” in our ex-
periments.
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Fig. 4. Objective evaluation of changing size of scaling code
in nonlinear setup.

as follows. In the multi-speaker task, we used en.base and
one of en.target.{10, 40, 160, or 320} for training a multi-
speaker neural network common to all speakers per strategy.
In the adaptation task, we used en.base for training a multi-
speaker neural network per strategy and adapted it to each
target speaker included in en.target.*. In both the tasks, the
evaluation was performed using target speakers included in
en.target.*. This increased the number of models needed to
be constructed but reduced the mismatch between the multi-
speaker and adaptation tasks so we could directly compare
them.

For the DNN-based acoustic model, we used a con-
ventional multi-task learning neural network similar to our
previous works [7, 34]. The neural network maps linguis-
tic features (depending on languages) to several acoustic
features including 60-dimensional mel-cepstral coefficients,
25-dimensional band-limited aperiodicities, interpolated log-
arithm fundamental frequencies, and their dynamic counter-
part. A voiced/unvoiced binary flag is also included. The
neural network model has five feedforward layers each with
1024 neurons, followed by a linear layer to map to the desired
dimensional output. All layers have the sigmoid activation
function unless stated otherwise. We experimented with
five strategies utilizing either scaling code, bias code, or
both as shown in Table 2. Further, to investigate the im-
pacts of different waveform generation methods, we used
both a speaker-independent Wavenet vocoder [35, 36] and
the WORLD vocoder [37] for speech waveform generation .



nonlinear linear

Fig. 5. Objective evaluations results of different strategies in
the multi-speaker task using the English corpus.

However, our Wavenet model is still under development and
we experienced the collapse of generated speech problems,
which is described in [38].

4.2. Objective evaluation

We first evaluated the scaling code by itself in a nonlinear
setup since, at the time of writing, using scaling code for
multi-speaker speech synthesis has not been investigated. We
changed the size of scaling codes from 1 to 128 to see how
they impact the objective performance of the multi-speaker
task in a similar way to experiments that we did on bias codes
previously [7]. The multi-speaker models were trained using
en.base and en.target.320 together. The objective evaluation
results, including mel-cepstral distortion (MCD) in dB and
F0 root mean square error (F0 RMSE) in Hz, are illustrated
in Figure 4. We can see that both the distortions decrease
when we increase the size of the scaling code.

Next we evaluated multiple strategies described in Table
2 for the multi-speaker task in either nonlinear or linear se-
tups. Again the multi-speaker models were trained using the
en.base and en.target.320 data together. Figure 5 shows ob-
jective evaluation results of the strategies. If we look at the
non-linear setups, we see that there are no obvious differences
between these strategies. However, at least we can determine
that the proposed scaling code can be used by itself without
decreasing the performance. If we look at the linear setups,
we can clearly see that the using the bias code by itself is a
poor strategy for multi-speaker modeling. It resulted in much
worse MCD even though its F0 RMSE is comparable to other
systems. In [39], Wang found out that the model structures re-
quired for mel-cepstrum and fundamental frequency are dif-
ferent. Our results also support this finding.

Figure 6 shows objective evaluation results of the strate-
gies in the adaptation task using different amounts of data.
The first block indicated biasm corresponds to reference
results in the multi-speaker task (i.e., systems where multi-

nonlinear linear

Fig. 6. Objective evaluation results of different strategies in
adaptation task using English corpus. Here biasm shows ref-
erence results in the multi-speaker task using the bias code
in the nonlinear setup. All other results are for adaptation of
unseen speakers using data included in en.target.*.

speaker neural networks were trained using en.base and one
of en.target.{10, 40, 160, or 320} and synthetic speech was
generated using text of the test set of target speakers ) using
the bias code in the nonlinear setup. All other results are
adaptation results for the unseen speaker task. The amounts
of adaptation data vary from 10 to 320.

From this figure, we see that adaptation to the unseen
speakers is more difficult than multi-speaker modeling.
Moreover, while the results of multi-speaker modeling are
improved significantly when we increase the amount of data,
the adaptation results for the unseen speakers show marginal
improvements when more data is available. This suggests
that the proposed adaptation transformation needs to be gen-
eralized better. Another important pattern that we can see
from the figure is that in terms of F0 RMSE, all strategies in
the linear setup outperform their nonlinear counterparts.

