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ZEROS OF HOLANT PROBLEMS: LOCATIONS AND ALGORITHMS

HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

Abstract. We present fully polynomial-time (deterministic or randomised) approximation schemes for
Holant problems, defined by a non-negative constraint function satisfying a generalised second order
recurrence modulo a couple of exceptional cases. As a consequence, any non-negative Holant problem
on cubic graphs has an efficient approximation algorithm unless the problem is equivalent to approxi-
mately counting perfect matchings, a central open problem in the area. This is in sharp contrast to the
computational phase transition shown by 2-state spin systems on cubic graphs. Our main technique is
the recently established connection between zeros of graph polynomials and approximate counting. We
also use the “winding” technique to deduce the second result on cubic graphs.

1. Introduction

Great progress has beenmade recently in the classification of counting problems. Onemajor achieve-
ment is the full dichotomy for counting constraint satisfaction problems (CSPs) [Bul13, DR13], even
with complex weights [CC17]. However, such a classification is for exact counting, and for approxi-
mation, even to move beyond some rather modest model seems quite difficult.

Holant problems [CLX11] are a framework of expressing counting problems motivated by Valiant’s
holographic algorithms [Val08]. The “Holant” is a partition function on graphs where edges are vari-
ables and vertices are constraint functions. The benefit of this choice is the ability to express prob-
lems like perfect matchings, which are provably not expressible in certain CSP-like vertex models
[FLS07, DGL+12, Sch13]. We parameterise Holant problems by the set of constraint functions that can
be put on vertices. Similar to the success of classifying counting CSPs, exact classifications have been
obtained for Holant problems defined by any set of complex-weighted symmetric Boolean functions
[CGW16], and various progresses have been made to go beyond [CLX18, LW18, Bac18].

In this paper, we make progress towards understanding the complexity of approximating symmetric
Boolean Holant problems with non-negative weights. Let G = (V , E) be a graph, π : V → F be an
assignment from the set of verticesV to a set of functions F , and fv = π(v) is the constraint function
{0, 1}deg(v) → C associated with the vertex v . The “Holant” is defined as follows:

Z(G;π) :=
∑

σ ∈{0,1}E

∏
v ∈V

fv (σ |E(v)),(1)

where E(v) is the set of adjacent edges of v , and σ |E(v) is the restriction of σ on E(v). We use the
shorthand Z(G) or Z when G and π are clear from the context.

We call a Boolean constraint function f symmetric, if f (x) depends only on the hamming weight |x|
and is invariant under permutations of the indices. For a symmetric f of arity d , we associate it with
a signature [f0, f1, . . . , fd ], where fi = f (x) if |x| = i . We may use the term “constraint function” and
“signature” interchangeably. For example, if f is the “exact-one” function, namely f = [0, 1, 0, . . . , 0],
then Z(G) counts the number of perfect matchings in G; and if f is the Boolean OR function, namely
f = [0, 1, 1, . . . , 1], then Z(G) counts the number of edge covers in G.

We focus on a fairly expressive family of symmetric functions satisfying generalised second-order
recurrences. More precisely, we say f = [f0, f1, . . . , fd ] satisfies a generalised second-order recurrence,
if there exist real constants (a,b, c) , (0, 0, 0) such that afk +b fk+1 + c fk+2 = 0 for all 0 ≤ k ≤ d − 2.
Denote by Holant(f ) the computational problem of evaluating Z(G) where every vertex is associated
with the signature f . In particular, the input to Holant(f ) must be d-regular, where d is the arity of f .
Our main theorem is the following.
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Theorem 1. Let f = [f0, f1, . . . , fd ] be a symmetric constraint function of arity d ≥ 3 satisfying gen-
eralised second-order recurrences, and fi ≥ 0 for all 0 ≤ i ≤ d . There is a fully polynomial-time (deter-
ministic or randomised) approximation algorithm for Holant(f ), unless, up to a non-zero factor, f or its
reversal is in one of the following form:

• [0, λ sin π
d , λ

2 sin 2π
d , . . . , λ

i sin iπ
d , . . . , 0] for some λ > 0;

• [0, 1, 0, λ, 0, . . . , 0, λ
d−2
2 , 0] if d is even, or [0, 1, 0, λ, 0, . . . , 0, λ

d−1
2 ] if d is odd, for some 0 ≤ λ < 1.

Moreover, in the latter case, approximating Holant(f ) is equivalent to approximately counting perfect
matchings in general graphs.

Understanding the complexity of signatures with second-order recurrences is the cornerstone in
the exact counting classifications. Since satisfying first-order recurrences implies that the function is
degenerate, these constraint functions are the first class satisfying a recurrence relationwith non-trivial
complexity. More concretely, this family includes many interesting special cases:

• Matchings and perfect matchings. The functions are [1, 1, 0, 0, . . . , 0] and [0, 1, 0, 0, . . . , 0], re-
spectively, with (a,b, c) = (0, 0, 1).

• Even subgraphs, whose functions are [1, 0, 1, 0, . . . ] with (a,b, c) = (1, 0,−1). More generally,
we may put weights on even and odd degree vertices, and the functions become [x,y, x,y, . . . ]
for some x,y ≥ 0.

• Edge covers, whose functions are [0, 1, 1, . . . , 1] with (a,b, c) = (0, 1,−1).
• Fibonacci gates, namely f of arity d such that fi+2 = b fi+1 + fi for all i ≤ d − 2.
• All ternary symmetric functions.

For approximate counting, polynomial-time approximation algorithms are known only for a few spe-
cial cases, such as counting matchings [JS89], weighted even subgraphs [JS93], counting edge covers
[LLL14], and a weighted version of Fibonacci gates [LWZ14]. However, neither the Markov chain
Monte Carlo approach [JS89, JS93] (including its “winding” extension [McQ13, HLZ16]), nor the cor-
relation decay approach [LWZ14, LLL14], appears to be powerful enough to handle all functions in
this family. On the other hand, Theorem 1 covers almost all problems in this family, and most of the
exceptional cases are equivalent to counting perfect matchings, a central open problem in approximate
counting (see, for example, [DJM17, ŠVW18] on partial progresses and barriers). Efficient approximate
counting for perfect matchings is only known in the bipartite case [JSV04].

As a consequence, we have an algorithm for all non-negative BooleanHolant on cubic graphs, unless
the problem is equivalent to counting perfect matchings.

Theorem 2. Let f = [f0, f1, f2, f3] be a symmetric constraint function of arity 3 where fi ≥ 0 for
all 0 ≤ i ≤ 3 . Holant(f ) has a fully polynomial-time (deterministic or randomised) approximation
algorithm, unless f or its reversal, up to a non-zero factor, is [0, 1, 0, λ] for some 0 ≤ λ < 1. In the
exceptional case, approximating Holant(f ) is equivalent to approximately counting perfect matchings in
general graphs.

We remark that Theorem 2 is in sharp contrast to the computational phase transition phenomenon,
as demonstrated by 2-state spin systems on cubic graphs [GJP03, SS14, GŠV16, LLY13, SST14], even
without external fields. For spin systems, a clear and sharp threshold between approximable and hard
to approximate is established, whereas for Holant problems on cubic graphs, there seems to be no such
transition.

1.1. Our techniques. Our algorithm combines a number of ingredients:
• Barvinok’s approach to approximate partition functions via Taylor expansions [Bar16]. This
approach was sharpened by Patel and Regts [PR17a] to run within polynomial-time.

• In order to apply Barvinok’s approach, one has to have some rather precise knowledge of the
zeros of the corresponding graph polynomials. For Holant problems, Ruelle [Rue71, Rue99a,
Rue99b] has developed a systematic approach of bounding the zeros of the partition function via
analysing polynomials associated locally with vertices, under the disguise of “graph-counting
polynomials”.
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• On top of combining Ruelle’s and Barvinok’s approaches, we also employ holographic trans-
formations a la Valiant [Val08], which is necessary to cover all cases in Theorem 1.

Although none of these ingredients is new, the main contribution of our work is to combine them
together (with reworks if necessary), and a thorough analysis of the zeros of functions with generalised
second-order recurrence. To be more specific, for a symmetric signature f = [f0, . . . , fd ] of arity d ,
define the “local” polynomial of f as

Pf (z) :=
d∑

i=0

(
d

i

)
fi · zi .(2)

We may also view Pf (z) as the polynomial for a single vertex with d dangling edges. For some ε > 0,
we call a polynomial P(z)Hε -stable, if P(z) , 0 as long asℜz ≥ −ε . Then one of ourmain technical tool
(see Theorem 15) says that if Pf (z) is Hε -stable for some ε > 0, then a polynomial-time approximation
algorithm exists for Holant(f ).

In general, to apply Barvinok’s method to approximate counting, one needs to deal with the zeros of
the whole partition function, which is usually not an easy task. Previous applications appeal to some
powerful tools such as the Lee-Yang theorem from statistical physics [LSS17], or the resolution of a
long-standing conjecture [PR17b]. In contrast, our approach requires only analysing some low degree
polynomials and is much easier to apply.

To go from Theorem 1 to Theorem 2, we also need to deal with cases not covered by Theorem 1,
which cannot be solved using zeros of Holant problems. These exceptional cases are handled by the
“winding” technique [McQ13, HLZ16] with Markov chains.

2. Ruelle’s method on zeros of Holant problems

Ruelle [Rue71, Rue99a, Rue99b] (building upon the “Asano contraction” [Asa70]) has developed a
systematic approach to bound zeros of the so-called “graph-counting polynomials”. As we will see
later, these polynomials coincide with unweighted Holant problems.

With a little abuse of notation, let Z(G; f ) be the partition function defined by (1) where fv = f for
all v ∈ V , and stratify Z(G; f ) by the number of edges chosen as follows:

Zk (G; f ) :=
∑

σ ∈{0,1}E and |σ |=k

∏
v ∈V

f (σ |E(v)).(3)

Define Zk (G;π) similarly, and again, G and f may be omitted when they are clear from the context.
Let |E | =m. Then Z = Z(G; f ) can be rewritten as the evaluation of the polynomial

PG(z) :=
m∑
i=0

Zi · zi(4)

at z = 1. Namely Z = PG(1). When f is a symmetric 0/1 function, then (4) is the same as the
“graph-counting” polynomial defined by Ruelle [Rue99b].

Ruelle’s method has twomain ingredients. Firstly we want to relate zeros of a univariate polynomial
with those of its polar form. For a polynomial P(z) =

∑d ′
i=0 aiz

i of degree d ′ ≤ d , its dth polar form
with variables z = (z1, . . . , zd ) is

P̂(z) :=
∑
I ⊆[d ]

a |I |( d
|I |

) zI ,
where ai = 0 if i > d ′, [d] denotes {1, 2, . . . ,d}, and for an index set I , zI =

∏
i ∈I zi . For example, the

polar form of Pf (z) (recall (2)) is,

P̂f (z) :=
∑
I ⊆[d ]

f |I |zI .

The polar form P̂(z) is the unique multi-linear symmetric polynomial of degree at most d ′ such that
P̂(z, z, . . . , z) = P(z). When d ′ < d , we view P(z) as a degenerate case, and it has zeros at ∞ with
multiplicity d − d ′.
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LetH be a region in C. We say a polynomial P(z) in d ≥ 1 variables isH -stable if P(z) , 0whenever
z1, . . . , zd ∈ H . We will be particularly interested in Hε -stableness where Hε is the half-plane:

Hε = {z ∈ C | ℜz ≥ −ε} ,
and ε > 0. The Grace-Szegő-Walsh coincidence theorem [Gra02, Sze22, Wal22] has the following
immediate consequence.

Proposition 3. A univariate polynomial P(z) is Hε -stable if and only if its polar form P̂(z) is Hε -stable.

Proposition 3 actually applies to an arbitrary circular domain in C, but we will only need it for Hε .
The next ingredient is the Asano contraction [Asa70], as extended by Ruelle [Rue71].

Proposition 4. Let K1 and K2 be closed subsets of the complex plane C, which do not contain 0. If the
complex polynomial

α + βz1 + γz2 + δz1z2

does not vanish for any z1 < K1 and z2 < K2, then

α + δz

does not vanish for any z < −K1 · K2.

We refer interested readers to [Rue71] for a very elegant proof of Proposition 4.
Let the δ -strip of [0, 1] be

{z ∈ C | |ℑz | ≤ δ and − δ ≤ ℜz ≤ 1 + δ } .

Lemma 5. For any ε > 0, the complement of −Hε ·Hε contains a δ -strip of [0, 1] for some δ > 0 depending
only on ε .

Proof. An equivalent way to write Hε is

Hε =

{
ρeiθ | ρ ≥ − ε

cosθ for θ ∈
(
π

2
,
3π

2

)}
.

Thus,

−Hε · Hε =

{
ρ1ρ2e

i(θ1+θ2+π ) | ρi ≥ − ε

cosθi
for θi ∈

(
π

2
,
3π

2

)
and i ∈ {1, 2}

}
=

{
ρei(θ1+θ2+π ) | ρ ≥ ε2

cosθ1 cosθ2
for θ1, θ2 ∈

(
π

2
,
3π

2

)}
=

ρe
iθ | ρ ≥ ε2(

cos θ−π
2

)2 for θ ∈ (0, 2π)


=

{
ρeiθ | ρ ≥ 2ε2

1 − cosθ for θ ∈ (0, 2π)

}
,

where the third line is because cosθ1 cosθ2 is maximised at θ1 = θ2 if their sum is fixed. It is easy to
check that δ = ε2/2 suffices for the claim. □

Now we are ready to state a very useful lemma.

Lemma 6. Let f be a symmetric signature of arity∆. If the local polynomial Pf (z) is Hε -stable for some
ε > 0, then the global polynomial PG(z) has no zero in the δ -strip of [0, 1], where δ is a constant depending
only on ε .

Proof. We construct G = (V , E) as follows. Start with a collection of vertices v ∈ V , each with ∆ dan-
gling half-edges (evi )i ∈[∆]. Call this graph G0, and connect dangling half-edges evi and euj sequentially
for each edge (u,v) ∈ E. This gives a sequence of graphs G1, . . . ,G |E | = G. The polynomial of G0 is
PG0(z) =

∏
v ∈V Pv (z), where Pv = pf , and consider the multivariate version P̂G0(z) =

∏
v ∈V P̂v (zv ),
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where P̂v = P̂f and zv is the local variables corresponding to v . Since Pf (z) is Hε -stable, by Proposi-
tion 3, P̂f (z) is as well, and so is P̂G0(z). Suppose from Gi to Gi+1, evi is connected with euj . Then the
transformation from P̂Gi to P̂Gi+1 is exactly the Asano contraction as in Proposition 4 applied to zvi and
zuj . LetK be the complement ofHε . At the end of this procedure we obtainG and the polynomial P̂G(z)
does not vanish on the complement of −K ·K . It implies that the same is true for the univariate PG(z).
By Lemma 5, the complement of −K · K contains a δ -strip of [0, 1], and this δ depends only on ε . □

We note that it is necessary to have some slack ε in Lemma 6. One example is counting even
subgraphs, namely the constraint f is [1, 0, 1, 0, . . . ]. Although all zeros of Pf lie on the imaginary
axis, the zeros of PG can in fact be dense on the unit circle. To see this, let G be a cycle of length n.
Then PG(z) = 1 + zn as there are only two even subgraphs. The zeros thereof are dense on the unit
circle as n varies.

A related result obtained by Regts [Reg17] asserts that if Pf (z) is sufficiently close to (x +1)d , then
the global polynomial PG(z) has no zero in certain disks around the origin. We refer the readers to
[Reg17] for detailed statements. Such a zero-free region also implies the exsitence of approximation
algorithms, and cannot be directly compared with Lemma 6.

Lemma 6 can be easily generalised to a set of functions, if there is an ε > 0 such that all of the local
polynomials are Hε -stable. A univariate polynomial is called Hurwitz stable if all of its zeros are in the
open left half-plane. For a fixed f , clearly if Pf (z) is Hurwitz stable, then there is some ε > 0 such that
Pf (z) isHε -stable. However, Hurwitz stability is not enough to derive the same conclusion of Lemma 6
for an infinite set of functions.

3. Barvinok’s algorithm

Our interest in Ruelle’s method, Lemma 6 is due to the algorithmic approach developed by Barvinok
[Bar16, Section 2]. It roughly states that if a polynomial P(z) =

∑n
i=1 ciz

i of degree n is zero-free in a
strip containing [0, 1], then P(1) can be (1 ± ε)-approximated using c0, . . . , ck for some k = O

(
log n

ε

)
.

The basic idea is to truncate the Taylor expansion of log P(z) at z = 0. Let д(z) := log P(z) and for
k ≥ 0,

Tk (д)(z) :=
k∑

i=0

д(i)(0)

i!
zi ,

where д(i) is the i-th derivative of д. In other words, Tk (д)(z) is the first k + 1 terms of the Taylor
expansion of д(z) at the origin. Then [Bar16, Lemma 2.2.1] states the following.

Proposition 7. Let P(z) =
∑n

i=0 ciz
i be a polynomial such that for some β > 1, P(z) is zero-free in the

disk of radius β centered at the origin. Then there exists a constant Cβ such that for any 0 < ε < 1,����exp(Tk (д)(1))P(1)
− 1

���� ≤ ε,

where k = Cβ log n
ε .

This result states that we can approximately evaluate P(1) using the first O
(
log n

ε

)
terms of the

Taylor expansion of log P(x) at the origin, when the polynomial is zero-free in the disk of radius β > 1.
If our polynomial PG(x) is zero-free in the δ -strip of [0, 1], then we can apply a transformation, [Bar16,
Lemma 2.2.3], to transform it into a polynomial that is zero-free in the disk of radius > 1.

The following lemma describe the construction.