4.3. Subjective evaluations

Next we reproduced several selected strategies using the
Japanese dataset. We doubled the size of speaker codes
shown in Table 2 and chose strategies that showed reasonable
improvements in the objective evaluation using the English
dataset. The objective evaluation results using the Japanese
corpus are shown in Figure 7, from which we can see the
same trend as the result using the English one3.

We used the Japanese systems and conducted a subjec-
tive listening test to see how participants perceived these dif-
ferences. The listening test contained two sets of questions.
In the first part, participants were asked to judge the natural-
ness of the presented speech sample using a five-point scale

3Speech samples using the English corpus can be found at http://
www.hieuthi.com/papers/slt2018

http://www.hieuthi.com/papers/slt2018
http://www.hieuthi.com/papers/slt2018
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Fig. 7. Objective evaluation results of selected strategies in
adaptation task using Japanese corpus. Like the English test,
biasm shows reference results in the multi-speaker task us-
ing the bias code in the nonlinear setup. All other results are
adaptation results.

ranged from 1 (very unnatural) to 5 (very natural). In the sec-
ond part, participants were asked to compare a speech sample
of a system with recorded speech of the same speaker and
judge if they are the same speaker or not using a four-point
scale ranged from 1 (different, sure) to 4 (same, sure). This
evaluation methodology is similar to our previous study [34].
In addition to synthetic speech generated from the proposed
speech synthesis systems using the above selected strategies,
we also evaluated recorded speech, WOLRD vocoded speech,
and Wavenet vocoded speech for comparison. A large-scale
listening test was done with 289 subjects. The statistical anal-
ysis was conducted using pairwise t-tests with a 95% confi-
dence margin and Holm-Bonferroni compensation for multi-
ple comparisons.

Subjective evaluation results are presented in Figure 8.
In the quality test, we can first see that participants judged
all systems using our speaker-independent Wavenet vocoder
samples to be worse than counterparts using the WORLD
vocoder. This is inconsistent with other publication results
and indicates that our Wavenet is not properly trained. For
the future works, we could further fine-tune a part of the
speaker-independent Wavenet model to stabilize the neural-
net vocoder [40, 41]. However, unlike the quality test, the
subjects judged synthetic speech using the Wavenet vocoder
to be closer to the target speakers in the speaker similarity test
although there are still large gaps between vocoded speech
and synthetic speech.

We can also see that a reference multi-speaker system
marked as biasm using 100 utterances has the highest simi-
larity score among the other systems, and this is consistent
with the objective evaluation results. Regarding the adapta-
tion to the unseen speakers, we could see that the proposed
method using both the scaling and bias codes and its bottle-

nonlinear linear

WORLD vocoder

nonlinear linear

Wavenet vocoder

natural

vocoded

natural

vocoded

Fig. 8. Subjective evaluation results of selected strategies
in adaptation task using Japanese corpus. Top figure shows
mean opinion scores on naturalness. Bottom figure shows
speaker similarity scores. Recorded speech and vocoded
speech using correct acoustic features were also evaluated at
the same time.

neck variant (in the linear setting) have better results than the
adaptation method using the bias code in the nonlinear setting
(which is our previous work) for both WORLD and Wavenet
vocoders. This would be because of improved F0 adaptation,
as we can see objectively in Figure 7. Regarding the quantity
of the adaptation data, more data seems to slightly improve
speaker similarity of synthetic speech in general but does not
improve the perception of quality. In some cases, it makes the
quality of synthetic speech slightly worse.

5. CONCLUSIONS

In this paper, we have explained several major existing adap-
tation frameworks for DNN speech synthesis and showed
one generalized speaker-adaptive transformation. Further, we
have factorized the proposed transformation on the basic of
scaling and bias codes and investigated its variants such as
bottleneck.

From objective and subjective experiments, we showed
that the proposed method, specifically the ones using both
the scaling and bias codes in the linear setting, can reduce
acoustic errors and improve subjective speaker similarity in
the adaptation of unseen speakers . Moreover, our results
clearly indicate that there are still large gaps between vocoded
speech and synthetic speech in terms of speaker similarity and
this clearly indicates that there is room for improving multi-
speaker modeling and speaker adaptation.

Our future work includes comparing our method with
other adaptation methods such as LHUC and SVD bottleneck
speaker adaptation with low-rank approximation. Another
interesting experiment we would like to see is the use of
i-vector or d-vector [24] as a scaling code.
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