Lemma 8. Let 0 < δ < 1 be a constant and β = 1 +
exp (− 1

δ )
2−2 exp (− 1

δ )
> 1. There exists a polynomial φδ (z)

of degree exp
(
O

(
1
δ

) )
such that

(1) φδ (0) = 0 and φδ (1) = 1;
(2) for every z ∈ C with |z | ≤ β , the value φδ (z) is within the 2δ -strip of [0, 1].
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Proof. The idea to construct the polynomial φδ is to start with the function log(z) (the principal loga-
rithm) by noting that the logarithm function maps a circle centered at zero to an interval orthogonal
to the real axis. We can then scale and shift the function to restrict the interval to some desired region.
Finally, we construct the polynomial φδ to approximate it.

To this end, we let h(z) := δ log 1
1−αz where α is a parameter to be set. The condition h(0) = 0 is

automatically satisfied. To satisfyh(1) = 1, we set α = 1−exp
(
− 1
δ

)
. Then β = 1+

exp (− 1
δ )

2−2 exp (− 1
δ )

= 1+α
2α .

It is easy to verify that for every z ∈ C with |z | ≤ β , it holds that

−δ log 2 ≤ ℜh(z) ≤ 1 + δ log 2,

and ��ℑh(z)�� ≤ π

2
· δ .

We use a polynomial, namely the Taylor expansion of h(z) at the origin to approximate h(z). For every
k ≥ 0, the first k terms of the Taylor expansion of h at the origin is

Tk (h)(z) = δ
k∑

i=1

α i

i
· zi .

Then form =
log (10(1+α ))−log (1−α )

log 2−log (1+α ) = exp
(
O

(
1
δ

) )
, we have

��h(z) −Tk (z)
�� = �����δ ∞∑

i=m+1

α i

i
· zi

����� ≤ 2δ

(1 − α)(m + 1)

(
1 + α

2

)m+1

≤ δ

10
.

In particular, we have ��Tm(h)(1) − 1
�� = ��Tm(h)(1) − h(1)

�� ≤ δ

10
.

Finally, we define

φδ (z) =
Tm(h)(z)

Tm(h)(1)

to force φδ (1) = 1. This finishes the construction. □

Therefore, for a polynomial P(z) that is zero-free in the δ -strip of [0, 1], we can use Proposition 7 to
approximately evaluate Pφ(z) := P(φ δ

2
(z)), which is zero-free in the disk of radius β at the origin for

the value β defined in Lemma 8. Note that P(φ δ
2
(1)) = P(1).

Proposition 9. Let P(z) be a polynomial of degree n such that for some δ > 0, P(z) is zero-free in the
δ -strip of [0, 1]. Then there exists a constant Cδ such that for any 0 < ε < 1,�����exp (

Tk
(
log Pφ

)
(1)

)
P(1)

− 1

����� ≤ ε,

where k = Cδ log n
ε .

At last, we show the Taylor expansion Tk
(
log Pφ

)
(1) can be computed efficiently from the coeffi-

cients of P .

Proposition 10. Let P(z) be a polynomial of degree n such that for some constant δ > 0, P(z) is zero-free
in the δ -strip of [0, 1]. For every 0 ≤ k ≤ n, assume that that we have oracle access to the first k coefficients
of P(z), we can compute

Tk
(
log Pφ

)
(1)

in time O(k2).
6



Since the degree of φ δ
2
(z) is exp

(
O

(
1
δ

) )
, we can write Pφ(z) =

∑m
i=1 ciz

i where m = n + Cδ for
some constant Cδ depending only on δ . It is easy to compute the coefficients ck given the coefficients
of P(z) of degree at most k inO(k) time. Let дφ := log Pφ , we now show how to computeTk (дφ) using
(ci)i≤k .

Let z1, . . . , zm be the zeros of a polynomial Pφ(z) and for 0 ≤ k ≤ m, let pk :=
∑m

i=1 z
−k
i be the k-th

inverse power sum of the zeros of Pφ(z).
Newton’s identities state the relation between (pk )k and the coefficients (ci)i .

Proposition 11 (Newton’s Identity). For every 1 ≤ k ≤ m, it holds that

k · ck = −
k−1∑
i=0

ci · pk−i

Newton’s identities essentially provide a way to compute all pk consecutively using (ci)i , and vice
versa. To be specific,

p0 =m;

pk = −c−10 ·
(
k−1∑
i=1

pi · ck−i + k · ck

)
for 1 ≤ k ≤ m.

Therefore, it costs O(k2) time to compute pk using above recurrence.
On the other hand, we can write Pφ(z) = cm

∏m
i=1(z − zi). Recall that дφ(z) = log Pφ(z) =

log cm +
∑m

i=1 log (z − zi).
It is easy to calculate that for any i ≥ 1,

д
(i)
φ (0) = −(i − 1)!

m∑
j=1

z−ij = −(i − 1)!pi .

Therefore,

Tk (дφ)(z) := log c0 −
k∑

i=1

pi
i
zi .(5)

This proves Proposition 10.

3.1. Computing the inverse power sums. Given Proposition 7 and (5), the main task then reduces
to compute the first k inverse power sums (pi)i≤k . We follow the method of Patel and Regts [PR17a].

We need some notations first. Let G be a family of all graphs, and Gk be all graphs with at most k
vertices. We call a function д : G → C a graph invariant if д(G) = д(H) whenever G ≃ H . A graph
polynomial is a graph invariant Q : G → C[z], where C[z] is the polynomial ring over C. We call a
graph invariant д(·) additive if for any two graphs G and H , it holds that д(G ⊔ H) = д(G) + д(H),
where G ⊔ H is the graph consisting of disjoint copies of G and H . Similarly, we call it multiplicative
if for every two graphs G and H , it holds that д(G ⊔ H) = д(G) · д(H). For graphs H and G, we use
#Ind(H ,G) to denote the number of induced subgraphs of G isomorphic to H . Then #Ind(H , ·) is a
graph invariant for a fixed graph H . By convention let #Ind(∅,G) = 1 for any G.

Definition 12. LetQ(G)(z) =
∑d(G)

i=1 ai(G)z
i be a multiplicative graph polynomial of degree d(G) such

that Q(G)(0) = 1 for any G. We call Q(·) a bounded induced graph counting polynomial (BIGCP) if
there are constants α, β ∈ N such that the following holds:

• for every graph G, there exist λH ,i ∈ C such that

ai(G) =
∑

H ∈Gα i
λH ,i · #Ind(H ,G);(6)

• for everyH ∈ Gα i , λH ,i can be computed in time exp
(
β ·

��V (H)
��) , whereV (H) is the set of vertices

of H .
7



Patel and Regts [PR17a, Theorem 3.2] has shown that the inverse power sums can be computed for
BIGCP in single exponential time.

Proposition 13. Let∆ ∈ N,G be a graph with maximum degree∆ and Q(G)(·) be a BIGCP. There is a
deterministic exp (C∆k)-time algorithm, which computes the inverse power sums (pi)i≤k of Q(G)(·), for
some constant C > 0.

To our need, we just need to verify that PG(·) from (4) is a BIGCP, whenever f0 = 1.

Lemma 14. Let G = (V , E) be a ∆-regular graph and f = [f0, f1, . . . , f∆] be a signature. If f0 = 1,
then the Holant polynomial PG(·) is a BIGCP with α = 2 and β = C∆ for some constant C > 0.

Proof. Clearly PG(0) = Z0(G) = f |V |
0 = 1. We would like to define λH ,i so that for every 1 ≤ i ≤ n,

Zi(G) =
∑

H ∈G2i

λH ,i · #Ind(H ,G).(7)

For any σ ∈ {0, 1}E , let G[σ ] be the subgraph induced by the set of vertices with at least 1 adjacent
edges under σ . Let Si be the set of subgraphs induced by assignments of Hamming weight i , namely
Si :=

{
G[σ ] : σ ∈ {0, 1}E and |σ | = i

}
. The equivalence relation of graph isomorphisms induces a

partition of Si . We choose one graph from each equivalence class and denote this family of graphs by
Hi . Therefore, for every two distinct graphs H1,H2 ∈ Hi , they are not isomorphic. Moreover, as G[σ ]
has at most 2i vertices,Hi ⊆ G2i .

For everyH ∈ Hi , consider an assignment π of signatures, wherev ∈ V of degree d ≤ ∆ is assigned
[f0, f1, . . . , fd ], a truncated f . Let

λH ,i := Zi(H ;π).

To verify (7), we rewrite

Zi(G) =
∑

σ ∈{0,1}E and |σ |=i

∏
v ∈V

f (σ |E(v))

=
∑

H ∈G2i

∑
σ ∈{0,1}E

|σ |=i and G [σ ]≃H

∏
v ∈V

f (σ |E(v))

=
∑

H ∈G2i

∑
G′ is an induced subgraph of G

G′≃H

∑
σ ∈{0,1}E

|σ |=i and G [σ ]=G′

∏
v ∈V

f (σ |E(v))

=
∑

H ∈G2i

∑
G′ is an induced subgraph of G

G′≃H

Zi(G
′;π) · f |V \V (H )|

0

=
∑

H ∈G2i

Zi(H ;π) · #Ind(H ,G),

since Zi(G ′;π) = Zi(H ;π) wheneverG ′ ≃ H . Thus (7) holds.
Since Hi ⊆ G2i , we have that α = 2. Moreover, H contains at most ∆

��V (H)
�� edges. As a con-

sequence, Zi(H ;π) can be computed in time 2O(∆ |H |). Thus, we can take β = C∆ for some con-
stant C > 0. □

Gathering what we have seen so far, we have the following theorem.

Theorem 15. Let f be a symmetric signature of arity ∆. If the local polynomial Pf (x) is Hε -stable for
some ε > 0, then there is an FPTAS for Holant(f ).

Proof. Since Pf (x) is Hε -stable, f0 , 0. We may thus normalize f so that f0 = 1. By Lemma 6, Pf (x)
being Hε -stable implies that for any ∆-regular G = (V , E), PG(x) is zero-free in a δ -strip containing
[0, 1]. Recall that Z(G; f ) = PG(1). By Proposition 11, we can (1 ± ε)-approximate PG(1) using
exp(Tk (log PG)(x)) for some k = O

(
log m

ε

)
, where m = |E |. In order to compute Tk (log PG)(x), we
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use Proposition 13 and Lemma 14 to compute the inverse power sums (pi) of PG(x), and then apply
Proposition 11 to get the firstk coefficients of PG(x). The theorem then follows fromProposition 10. □
Remark. Theorem 15 is a sufficient but not necessary condition for a Holant problem to be approximable.
To see this, once again, consider the problem of counting even subgraphs.

4. Holographic transformations

Theorem 15 implies an FPTAS for Holant(f ) if f is Hε -stable. However, an FPTAS may still exist
even if f is not Hε -stable. One way to extend the reach of this approach is via Valiant’s holographic
transformation [Val08], which changes f but preserves the partition function. We remark that even
with holographic transformations, this approach is not exhaustive. An example is the problem of
counting even subgraphs.

We use Holant (f | д) to denote the Holant problem where the input is a bipartite graph H =
(U ,V , E). Each vertex in U or V is assigned the signature f or д, respectively. Call this assignment π ,
namely π(u) = f for any u ∈ U and π(v) = д for any v ∈ V . Recall (1), and Z(H ;π) is the output of
the computational problem Holant (f | д). The signature f is considered as a row vector (or covariant
tensor), whereas the signature д is considered as a column vector (or contravariant tensor).

LetT be an invertible 2-by-2matrix. Let d1 = arity(f ) and d2 = arity(д). Define f ′ = f ·T ⊗d1 and
д′ =

(
T −1) ⊗d2д. Let π ′ be the assignment such that π ′(u) = f ′ for any u ∈ U and π ′(v) = д′ for any

v ∈ V .
Proposition 16 (Valiant’s Holant Theorem [Val08]). If T ∈ C2×2 is an invertible matrix, then for any
bipartite graph H , Z(H ;π) = Z(H ;π ′), where π ′ is defined above.

Therefore, an invertible holographic transformation does not change the complexity of the Holant
problem in the bipartite setting. For a (non-bipartite) Holant problem, we can always view the edge as
a binary equality function =2. Thus, Holant(f ) is the same as Holant (f |=2). Let O2(C) be the set of
2-by-2 orthogonal matrices, namely O2(C) =

{
T ∈ C2×2 | TT T = I2

}
. As orthogonal transformations

preserve the binary equality, the following result will become handy in the standard setting.
Proposition 17 ([CLX11]). If T ∈ O2(C) is an orthogonal matrix then for any d-regular graphG and a
signature f of arity d , Z(G; f ) = Z(G; f ·T ⊗d ).

As a particular consequence of Proposition 17, under the transformation [ 0 1
1 0 ], the complexity of

Holant(f ) is equivalent toHolant(f )where f = [fd , fd−1, . . . , f0]. Wewill use this fact in the following
without explicitly mentioning it.

5. Second-order recurrences

The aim of this section is to study the locations of zeros of local polynomials of signatures satisfying
generalised second-order recurrences in order to applyTheorem 15. Specifically, we identify the family
of signatures whose local polynomials are Hε -stable for some ε > 0, under some suitable holographic
transformations.

For a tuple of reals (a,b, c) , (0, 0, 0), define
Fa,b ,c :=

{
[f0, f1, . . . , fd ] : afk + b fk+1 + c fk+2 = 0,∀0 ≤ k ≤ d − 2, and fk ≥ 0,∀0 ≤ k ≤ d

}
.

The family Fa,b ,c consists of signatures with non-negative entries satisfying second-order linear recur-
rence relation parameterized by (a,b, c). Whenever Fa,b ,c appears, we always assume that (a,b, c) ,
(0, 0, 0).

The following proposition states the general form of a function satisfying a generalised second-order
recurrence.
Proposition 18. Let f = [f0, . . . , fd ] ∈ Fa,b ,c be a signature and c , 0. There are two cases:

• if b2 , 4ac , then
fk = xφk1 + yφk2 ,

where φ1,φ2 are the two roots of the polynomial cz2 + bz + a = 0 and x,y are two constants
determined by f0 and f1;
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• if b2 = 4ac , then
fk = xφk + ykφk−1,

whereφ is the unique root of the polynomial cz2+bz+a = 0 and x,y are two constants determined
by f0 and f1. In case of φ = 0, we follow the convention that 0 · 0−1 = 0.

In this section, we assume that all signatures (or their reversals) in consideration have nonzero
leading term, i.e., f0 , 0 or fd , 0. We will discuss the case of f0 = fd = 0 in Section 6.

We will use F ∗
a,b ,c to denote the subset family of Fa,b ,c with this additional property f0 > 0. It turns

out that the behaviour of signatures in F ∗
a,b ,c is closely related to the sign of the value b2−4ac , namely

the discriminant of the characteristic polynomial cz2+bz+a. Therefore, our discussion is divided into
three parts.

5.1. b2 − 4ac > 0. In this case, the characteristic polynomial of signatures in F ∗
a,b ,c has two distinct

real roots. We first single out a special case.

Lemma 19. Let f be a symmetric signature of arity d ≥ 3, where d is an odd integer, fi ≥ 0 for all
i = 0, 1, . . . ,d , and f is not identically zero. If there exist p,q, s, t ∈ R such that p2 + q2 = s2 + t2,
ps + qt < 0, and f = (p,q)⊗d + (s, t)⊗d , then up to a non-zero scaler, f or f is [1, 0, λ2, 0, . . . , λd−1, 0]
for some λ > 1, where f = [fd , fd−1, . . . , f0]

Proof. Since f = (p,q)⊗d + (s, t)⊗d , we have fi = qipd−i + t isd−i . We discuss the sign of qt .
First assume qt ≥ 0. The fact f1 ≥ 0 yields

qpd−1 + tsd−1 ≥ 0.

Since d is odd, then q and t must be both non-negative. Let t =
√
p2 + q2 − s2 ≥ 0. It follows from

ps + qt < 0 that ps < 0. We can assume without loss of generality that p > 0, s < 0 and |p | ≥ |s | (a
consequence of f0 ≥ 0). To ease the presentation, let s ′ = −s > 0. Then

ps + qt < 0 ⇐⇒ qt < ps ′ ⇐⇒ q2(p2 + q2 − s ′2) < p2s ′2 ⇐⇒ |q | < |s ′ | .
We then consider the requirement fd−1 ≥ 0. This is equivalent to

qd−1p + td−1s ≥ 0 ⇐⇒ qd−1p ≥ td−1s ′

⇐⇒ q2p
2

d−1 ≥ (p2 + q2 − s ′2)s ′
2

d−1

⇐⇒ q2(p
2

d−1 − s ′
2

d−1 ) ≥ (p2 − s ′2)s ′
2

d−1 .

We apply |q | < |s ′ | and obtain

(p2 − s ′2)s ′
2

d−1 ≤ s ′2(p
2

d−1 − s ′
2

d−1 ) ⇐⇒ p2

s ′2
− 1 ≤ p

2
d−1

s ′
2

d−1
− 1

⇐⇒ |s | ≥ |p | .
Therefore, it must hold that p = −s , q = t and we have f = (p,q)⊗d+(−p,q)⊗d . Moreover, ps+qt < 0
implies that p > q. If q = t = 0, then f is identically zero, a contradiction. Otherwise q > 0, and we
can choose λ =

p
q > 1 and f is [1, 0, λ, 0, λ2, 0, . . . ] up to a non-zero scalar.

Now we assume qt < 0, and without loss of generality further assume that q > 0 and t < 0. Let
t = −

√
p2 + q2 − s2. We distinguish between ps ≥ 0 and ps < 0.

(i) If ps ≥ 0, then
ps < −qt =⇒ p2s2 < q2(p2 + q2 − s2)

=⇒ |s | < |q | .(8)

Again, f1 ≥ 0 implies that qpd−1 + tsd−1 ≥ 0. This is equivalent to

qpd−1 ≥
√
p2 + q2 − s2 · sd−1 ⇐⇒ q2p2d−2 ≥ (p2 + q2 − s2) · s2d−2

⇐⇒ q2(p2d−2 − s2d−2) ≥ s2d−2(p2 − s2).
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Since fd ≥ 0, we have |q | ≥ |t |. Together with p2 + q2 = s2 + t2, it implies that p2 ≤ s2. Thus
we have either |p | = |s | or

q2 ≤ s2d−2(s2 − p2)

s2d−2 − p2d−2
.

If |p | = |s |, then p = s ≥ 0 and t = −q. In this case, f = (p,q)⊗d + (p,−q)⊗d . If p = 0, then
f is identically zero, a contradiction. Thus p > 0, and we can choose λ =

q
p , and λ > 1 because

0 > ps + qt = p2 − q2.
Otherwise, since

s2d−2 − p2d−2 = (s2 − p2)

(
d−2∑
i=0

s2ip2(d−2−i)
)
≥ s2d−4(s2 − p2),

we have q2 ≤ s2. This contradicts to (8).
(ii) If ps < 0, we first assume that p < 0 and s > 0. In this case, we let p ′ = −p and t ′ = −t . Then

f0, f1, f2 ≥ 0 implies
sd ≥ p ′d ; t ′sd−1 ≤ qp ′d−1; t ′2sd−2 ≥ q2p ′d−2,

where p ′,q, t ′, s above are all positive. The first two imply that t ′p ′ ≤ qs , and the last two
imply that t ′p ′ ≥ qs . Thus t ′p ′ = qs . This is further equivalent to s2q2 = p2(p2 + q2 − s2), or
(p2+q2)(p2−s2) = 0. It implies that either p = q = 0 or p = −s . In both cases, f is identically
zero, a contradiction.

Finally, consider the case when p > 0 and s < 0. Then f0 = pd +sd ≥ 0 implies |p | ≥ |s |. On
the other hand, fd = qd + td ≥ 0 is equivalent to |q | ≥ |t |. However p2 + q2 = s2 + t2. Thus
we have p = −s and q = −t . This means that f is identically zero, also a contradiction. □

Let =d be the equality function of arity d , namely the function [1, 0, . . . , 0, 1]. We call the problem
Holant (=d | [β, 1, β ]) a ferromagnetic Ising model without external fields, if β > 1. An FPRAS for this
problem has been given by Jerrum and Sinclair [JS93]. Then we have the following lemma.

Lemma 20. Let f = [f0, f1, . . . , fd ] ∈ F ∗
a,b ,c with b

2 − 4ac > 0. Then one of the following holds:

• Holant (f ) can be solved exactly in polynomial-time; or
• there is an invertible matrixM ∈ C2×2 such that Holant

(
f M ⊗d |

(
M−1) ⊗2 · (=2)

)
is a ferromag-

netic Ising model without external fields; or
• there is an orthogonal matrixM ∈ O2(C) such that either Pf ·M⊗d (z) or Pf ·M⊗d (z) is Hε -stable for

some ε > 0, where f = [fd , fd−1, . . . , f0]; or
• f or f is [1, 0, λ2, 0, λ4, 0, . . . , λd−1, 0] for some λ > 1 and has an odd arity d .

Proof. If c = 0, then afk + b fk+1 = 0 for all k ≤ d − 2. Thus, f0, . . . , fd−1 form a geometric sequence
with some ratio φ ∈ R, and f can be written as f = x(1,φ)⊗d +y(0, 1)⊗d , where x,y,φ ∈ R. Pulling x
and y into the tensor power, there exist p,q, s, t ∈ R and r = 1 or −1 such that f is a non-zero multiple
of (p,q)⊗d + r(s, t)⊗d .

Otherwise c , 0. It follows from Proposition 18 that we can rewrite f = x(1,φ1)
⊗d + y(1,φ2)

⊗d ,
where φ1,φ2 ∈ R and φ1 , φ2. Since f has non-negative weights, it implies that x,y ∈ R as well. Thus,
similar to the case above, there exist p,q, s, t ∈ R and r = 1 or −1 such that f is a non-zero multiple of
(p,q)⊗d + r(s, t)⊗d .

The four possibilities of the lemma come from the values these reals might take. If pt = qs , then f
is degenerate and the partition function can be computed in polynomial time (see e.g. [CC17, Chapter
2]). Thus we assume pt − qs , 0 in the following.

First we consider the case that p2+q2 = s2+ t2. We claim that we can always write f = (p,q)⊗d +
(s, t)⊗d without loss of generality. To see this, we distinguish between the parity of d . If d is odd, then
(p,q)⊗d − (s, t)⊗d = (p,q)⊗d + (−s,−t)⊗d . If d is even, we know from f = (p,q)⊗d − (s, t)⊗d that
f0 = pd − sd and fd = qd − td . Therefore, f0 > 0 and fd ≥ 0 imply p2 > s2 and q2 ≥ t2, which
contradicts p2 + q2 = s2 + t2.
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We write Holant (f ) as Holant (f |=2). Let M ′ = [ p q
s t ] be an invertible matrix and M = M ′−1.

It follows from Proposition 16 that Holant (f |=2) is equivalent to Holant
(
f M ⊗d |

(
M−1) ⊗2 · (=2)

)
.

We verify that this particular Holant problem is either solvable in polynomial-time or equivalent to a
ferromagnetic Ising model without external fields. We have

f M ⊗d =
(
(1, 0)⊗d + (0, 1)⊗d

)
M ′⊗dM ⊗ = (1, 0)⊗d + (0, 1)⊗d ,

and (
M−1

) ⊗2
· (=2) = M ′⊗2 · (=2) =

(
p2 + q2,ps + qt,ps + qt, s2 + t2

)T
.

If ps + qt = 0, clearly it is solvable in polynomial-time since the edges in every component of the
instance must be assigned with the same value in order to contribute a non-zero weight to the partition
function. If ps + qt > 0, we have that

(
p2 + q2

) (
s2 + t2

)
− (ps + qt)2 = (pt − qs)2 > 0, and it is

a ferromagnetic Ising model without external fields. If ps + qt < 0 and d is even, then a further
transformation [ 1 0

0 −1 ] makes the middle term positive, and it is a ferromagnetic Ising model again.
Otherwise, Lemma 19 applies, and we are in the last case of the lemma.

The remaining case is that pt , qs and p2 + q2 , s2 + t2. If |q | = |t |, then |p | , |s | and we replace
(p,q, s, t) by (q,p, t, s). This is equivalent to work with f . So from now on we also assume that |q | , |t |.
Let M ′ = [w 1

1 −w ] where w ∈ R is a parameter to be set later. Then f · M ′⊗d is (q + pw,p − qw)⊗d +

a(t + sw, s − tw)⊗d and

Pf ·M ′⊗d (z) = (q + pw + (p − qw)z)d + a(t + sw + (s − tw)z)d .

The zeros of this polynomial must satisfy

|q + pw + (p − qw)z | = |t + sw + (s − tw)z | .(9)

We show that by choosing appropriatew the roots to this equation are in the open left half-plane.
If p = q = 0 and s − tw , 0, the roots to the equation (9) must be − t+sw

s−tw . Since p2 + q2 , s2 + t2,
it holds that (s, t) , (0, 0). There are four cases.

• If t = 0, letw = 1. It holds that s − tw = s , 0 and − t+sw
s−tw = −w < 0.

• If s = 0, letw = −1. It holds that s − tw = t , 0 and − t+sw
s−tw = 1

w < 0.
• If st < 0, letw = 2s

t < 0. It holds that s − tw = −s , 0 and − t+sw
s−tw = t

s +w < 0.
• If st > 0, letw = 0. It holds that s − tw = s , 0 and − t+sw

s−tw = − t
s < 0.

The case of s = t = 0 is completely analogous.
Now we can make the further assumption that (p,q) , (0, 0) and (s, t) , (0, 0). Let α = −p−qw

s−tw ∈ R
be another parameter, which eventually will be set to 1 or −1. Asw =

αs+p
α t+q and |q | , |t |, the value of

the parameterw will be determined when the sign of α is chosen. Since p − qw =
α (pt−qs)
α t+q , 0, we let

z1 = −q+pw
p−qw which is well-defined. Similarly it holds that s − tw =

qs−pt
α t+q , 0, and we let z2 = − t+sw

s−tw .
The equation (9) is equivalent to

|α | · |z − z1 | = |z − z2 | .(10)

Since |α | = 1, in order to make the roots to the equation (10) in the open left half-plane, it suffices to
make sure that

z1 + z2 =

(
p2 + q2

)
−

(
s2 + t2

)
α(qs − pt)

< 0.(11)

Since p2 + q2 , s2 + t2, we can let α = −1 if (p
2+q2)−(s2+t2)

qs−pt > 0, or let α = 1 otherwise.
We have showed that there is a matrix M ′ ∈ C2×2 such that the zeros of Pf ·M ′⊗d (z) are in the open

left half-plane. Since a polynomial has only a finite number of zeros, there is a constant ε > 0 that
Pf ·M ′⊗d (z) isHε -stable. It holds thatM ′(M ′)T =

[
1+w2 0

0 1+w2

]
=

(
1 +w2

)
I2where 1+w2 > 0 asw ∈ R.
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Let M = 1√
1+w2

M ′. Clearly MMT = I2 and M ∈ O2(C). Since Pf ·M ′⊗d (z) =
(
1 +w2

)d/2
Pf ·M⊗d (z),

Pf ·M⊗d (z) has the same set of zeros as Pf ·M ′⊗d (z). So Pf ·M⊗d is also Hε -stable for some ε > 0. □

5.2. b2 − 4ac = 0. When the characteristic polynomial of f has only one real root of multiplicity two,
we show that there always exists an orthogonal transformation to reduce f to a function whose local
polynomial is Hε -stable.

Lemma 21. Let f = [f0, f1, . . . , fd ] ∈ F ∗
a,b ,c with b2 − 4ac = 0, then there is an orthogonal matrix

M ∈ O2(C) such that Pf M⊗d (z) is Hε -stable for some ε > 0.

Proof. If c = 0, then b = 0 since b2 − 4ac = 0. This cannot happen because if so f0 would be zero. If
b = 0, then a = 0 since c , 0 and b2 − 4ac = 0. In this case, f is of form [f0, f1, 0, . . . , 0] and we can
simply pickM = I2. Clearly Pf M⊗d (z) = f0+d f1z, which is Hε -stable for some ε > 0 since f0 > 0 and
f1 ≥ 0.

So now we assume that b , 0. Since c , 0 and b2 − 4ac = 0, the equation cz2 +bz + a = 0 has one
real root with multiplicity two and we denote it by φ. Note that φ = − b

2c , 0 since b , 0. It follows
from Proposition 18 that fk = xφk + y ′kφk−1 for 0 ≤ k ≤ d and some x,y ′ ∈ R. Since φ , 0, to ease
the presentation, we let y =

y′

φ and rewrite fk = xφk + ykφk . Clearly x = f0 > 0. We can write f as

f = x(1,φ)⊗d + y
d∑

k=1

(1,φ)⊗(k−1) ⊗ (0,φ) ⊗ (1,φ)⊗(d−k).

LetM ′ = [ 1 w
−w 1 ] wherew ∈ R is a parameter to be set later. Then

f ·M ′⊗d = x(1 − φw,φ +w)⊗d + y
d∑

k=1

(1 − φw,φ +w)⊗(k−1) ⊗ (−φw,φ) ⊗ (1 − φw,φ +w)⊗(d−k),

and
Pf ·M ′⊗d (z) = x(1 − φw + (φ +w)z)d + yd(1 − φw + (φ +w)z)d−1(−φw + φz).

The zeros of this polynomial must satisfy

(1 − φw + (φ +w)z)d−1(x − (x + yd)φw + (xw + (x + yd)φ)z) = 0.(12)

If φ +w , 0 and xw + (x + yd)φ , 0, then the roots of this equation must be of the form −1−φw
φ+w or

− x−(x+yd)φw
xw+(x+yd)φ . We choose appropriate w and check that these two roots are negative, φ +w , 0 and

xw + (x + yd)φ , 0. Recall that φ , 0 and x = f0 > 0. We discuss various cases depending on the
sign of φ and x + yd .

• If x +yd = 0, then the roots of the equation (12) are −1−φw
φ+w and − 1

w . If φ < 0, letw = −2φ > 0

and −1−φw
φ+w =

1+2φ2

φ < 0. If φ > 0, let w = 1
2φ > 0 and −1−φw

φ+w = − 1
2φ+ 1

φ
< 0. Clearly

φ +w , 0 and xw + (x + yd)φ , 0 in both cases.
• If φ > 0 and x + yd > 0, then letw = min

{
1
2φ ,

x
2(x+yd)φ

}
> 0. It holds that

−1 − φw

φ +w
≤ − 1

2(φ +w)
< 0,

− x − (x + yd)φw

xw + (x + yd)φ
≤ − x

2(xw + (x + yd)φ)
< 0.

Whateverw = 1
2φ orw = x

2(x+yd)φ , it is clear that φ +w , 0 and xw + (x + yd)φ , 0.
• If φ > 0 and x + yd < 0, then fd = φd (x + yd) < 0. This contradicts to fd ≥ 0.
• If φ < 0 and x+yd > 0, then consider fd = φd (x + yd). If d is odd, then fd < 0. Contradiction.
Thus d must be even. Then φd−1 < 0. Since fd−1 = φd−1(x + y(d − 1)) ≥ 0, it holds that
x + y(d − 1) ≤ 0. As x > 0, y must be negative, and then it contradicts to x + yd > 0.
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• If φ < 0 and x +yd < 0, then consider fd = φd (x + yd). If d is even, then fd < 0. But fd must
be non-negative, so d must be odd. Then φd−1 > 0. Since fd−1 = φd−1(x + y(d − 1)) ≥ 0, it
holds that x + y(d − 1) ≥ 0. Since d > 1, we can similarly deduce that x + y(d − 2) ≤ 0. This
contradicts that x > 0 and x + y(d − 1) ≥ 0.

We have showed that there is a matrix M ′ ∈ C2×2 such that the zeros of Pf ·M ′⊗d (z) are in the open
left half-plane. Since a polynomial has only a finite number of zeros, there is a constant ε > 0 that
Pf ·M ′⊗d (z) isHε -stable. It holds thatM ′M ′T =

[
1+w2 0

0 1+w2

]
=

(
1 +w2

)
I2 where 1+w2 > 0 asw ∈ R.

Let M = 1√
1+w2

M ′, and clearly M ∈ O2(C). Since Pf ·M ′⊗d (z) =
(
1 +w2

)d/2
Pf ·M⊗d (z), Pf ·M⊗d (z) has

the same set of zeros as Pf ·M ′⊗d (z). So Pf ·M⊗d is also Hε -stable for some ε > 0. □

5.3. b2 − 4ac < 0. When the characteristic polynomial of f has two distinct complex roots, we show
that the local polynomial of f itself is Hε -stable.

Lemma 22. Let f = [f0, f1, . . . , fd ] ∈ F ∗
a,b ,c with b

2 − 4ac < 0, then Pf (z) is Hε -stable for some ε > 0.

Proof. It holds that c , 0 since otherwise b2 − 4ac ≥ 0. Since c , 0 and b2 − 4ac < 0, it follows from
Proposition 18 that fk = xφk + yφ

k
for 0 ≤ k ≤ d , where φ,φ are the two conjugate roots of the

polynomial cz2+bz+a = 0 and x,y ∈ R are constants. Clearly x+y = f0 and xφ+yφ = f1. Since f0
is real, it holds that ℑ(y) = −ℑ(x). Since f1 is real and f1 = xφ + yφ = (x + y)ℜ(φ) + i(x − y)ℑ(φ),
it holds that ℜ(x) = ℜ(y). Thus y = x and fk = xφk + xφ

k
for 0 ≤ k ≤ d . We write f =

x(1,φ)⊗d + x
(
1,φ

) ⊗d
and

Pf (z) = x(1 + φz)d + x
(
1 + φz

)d
.

The zeros of Pf (z) must satisfy

|x | · |1 + φz |d = |x | ·
���1 + φz

���d .(13)

Note that φ , 0, and x , 0 since otherwise x = 0 and f would be [0, 0, . . . , 0]. So the equation (13) is
equivalent to ����z − (

−1

φ

)���� = �����z −
(
−1

φ

)����� .
Since − 1

φ and − 1

φ
are the complex conjugates of each other, the roots of this equation and thus the

zeros of Pf (z) must lie on the real axis. On the other hand, if z ≥ 0

Pf (z) =
d∑

k=0

(
n

k

)
fk · zk > 0,

since f0 > 0. Thus the zeros of Pf (z) are negative reals. Since a polynomial has only a finite number
of zeros, there is a constant ε > 0 such that Pf (x) is Hε -stable. □

6. Exceptional cases

Section 5 covered all signatures in Fa,b ,c unless f0 = fd = 0. We discuss the remaining cases in this
section. We will classify all of them, but the approximation complexity in one case is still open.

Let b ∈ R, and define Ab to be the following class{
[f0, f1, . . . , fd ] | ∀0 ≤ k ≤ d − 2,

b2

4 cos2 π
d
fk + b fk+1 + fk+2 = 0, f0 = 0 and f1 > 0

}
.
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Notice that Ab is a special case of Fa,b ,c except that the parameter a depends on the arity d . In fact, if
f ∈ Ab , then we can scale f so that f has the following form[

0, λ sin π

d
, λ2 sin 2π

d
, . . . , λd−1 sin

(d − 1)π

d
, 0

]
,

for λ = − b
2 cos π

d
> 0. (Recall that b < 0.) Namely, fi = λi sin iπ

d .

Lemma 23. Let f = [f0, f1, . . . , fd ] ∈ Fa,b ,c for some d ≥ 3. If f0 = fd = 0, then there are three
possibilities:

I. f ∈ Ab for some b < 0;
II. [f0, f1, . . . , fd ] is of form [0, ∗, 0, 0, . . . , 0] or its reversal [0, 0, . . . , 0, ∗, 0];
III. [f0, f1, . . . , fd ] is of form λ[0, 1, 0, µ, 0, µ2, . . . , 0, µ

d−2
2 , 0] for some λ, µ > 0 and even d .

Proof. We start by considering the case c = 0. Then afk + b fk+1 = 0 for every 0 ≤ k ≤ d − 2. It is
easy to verify that f is identically 0 as f0 = fd = 0, which belongs to type II. Thus, we may assume
that c , 0 and normalise c to 1 in the following. There are two further cases depending on whether
b2 − 4a = 0.

The first case is when b2 − 4a , 0. It follows from Proposition 18 that f0 = x + y = 0 and
fd = xφd1 + yφd2 = 0. These two identities together imply

x
(
φd1 − φd2

)
= 0,

which further implies either x = y = 0 (and therefore fk = 0 for all k) or φd1 = φd2 . We only need to
discuss the case when φd1 = φd2 and x , 0. There are two possibilities.

(1) If φ1

φ2
∈ R, then φ1 = −φ2 as b2 , 4a. It implies that d is even. This is type III.

(2) Otherwise, φ1

φ2
< R. In this case, b2 − 4a < 0 and φ1 and φ2 are conjugate of each other. By

swapping φ1 and φ2 if necessary, we may assume that 0 < argφ1 < π . Then there exists some
integer 0 < t < d , t , d/2, so that argφ1 = tπ

d and φ1

φ2
= e

2tπ
d i < R. Since a > b2/4 ≥ 0,

|φ1 | = |φ2 | =
√
a, and

fk = x
(
φk1 − φk2

)
= 2x · a k

2

(
sin tkπ

d

)
i .

Recall that we have the further requirement fk ≥ 0 for every 0 ≤ k ≤ d . For k = 1, as
0 < t < d , sin tπ

d > 0, and thus x must lie on the negative imaginary axis. Then, it must be that
sin tkπ

d ≥ 0 for all 0 ≤ k ≤ d . If t > 1, then taking k = ⌊ dt ⌋ + 1 ≤ d implies a contradiction.
Thus t = 1.

The assumption 0 < argφ1 < π implies that cos π
d = −b

2
√
a > 0. Thus, b < 0 and a = b2

4 cos2 π
d
.

This verifies that f is of type I.
At last we turn to the case that b2 − 4a = 0. It follows from Proposition 18 that fk = xφk +ykφk−1

where φ = −b/2. Then f0 = 0means that x = 0, and fd = 0means that yφd−1 = 0. Thus either y = 0
or φ = 0, and any of the two cases implies that f is of type II. □

Next we show that type II and type III signatures are equivalent to approximately counting perfect
matchings in general graphs. Denote by ExactOned the function [0, 1, 0, . . . , 0] of arity d , and by
EO the (infinite) set

{
ExactOned | d ∈ N+

}
. Then Holant(EO) is the problem of counting perfect

matchings in a graph, denoted #PM. (There is one function per each degree/arity. So the mapping
from vertices to functions is obvious for the infinite set EO .)

For type III signatures, since multiplying by a constant does not change the complexity, we may
assume that λ =

√
µ. Then f = [0, λ, 0, λ3, 0, . . . , λd−1, 0] with λ > 0. We will assume λ < 1. This is

because that if λ = 1, then the problem is tractable exactly, (see, for example, [CGW16]) and if λ > 1,
then taking its reversal makes λ < 1. We adopt the approximation-preserving reduction ≤AP from
[DGGJ04], and use ≤G to denote gadget reductions, which is a special form of ≤AP.
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Lemma 24. Let d ≥ 4 be an even integer, and 0 < λ < 1. If f = [0, λ, 0, λ3, 0, . . . , λd−1, 0] of arity d ,
then

Holant(ExactOne4) ≤AP Holant(f ).

Proof. Applying a holographic transformation by T =
[
1 0
0 λ

]
, we have that

Holant(f ) ≡ Holant
(
f ·

(
T −1

) ⊗d
| T ⊗2· =2

)
≡ Holant ([0, 1, 0, 1, 0, . . . , 1, 0] | [1, 0, µ]) ,

where 0 < µ = λ2 < 1. Thus Holant(f ) is to count the number of odd subgraphs with edge weight µ
in a d-regular graph. Notice that doing a self-loop simply reduces the degree of a vertex by 2, while
leaving the constraint on the vertex still requires “odd-degrees”. Thus, with enough self-loops, we may
simulate a binary disequality [0, 1, 0] as well as an arity-4 signature [0, 1, 0, 1, 0] on the left hand side
of the bipartite Holant formulation.

Figure 1. A gadget for type III signatures, where squares are [0, 1, 0], and circles are
[0, 1, 0, 1, 0]. All edges are [1, 0, µ].

Consider the gadget in Figure 1. Then, it is easy to verify that the effective binary function is (2µ2+
2µ3)[1, 0, 1] on the left hand side. Finally, with [1, 0, 1] on the left, we can form a path of length n, and
the resulting binary function is [1, 0, µn ] on the right. More formally, we have the following chain of
reductions:

Holant ([0, 1, 0, 1, 0, . . . , 1, 0] | [1, 0, µ]) ≥G Holant ([0, 1, 0], [0, 1, 0, 1, 0] | [1, 0, µ])
≥G Holant ([1, 0, 1], [0, 1, 0, 1, 0] | [1, 0, µ])
≥G Holant ([0, 1, 0, 1, 0] | [1, 0, µn ]) .

The last problem is counting odd subgraphs with µn edge weights in 4-regular graphs and µ < 1.
Now, one moment’s reflection realises that odd subgraphs with exponentially small edge weights is
approximately perfect matchings, which finishes the reduction. □

Similar ideas can also handle the last case in Lemma 20, after taking its reversal and renaming λ.

Lemma 25. Let d ≥ 3 be an odd integer, and 0 < λ < 1. If f = [0, λ, 0, λ3, 0, . . . , λd ] of arity d , then

Holant(ExactOne3) ≤AP Holant(f ).

Proof. As in the proof of Lemma 24, we do the same holographic transformation by T =
[
1 0
0 λ

]
:

Holant(f ) ≡ Holant ([0, 1, 0, 1, 0, . . . , 1] | [1, 0, µ]) ,

where 0 < µ = λ2 < 1. Once again, with sufficiently many self-loops, we get [0, 1, 0, 1] and [0, 1] on
the left hand side. Connecting [0, 1] back to [0, 1, 0, 1] through [1, 0, µ] yields µ[1, 0, 1] on the left. Thus,
similar to the proof of Lemma 24, we can simulate [1, 0, µn ] on the right. More formally, we have the
following chain of reductions:

Holant ([0, 1, 0, 1, 0, . . . , 1] | [1, 0, µ]) ≥G Holant ([0, 1], [0, 1, 0, 1] | [1, 0, µ])
≥G Holant ([1, 0, 1], [0, 1, 0, 1] | [1, 0, µ])
≥G Holant ([0, 1, 0, 1] | [1, 0, µn ])
≥AP Holant(ExactOne3). □

On the other hand, we have the following lemma.
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Lemma 26. Let d ≥ 3 be an integer and 0 < λ < 1. Let f = [0, λ, 0, λ3, 0, . . . ] be a symmetric signature
of arity d . Then

Holant(f ) ≤AP #PM.

Proof. First, by the same holographic transformations as in the proofs of Lemma 24 and Lemma 25,

Holant(f ) ≡ Holant ([0, 1, 0, 1, 0, . . . ] | [1, 0, µ]) ,
where µ = λ2 > 0.

Consider the gadget in Figure 2, where all vertices are the “exact one” function, namely [0, 1, 0, . . . , 0].
It is easy to see that this gadget is equivalent to a weighted equality [1, 0, n2

n1
]. Thus we can use it to

arbitrarily closely approximate [1, 0, µ] by tuning n1 and n2 for any µ > 0.

u u′ v′ v... ...

Figure 2. A gadget for weighted equalities.
There are n1 edges betweenu andu ′, and n2
edges between u ′ and v ′. Figure 3. A gadget to create [0, 1, 0, 1].

In addition, consider the gadget in Figure 3, where, once again, all vertices are [0, 1, 0, 0]. The result-
ing signature is [0, 1, 0, 1].

…

Figure 4. A gadget to create [1, 0, 1, 0, . . . , 1] or [0, 1, 0, 1, . . . , 0].

A simple calculation verifies that a sequence of d signatures [0, 1, 0, 1] connected together, as in
Figure 4, yields a signature [0, 1, 0, . . . , 1, 0] of arity d + 2 if d is odd, or a signature [1, 0, 1, 0, . . . , 1] of
arity d + 2 if d is even. In the even case, to get [0, 1, 0, 1, . . . , 0], we simply connect one of its dangling
edges with [0, 1, 0]. Formally, we have the following sequence of reductions:

Holant ([0, 1, 0, 1, 0, . . . ] | [1, 0, µ]) ≤G Holant({[0, 1, 0, 1, 0, . . . ], [1, 0, µ]})
≤AP #PM. □

Lemma 24, Lemma 25, and Lemma 26 together imply the following:

Holant(ExactOne4) ≤AP Holant(f ) ≤AP #PM, if d is even,(14)
Holant(ExactOne3) ≤AP Holant(f ) ≤AP #PM, if d is odd,(15)

where f = [0, λ, 0, λ3, 0, . . . ] for some 0 < λ < 1 has arity d ≥ 3. Note that Holant(ExactOne3) or
Holant(ExactOne4) is just an alias of counting perfect matchings in 3- or 4-regular graphs, which is
equivalent to #PM in approximation. This is a folklore fact, and is shown in the next couple of lemmas.

Lemma 27. Holant(ExactOne3) ≤AP Holant(ExactOne4).

Proof. Note that a self-loop on [0, 1, 0, 0, 0] gives [0, 1, 0], and connecting it back to [0, 1, 0, 0, 0] yields
[1, 0, 0]. Thus,

Holant([0, 1, 0, 0, 0], [1, 0, 0]) ≤G Holant([0, 1, 0, 0, 0]).

Given an instance G (namely a 3-regular graph) of Holant([0, 1, 0, 0]), consider a disjoint union of G
and its copyG ′. We add a new vertex u for each pair v and v ′, and connect u to both v and v ′. Now all
original vertices in G and G ′ have degrees exactly 4. Put [0, 1, 0, 0, 0] on all these vertices, and [1, 0, 0]
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on all new vertices. It is easy to see that the partition function of this new instance is the square of the
number of perfect matchings of G. Thus, we have the following reduction chain:

Holant([0, 1, 0, 0]) ≤AP Holant([0, 1, 0, 0, 0], [1, 0, 0])
≤G Holant([0, 1, 0, 0, 0]). □

However, approximate counting perfect matchings in 3-regular graphs is as hard as that in general
graphs.

Lemma 28. #PM ≤AP Holant(ExactOne3).

Proof. Consider the gadget in Figure 5.

Figure 5. A gadget to create ExactOned .

Notice that if we put [0, 1, 0, 0] on the two degree three vertices, and [0, 1, 0] on the middle vertex,
the resulting signature is [0, 1, 0, 0, 0]. More generally, if we replace one of the degree three vertex by
ExactOned , then the resulting signature is ExactOned+1. Namely, using this gadget, we can simulate
the whole set of EO , and

#PM ≤G Holant([0, 1, 0, 0], [0, 1, 0]).

Moreover, a self-loop on [0, 1, 0, 0] gives [0, 1], and connecting back to it gives [1, 0, 0]. By using the
same squaring trick in Lemma 27, we can use [1, 0, 0] as [1, 0]. Thus, we have the following reduction
chain:

#PM ≤G Holant([0, 1, 0, 0], [0, 1, 0])
≤G Holant([0, 1, 0, 0], [1, 0])
≤AP Holant([0, 1, 0, 0], [1, 0, 0])
≤G Holant([0, 1, 0, 0]). □

Holant problems defined by type II signatures are counting perfect matchings in d-regular graphs.
Clearly, by doing sufficiently many self-loops, either Holant(ExactOne3) ≤AP Holant(ExactOned )
or Holant(ExactOne4) ≤AP Holant(ExactOned ), depending on the parity of d . Thus, combining this
fact with Lemma 27, Lemma 28, (14) and (15), we have the following result.

Lemma 29. Let f = [0, 1, 0, λ2, 0, . . . ] for some 0 ≤ λ < 1. Then

Holant(f ) ≡AP #PM.

Notice that in Lemma 29 we manipulate the form a little bit so that it cover type II and type III in
Lemma 23, as well as the last case in Lemma 20.

7. Proof of main theorems

We are now ready to assemble all the ingredients to prove our main theorems. We restateTheorem 1
for convenience.

Theorem 1. Let f = [f0, f1, . . . , fd ] be a symmetric constraint function of arity d ≥ 3 satisfying gen-
eralised second-order recurrences, and fi ≥ 0 for all 0 ≤ i ≤ d . There is a fully polynomial-time (deter-
ministic or randomised) approximation algorithm for Holant(f ), unless, up to a non-zero factor, f or its
reversal is in one of the following form:

• [0, λ sin π
d , λ

2 sin 2π
d , . . . , λ

i sin iπ
d , . . . , 0] for some λ > 0;

• [0, 1, 0, λ, 0, . . . , 0, λ
d−2
2 , 0] if d is even, or [0, 1, 0, λ, 0, . . . , 0, λ

d−1
2 ] if d is odd, for some 0 ≤ λ < 1.
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Moreover, in the latter case, approximating Holant(f ) is equivalent to approximately counting perfect
matchings in general graphs.

Proof. We apply Lemma 20, Lemma 21 and Lemma 22. Then one of followings must happen
(1) f0 = fd = 0; or
(2) f or f is [1, 0, λ2, 0, λ4, 0, . . . ] for some λ > 1 and has an odd arity; or
(3) Holant (f ) can be solved exactly in polynomial-time; or
(4) there is an invertible matrix M ∈ C2×2 such that Holant

(
f M ⊗d |

(
M−1) ⊗2 · (=2)

)
is a ferro-

magnetic two-spin system; or
(5) there is an orthogonal matrix M ∈ O2(C) such that either Pf ·M⊗d (z) or Pf ·M⊗d (z) is Hε -stable

for some ε > 0, where f is the reversal of f .
We are done in Case (3), as well as in Case (5) by Proposition 17 and Theorem 15. In Case (4), we

invoke the FPRAS by Jerrum and Sinclair [JS93]. In Case (1) and Case (2), we are in the desired form
of the theorem by Lemma 23. (In case µ > 1 in Lemma 23, we can take its reversal so that µ < 1,
and if µ = 1, then exact counting is tractable [CGW16].) Finally, the approximation complexity of
[0, 1, 0, λ, 0, λ2, 0, . . . ] signatures is handled in Lemma 29. □

Remark. It is worth noticing that our algorithm applies beyond regular graphs. In fact, for any finite
family of signatures F , we can define Holant (F ) as the problem of computing the partition function
on a graph G, where each vertex v of G is associated with a function fv ∈ F . It is straightforward to
adapt the algorithm described in the proof of Theorem 1 for one to solve Holant (F )1. It is not hard to see
the adaptation provides an efficient approximation algorithm for Holant (F ) as long as there exists an
orthogonal matrix M ∈ O2(C) and ε > 0 such that Pf ·M⊗d is Hε -stable for every f ∈ F , where d is the
arity of f . For example, we can let F be the family of signatures for matchings up to arity d , or the family
of signatures for edge covers up to arity d . Therefore, our algorithm recovers a number of previously known
deterministic approximation algorithms for special cases of Holant problems, such as counting matchings
[BGK+07, PR17a] and counting edge covers in bounded degree graphs [LLL14].

On the other hand, even for the same tuple (a,b, c), signatures in Fa,b ,c may require different M to be
Hε -stable. It is not clear how to obtain an algorithm in such cases.

We deduce Theorem 2 from Theorem 1 by noting that all ternary signatures satisfy generalised
second-order recurrence relations. Therefore, we only need to deal with the case where f = [0,a,b, 0]
for some a,b > 0.

We design an FPRAS for Holant (f ) using the machinery called “winding” developed in [McQ13,
HLZ16]. We sketch the construction here without getting into too much technical details, which is out
of the scope of the current paper. We break every edge into two half edges, and then simulate a Markov
chain whose state space consists of all consistent edge assignments and assignments with at most two
inconsistencies. It has been shown by McQuillan [McQ13] that the Markov chain mixes rapidly as
long as the signature f is windable. It is then straightforward to use the algebraic characterization of
windable functions in [HLZ16] to verify that every function of the form [0,a,b, 0]with non-negativea,b
is windable. At last, it is trivial to check that, using the notations in [McQ13], the signature [0,a,b, 0] is
strictly terraced when both a,b > 0. This fact implies that the ratio between the total weight of nearly
consistent assignments and that of consistent assignments can be bounded by a polynomial in the size
of the instance. Therefore, we obtain an efficient Gibbs sampler for Holant (f ), which can be turned
into an FPRAS to compute the partition function via self-reduction [JVV86].

The remaining open case inTheorem 1 is when f ∈ Ab of arity d ≥ 3. Numerical evidences suggest
that these signatures are windable, via the criteria in [HLZ16]. We conjecture that this is indeed the
case, which would imply FPRAS for computing the partition functions of type I signatures, since this
class is “strictly terraced” in the language of [McQ13].

1Themain adaptation is to show that Zi (G) is still a BIGCP when more than one constraint function are present. Since F
is finite, we can therefore view functions in F as colors and enumerate vertex colored induced subgraphs instead of ordinary
induced subgraphs in the proof of Lemma 14. Similar technique already appreared in [PR17a]
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